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ABSTRACT

In multivariate time series forecasting using the Transformer architecture,
capturing temporal dependencies and modeling inter-variable relationships
are crucial for improving performance. However, overemphasizing temporal
dependencies can destabilize the model, increasing its sensitivity to noise,
overfitting, and weakening its ability to capture inter-variable relationships.
We propose a new approach called the Temporal-Variable Decoupling Net-
work (TVDN) to address this challenge. This method decouples the mod-
eling of variable dependencies from temporal dependencies and further sep-
arates temporal dependencies into historical and predictive sequence de-
pendencies, allowing for a more effective capture of both. Specifically,
the simultaneous learning of time-related and variable-related patterns can
lead to harmful interference between the two. TVDN first extracts variable
dependencies from historical data through a permutation-invariant model
and then captures temporal dependencies using a permutation-equivariant
model. By decoupling variable and temporal dependencies and historical
and predictive sequence dependencies, this approach minimizes interference
and allows for complementary extraction of both. Our method provides a
concise and innovative approach to enhancing the utilization of temporal
features. Experiments on multiple real-world datasets demonstrate that
TVDN achieves state-of-the-art (SOTA) performance. The code is avail-
able at the repository https://anonymous.4open.science/r/TVDN-366F

1 INTRODUCTION

As artificial intelligence technologies continue to advance, the
role of time series forecasting in critical sectors such as energy
management(Gao_et_all, 2023a), meteorology(Meenal et al,
2022), finance(Lopez-Lira & Tang, 2023), and sensor net-
works(Mejia et al), 2020) has become increasingly important.
Long-term Time Series Forecasting (LTSF), involving projec-
tions far into the future, is crucial for strategic planning and
provides significant reference value.

The limitations of traditional statistical techniques in han-
dling complex time series forecasting tasks have sparked in-
creasing interest among data scientists in applying deep learn-
ing methodologies for forecasting. Over years of evolution
and competitive advancements, the Time-Series Forecasting
Transformer (TSFT), renowned for its superior sequence mod-
eling abilities and scalability, has become widely adopted for
long-term time series forecasting.

Nonetheless, TSFT models has faced skepticism_from re-
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Figure 1: The mean squared
error (MSE) of TVDN on var-
ious real-world datasets com-
pared with other SOTA meth-
ods.

searchers(Zeng et all, 2023). Previous studies (Zeng et al|, 2023; Gao et all, 2023h) have
shown that TSFT’s effectiveness remains the same, mainly even when parts of the historical
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sequence are masked, leading to doubts about its ability to extract significant information
from these sequences.

Varia lencies capture Multivariate time seri en_show both instanta-
neous((;‘:erscl-f]7 i985; IKoutlis et al), 201d) and lagged effectsLin et al] ()7 such as transient
correlations between heart rate and blood pressure or gradual temperature impacts on plant
growth. Specific TSF'T models emﬁ oying cjo, -Vari f ] ignj 1t
progress in long-term forecasting ([Liu et al), 2024; Gao et al), 2023b; Zhang & Yar, Eﬁ(-);aj)

These models notably enhanlcf_pﬂﬂzujn p_@ua_l_bu_u_ld sets characterized by multi-
variable interdependencies. [Liu et al EOQZII ); Zeng et al] (2023) think that feed-forward

networks (FFN) favor extracting the series representations.

Temporal dependencies capture However, some linear models and Cross-Variable Trans-
formers do not extract accurate temporal dependencies bec they essentially map histor-
ical series as unordered sets to predicted series experiment . The reason for their better
performance may be that in some tasks, the time dependence of the historical sequence does
not contribute much to the prediction of the target sequence. To address the deficiencies of
permutation-invariant models, we focus on temporal features, dividing them into the tempo-
ral dependencies of the historical sequences and the temporal dependencies of the prediction
sequences.

Split Variable Dependencies Learning and Temporal Learning The vanilla Trans-
former model divides sequences along the temporal dimension. However, this approach

fails to focus on learning the correct p ing in performance comparable to or
even worse than simple linear baselines Zeng et al) (2023). In contrast, cross-variate Trans-

forrner models adopt a variable-oriented perspectlve splitting s al thg variab j
dimension, which signifi ction performance ifiu et al] (2024); Gao et al
() Crossformer Ehang & Yaﬁ gioéj‘ ) attempts to capture temporal and variable
dependencies simultaneously but still shows room for improvement in prediction accuracy.
Our experiments observed that learning both patterns simultaneously leads to performance
degradation. Supporting studies have also demonstrated that cross-temporal self-attention
can result in bad local minima and make it harder to converge to true solutions. To address
this, optimizati iqu ve been proposed to guide the model toward a better gradi-
ent direction :lbert et alj (2024). Inspired by these findings, we first leverage cross-variate
learning to obtain a better initialization point, followed by cross-temporal learning to guide
the model toward its true solution.

In conclusion, based on the analysis above, we introduce a dual-phase deep learning network
architecture. The initial phase, the Cross-Variable Encoder (CVE), aims to identify inter-
variable dependencies, effectively extracting information from historical sequences. Once the
CVE stabilizes, the second phase shifts to temporal dependency learning. In this phase, the
Cross-Temporal Encoder (CTE) combines the original input with the output from the CVE,
focusing on learning cross-temporal dependencies. This approach addresses the limitations
of temporal dependency learning inherent in the first phase’s cross-variable feature learning
and clarifies the temporal relationships within predictive sequences.

By segregating cross-variable and cross-temporal learning, our model significantly reduces
the risk of overfitting and enhances the potential to discover better global solutions. Our
experimental results demonstrate that the proposed TVDN (Temporal-Variable Decoupling
Network) achieves state-of-the-art (SOTA) performance on real-world forecasting bench-
marks, as illustrated in Figure [ll. Our contributions can be summarized in three key aspects:

e This study introduces the Temporal-Variable Decoupling Network (TVDN), which
combines permutation-invariant and permutation-equivariant models to decouple
variable and temporal dependencies, reducing interference between them and im-
proving temporal feature utilization.

e This study decouples learning into three sub-modes: variable dependency, histor-
ical sequence temporal learning, and predicted sequence temporal learning, then
integrates them to maximize effectiveness and overcome the limitations of feature
extraction in permutation-invariant and permutation-equivariant models.
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o TVDN significantly improves multivariate time series forecasting accuracy with min-
imal overhead, achieving comprehensive SOTA performance on real-world bench-
marks. It effectively captures both variable and temporal dependencies. Our analy-
sis of the two-phase architecture highlights its rationale and effectiveness, offering a
novel framework for developing more interpretable and accurate forecasting meth-
ods.

2 RELATED WORK

Traditional time series forecasting methods such as ARIMA (Anderson, [1976), Holt-
Winters(Hyndman & Athanasopoulos, 2018), and Exponential Smoothing(Brown, [1959)
assume that temporal variations follow fixed patterns. However, real-world time series data
often contain complexities that these methods fail to capture, limiting their effectiveness in
practical applications(Box et all, 015; Chatfield & Xing, 2019).

To address the shortcomings of classical models, deep learning approaches have been devel-
oped for temporal modeling, including TCN, RNN-based, and MLP-based methods. MLP-
based models(Challu et all, 2023; Zeng et al|, 2023) utilize MLPs along the temporal di-
mension to encode temporal dependencies into the fixed parameters of the MLP layers.
TCN-based methods capture temporal variations using convolutional kernels that slide along
the temporal dimension(Wu et al), 2022). RNN-based methods(Lai et al), 2018; Gu et all,
2021) employ a recurrent structure to implicitly capture temporal variations through state
transitions over time.

The Transformer model, celebrated for its exceptional performance in diverse domains such
as natural language processing, speech recognition, and computer vision, has been adapted
for time series forecasting through various variants to enhance its self-attention mecha-
nism(Vaswani et all, 2017). These adaptations primarily focus on learning long-term depen-
dencies using cross-temporal attention mechanisms and optimizing computational efficiency.

LogTrans(Li et al|, 2019) introduces a convolutional self-attention layer with a LogSparse de-
sign, adept at capturing local information while reducing spatial complexity. Other models,
such as Informer(Zhou et al|, 20224)) and Autoformer(Wu et al), 2021), innovate by replacing
the traditional self-attention mechanism, lowering computational complexity to O(Llog L).
Pyraformer([Liu et all, 2021|) integrates pyramid attention modules that connect across and
within scales, achieving linear complexity.

Further advancements include models like Autoformer, FEDformer(Zhou et all, 20221h), and
ETSformer(Woo et all, 2022), which incorporate TSFT with seasonal trend decomposition
and signal processing techniques, such as Fourier analysis, within their attention frameworks.
This enhances the interpretability of these models and efficiently captures seasonal trends.

To address stability in predictions, especially in non-stationary contexts, some Transformer
models incorporate stabilization modules and De-stationary into the standard Transformer
framework(Liu et al}, 2022; Kim et al), 2021)). This helps stabilize predictions while avoiding
the pitfalls of excessive stabilization, which can lead to a loss of important data variability.

Recent developments in_cross-variable Transformer models show significant promise. Mod-
els like iTransformer(Liu et all, 2024) and Client(Gao et al), 2023b) enhance performance
in long-term multivariate forecasting by using cross-variable Transformers instead of cross-
temporal ones. Additionally, Crossformer(Zhang & Yan, 2022) employs a two-stage at-
tention (TSA) layer to capture dependencies over time and across different dimensional
segments of the series. However, there is room for improvement in models like Crossformer
regarding their performance on various benchmark datasets.A recent work PatchTST (Nie
et al), 2022) studies using a vision transformer type model for long-term forecasting with
channel independent design. This work designs an encoder-decoder model utilizing a hier-
archy attention mechanism to leverage cross-dimension dependencies.
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Figure 2: Overview of the proposed method. (1) Cross-Variable Transformer. (2) Lin-
ear Model (3) Prediction Sequence Temporal Dependency Learning Module. (4) Historical
Sequence Temporal Dependency Learning Module (5) Feature Fusion. The TVDN archi-
tecture is strategically bifurcated into two key components. On the left, CVE leverages the
Cross-Variable Transformer to effectively delineate dependencies among variables. In con-
trast, on the right, CTE utilizes (3) to capture prediction sequences temporal dependencies
and (4) to capture historical sequences temporal dependencies.

3 MODEL ARCHITECTURE

The architecture of TVDN is depicted in Figure E As previously discussed, we separate the
learning of variable dependency from that of temporal dependency. The process begins with
variable dependency learning (left), followed by temporal dependency learning(right), which
is further divided into two sub-modules: historical sequence dependency and predictive
sequence dependency.

3.1 CROSs-VARIABLE ENCODER (CVE)

CVE is a permutation-invariant model used for modeling variable dependencies. CVE is
based on the Cross-Variable Transformer (Liu et al], 2024; Gao et al, 2023h), which treats
the input data as a sequence of variables to capture complex dependencies among them.
The hallmark of CVE lies in its novel approach to token partitioning. Unlike traditional
methods, CVE segments tokens along the variable dimension, with each token representing
different temporal instances of the same variable. This is achieved by transposing the input
data. The process is illustrated as follows:

VY = Transpose(Xenc) (1)
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VD = TransformerBlock(V™), m € {0,1,...,M —1} (2)
Zove = Projection(V) + weight x Projection(Xenc) ®)

The operational sequence begins by transposing the input data X, to form V°, where V
is a matrix containing D embedded tokens, each with a dimension of S. D is equal to the
number of variables, and S is the length of time series. Here, VO € RP*S represents the
initial embedded form of the input. The superscript in V("+1) indicates the layer index in
the progression of transformations.

Each subsequent layer V™1 is generated by applying a TransformerBlock to the out-
put of the previous layer V™. This process is repeated for m € {0,1,...,M — 1}. The
TransformerBlock typically consists of self-attention mechanisms and a shared feed-forward
network (FEFN), allowing the variable tokens within V to interact and be processed indepen-
dently at each layer. This iterative process enriches the data representation by capturing
complex dependencies and patterns.

Finally, the Projection operation transforms the output of the last Transformer layer VM
and the original input data X, into a common space, which is then added with a learnable
weight weight to obtain the final output Zcvg, where Zcovg € RO*D and O represents
the prediction length and D is the number of variables. This output is then used as input
to the next phase of learning, the Cross-Temporal Encoder (CTE). To address the issye of
distribution shift, CVE employs a reversible instance normalization (RevIN) module (Kim
et all, 2021). This module, characterized by its symmetrical structure, can remove and
restore the statistical information of time series instances, thereby enhancing the model’s
stability during the prediction process.

Using a projection layer instead of a decoder. CVE channels the extracted features
into a projection layer to generate first-stage predictions, deliberately omitting a Transformer
decoder. This approach stems from the decoder’s inherent assumption of future sequence
invisibility, which overlooks the constraining influence of future sequences on historical data.
Additionally, the Transformer module within CVE operates predominantly as a feature
extractor rather than a sequence generator, given the absence of temporal interrelations
among different variables.

3.2 Cross-TEMPORAL ENCODER (CTE)

The CTE plays a crucial role in modeling the temporal dependencies. CTE divides time
series dependence into two parts: historical sequences dependence and predictive sequences
dependence. It processes inputs that include the outputs of the original historical sequences
combined with the results from the CVE. This combination of data allows the CTE to effec-
tively capture the temporal dependencies of the history sequences and prediction sequences,
overcoming the CVE stage’s limitations in recognizing dynamic temporal characteristics.

The output of the CTE is then combined with the output of the CVE through an additive
fusion process to optimize the residual between the CTE and the predictive sequence. The
CTE is simply expressed as:

Z;, = HSTDBlock(V?)
T = Z, ® Zove
T = FDS(PSTDBlock(T™)), for n € {0,1,...,N —1}
Y = Zcve @ Projection(T)

4
)
6

(
(
(
(7

—_ —

where T? denotes the initial input state, formed by the addition of Zroj and Zcvg, where
TO resides in the space RO*P. This signifies that T? contains O embedded tokens, each of
dimension D, capturing the combined information from the projected target sequence and
the output of CVE. n indicates the layer index in the sequence of transformations, iterating
from 0 to N — 1. FDS and the CrossTimeBlock interactively refine the temporal features
in each layer. Finally, the cumulative output of this sequential operation, T?V, is combined
with the CVE’s output.
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Figure 3: Overview of the training process

Prediction Sequence Temporal Dependency (PSTD) The role of PSTD is to model
the time dependence of prediction sequences. The PSTD block consists of a convolutional
layer and employs a concatenation operation to ensure that no information is lost from the
input. To avoid performance degradation and the risk of overfitting due to an excess of
features, we employ point-wise convolutions to construct a Feature Down-Sample (FDS)
module, which halves the input features.

Historical Sequence Temporal Dependency (HSTD) The role of HSTD is to model
the time dependence of historical sequences. The HSTD block consists of a convolutional
layer and employs a residual connection to ensure that important historical information is
retained and to prevent performance degradation as the network deepens.

Feature Down-Sample (FDS). The input data and encoding process generate many
redundant features. FDS is used to suppress these redundant features generated during the
encoding process while eliminating the performance overhead caused by channel expansion.

3.3 TRAINING PROCESS

As shown in FigureH, first, during the variable dependence learning phase, the permutation-
invariant CVE completely disregards the temporal dependence of the sequence and only
extracts cross-features between variables, generating an initial prediction sequence. At the
same time, the CTE remains frozen at this stage. Next, HSTD extracts the temporal features
of the historical sequences, while PSTD extracts the temporal features of the prediction
sequences. The outputs of HSTD and PSTD are then fused to correct the initial prediction
from the variable dependence learning phase (residual fitting). At the same time, the CVE
and CTE model parameters are updated through backpropagation.

4 EXPERIMENTS

Datasets In this study, we evaluate the ance of TVDN using eight pop, ‘
i i ing electricity (| rlndade ﬁ trafﬁc ﬁ{ weather( aX—Planck-‘

nstitut fiir Biogeochemie), four ETT sformer Temper,

ETThl, ETTh2, ETTm]1, and ETTm2)(Zhou et al, , and exchange(Lai et al, 201 )

4.1 MAIN RESULTS

Client(

red the 1 ods(iTransformer(ILlu et l2024l),
%ﬁ), LightTS(Zh ,F Zhou et all, 2022b), An
form , 2021), ETSformer(Woo ef. all, ) (Zhou et all, 20224), Pyraforme

et al), ), CNN-based TimesNet (Wu et al), 2022), and linear model Dhnear(

2023).

Baseli




Under review as a conference paper at ICLR 2025

Experimental Settings The look-back window size for all datasets is uniformly set at 96,
and the number of training epochs is fixed at 10 for each. We assess the performance using
four different prediction lengths {96, 192, 336, 720}. Following the evaluation procedure used
in previous studies, we compute the Mean Squared Error (MSE) and Mean Absolute Error
(MAE) for data normalized with z-score normalization.

esults The long-term sequence forecasting results are presented in Table E, Table E, Table
and Figure §. We maintained consistency in the look-back window and training epochs to
ensure the most equitable comparison.

Both iTransformer and Client use a cross-variable Transformer architecture, ranking just
below TVDN. It shows that models ignoring temporal ordering can capture cross-variable
relationships more effectively, partly supporting the hypothesis that learning temporal de-
pendencies may interfere with variable dependencies. DLinear excelled on the Exchange
dataset, which has fewer variables, indicating its strength in forecasting scenarios focused
on single variables. FEDformer leverages frequency domain analysis and performed well on
the ETTh1 dataset, highlighting the importance of frequency domain features. TimesNet,
which transforms time series into two-dimensional tensors to capture both intra-periodic
and inter-periodic patterns, showed strong performance on ETThl and ETTm2, aligning
with the emphasis on periodicity and locality in sequences.

TVDN surpasses all SOTA models, achieving the best performance on several popular
datasets. Overall, it achieved first place in 70 (Second best model is 12) categories, and
it leads other advanced models by a significant margin in both the average and median
numbers of first places in MSE and MAE.

TVDN, through its CVE, thoroughly mines variable dependencies from historical sequences
and, through its CTE, fully learns the temporal dependencies of the prediction and historical
sequence. (1) By separating and training cross-variable and cross-time learning, we avoided
mixing the two learning modes, enhancing the prediction results. (2) The motivation for
incorporating the_temporal dependence of the prediction series into the model is: Based on
our experiments [, we identified that the bottleneck of the traditional Transformer model
lies in the ineffective utilization of historical sequence information. Its primary benefit is
learning the temporal dependency patterns of the prediction sequence.

Table 1: The results of MSE and MAE for LTSF.

TVDN  iTransformer  Client DLinear  TimesNet FEDformer ETSformer LightTS Autoformer Pyraformer Informer

Models
Metric MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE| MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE]|
Avg
Me

0.158 0.256
0.158 0.257

0.178 0.270
0.170 0.261

0.171 0.264
0.167 0.261

0.212 0.300
0.203 0.293

0.192 0.295
0.191 0.295

0.214 0.327
0.208 0.322

0.208 0.323
0.206 0.322

0.229 0.329
0.222 0.325

0.227 0.338
0.227 0.336

0.379 0.445
0.377 0.444

0.311 0.397

El ici
ectricity 0.298 0.390

0.433 0.265

0.432 0.265

0.465 0.304
0.462 0.302

0.625 0.383
0.625 0.384

0.620 0.336
0.623 0.336

0.610 0.376
0.613 0.378

0.621 0.396
0.622 0.396

0.622 0.392
0.614 0.389

0.628 0.379
0.619 0.385

0.878 0.469
0.875 0.469

0.764 0.416
0.748 0.406

Avg
Me

0.428 0.282
0.425 0.280

Traffic

0.258 0.279
0.250 0.275

0.265 0.317
0.260 0.316

0.259 0.287
0.250 0.284

0.309 0.360
0.308 0.358

0.271 0.334
0.268 0.333

0.261 0.312
0.255 0.311

0.338 0.382
0.333 0.381

0.946 0.717
0.872 0.689

0.634 0.548
0.588 0.534

Avg
Me

0.234 0.276
0.230 0.277

0.249 0.275
0.243 0.274

‘Weather

Avg
Me

0.445 0.437
0.458 0.441

0.454 0.447
0.464 0.447

0.452 0.445
0.464 0.446

0.456 0.452
0.459 0.446

0.458 0.450
0.464 0.449

0.440 0.460
0.440 0.457

1.040 0.795
1.058 0.801

ETThl

0.542 0.510{0.491 0.479|0.496 0.487|0.827 0.703
0.550 0.513]0.497 0.475|0.507 0.489|0.841 0.710

0.373 0.402
0.386 0.409

0.386 0.411
0.403 0.423

0.559 0.515
0.536 0.509

0.414 0.427
0.427 0.433

0.437 0.449
0.446 0.457

0.439 0.452
0.458 0.459

0.602 0.543
0.573 0.532

0.450 0.459
0.469 0.469

0.826 0.703
0.848 0.715

4.431 1.729
4.238 1.730

Avg
Me

0.383 0.407
0.404 0.416

ETTh2

0.388 0.395
0.380 0.393

0.407 0.410
0.402 0.406

0.403 0.407
0.397 0.401

0.400 0.406
0.392 0.399

0.448 0.452
0.436 0.450

0.429 0.425
0.422 0.419

0.435 0.437
0.419 0.423

0.588 0.517
0.587 0.517

0.691 0.607
0.656 0.596

0.961 0.734
0.981 0.746

Avg
Me

0.399 0.401
0.391 0.397

ETTm1

0.285 0.327
0.276 0.323

0.350 0.401
0.327 0.395

0.293 0.342
0.284 0.338

1.498 0.869
0.966 0.759

1.410 0.810
0.948 0.725

Avg]
Me

ETTm?2

0.285 0.330{0.297 0.347 0.377 0.424(0.310 0.356

0.288 0.332]0.291 0.330
0.281 0.329)0.283 0.326

0.291 0333‘ 0.305 0.349

0.409 0.436‘0.327 0.371

Avg]
Me

0.345 0.405
0.258 0.372

0.360 0.403
0.254 0.358

0.355 0.403
0.253 0.358

0.354 0.414
0.245 0.371

0.416 0.443
0.297 0.396

0.519 0.500
0.366 0.440

0.410 0.427
0.265 0.366

0.385 0.447
0.296 0.413

0.613 0.539
0.405 0.447

1.913 1.159
1.909 1.162

1.550 0.998
1.438 0.966

Exchange

4.2 INFLUENCE OF SPLITTING VARIABLE AND TEMPORAL LEARNING

In this section, we conducted ablation experiments on three datasets to verify the necessity
and effectiveness of treating the input sequence as a variable an en switching to a ti
sequence in TVDN. The experiment results are shown in Figure [19, Figure f and Tablenge.
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Significantly decreases without CTE. This means that CTE fully complements the learning
of temporal dependent features.

Decoupling effect As shown in Table @,
Figure 4: Results of ablation studies of the the model’s performance deteriorates when

TVDN model. trained by CVE and CTE. This suggests
Method | TVDN-mix | TVDN-split |  CVE that simultaneous cross-variable and cross-
Metric | MSE MAE | MSE MAE | MSE MAE  temporal learning can cause mutual inter-

96 |0.140 0.236 | 0.1832 0.226 |0.142 0.238  ference. The process of temporal depen-
192 | 0161 0.254 | 0.153 0.250 [0.160 0.252

ECL | 336 |0.175 0.260 |0.164 0.264 |0.173 0.267 dency learning is prone to transmitting the
720 |0.212 0.300 | 0.186 0.284 |0.204 0.296 3 :
ave | o17s 0365 | 0.188 o286 |55 a3 effect§ of overfitting to Varlable dependency
56 10237 0291 (0401 0248 0435 0a0a learning. However, performing variable de-

192 |0.453 0.297 |0.427 0.259 |0.455 0299 pendency learning first and switching to
Traffic | 336 |0.470 0.306 | 0.438 0.271(0.468

720 | 0503 0.322 | 0.469 0.285 |0.499 o321 temporal dependency learning can effec-
AVG 0465 0.304 | 0.433 0.265 0465 039  tively avoid these issues. This approach al-
96 |0.166 0.212 [0.152 0.202 [0.165 0.210 s
(92 |0239 0354 | 0300 0300|5313 0asz  1ows the model to gradually adapt to differ

Weather | 336 |0.272 0.294|0.261 0.305 |0.270 0.294 ent aspects of the data rather than trying

720 | 0.350 0.346 | 0.325 0.349 | 0.354 0.349 . . .
AVG | 0950 0276 |0.234 0.276 | 0250 0276 b0 fit all complex relationships simultane-
1° count | 0 1] 15 12 | o 1 ously. The method of decoupling temporal

features from variable features achieved 15
first-place counts in MSE and 14 first-place
counts in MAE, demonstrating a significant advantage over the CVE model, which only
captures variable dependencies and non-decoupling methods.

datasets, suggesting the robustness of the

proposed method. The results highlight the

significance of designing a learning strategy Figure 5: (a) Comparison of MSE reduction
that aligns with the temporal and variable on the test Set between shifting to temporal
dependencies in the data. dependency learning and focusing on variable
dependency learning. (b) Trend illustration of
shifting to temporal dependency and focusing
on variable dependency on the validation and

test sets. This trend is observed across all the
datasets we tested.

The analysis in Figure @ illustrates how
shifting from cross-variable learning to tem- ™

poral dependency learning approaches im- ;" I I
proves the model’s ability to capture both
amplitude and trend characteristics. This
phenomenon is observed across multiple

AMSE

Switching from variable learning to

emporal learning As shown in Figure
E, continuing to learn dependencies among
variables results in a minimal decrease in
MSE and can even lead to an increase in
MSE, making overfitting more likely. However, after switching to temporal dependency
learning, MSE exhibits a secondary decline trend, significantly reducing MSE. As shown
in Figure [12, the separated training method has significant advantages in predicting the se-
quence’s amplitude and overall trend. These indicate that TVDN can help the optimization
algorithm avoid suboptimal local minima. By shifting the focus of learning, the model may
explore a broader parameter space, thereby finding a better global solution.

4.3 INFLUENCE OF TEMPORAL FEATURES

To investigate the contribution of temporal features, we designed an experiment on the
ECL dataset with input length 96 and prediction length 96, where the time series order
was randomized entirely, removing all temporal information. We then observed the change
in performance metrics before and after the randomization to assess the model’s reliance
on temporal features. The more MSE and MSE grow, the more capable the model is of
extracting and utilizing temporal information.

Results The results are shown in the Figure E After randomly adjusting the time order,
the TVDN model has the largest rate of performance degradation, which indicates its strong
dependence on the time sequence, and its full extraction of the time sequence features, when
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the time sequence features are artificially eliminated, he model has the largest performance
degradation.

The permutation-invariant Cross-Variable Transformer and Dlinear models remained un-
affected, indicating they did not rely on temporal features from historical sequences. In
contrast, other permutation-equivariant models (Informer and Autoformer) showed mini-
mal changes in MSE, suggesting a lesser dependence on temporal features. While they did
utilize some temporal information, it was insufficient for optimal performance.
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Figure 6: The relative change in MSE and MAE after randomly shuffling historical sequences
(Electricity dataset, sequence length=96). TVDN shows the highest increase in errors,
indicating it benefits the most from temporal features, while maintaining the lowest absolute
MSE/MAE values, suggesting temporal disruption does not impair its cross-variable learning
capability.

4.4 MODEL EFFICIENCY

Figure H and Table E show that the proposed TVDN achieves the best prediction perfor-
mance while maintaining computational efficiency. Specifically, TVDN requires only 0.46G
FLOPs and 1.44M parameters, which significantly reduces computational overhead com-
pared to transformer-based models like iTransformer (1.67G FLOPs, 5.15M parameters).
TVDN takes 0.0020s per sample for inference speed, comparable to lightweight models like
Client (0.0016s) and much faster than complex models such as TimesNet (0.0625s). Re-
garding memory consumption, TVDN requires only 50.25MB peak memory, showing con-
siderable efficiency compared to larger models like TimesNet (724.97MB) and Pyraformer
(1434.35MB). While some lightweight models like DLinear achieve lower computational costs
(0.04G FLOPs, 0.14M parameters), they demonstrate inferior prediction accuracy (MSE:
0.245). These results validate that TVDN achieves an optimal balance between model effi-
ciency and prediction performance.

Performance vs. Computational Cost

5 CONCLUSION

Parameters
Lom

This paper introduces a method called
TVDN, which decouples variable learning
from temporal dependency learning and
models temporal features through histor-
ical and prediction sequence dependency.
TVDN effectively minimizes interference,
reduces the risk of overfitting, and enables
broader parameter space exploration. Ex-
perimental results demonstrate that TVDN
addresses the limitations of permutation-
invariant models in capturing dynamic
temporal dependencies and outperforms
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Figure 7: Model efficiency comparison on the
ECL dataset.

permutation-equivariant models in efficiently capturing temporal features. TVDN achieves
SOTA performance across various real-world datasets.
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A DETAILS OF EXPERIMENTS

A.1 DATASETS

Table 2: Detailed dataset descriptions. Dimension denotes the variate number of each
dataset. Dataset Size denotes the total number of time points in (Train, Validation, Test)
split respectively. Prediction Length denotes the future time points to be predicted and four
prediction settings are included in each dataset. Frequency denotes the sampling interval of
time points.

Dataset \ Dimension \ Prediction Length Dataset Size Frequency
ETThl, ETTh2 | 7 | {96, 192, 336, 720} (8545, 2881, 2881) Hourly
ETTm1, ETTm2 | 7 {96, 192, 336, 720}

| |

| |

‘ (34465, 11521, 11521) ‘ 15min
{96, 192, 336, 720y | (5120, 665, 1422) |

| |

| |

| |

|
Exchange | 8 | Daily
Weather | 21 | {96, 192, 336, 720} (36792, 5271, 10540) 10min
ECL | 321 | {96, 192, 336, 720} (18317, 2633, 5261) Hourly
Traffic | 862 | {96, 192, 336, 720} (12185, 1757, 3509) Hourly

We performed comprehensive evaluations across seven widely adopted time series datasets.
In line with previous studies Wu et al| (2022), we split the datasets chronologically to form
the training, validation, and testing subsets. Specifically, the ETT dataset was divided with
a 6:2:2 ratio, while the remaining datasets employed a 7:1:2 ratio. Below is a summary of
the datasets:

o« ETT (Electricity Transformer Temperature): This dataset consists of data
from electricity transformers located in two regions of China, covering the period
from July 2016 to July 2018. It provides two levels of temporal resolution: ETTh
(hourly) and ETTm (every 15 minutes). The dataset includes measurements of oil
temperature and six external load features.

o Weather: The Weather dataset offers meteorological data collected every 10 min-
utes in Germany throughout 2020. The dataset includes 21 variables, such as air
temperature, visibility, and others.

e Electricity: This dataset contains hourly electricity usage data from 321 house-
holds, recorded between 2012 and 2014. The electricity consumption is measured
in kilowatt-hours (kWh), and the data is available from the UCL Machine Learning
Repository.

e Traffic: The Traffic dataset records hourly road occupancy rates from 862 real-time
sensors on highways in the San Francisco Bay Area. The data spans the years 2015
to 2016.

The ETT dataset can be accessed at https://github.com/zhouhaoyi/Informer2020,
while the other datasets are available at https://github.com/thuml/Autoformer. Table
7 provides detailed dataset statistics, including time steps, variables, temporal resolution,
and the top five dominant periods.

A.2 DBASELINES

iTransformer (Liu et all, 2024) introduces an innovative inversion of the traditional Trans-
former architecture for time series forecasting. Instead of embedding time steps, iTrans-
former treats each variable as an independent token, using self-attention to capture multi-
variate correlations. This design allows the model to better generalize across different time
series, providing improved accuracy and interpretability. The source code can be accessed
at https://github.com/thuml/iTransformer

FITS (Xu et all, 2024) is a lightweight time series analysis model. It transforms input
sequences into the frequency domain, applies a low-pass filter to remove high-frequency
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noise, and utilizes a complex-valued linear layer for interpolation, learning amplitude scaling
and phase shifting. The processed data is then converted back to the time domain via inverse
Fourier transform. This approach enables FITS to excel in tasks like time series forecasting
and anomaly detection, with a model size of approximately 10,000 parameters, making it
suitable for deployment on resource-constrained edge devices. The source code is available
at https://github.com/VEWOXIC/FITS.

WITRAN (Jia et al), 2024) introduces a novel framework that captures both long- and
short-term patterns through bi-granular information transmission. It employs a Horizontal
Vertical Gated Selective Unit (HVGSU) to model global and local correlations and incorpo-
rates a Recurrent Acceleration Network (RAN) to enhance computational efficiency. The
source code is available at https://github.com/Water2sea/WITRAN.

Client is a model designed for capturing cross-variable dependencies, integrating trend detec-
tion and a Reversible Instance Normalization (RevIN) module. The source code is available
at https://github.com/daxin007/Client

DLinear (Zeng et all, 2023), a simple one-layer linear model, challenges the dominance of
Transformer-based models in long-term time series forecasting by demonstrating superior
performance across multiple datasets. The source code can be accessed at https://github.
com/vivva/DLinear.

TimesNet (Wu et al], 2022) is a CNN-based model that converts one-dimensional time series
into two-dimensional tensors to effectively capture complex temporal dynamics through
adaptive multi-periodicity and inception blocks. The source code is accessible at https:
//github.com/thuml/TimesNet.

FEDformer (Zhou et all, 2022b) leverages a Transformer-based architecture that combines
seasonal-trend decomposition with frequency enhancement, enabling it to efficiently capture
both global temporal trends and intricate patterns. The source code can be found at https:
//github.com/MAZiqing/FEDformer|.

ETSformer (Woo et all, 2022), inspired by exponential smoothing, incorporates both trend
and seasonal components into a Transformer architecture. This enables ETSformer to ac-
curately model short- and long-term dependencies in time series data. The source code is
available at https://github.com/salesforce/ETSformer

LightTS (Zhang et al), 2022) is a lightweight Transformer model designed for long-term time
series forecasting. It reduces computational complexity while maintaining accuracy, making
it ideal for environments with resource constraints. The source code can be accessed at
https://github.com/d-gcc/LightTS

Autoformer (Wu et all, 2021)) employs a decomposition strategy to separate time series into
trend and seasonal components. This approach enhances long-term forecasting by focusing
on individual components, allowing the model to learn more effectively. The source code is
available at https://github.com/thuml/Autoformer

Pyraformer (Liu et all, 2021) utilizes a pyramid structure within its Transformer model
to capture hierarchical dependencies over different time scales. This design improves the
model’s ability to handle both local and global temporal patterns. The source code is
accessible at https://github.com/ant-research/Pyraformer

Informer (Zhou et all, R021), known for its ProbSparse Attention mechanism, enhances
the efficiency and scalability of Transformer models for long-term time series forecasting.
This method reduces the computational complexity of handling long sequences, making
it a practical solution for large-scale time series data. The source code is available at
https://github.com/zhouhaoyi/Informer2020
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B EXTENDED NUMERICAL RESULTS OF TVDN IN
LONG-TERM FORECASTING WITH 96 INPUT LENGTH

Table 3: The complete results for LTSF. The results of 4 different prediction lengths of
different models are listed in the table. The look-back window sizes are set to 96 for all
datasets. We also calculate the average (Avg) and median(Me) of the results for the 4
prediction lengths and the number of optimal values obtained by different models.

TVDN iTrapsformer ien DLinear TimesNet  FEDformer ETSformer Li S Autoformer Pyraformer Informer
Models 2024

Metric MSE MAE|MSE MAE ‘MSE MAE|MSE MAE|MSE MAE|MSE MAE |MSE MAE ‘MSE MAE|MSE MAE ‘MSE MAE ‘MSE MAE

2 96 0.132 0.226(0.148 0.240 |0.141 0.236|0.197 0.282]0.168 0.272|0.193 0.308 |0.187 0.304 |0.207 0.307]0.201 0.317 [0.386 0.449 |0.274 0.368
Q 192 0.153 0.250(0.162 0.253 |0.161 0.254|0.196 0.285|0.184 0.289|0.201 0.315 |0.199 0.315 |0.213 0.316{0.222 0.334 [0.378 0.443 |0.296 0.386
% 336 0.164 0.264(0.178 0.269 |0.173 0.267|0.209 0.301|0.198 0.300|0.214 0.329 |0.212 0.329 |0.230 0.333]0.231 0.338 [0.376 0.443 |0.300 0.394
5 720 0.186 0.284(0.225 0.317 |0.209 0.245 0.3330.220 0.320{0.246 0.355|0.233 0.245 |0.265 0.360|0.254 0.361 |0.376 0.445 |0.373 0.439
Avg 0.158 0.256(0.178 0.270 |0.171 0.212 0.300(0.192 0.295|0.214 0.327 |0.208 0.323 |0.229 0.329|0.227 0.338 |0.379 0.445 (0.311 0.397
Me 0.158 0.257(0.170 0.261 |0.167 0.203 0.293|0.191 0.295|0.208 0.322]0.206 0.322 |0.222 0.325|0.227 0.336 |0.377 0.444 |0.298 0.390
96 0.401 0.248|0.395 0.268 |0.438 0.292]0.650 0.396|0.593 0.321|0.587 0.366 (0.607 0.392 |0.615 0.391|0.613 0.388 |0.867 0.468 |0.719 0.391
é 192 0.427 0.259|0.417 0.276 |0.451 0.298|0.598 0.370|0.617 0.336 |0.604 0.373 [0.621 0.399 (0.601 0.382|0.616 0.382 |0.869 0.467 |0.696 0.379
< 336 0.438 0.271]0.433 0.283 |0.472 0.305|0.605 0.373]0.629 0.336|0.621 0.383 |0.622 0.399 |0.613 0.386/|0.622 0.337 |0.881 0.469 |0.777 0.420
g 720 0.469 0.285(0.467 0.302 |0.499 0.321|0.645 0.394|0.640 0.350(0.626 0.382 [0.632 0.396 (0.658 0.407|0.660 0.408 |0.896 0.473 |0.864 0.472
Avg 0.433 0.265|0.428 0.282 |0.465 0.304|0.625 0.383|0.620 0.336|0.610 0.376 [0.621 0.396 (0.622 0.392|0.628 0.379 |0.878 0.469 |0.764 0.416
Me 0.432 0.265]0.425 0.280 |0.462 0.302|0.625 0.384|0.623 0.336|0.613 0.378 [0.622 0.396 |0.614 0.389|0.619 0.385 |0.875 0.469 |0.748 0.406
o 96 0.152 0.202(0.174 0.214 |0.163 0.196 0.255|0.172 0.220]0.217 0.296 |0.197 0.281 |0.182 0.242|0.266 0.336 |0.622 0.556 |0.300 0.384
g 192 0.200 0.250(0.221 0.254 |0.214 0.237 0.2960.219 0.261|0.276 0.336 |0.237 0.312 |0.227 0.287|0.307 0.367 |0.739 0.624 |0.598 0.544
g 336 0.261 0.305(0.278 0.296 |0.271 0.283 0.335|0.280 0.306{0.339 0.380 |0.298 0.353 |0.282 0.334|0.359 0.395 [1.004 0.753 |0.578 0.523
E 720 0.325 0.349(0.358 0.360 0.346|0.345 0.3810.365 0.359|0.403 0.428 |0.352 0.390 |0.352 0.386(0.419 0.428 (1.420 0.934 (1.059 0.741
Avg 0.234 0.276(0.258 0.279 |0.249 0.265 0.317|0.259 0.287|0.309 0.360 |0.271 0.334 |0.261 0.312|0.338 0.382 |0.946 0.717 |0.634 0.548
Me 0.230 0.277(0.250 0.275 |0.243 0.260 0.316 |0.250 0.284{0.308 0.358 |0.268 0.333 |0.255 0.311]0.333 0.381 |0.872 0.689 |0.588 0.534
96 0.386 0.400{0.386 0.405 |0.392 0.409|0.386 0.400|0.384 0.402(0.376 0.419 [0.494 0.479 (0.424 0.432|0.449 0.459 |0.664 0.612 |0.865 0.713
E 192 0.440 0.431[0.441 0.436 |0.445 0.436|0.437 0.432]0.436 0.429(0.420 0.448 [0.538 0.504 (0.475 0.462|0.500 0.482 ]0.790 0.681 |1.008 0.792
E 336 0.478 0.451]0.487 0.458 |0.482 0.456|0.481 0.459|0.491 0.469 (0.459 0.465 [0.574 0.521 [0.518 0.488]0.521 0.496 |0.891 0.738 |1.107 0.809
jcal 720 0.476 0.468(0.503 0.491 |0.489 0.480(0.519 0.516 |0.521 0.500|0.506 0.507 |0.562 0.535 |0.547 0.533|0.514 0.512 |0.963 0.782 |1.181 0.865
Avg 0.445 0.437]0.454 0.452 0.445|0.456 0.452|0.458 0.450(0.440 0.460 |0.542 0.510 |0.491 0.479|0.496 0.487 |0.827 0.703 |1.040 0.795
Me 0.458 0.441|0.464 0.464 0.4460.459 0.4460.464 0.449|0.440 0.457 |0.550 0.513 |0.497 0.475(0.507 0.489 (0.841 0.710 [1.058 0.801
96 0.299 0.350(0.297 0O 0.305 0.353|0.333 0.3870.340 0.374|0.358 0.397 |0.340 0.391 |0.397 0.437(0.346 0.388 (0.645 0.597 (3.755 1.525
2 192 0.364 0.391(0.380 0.382 0.401/0.477 0.476 |0.402 0.414|0.429 0.439 |0.430 0.439 |0.520 0.504|0.456 0.452 [0.788 0.683 |5.602 1.931
E 336 0.409 0.427(0.428 0.434 0.445|0.594 0.541|0.452 0.452]0.496 0.487 |0.485 0.479 |0.626 0.559(0.482 0.486 (0.907 0.747 (4.721 1.835
53] 720 0.421 0.443|0.427 0.424 0.444|0.831 0.657|0.462 0.468|0.463 0.474 [0.500 0.497 (0.863 0.672|0.515 0.511 |0.963 0.783 |3.647 1.625
Avg 0.373 0.402(0.383 0.386 0.4110.559 0.5150.414 0.427|0.437 0.449 |0.439 0.602 0.543(0.450 0.459 [0.826 0.703 |4.431 1.729
Me 0.386 0.409(0.404 0.403 0.423]0.536 0.509|0.427 0.433|0.446 0.457 |0.458 0.573 0.532(0.469 0.469 |0.848 0.715 |4.238 1.730
96 0.324 0.356|0.334 0.336 0.369|0.345 0.372(0.338 0.375(0.379 0.419 |0.375 0.398 |0.374 0.409|0.505 0.475 [0.543 0.510 |0.672 0.571
— —
g 192 0.366 0.383(0.377 0.374 0.387{0.380 0.389(0.374 0.387]0.426 0.441 |0.408 0.410 [0.400 0.407(0.553 0.496 |0.557 0.537 [0.795 0.669
E 336 0.395 0.403|0.426 0.408 0.407|0.413 0.413|0.410 0.411|0.445 0.459 [0.435 0.428 (0.438 0.438|0.621 0.537 |0.754 0.655 |1.212 0.871
3 720 0.467 0.440(0.491 0.477 0.474 0.4530.478 0.450(0.543 0.490 |0.499 0.462 |0.527 0.502|0.671 0.561 |0.908 0.724 [1.166 0.823
Avg 0.388 0.395/0.407 0.399 0. 0.403 0.407 [0.400 0.406{0.448 0.452]0.429 0.425 |0.435 0.437]0.588 0.517 [0.691 0.607 |0.961 0.734
Me 0.380 0.383(0.402 0.397 0.401|0.392 0.399|0.436 0.450 |0.422 0.419 |0.419 0.423|0.587 0.517 |0.656 0.596 |0.981 0.746
96 0.180 0.262]0.180 0.264 |0.184 0.193 0.292|0.187 0.267]0.203 0.287 |0.189 0.280 {0.209 0.308|0.255 0.339 |0.435 0.507 |0.365 0.453
™
= 192 0.246 0.306(0.250 0.309 |0.252 0.284 0.3620.249 0.309|0.269 0.328 |0.253 0.319 |0.311 0.382|0.281 0.340 |0.730 0.673 |0.533 0.563
E 336 0.307 0.340(0.311 0.348 |0.314 0.369 0.427|0.321 0.351]0.325 0.366 |0.314 0.357 |0.442 0.446|0.339 0.372 |1.201 0.845 |1.363 0.887
m 720 0.408 0.403(0.412 0.407 |0.412 0.554 0.5220.408 0.403|0.421 0.415 |0.414 0.413 |0.675 0.587|0.433 0.432 |3.625 1.451 (3.379 1.338
Avg 0.285 0.327(0.288 0.332 |0.291 0.350 0.401|0.291 0.333]0.305 0.349 |0.293 0.342 |0.409 0.436|0.327 0.371 |1.498 0.869 [1.410 0.810
Me 0.276 0.323(0.281 0.329 |0.283 0.327 0.395/0.285 0.330]0.297 0.347 |0.284 0.338 |0.377 0.424(0.310 0.356 |0.966 0.759 [0.948 0.725
o 96 0.084 0.207 [0.086 0.206 |0.086 0.206|0.088 0.218[0.107 0.234|0.148 0.278 |0.085 0.204 |0.116 0.262]0.197 0.323 |1.748 1.105 |0.847 0.752
%f) 192 0.188 0.319(0.177 0.299 |0.176 0.299|0.176 0.315|0.226 0.334(0.271 0.380 [0.182 0.303 (0.215 0.359|0.300 0.369 |1.874 1.151 |1.204 0.895
% 336 0.329 0.425(0.331 0.417 |0.330 0.416|0.313 0.427|0.367 0.448|0.460 0.500 [0.348 0.428 (0.377 0.466|0.509 0.524 [1.943 1.172 |1.672 1.036
LS 720 0.779 0.670(0.847 0.691 |0.828 0.689|0.839 0.695[0.964 0.746|1.195 0.841 |1.025 0.774 |0.831 0.699(1.447 0.941 [2.085 1.206 |2.478 1.310
Avg 0.345 0.405(0.360 0.403 |0.355 0.403|0.354 0.414|0.416 0.443|0.519 0.500 |0.410 0.427 |0.385 0.447[0.613 0.539 [1.913 1.159 |1.550 0.998
Me 0.258 0.372]0.254 0.358 |0.253 0.358/0.245 0.371{0.297 0.396 | 0.366 0.440 [0.265 0.366 [0.296 0.413]|0.405 0.447 [1.909 1.162 |1.438 0.966
1% Count 70 12 9 4 2 5 1 0 0 0 0
2% Count 15 28 48 4 5 0 3 0 0 0 0
Avg 1% Count 13 2 1 0 0 0 0 0 0 0 0
Me 1% Count 12 2 2 1 0 0 0 0 0 0 0
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Table 4: The complete results for LTSF. The results of 4 different prediction lengths of
different models are listed in the table. The look-back window sizes are set to 96 for all
datasets. We also calculate the average (Avg) and median(Me) of the results for the 4
prediction lengths and the number of optimal values obtained by different models.

TVDN WI N DLinear  Tin et FEDformer ETSformer LightTS Autoformer Pyraformer Informer
Models 2024 2022 R022 2022

Metric  MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE |MSE MAE |MSE MAE|MSE MAE |MSE MAE |MSE MAE

2 96 0.132 0.226/0.293 0.401{0.237 0.335(0.197 0.282|0.168 0.272|0.193 0.308 |0.187 0.304 (0.207 0.307|0.201 0.317 [0.386 0.449 |0.274 0.368
g 192 0.153 0.250| 0.268 0.378(0.258 0.350 (0.196 0.285|0.184 0.289]0.201 0.315(0.199 0.315 [0.213 0.316{0.222 0.334 [0.378 0.443 |0.296 0.386
45 336 0.164 0.264/0.355 0.452(0.273 0.362(0.209 0.301|0.198 0.300|0.214 0.329 0.212 0.329 (0.230 0.333|0.231 0.338 [0.376 0.443 |0.300 0.394
é‘) 720 0.186 0.284/0.416 0.498(0.300 0.3820.245 0.333|0.220 0.320{0.246 0.355 |0.233 0.245 |0.265 0.360(0.254 0.361 |0.376 0.445 |0.373 0.439
Avg 0.158 0.256|0.333 0.432(0.267 0.357(0.212 0.300(0.192 0.295|0.214 0.327 |0.208 0.323 (0.229 0.329|0.227 0.338 (0.379 0.445 |0.311 0.397
Me 0.158 0.257|0.324 0.427(0.265 0.356 (0.203 0.293|0.191 0.295]0.208 0.322 |0.206 0.322 (0.222 0.325(0.227 0.336 [0.377 0.444 |0.298 0.390
96 0.401 0.248|0.898 0.572(1.037 0.441 (0.650 0.396 | 0.593 0.321|0.587 0.366 |0.607 0.392 (0.615 0.391]0.613 0.388 [0.867 0.468 [0.719 0.391
é 192 0.427 0.259|0.763 0.522{1.061 0.455(0.598 0.370|0.617 0.336|0.604 0.373|0.621 0.399 [0.601 0.382|0.616 0.382 [0.869 0.467 |0.696 0.379
< 336 0.438 0.271/0.894 0.608 {1.095 0.470 (0.605 0.373|0.629 0.336|0.621 0.383 |0.622 0.399 (0.613 0.386|0.622 0.337 [0.881 0.469 |0.777 0.420
= 720 0.469 0.285|1.019 0.646|1.121 0.474(0.645 0.394 |0.640 0.350|0.626 0.382(0.632 0.396 [0.658 0.407|0.660 0.408 [0.896 0.473 |0.864 0.472
Avg 0.433 0.265|0.894 0.587(1.079 0.460 (0.625 0.383|0.620 0.336|0.610 0.376 {0.621 0.396 (0.622 0.392|0.628 0.379 (0.878 0.469 |0.764 0.416
Me 0.432 0.265|0.879 0.597(1.078 0.463 (0.625 0.384 |0.623 0.613 0.378 [0.622 0.396 |0.614 0.389(0.619 0.385 |0.875 0.469 |0.748 0.406
o 96 0.152 0.202|0.174 0.214]0.178 0.223|0.196 0.255|0.172 0.220{0.217 0.296 {0.197 0.281 |0.182 0.242|0.266 0.336 |0.622 0.556 |0.300 0.384
E 192 0.200 0.250|0.221 0.254{0.223 0.261 (0.237 0.296 | 0.219 0.261|0.276 0.336 |0.237 0.312 (0.227 0.287|0.307 0.367 [0.739 0.624 |0.598 0.544
é 336 0.261 0.305|0.278 0.309{0.288 0.309 (0.283 0.335|0.280 0.306|0.339 0.380 |0.298 0.353 (0.282 0.334|0.359 0.395 [1.004 0.753 |0.578 0.523
g 720 0.325 0.349 0.372 0.363]0.345 0.381{0.365 0.359[0.403 0.428 |0.352 0.390 |0.352 0.386|0.419 0.428 |1.420 0.934 [1.059 0.741
Avg 0.234 0.276|0.258 0.278]0.265 0.289(0.265 0.317|0.259 0.287]0.309 0.360 {0.271 0.334 (0.261 0.312]0.338 0.382 [0.946 0.717 |0.634 0.548
Me 0.230 0.277|0.250 0.275(0.255 0.285(0.260 0.316 [ 0.250 0.284]0.308 0.358 |0.268 0.333 [0.255 0.311]0.333 0.381 [0.872 0.689 |0.588 0.534
96 0.386 0.400(0.381 0.3910.414 0.419[0.386 0.400(0.384 0.402|0.376 0.419 |0.494 0.479 [0.424 0.432|0.449 0.459 [0.664 0.612 (0.865 0.713
E 192 0.440 0.431(0.443 0.4220.464 0.448]0.437 0.432 5 0.429(0.420 0.439 (0.538 0.504 |0.475 0.462(0.500 0.482 |0.790 0.681 {1.008 0.792
E 336 0.478 0.451(0.474 0.446|0.516 0.478(0.481 0.459(0.477 0.456|0.459 0.465 |0.574 0.521 [0.518 0.488]0.521 0.496 [0.891 0.738 [1.107 0.809
53] 720 0.476 0.468|0.464 0.463|0.538 0.509(0.519 0.516|0.521 0.500 [0.459 0.474 |0.562 0.535 |0.547 0.533|0.514 0.512 |0.963 0.782 [1.181 0.865
Avg 0.445 0.437(0.438 0.431)0.483 0.464 [0.456 0.452 | 0. 0.429 0.449 [0.542 0.510 |0.491 0.479]0.496 0.487 |0.827 0.703 |1.040 0.795
Me 0.458 0.441[0.459 0.434)0.490 0.463]0.459 0.446 | 0. 0.440 0.452 ]0.550 0.513 |0.497 0.475|0.507 0.489 |0.841 0.710 |1.058 0.801
96 0.299 0.350(0.290 0.339|0.325 0.364 [0.333 0.387(0.340 0.3740.358 0.397 |0.340 0.391 [0.397 0.437|0.346 0.388 [0.645 0.597 (3.755 1.525
2 192 0.364 0.391|0.375 0.38810.433 0.427(0.477 0.476 |0.402 0.414|0.429 0.439 |0.430 0.439 (0.520 0.504|0.456 0.452 [0.788 0.683 [5.602 1.931
E 336 0.409 0.427|0.414 0.42510.471 0.457|0.594 0.541|0.452 0.452|0.496 0.487 |0.485 0.479 (0.626 0.559(0.482 0.486 |0.907 0.747 |4.721 1.835
53] 720 0.421 0.443 0.43710.499 0.480 (0.831 0.657 |0.424 0.444]0.463 0.474 |0.500 0.497 (0.863 0.672|0.515 0.511 [0.963 0.783 |3.647 1.625
Avg 0.373 0.402|0.375 0.397(0.432 0.4320.559 0.515|0.414 0.427{0.437 0.449 |0.439 0.452 |0.602 0.543|0.450 0.459 |0.826 0.703 |4.431 1.729
Me 0.386 0.409|0.395 0.406 |0.452 0.442(0.536 0.509 |0.427 0.433|0.446 0.457 |0.458 0.459 (0.573 0.532|0.469 0.469 [0.848 0.715 |4.238 1.730
96 0.324 0.356|0.351 0.370(0.375 0.402|0.345 0.372|0.338 0.375(0.379 0.419 |0.375 0.398 (0.374 0.409(0.505 0.475 (0.543 0.510 |0.672 0.571
E 192 0.366 0.383|0.392 0.393|0.427 0.434(0.380 0.389|0.374 0.387|0.426 0.441 |0.408 0.410 (0.400 0.407|0.553 0.496 [0.557 0.537 |0.795 0.669
E 336 0.395 0.403|0.424 0.413]0.455 0.4520.413 0.413|0.408 0.407{0.445 0.459 {0.435 0.428 (0.438 0.438(0.621 0.537 (0.754 0.655 |1.212 0.871
[€a] 720 0.467 0.440|0.485 0.448|0.527 0.488(0.474 0.453|0.478 0.442|0.543 0.490 {0.499 0.462 (0.527 0.502|0.671 0.561 [0.908 0.724 |1.166 0.823
Avg 0.388 0.395|0.413 0.406 |0.446 0.444 |0.403 0.407|0.400 0.403|0.448 0.452 |0.429 0.425 |0.435 0.439(0.588 0.517 |0.691 0.607 |0.961 0.734
Me 0.380 0.393|0.408 0.403|0.441 0.443(0.397 0.401|0.391 0.397|0.436 0.450 |0.422 0.419 (0.419 0.423|0.587 0.517 [0.656 0.596 |0.981 0.746
~ 96 0.180 0.262(0.181 0.264 |0.191 0.272(0.193 0.292|0.187 0.267 [0.203 0.287 |0.189 0.280 |0.209 0.308|0.255 0.339 |0.435 0.507 [0.365 0.453
2] 192 0.246 0.306|0.246 0.304{0.261 0.316 (0.284 0.362|0.249 0.307|0.269 0.328 |0.253 0.319 (0.311 0.382]0.281 0.340 [0.730 0.673 |0.533 0.563
E 336 0.307 0.340 0.330 0.358(0.369 0.427|0.321 0.351{0.325 0.366 |0.314 0.357 |0.442 0.446|0.339 0.372 |1.201 0.845 [1.363 0.887
€3] 720 0.408 0.403|0.407 0.397(0.450 0.427(0.554 0.522|0.408 0.403|0.421 0.415 |0.414 0.413 |0.675 0.587(0.433 0.432 (3.625 1.451 |3.379 1.338
Avg 0.285 0.327|0.285 0.327(0.308 0.343(0.350 0.401|0.291 0.333|0.305 0.349 {0.293 0.342 (0.409 0.436(0.327 0.371 |1.498 0.869 |1.410 0.810
Me 0.276 0.323|0.276 0.323]0.296 0.337(0.327 0.395|0.285 0.330|0.297 0.347 |0.284 0.338 (0.377 0.424|0.310 0.356 [0.966 0.759 |0.948 0.725
1% Count 73 3 0 1 1 6 0 0 0 0 0
2% Count 4 33 0 11 33 1 0 0 0 0 0
Avg 1" Count 12 0 0 0 0 1 0 0 0 0 0
Me 1°* Count 12 0 0 0 0 1 0 0 0 0 0
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C VISUALIZATION OF MAIN RESULTS
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Figure 8: Visualization of the prediction results on the Electricity dataset, where TVDN
predicts more accurately compared to other models in terms of better fitting the actual
series.
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D TVDN ALGORITHM

Algorithm 1 TVDN with staged CVE and CTE execution
Require: Input time series: X € REXC; Input Length L; Number of Variables C'; Predic-

tion Length O; Number of CVE Layers M; Number of CTE Layers N; Epoch threshold
FE1; Total epochs E.

1: Initialize epoch counter: e =0

2: while e < E do

3: if e < F; then > First few epochs: only CVE stage
4: CVE Stage:

5: X’ = RevIN(X, encode)

6: VY = Transpose(X’)

T: for m=0to M —1do

8: VO +D) = TransformerBlock(V™)

9: end for
10: Z{ g = Projection(VM)
11: Zcve = RevIN(Ziy g, decode)
12: else > Later epochs: CVE + CTE stages
13: CVE Stage: > Same as in earlier epochs
14: X’ = RevIN(X, encode)

15: V0 = Transpose(X')

16: form=0to M —1do

17: V(m+1) = TransformerBlock(V™)

18: end for

19: Z{y = Projection(VM)
20: Zcve = RevIN(Ziy g, decode)
21: CTE Stage:
22: Initialize temporal sequence: T = Zcvy
23: forn=0to N —1do
24: T"*+! = FDS(PSTDBlock(T"))
25: end for
26: Y = Zcvg @ Projection(TY)
27: end if

28: e+<e+1
29: end while

30: return Y > Return the final prediction result after all epochs

E  TRANSFORMER LIMITATIONS ANALYSIS

In the context of time series prediction problems based on Transformer models, we can
perceive the data-driven learning of the Transformer model as two distinct parts. The first

18
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Figure 9: Observation of the model’s loss trend on the Electricity and Traffic datasets.
Training was fixed for 10 epochs with an early stopping tolerance of 3. Training was termi-
nated upon exceeding this tolerance level.

part involves the encoder extracting valuable information from historical sequences through
self-attention and feed-forward networks (FFNs). The second part is the decoder, which,
in conjunction with the encoder’s output, models the associative relationships of the target
sequence.

To investigate which part primarily contributes to the Transformer model’s benefits, we
conducted an extreme experiment. This study tested the original Transformer model and
a model using only the Transformer decoder on the Electricity and Traffic datasets. For
the decoder-only model, we retained few historical sequences as start tokens for the Trans-
former’s decoder, thereby minimizing the use of historical sequence information as much as
possible.

As show in Figureg When applying the original Transformer model to time series prediction,
we observed significant overfitting. As shown in the figure, despite setting a relatively small
learning rate (1 x 1074 ), it’s apparent that there’s an early occurrence of the training set
loss decreasing while the validation set loss increases. Moreover, the losses for both the
validation and test sets stabilize quickly.

Surprisingly, the model’s performance, as depicted in Figure@, demonstrates that even with
a significant reduction in historical information, it achieves a MSE comparable to that of
the original Transformer model. This suggests that the original Transformer model did not
effectively mine useful information from historical data and indicates that the primary ben-
efit of the Transformer model lies in modeli sociative relationships of the prediction
sequences. Furthermore, previous research Gao et al| (20234) found that obscuring 50% of
the historical input sequence did not significantly degrade the performance of Transformer-
based prediction models, further validating this viewpoint.
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Figure 10: Comparative analysis of the original Transformer versus a decoder-only Trans-
former model on Electricity and Traffic datasets.

As we can see, even when the Transformer model reduces the information from the historical
sequence, its performance does not significantly decline. This suggests that modeling the
temporal relationships in the prediction sequence is also crucial, which may be one of the
reasons why the Transformer’s performance remains stable.
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"% F VISUALIZATION OF TVDN MODEL WEIGHT
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G  MOTIVATION FROM CROSS-VARIABLE LEARNING TO CROSS-TEMPORAL
LEARNING

Theoretical Motivation Previous studies have highlighted that Cross-temporal Trans-
formers are prone to bad local minima and are harder to converge to their true solutions
IIbert et al| (2024). Modeling cross-temporal relationships first can provide an unstable
optimization starting point for subsequent cross-variable learning. In contrast, starting
with _cross-variable modeling helps establish a stable inter-variable relationship structure
Liu et al) (2024); Gao et al (2023, which in turn provides a better optimization starting
point for cross-temporal learning. This order increases the likelihood of convergence to the
true solution and improves the overall performance of the model.

Experimental Evidence To validate the importance of this modeling order, we conducted
experiments where the order of learning was reversed. The results clearly demonstrate that
the proposed sequence of learning cross-variable relationships first (CVE) followed by cross-
temporal relgtionships (CTE) outperforms the reversed order. The results are summarized
in the Tableag

Table 5: Performance comparison of different learning orders on the ECL dataset. Results
highlighted in red indicate the best performance for each prediction length.

Prediction Length | CVE — CTE (Proposed) | CTE — CVE (Reversed)

| MSE MAE | MSE MAE
96 0.132 0.226 0.191 0.295
192 0.153 0.250 0.194 0.203
336 0.164 0.264 0.194 0.204
720 0.186 0.284 0.228 0.321

H INSTANTANEOUS AND LAGGED EFFECTS DiscussiON IN TVDN

In multivariate time series analysis, the temporal relationships between variables manifest
as instantaneous and lagged effects. For example, in a biomedical time series, multiple
physiological signals (e.g., heart rate and blood pressure) may be transiently correlated
simultaneously. In some cases, there may be delayed effects between some variables. For
example, the impact of temperature change on plant growth is usually gradual.

While our paper focuses on developing a general foundation model for various temporal data
types, emphasizing the interaction between cross-variable and temporal dependencies, we
should have explicitly discussed these temporal relationship types.

Cross-variable learning: Can capture interactions between variables at same or
different timesteps but overlook the specific time ordering. In the cross-variable
learning stage, the model can capture interactions between variables at different timesteps
(Vi and V(Jt " A))7 where V! represents the i-th variable at time t, and V(jt +a) Tepresents

the j-th variable at time (¢ + A). The temporal offset A allows the model to capture
instantaneous effects (when A = 0) and lagged effects (when A # 0). This formulation
maintains temporal invariance, meaning the model can identify relationships regardless of
the specific time ordering of the variables.

Cross-temporal learning: Incremental learning instead of siloed learning. Our
temporal learning component incrementally builds upon the cross-variable relationships
identified in the first stage. Instead of treating these interactions in isolation, we integrate
them to capture instantaneous and lagged effects better. This comprehensive approach en-
sures that our model effectively captures complex temporal dynamics, including direct and
delayed influences between variables.
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I COMPARISON OF FOCUSING ON CROSS-VARIABLE LEARNING
APPROACHES AND SHIFTING

Continuing to learn dependencies among variables results in a minimal decrease in MSE
and can even lead to an increase in MSE, making overfitting more likely.

Focusing on Variable Dependency Shifting to Temporal Dependency
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—— Prediction h —— Prediction
1.0 1.0
051 051 #
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Figure 12: Comparison of focusing on Cross-variable learning approaches and shifting from Cross-
variable learning to temporal dependency learning approaches. Visualization of prediction results
on the ECL and Weather datasets. The latter shows a better fit for amplitude and trends.
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J MODEL EFFICIENCY

Table 6: Comprehensive performance comparison of various time series forecasting mod-
els. The comparison metrics include model parameters (Param), computational complexity
(FLOPs), inference time (Time), memory consumption (Memory), and prediction accuracy
(MSE). Our proposed TVDN achieves the best prediction performance (MSE: 0.186) while
maintaining competitive efficiency in terms of model size (0.46M parameters) and compu-
tational resources (1.44G FLOPs, 50.25MB memory). Results highlighted in red indicate
the best performance across all compared methods.

Model | Param (M) FLOPs (G) Time (s) Memory (MB) MSE
TVDN (ours) 0.46 1.44 0.0020 50.25 0.186
iTransformer 1.67 5.15 0.0019 62.06 0.225
Client 0.32 1.01 0.0016 46.33 0.209
DLinear 0.04 0.14 0.0003 42.94 0.245
TimesNet 612.79 150.37 0.0625 724.97 0.220
FEDformer 4.41 12.14 0.0298 246.33 0.246
ETSformer 0.85 6.57 0.0055 80.64 0.233
LightTS 0.10 0.33 0.0009 43.65 0.265
Autoformer 4.41 12.14 0.0107 221.52 0.254
Pyraformer 1.21 362.29 0.0039 1434.35 0.376
Informer 3.94 12.45 0.0055 218.42 0.373
PatchTST 25.73 10.74 0.0036 257.58 0.246
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