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ABSTRACT

Predicting the fitness, i.e. functional value, of a protein sequence is an important
and challenging task in biology, particularly due to the scarcity of assay-labeled
data. Traditional approaches utilize transfer learning from evolutionary data, yet
discard useful information from a generative model’s learned probability distri-
bution. We propose generative fitness fine-tuning, termed gf-tuning, to utilize
the generative model’s log probabilities as logits for a pairwise ranking loss—
allowing for the full distribution learned in unsupervised training to be repur-
posed for fine-tuning on assay-labeled fitness data. We demonstrate that gf-tuning
achieves better performance than existing baselines across a variety of few-shot
fitness prediction settings, including both low homology and highly epistatic sys-
tems as well as generalizing from single to multiple mutations. Generative fitness
finetuning offers an effective strategy for few-shot fitness prediction which could
enable advances to better understand and engineer proteins.

1 INTRODUCTION

Proteins are complex molecules that perform a spectacular variety of functions that drive biological
processes. Their versatility gives them widespread medical, industrial, and environmental use cases.
The field of protein engineering aims to design functional protein sequences that perform user-
intended purposes. However, existing techniques for protein engineering have limitations. Directed
evolution (Arnold, 1998) engineers proteins via wet laboratory procedures, but relies on random
mutations to generate candidate proteins for testing. Machine learning models have been suggested
to guide the selection of candidate proteins and accelerate rounds of directed evolution (Yang et al.,
2019; Wu et al., 2019). Toward this goal, models need to effectively capture the complex sequence-
fitness relationship of proteins. If successful, machine learning models that better predict protein
fitness can be utilized for suggesting beneficial non-random mutations. Whether making the iterative
optimization cycle of directed evolution more efficient or designing combinations of functions for
altogether novel proteins, high-performing fitness predictors could enable solutions toward many of
the long-standing problems in bioengineering.

Natural evolution provides a useful starting point for predicting protein fitness. The vast majority
of possible sequences of amino acids have no biological function and would not fold properly to
form a three-dimensional structure. Evolutionary pressures have shaped a space of proteins that
exhibit functionality, or high fitness, that is information-rich for representation learning (Alley et al.,
2019; Elnaggar et al., 2020). Unsupervised generative models have shown the ability to learn from
evolution to predict protein fitness without access to labeled data (Hopf et al., 2017; Riesselman
et al., 2018; Madani et al., 2020; Meier et al., 2021). Potts models that use first and second order
statistics of aligned protein sequences (Hopf et al., 2017; Russ et al., 2020), variational auto-encoders
that model proteins using a latent space (Riesselman et al., 2018), generative adversarial networks
that train a protein generator to fool a protein discriminator (Repecka et al., 2021), masked-language
models that predict masked amino acid tokens using bi-directional context (Rives et al., 2021; Meier
et al., 2021), and auto-regressive language models that model the distribution over protein sequences
via left-to-right prediction (Madani et al., 2020; 2021), can all be used model the sequence space
of proteins. By learning the space of protein sequences that are naturally plausible, these models
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can assign scores based on model likelihoods that often correlate with the true underlying fitness of
proteins to perform their intended function.

While natural evolution provides a useful starting point, engineering proteins with novel or en-
hanced function beyond what exists in nature generally would require using assay-labeled protein
sequences, where the fitness of a small number of proteins is measured in the laboratory (Biswas
et al., 2021). Assay-labeled measurements are expensive to obtain. Therefore, effective few-shot
learning, where a model needs to learn from a small number of labeled examples, is a necessary
and pertinent hurdle to address. Specifically, strategies to adapt models that learn from evolution
in the unsupervised setting via transfer learning to the downstream task of predicting fitness in the
few-shot setting will be increasing important for protein fitness prediction.

Traditional approaches for unsupervised transfer learning in NLP pretrain a language model (LM)
on unlabeled sequences, and reuse the hidden layers of the neural network in combination with a
new randomly initialized output layer (Radford et al., 2018; Devlin et al., 2018). Similar approaches
also exist for protein fitness prediction, but throw away information—the final linear language mod-
eling head is able to predict the likelihood of possible candidate residues (amino acids), but this
information is discarded when the LM is reinitialized with a regression head (Rao et al., 2019; Alley
et al., 2019; Biswas et al., 2021; Dallago et al., 2021). The likelihoods of amino acid tokens under
LMs have been shown to be useful for making zero-shot protein fitness predictions (Madani et al.,
2020; Meier et al., 2021), and to generate functional proteins (Madani et al., 2021). Ideally, an LM
should retain this likelihood information when finetuning to downstream fitness prediction tasks.

In our work, we present generative fitness finetuning (gf-tuning) as an approach to reuse the full
probability distribution learned during unsupervised training to finetune to assay labeled data. We
perform rigorous experiments comparing gf-tuning to baselines across multiple few-shot fitness pre-
diction tasks using the same hyper-parameter optimization for all models and averaging over mul-
tiple random settings. We empirically validate our motivation by demonstrating gf-tuning outper-
forms methods that throw away the discriminator head and all other baselines. Aside from operating
with limited labeled examples, our approach is particularly well-suited for the more challenging set-
tings, such as low-homology proteins and modeling epistatic sequences with non-linear interactions
between positions. Whether its application in scoring protein sequence candidates or designing al-
together novel sequences, gf-tuned generative models may enable solutions for human health and
the environment.

2 FEW-SHOT PROTEIN FITNESS PREDICTION

The few-shot protein fitness prediction problem setting that we consider in this paper assumes
that we have a few-shot dataset of sequences x labeled with continuous fitness values y, Df =

{(x(1), y(1)), .., (x(|Df |), y(|Df |))}. In all the tasks considered in this paper, Df was acquired in
previous work by applying mutations to a wildtype protein (i.e. protein that exists in nature), and
obtaining fitness labels for these mutants in laboratory. We also assume that the model has access to
a large pretraining dataset of unlabeled protein sequences Du = {x(1), .., x(|Du|)}, and optionally
may have access to a smaller dataset of proteins that are evolutionarily related to the wildtype pro-
tein, De = {x(1), .., x(|De|)}, where |Du| > |De| > |Df |. The task is to learn a predictive function
ŷ = F (x) that results in a high correlation between ŷ and the ground truth fitness labels y. Mod-
els are typically evaluated using Spearman(ŷ, y), which gives a rank correlation equivalent to the
Pearson correlation of the rank variables. This measures the model’s ability to accurately rank held
out proteins by fitness.

2.1 UNSUPERVISED FITNESS PREDICTION

Unsupervised fitness prediction is an important starting point for our proposed approach. Models
can perform protein fitness prediction without training on labeled data by learning to model the
probability distribution over natural protein sequences. A probability distribution Pθ(x) can be pre-
trained to fit a large database of proteins using the cost function L(Du) = −Ex∼Du

[logPθ(x)].
Optionally, it can be finetuned to evolutionarily related sequences (which we refer to as evolutionary
finetuning throughout the paper) by fitting the pretrained unsupervised model to the cost function
L(De) = −Ex∼De [logPθ(x)]. Since sequences in De will generally have a related protein func-
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Figure 1: A) Protein sequences exhibit functional values that form a complex fitness landscape as
illustrated by Romero & Arnold (2009). Predicting the fitness of a given protein sequence is an
important challenge in biology. B) Protein fitness prediction tasks can be further subdivided based
on their problem setting. The number of homologous sequences, level of epistasis, extrapolation to
higher edit distances, and amount of labeled data in few-shot scenarios are major factors to consider
for fitness modeling. C) We introduce gf-tuning, a procedure to tailor a generative LM toward
optimal fitness prediction.

tion to the downstream task, finetuning to these sequences can improve the unsupervised fitness
prediction ability of the pretrained generative model.

Generative models that have learned the distribution of valid proteins for a particular protein family
will assign higher probabilities to valid proteins than invalid ones, allowing them to predict the effect
of mutations. As unsupervised models give a strong initialization and useful inductive biases, it is
desirable for a model to be finetuned to labeled data to leverage those inductive biases in the most
effective way.

2.2 FINETUNING LMS WITH A REGRESSION HEAD

Pretrained LMs can be finetuned to sequence regression and classification tasks by retraining the
network with a classification or regression head on top of the features of the final layer of the network
(Radford et al., 2018; Devlin et al., 2018). In the case of protein language modeling, the methods
in the previous section are first applied to pretrain a protein LM by maximizing the log-probability
of natural protein sequences under the model. The LM can then be used to map a sequence x1:T =
{x1, .., xt, .., xT } (where T is the sequence length) to a set of corresponding hidden states h1:T ,
where each ht ∈ Rd and d is the hidden state dimensionality. During pretraining, a linear head
W ∈ R|V|×d is used to predict a distribution over the output vocabulary V for each time step, given
by softmax(Wht). The output distribution can be trained to predict the next token xt+1 as in
autoregressive language modeling if there is a left-to-right dependency in the predictive function, or
recover masked xt tokens as in masked language modeling. During finetuning, the sequence h1:T
is pooled down to a single vector hpool ∈ Rd using a pooling function. The pooling function uses
the mean or max of each feature across the sequence, or simply uses the hidden state at a certain
sequence position or special token. A regression head is then applied on top of this pooled feature
representation of the sequence. The regression head can be a neural network, or simply a linear
output layer. With a linear regression head, the prediction is given by taking the inner product of a
learnable parameter vector w with the pooled sequence features via ŷ = w>hpool. The network is
then trained to predict fitness values via the mean squared error between y and ŷ. The full network
can be trained to predict protein fitness end to end (Rao et al., 2019; Dallago et al., 2021), or the
embedding of the network can be used as features for another model (Alley et al., 2019; Biswas
et al., 2021). Finetuning with a regression head throws away probabilistic information learned by
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the LM’s output layer during unsupervised pretraining about which sequences are more plausible,
which has proven to be useful in unsupervised fitness prediction (Riesselman et al., 2018; Madani
et al., 2020; Meier et al., 2021).

2.3 FINETUNING WITH LINEAR REGRESSION-AUGMENTED DENSITY MODELS

Linear regression-augmented density models (Hsu et al., 2021) reuse probabilistic information from
unsupervised pretraining by using the log-likelihood from the generative model as a feature for
linear regression. This method assumes that the sequences in Df are all aligned to be the same
length, and uses linear ridge regression on the one hot amino-acid representation with an additional
feature given by the density of a generative model that has been trained on unsupervised data. Given
density weight β, and embeddings for each position w1:T where each wt ∈ R|V|, the predictions
given by an augmented density model are given by

ŷ = β log p(x) +

T∑
t=1

w>t ext
, (1)

where ext
gives the one-hot encoding of a residue at position t. The model is fit using ridge regres-

sion where the regularization parameter for β is set to be significantly lower than for w1:T , forcing
the linear model to rely more on the density to make its prediction. In our re-implementation, we
use a large scalar value that is multiplied by log p(x) so that the value of β learned can be much
smaller, reducing the effect of regularization on this feature to be negligible. For our baselines with
augmented density models, we multiply log p(x) by 1000 to allow the ridge regression parameter
to be shared for all weights, while having little to no effect on regularization of β (since all fitness
values in our experiments are much smaller than 1000 log p(x) for all models, allowing the learned
β parameter to be used to predict fitness while having a very small value).

2.4 FINETUNING USING WILDTYPE RESIDUAL REGRESSION

Meier et al. (2021) introduced a method for finetuning masked-LMs to fitness prediction using the
sum of residuals between mutant log probabilities and wildtype log probabilities at mutation posi-
tions as predictions for mutational effect for regression. For our re-implementation, we used mutant
marginal probabilities, where predictions are conditioned on the mutant sequence, given by

ŷ =
∑
t∈M

logPθ(x
mt
t |xmt)− logPθ(xwtt |xmt). (2)

Mean squared error loss is then applied to L(Df ) = E(x,y)∼Df
[(ŷ(i) − (y(i) − ywt))2]. We refer

this method as wild-type residual regression in our experiments. Masked LMs applied to mutational
effect prediction assume additive effects of mutations, which would likely lead to non-optimal per-
formance for epistatic proteins (See Section 4). Applying a mean squared error loss to residuals may
also force the model to unlearn useful information learned during pretraining, as the unsupervised
model will generally have a high mean squared error loss at initialization.

3 GENERATIVE FITNESS FINETUNING

Generative fitness finetuning (“gf-tuning”) re-purposes the probability distribution learned during
unsupervised training as a pairwise classifier to classify the relative fitness of protein sequence pairs.
We use an auto-regressive LM to model Pθ(x), which computes this as

Pθ(x1:T ) =

T∏
t=1

Pθ(xt|x<t), (3)

where T is the sequence length. Using an auto-regressive LM allows the model to be better suited
for modelling the joint distribution when predicting multiple mutations as compared with a masked
LM, which could be expected to be helpful for epistatic proteins since auto-regressive LMs do not
assume additive effects of mutations.
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All of our LMs are initialized as ProGen (Madani et al., 2020), an autoregressive LM that was
pretrained on 280 million proteins. In settings with more evolutionarily related proteins (high ho-
mology), we also adapt ProGen to evolutionarily related sequences with evolutionary finetuning (as
described in Section 2.1). We then apply gf-tuning to finetune ProGen to assay labeled data. While
we use an auto-regressive LM, gf-tuning can be applied to any parameterized probability distribution
over protein sequences.

Our proposed cost function trains Pθ(x(i)) to correctly classify whether the fitness of a randomly
selected sequence xi is higher than the fitness of a randomly selected sequence xj . We directly
use the probability density given by the LM to make predictions, which classifies sequences with a
higher probability as being higher fitness. The training cost function L(Df ) for gf-tuning is given
by

(x(i), y(i)), (x(j), y(j)) ∼ Df (4)

Pθ(y
(i) > y(j)) =

Pθ(x
(i))α/Ti

Pθ(x(i))α/Ti + Pθ(x(j))α/Tj
. (5)

ȳij =


1, if y(i) > y(j)

0.5, if y(i) = y(j)

0, otherwise
(6)

L(Df ) = E[−ȳij logPθ(y
(i) > y(j))− (1− ȳij) log(1− Pθ(y(i) > y(j))] (7)

where α is a hyper-parameter. The method of scoring for pairwise comparisons is based on the
Bradley-Terry model (Bradley & Terry, 1952), and our contribution is training a generative model
P (x) to assign scores to x. The intuition is that the probability assigned to Pθ(y(i) > y(j)) will be
equivalent to the likelihood of observing xi before xj if drawing samples from Pθ(x

(i)) in the case
where α = Ti = Tj . A strong pretrained LM that is well suited for the downstream task will often
be able to correctly classify most protein pairs with this equation without any supervised training
(see Section 2.1), giving it an advantage at initialization over methods that use a randomly initialized
regression head. Finetuning the model with this objective should improve its ability to perform this
classification, thus allowing it to assign scores that can be better used to rank proteins by fitness.
The full pipeline of our proposed approach is given in Figure 1.

4 TASKS

We categorize protein fitness prediction problems along several dimensions to better understand the
strengths and weaknesses of each model that we test. Different few-shot protein fitness predic-
tion problems can have very different characteristics, and we aim to capture the range of practical
scenarios with our choice of tasks and data sets.

High Homology vs Low Homology: We consider tasks in both the high homology and low ho-
mology domain. High homology protein domains have more evolutionarily related sequences that
evolved to perform a similar function, and can potentially act as more useful unlabeled sequences for
unsupervised training. Unsupervised baselines are therefore expected to perform better in high ho-
mology domains, and few-shot models that can better leverage an unsupervised initialization are at
an advantage. Low homology domains do not have as many evolutionarily related proteins that per-
form a similar function, but can still leverage general pretraining across protein databases of many
families. We approximate the homology of a protein using the number sequences in the multiple
sequence alignment (MSA) of evolutionarily related proteins. Since many proteins in databases can
be very small edit distances away from each other, sequence diversity is an important consideration
for homology determination. Therefore, we also consider the total number of clusters for sequence
clustering with a 50% sequence identity threshold for 80% coverage in sequence alignment using
mmseqs2 (Steinegger & Söding, 2017) as another metric.

High Epistasis vs Low Epistasis: We consider tasks with varying degrees of epistatis. In epistatic
protein domains, a mutation at one position can greatly influence the mutational effect of a mutation
at another position. We consider protein fitness landscapes that can be approximated well by an
additive model (that predicts the mutational effect of mutation A and mutation B together to be
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Figure 2: After evolutionary finetuning, gf-tuning achieves the best overall performance in fitness
prediction on higher homology datasets, which contain a large number of evolutionarily related
sequences. These results suggest that gf-tuning is the most robust way to adapt the representation
learned from related sequences to assay labeled data.

the sum of the mutational effect of mutation A and mutation B) to be non-epistatic, and protein
fitness landscapes that cannot be modeled well with an additive model to be epistatic. Epistatic
fitness prediction problems are more difficult because they require predicting non-linear interactions
between mutations to perform well. To score the level of epistasis by our definition, we use the test
set Spearman correlation of an additive model that uses the effects of all single mutations to predict
multiple mutations as a metric to approximate the (inverse of) epistatis of a protein fitness prediction
task.

Random Splits vs Generalizing from Single Mutant: We evaluate all tasks on two different kinds
of train/test splits: 1. training and test set randomly distributed. 2. training is on single mutants only,
testing is on multiple mutants only. Training on single mutants and evaluating on multiple mutants
requires the model to generalize beyond its training set. Single mutation synthesis and assay data
can also be easier to perform and acquire in the laboratory, so a model that can generalize from
single to multiple mutations is of practical use.

Varying-N for Few-shot Learning: We evaluate all tasks in the few-shot scenario because obtaining
labeled data for protein fitness is expensive and models that can perform well few-shot are useful
in practice. We consider test set performance for several different training set sizes for each model
(n = 48, 96, and 240 for all experiments). Leveraging unsupervised pretraining is more important
for smaller training set sizes, as there is less information that can be learned during supervised
finetuning.

Datasets: We used four fitness prediction datasets to benchmark models in this paper, which we se-
lected to consider all configurations of high homology vs. low homology, and high epistatis vs. low
epistatis (statistics for homology and epistasis are given for each dataset in Table 2). The majority
of available protein fitness prediction datasets are single mutant only (Gray et al., 2018), so we only
include datasets with multiple mutations because a model’s ability to predict broader fitness land-
scapes is of greater practical use. All tasks focus on the few-shot scenario with a varying number of
training examples, and consider both the random and singles-to-multiples train/test splits described
in the previous subsection. The four datasets used in our experiments are: 1. PABP (Melamed et al.,
2013) - High homology, low epistasis. 2. AAV (Bryant et al., 2021) - High homology, high epistasis.
3. GFP (Sarkisyan et al., 2016) - Low homology, low epistasis. 4. GB1 (Olson et al., 2014) - Low
homology, high epistasis. See Appendix A.4 for more details.

5 EXPERIMENTS

We apply gf-tuning to LMs in the settings and datasets outlined in Section 4, and compare with
baselines. For each model in each setting, we plot the test set Spearman correlation between model
predictions and test set fitness labels as a function of training set size (running experiments for 48,
96, and 240 training examples, except for GB1 when training on single mutants only, since there
are only 76 single mutants). We evaluate on a random subset of 2000 test examples for each plot in
order to reduce the computation needed to evaluate many models. For each model in each setting,
we obtain results using a consistent training and hyper-parameter optimization procedure across
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Figure 3: ProGen with gf-tuning performs significantly better than baseline models on low homol-
ogy domains, which contain a smaller number of evolutionary sequences. Performance is strongest
on the lowest homology setting (GB1). In a medium-low homology setting on GFP, augmented
density modeling is competitive with gf-tuning.

all models described in Appendix A.2, and average all results over 4 different seeds (that result in
4 different n-sized training sets). In addition to our plots, we also report GB1 and AAV singles
to multiples using the full test set to directly compare our approach to published few-shot fitness
prediction benchmarks from FLIP (Dallago et al., 2021).

We consider several of the baselines described in Section 2. In the higher homology settings (PABP
and AAV), we apply evolutionary finetuning to ProGen to adapt the model to evolutionary related
sequences from an MSA to the wildtype protein for the target task. For PABP, we reuse the MSA
released by Riesselman et al. (2018), and create our own using similar methodology for AAV. We
also apply both ProGen (Madani et al., 2020) and ESM-1v (Meier et al., 2021) with mean pooling
and a regression head (see Section 2.2). We do not apply evolutionary finetuning to ESM-1v because
according to Meier et al. (2021) finetuning ESM-1v to the MSA on its own hurts downstream task
performance, and additional training on the pretraining data is needed during evolutionary finetuning
to prevent over-fitting. We also benchmark linear regression augmented density modeling (Section
2.3) applied to ProGen, and ESM-1b with wild-type residual regression 2.4. We use ProGen (with
evolutionary finetuning in high-homology tasks) as an unsupervised baseline that does not finetune
to assay-labeled data. Finally, we apply BLOSUM62 substitution matrices (Henikoff & Henikoff,
1992) to predict mutational effect, as described in Appendix A.3.

Higher Homology Proteins: We benchmark gf-tuning on the higher homology PABP and AAV
datasets using random splits. Our main proposed approached in this setting applies evolutionary
finetuning of ProGen on MSAs of the wildtype for each task, followed by gf-tuning to the assay
labelled data (ProGen + evol. + gf tuning). We also test baselines including: 1. Applying ProGen
with evolutionary finetuning unsupervised (ProGen + evol.) 2. Applying ProGen with gf-tuning
without evolutionary finetuning (ProGen + gf-tuning) 3. Applying linear regression-augmented Pro-
Gen with evolutionary fine-tuning (ProGen + evol. + augmented) 4. ProGen finetuned to MSE with
a regression head with evolutionary fine-tuning (ProGen + evol. + regr. head 5. and without evolu-
tionary fine-tuning (ProGen + regr. head). 6. ESM-1v with a regression head (ESM-1v + regr. head)
7. ESM-1b + wild-type residual regression (ESM-1b + wt res.) 8. BLOSUM62 substitution scores
(BLOSUM)

The results are given in Figure 2. Methods that used additional evolutionary finetuning on related
sequences (ProGen + evol. + gf-tuning, ProGen + evol. + regr. head, ProGen + evol. + augmented)
generally outperformed methods that did not, as might be expected in the high homology setting
where there are a large number of functionally similar sequences to use for unsupervised training.
Methods that “throw away the linear head” (methods with + regr.) struggle in the lowest n settings
for PABD, performing worse than purely unsupervised, indicating that they are not able to leverage
the unsupervised initialization well in this setting. ProGen + evol. + gf-tuning achieved the strongest
average Spearman correlation across tasks, suggesting that is more robust than the baselines for
combining evolutionary data with assay labeled data.

Lower Homology Proteins: We benchmark gf-tuning on the lower homology GFP and GB1
datasets using random splits. Our main proposed approach in this setting applies gf-tuning to pre-
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Figure 4: ProGen with gf-tuning is competitive with linear regression-augmented ProGen on fitness
prediction of multiple mutations on non-epistatic datasets, when trained on single mutations alone.
Since mutation effects are additive in such proteins, a linear model represents a strong baseline.

trained ProGen. We did not use evolutionary finetuning for any method because the effective MSA
size is very small for these low homology proteins. We also benchmark the following baselines:
1. Applying ProGen unsupervised (ProGen) 2. Applying gf-tuning to a randomly intialized LM the
same size as ProGen 3. Applying linear regression-augmented ProGen (ProGen + evol. + aug-
mented) 4. ProGen finetuned to MSE with a regression head (ProGen + regr. head) 5. ESM-1v with
a regression head (ESM-1v + regr. head) 6. ESM-1b with MSE loss on the sum of differences in
prediction from wildtype (ESM-1b + wt res.) 7. BLOSOM62 substitution scores (BLOSUM)

Results are given in Figure 3. ProGen with gf-tuning and linear-regression augmented ProGen give
results roughly on par for GFP, but gf-tuning outperforms all baselines on GB1 and achieves the
highest average performance. gf-tuning also significantly outperforms methods that “throw away
the linear head” (methods that use + regr.) on both datasets. Removing pretraining hurts the perfor-
mance of gf-tuning on GB1, implying that the pretraining step helps ProGen achieve such a strong
performance, even though zero-shot ProGen results in a correlation near zero.

Generalizing from Single to Multiple Mutations: We benchmark models on their ability to pre-
dict the fitness of sequences that are multiple mutations away from wildtype by only training on
sequences that are a single mutation away from wildtype. We report results on datasets with low
epistastis (PABP and GFP) in Figure 4 and high epistasis (AAV and GB1) in Figure 5. On the low
epistasis datasets where the additive effects of single mutations on fitness are predictive of the fitness
of multiple mutations, augmented ProGen and ProGen with gf-tuning were the two strongest mod-
els across training set sizes and performed roughly equivalently. Augmented density modeling is a
difficult baseline to beat in a setting where there are few non-linear interactions between mutations
because it fits to the downstream task with linear regression. In the high epistasis setting, gf-tuning
performed significantly better than other models, achieving an average Spearman across training set
sizes higher than the next strongest baseline by 0.13 and 0.07 on GB1 and AAV respectively. Aug-
mented ProGen did not perform as well relatively in this setting, likely because it is not able to learn
to model non-linear interactions between mutations. These results suggest that gf-tuning is better
suited than previous approaches for adapting unsupervised models for few-shot fitness prediction in
epistatic landscapes, which is the most difficult setting tested in these experiments.

We also benchmark our main approach (ProGen + gf-tuning for GB1, ProGen + gf-tuning + evol.
for AAV) on the FLIP benchmarks (Dallago et al., 2021) for generalizing from single mutations
to multiple mutations on GB1 (which uses all multi-mutation proteins as opposed to our split of
2000 randomly sampled) and AAV (which has a full training set of 1170 single mutants). Results in
comparison to the FLIP baselines are reported in Table 1.

Many of the strongest baselines from FLIP “throw away the linear head”, including all baselines
based on ESM-1v and ESM-1b. gf-tuning outperforms all flip baselines on both datasets by a sig-
nificant margin (improving the Spearman by 0.07 and 0.30 over the next strongest baseline on GB1
and AAV respectively), further justifying our conclusion that gf-finetuning is more effective than
previous methods for modeling epistatic proteins from single mutations.

6 CONCLUSION
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Figure 5: gf-tuning is significantly better than baselines on epistatic protein datasets, when training
on single mutations and testing on multiple mutations. Since adding the effects of single mutations
is a weak predictor of protein fitness for multiple mutations in these proteins, models that predict
these effects additively (e.g., augmented density modeling) or models that may treat the effect of
each mutation independently (e.g., masked language modeling) do not perform as well.

Table 1: gf-tuning outperforms all published base-
lines on the few-shot FLIP benchmark tasks (Dal-
lago et al., 2021). The few-shot tasks in FLIP
correspond to 1-vs-rest fitness prediction for GB1
and AAV with a Spearman correlation metric. The
gf-tuned model was trained four times and the av-
erage and best performance is reported.

Model GB1 AAV
1-vs-rest 1-vs-rest

ProGen + gf-tuning (best) 0.45 0.79
ProGen + gf-tuning (avg) 0.39 0.78
ESM-1b - per AA 0.28 0.03
ESM-1b - mean 0.32 0.04
ESM-1b - mut mean -0.08 0.31
ESM-1v - per AA 0.28 0.10
ESM-1v - mean 0.32 0.18
ESM-1v - mut mean 0.19 0.44
ESM-untrained - per AA 0.06 0.18
ESM-untrained - mean 0.05 0.01
ESM-untrained - mut mean 0.21 0.26
Ridge 0.28 0.22
CNN 0.17 0.48
Levenshtein 0.17 -0.11
BLOSUM62 0.15 NA

Predicting the fitness, or functional value, of a
protein sequence is a challenging task that can
greatly advance our ability to understand and
engineer protein biology. As assay-label ac-
quisition is foreseeably expensive for most pro-
teins, machine learning models will need to op-
erate in the few-shot scenario for supervised fit-
ness learning. In addition to utilizing varying-
N of evolutionary and assay-labeled samples, a
careful consideration of complexity in differing
domain settings (homology, epistasis, single-
to-multiple substitutions) are of practical con-
cern to machine learning practitioners and pro-
tein engineers alike.

In our work, we propose generative fitness fine-
tuning, or gf-tuning, with the motivation of bet-
ter retaining the probability distribution learned
during unsupervised learning to supervised fit-
ness training. We provide the intuition that the
traditional approach of discarding a pretrained
LM’s linear head and using a regression head
throws away useful information about protein
fitness. For four canonical datasets spanning
multiple settings, we validate gf-tuning through
model ablations. To ensure the rigor of experi-
mental comparisons in sensitive few-shot tasks,
all models undergo hyper-parameter optimiza-
tion and averaging across multiple seeds for fair
comparison. Our experiments show that gf-tuning outperforms both our own baselines and baselines
in the literature, and that this improvement is largest on the most difficult fitness prediction tasks.

Models trained with gf-tuning could be applied to score natural and designed protein sequences
before dedicating wet lab resources for synthesis and characterization. Aside from its discriminative
uses, a gf-tuned generative model could conceivably be utilized for generation purposes of artificial
proteins. More broadly, we hope gf-tuned generative models can enable machine learning to guide
protein engineering efforts to enable solutions in human health and the environment.
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7 ETHICS STATEMENT

Predicting the fitness of a protein sequence is a powerful tool that be useful for the design of novel
proteins. If our technique or a future iteration thereof is adopted broadly, care should be taken
in terms of the end use-cases of these designed samples and downstream effects to ensure safe,
non-nefarious, and ethical applications. For projects in any domain, active oversight during project
initiation, experimental optimization, and deployment phases should be put in place to ensure safe
usage and limitation of unintended harmful effects.
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A APPENDIX

A.1 TABLES AND FIGURES

Table 2: Measurements of homology and epistasis of protein fitness prediction tasks. We consider
datasets with a higher number of sequences and sequence clusters to be higher homology, because
this indicates a large number and diversity of evolutionarily related proteins. We consider datasets
with a lower the Spearman of the additive model to be more epistatic because this means that muta-
tional effect cannot be predicted as well by adding the effects of single mutations.

Dataset Homology Homology Epistasis
[# sequences] [# clusters] [additive spearman]

PABP 152041 3866 0.90
GFP 806 23 0.59
AAV 2211 123 0.41
GB1 131 8 0.25

A.2 MODEL TRAINING AND HYPER-PARAMETER DETAILS

All models that use gf-tuning or wildtype residual regression were trained for 5 epochs, all models
that used a regression head were trained for 20 epochs. All deep learning models used an Adagrad
optimizer (Duchi et al., 2011). Augmented models were fit using ridge regression in SciKit-learn 1.

For each model in each setting, we obtain results using 4 different hyper-parameter settings (4 dif-
ferent learning rates for deep learning models (1e−6, 1e−5, 1e−4, 1e−3), 4 different ridge regular-
ization parameters for augmented models (1, 4, 16, 64), and average results over 4 different seeds
(that result in 4 different n-sized training sets). The data points in our plots give the highest av-
erage Spearman correlation (across the 4 seeds) for each model in each task setting out of the 3
hyper-parameter settings tested.

For models that use gf-tuning, we use an automatic procedure to tune the α hyperparameter from
Equation 5. At the start of gf-training, we measure the loss function L(Df ) on the assay labeled data
for varying values of α in the set {0.0625, 0.125, 0.25, .5, 1, 2, 4, 8, 16, 32, 64}. We chose the value
of α that minimizes L(Df ) − .1log2(α), which encourages higher values of α that lead to lower
training losses. We found this procedure to work well for selecting α across tasks.

When applying evolutionary finetuning, we train for 1 epoch and save 6 checkpoints at evenly spaced
intervals. Our pipeline then chooses the checkpoint that has the highest spearman corrlation on the
few-shot assay labeled training set for further finetuning. In the low homology setting, we apply gf-
tuning to ProGen without additional evolutionary finetuning and consider an ablation on ProGen’s
pretraining by applying gf-tuning to a randomly initializing an LM.

A.3 FITNESS PREDICTION WITH BLOSUM62

BLOSUM62 matrices predict the log-odds ratio for every possible substitution at each position
using a look-up table of how frequent different mutation are in nature. The BLOSUM62 matrix
B ∈ R|V |x|V | has a value at Bi,j proportional to the log-likelihood of a mutation of residue i being
mutated to residue j, where the diagonal values of B are proportional to the log-likelihoods of
each residue being retained. For each mutant position, we take the row of the BLOSUM matrix
corresponding to the wildtype residue, and take the difference of the column for the mutant residue
and the column for the wild-type residue. We then sum these scores to get a prediction.

A.4 DATASET DETAILS

• PABP - High homology, low epistasis. PABP contains functional values for single and
double mutations from wildtype.

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.Ridge.html
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• AAV - High homology, high epistasis. AAV contains many proteins that are 10 or more
mutations away from wildtype. We omit sequences that contain deletions from training and
testing to simplify modeling.

• GFP - Low homology, low epistasis. We use the commonly benchmark test set used as part
of the TAPE (Rao et al., 2019) which contains only sequences with more than 3 mutations
from wildtype. In the random split setting, we randomly sample sequences from the TAPE
training set split. In the single to multiples setting, we allow training on single mutations
from wildtype only.

• GB1 - Low homology, high epistasis. GB1 contains fitness values for all possible permu-
tations of residues at four sequence positions, with the rest of the sequence held constant.
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