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Abstract
As large-scale language models continue to scale
up in both size and context length, the memory
and communication cost of key-value (KV) cache
storage has become a major bottleneck in multi-
GPU and multi-node inference. While MoE-
based architectures sparsify computation across
experts, the corresponding KV caches remain
dense and globally synchronized, resulting in sig-
nificant overhead.

We introduce PiKV, a parallel and distributed
KV cache serving framework tailored for MoE
architecture. PiKV leverages expert-sharded KV
storage to partition caches across GPUs, PiKV
routing to reduce token-to-KV access, and a PiKV
Scheduling to adaptively retain query-relevant en-
tries. To further reduce memory usage, PiKV in-
tegrates PiKV Compression modules the caching
pipeline for acceleration.

PiKV is recently publicly available
as an open-source software library:
https://github.com/NoakLiu/PiKV. Experi-
ments details is recorded at: Experimental
Results. We also have PiKV integrated with
Nvidia kvpress for acceleration, details see
PiKVpress. PiKV is still a living project,
aiming to become a comprehesive KV Cache
management system for MoE Architectures.

1. Introduction
Large Language Models (LLMs) have become the founda-
tion of modern AI applications, powering virtual assistants,
code generation, document analysis, and multi-turn rea-
soning. With increasing demand for longer sequences and
sparse expert models (Bai et al., 2025; Rajbhandari et al.,
2020; Achiam et al., 2023), there is huge demand to deploy
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Figure 1. PiKV Framework

sparsely-gated Mixture-of-Experts (MoE) structures (Lep-
ikhin et al., 2020; Du et al., 2022) to reduce computation
costs at scale.

However, serving such models introduces significant system-
level challenges. During inference, each token generation
requires attending to the entire KV cache from prior tokens.
For a 7B-scale MoE model with 128K context and 16 ex-
perts, the full KV cache can occupy >24GB of memory and
incur excessive communication latency across GPUs and
nodes. Even with FlashAttention-style optimizations (Dao
et al., 2022), the need to load and attend to dense KV struc-
tures becomes the dominant bottleneck, especially in autore-
gressive decoding.

Prior works (Zhang et al., 2023; Gao et al., 2024) have
shown that a small fraction of tokens contribute dispropor-
tionately to the final attention output, motivating selective
cache access. Yet most methods either use static heuristics
or ignore the underlying system cost of accessing KV en-
tries across distributed compute nodes. In this work, we ask
a deeper question: can we design a KV caching system that
is both sparsity-aware and system-optimized for distributed
MoE inference?

We propose PiKV, a parallel distributed KV caching sys-
tem tailored for sparse mixture of expert models training
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and inference. As shown in 1, PiKV includes three syner-
gistic components: (1) an expert-sharded distributed KV
cache layout across multi-GPU or multi-node compute, (2)
a sparse expert routing layer that dynamically selects top-k
experts per query, and (3) an adaptive stream scheduler that
uses activity-based eviction to retain only high-utility KV
entries.

To further reduce memory and bandwidth cost, PiKV com-
presses KV representations using modular schemes such
as LoRA (Hu et al., 2022), PyramidKV (Cai et al., 2024),
and Duo (Chen et al., 2024). We track metadata and us-
age patterns of each KV shard to guide eviction and cache
streaming policies, enabling efficient inference under both
static and streaming contexts.

• We present a novel system architecture that combines
sparse expert routing and distributed KV cache layout
with query-aware streaming scheduling.

• We propose compression-aware KV caching, integrat-
ing multiple compression schemes and eviction poli-
cies into a unified system-level framework.

• We validate efficiency of PiKV in KV Cache Man-
agement of MoE Architectures, achieving significant
improvements in memory, latency, and end-to-end gen-
eration efficiency.

2. Related Work
2.1. Long-context LLMs

With the rapid growth in model size and sequence length,
long-context LLMs have gained significant attention. Archi-
tectures such as Transformer-XL (Dai et al., 2019), Long-
former (Beltagy et al., 2020), and BigBird (Zaheer et al.,
2020) explored architectural sparsity to improve scalability.
In practice, most LLMs adopt Rotary Position Embedding
(RoPE) (Su et al., 2024), which has been extended to longer
contexts through rescaling (Chen et al.). Notably, Yarn-
LLaMA (Peng et al., 2023) expanded the 4K-token LLaMA-
2 model to 32K and 128K tokens, respectively. Context
length scaling techniques have pushed limits beyond 1M
tokens (An et al., 2024). Serving these long-context mod-
els introduces substantial KV cache pressure and decoding
latency. PiKV addresses this by combining distributed KV
cache design with token-level adaptive routing and schedul-
ing.

2.2. Sparse Expert Routing and KV Lookup

MoE-based models (Lepikhin et al., 2020; Fedus et al.,
2022; Du et al., 2022) reduce compute cost by activating
a small subset of experts per token. However, inference-
time memory and KV access patterns remain dense in most
implementations. DeepSeek-V2 (Liu et al., 2024) and M6-
MoE (Zheng et al., 2023) explored dynamic expert selection

and sparsity-aware routing. PiOne (Lu et al., 2024) and
RingAttention (Liu et al., 2023) explored multi-GPU KV
alignment but did not optimize for token-expert selectivity.
Our work differs by tightly coupling token-level sparse rout-
ing with expert-sharded KV cache layouts and a lightweight
backend gating network, reducing lookup and communica-
tion cost simultaneously.

2.3. KV Compression and Stream-aware Scheduling

To alleviate memory and bandwidth bottlenecks, several
methods have been proposed to compress and truncate KV
caches. H2O (Zhang et al., 2023) prioritizes tokens with
high cumulative attention weights. FastGen (Sheng et al.,
2023) selects KV entries based on token type sensitivity.
StreamingLLM (Xiao et al., 2024) introduce streaming sinks
and proxy scoring methods to handle infinite-length texts.
Quest (Tang et al., 2024) and TOVA (He et al., 2025) further
propose query-aware KV selection by evaluating relevance
to the current query.

While effective, most methods either discard unused to-
kens too early or require full cache for scoring. In contrast,
PiKV retains a unified KV cache layout with on-demand
query-aware page loading, hierarchical compression (e.g.,
LoRA (Hu et al., 2022), PyramidKV (Cai et al., 2024)),
and streaming-aware eviction based on token activity scores.
This provides a practical tradeoff between throughput, mem-
ory, and attention fidelity.

3. Methodology
The PiKV system is designed to rethink Key–Value (KV)
cache management as a query-driven, memory–latency opti-
mized process, tailored for sparse MoE inference at scale. In
contrast to conventional cache systems that statically retain
all past tokens, PiKV makes two fundamental shifts:

• Sparsity-aware serving: Only a small set of experts
and KV pages are relevant per query;

• Resource-constrained scheduling: The memory and
bandwidth budget must be dynamically partitioned
across queries, experts, and streams.

To this end, we decompose PiKV into four co-designed
modules: (i) distributed expert-sharded KV storage, (ii)
adaptive routing (PiKVRouting), (iii) modular compression
(PiKVCompression), and (iv) query-aware stream schedul-
ing (PiKVScheduling).

All components are executed in an asynchronous pipeline
orchestrated by a general decoding loop, as shown in Algo-
rithm 1. Each submodule operates independently but passes
metadata to adjacent stages to inform decisions.

We now describe each module and its underlying theoretical
and system-level formulation.
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Algorithm 1 General PiKV Execution Framework
1: Input: query stream {qt}Tt=1, expert set E , shard size S
2: Initialize: distributed cache C, routing policyR, sched-

uler S, compressor Ccmp
3: for t = 1 to T do
4: gt ← R(qt) // PiKV Routing
5: Kt, Vt ← fenc(qt)
6: for expert e ∈ gt do
7: s← Shard(t, e)
8: (K̂, V̂ )← Ccmp(Kt, Vt) // PiKV Compression
9: C[e][s]← Insert((K̂, V̂ ),metadata)

10: end for
11: C ← S(C, qt) // PiKV Scheduling
12: yt ← fattn(qt, C[gt])
13: end for

3.1. PiKV Expert-Sharded Storage

Given a KV tensor pair (Kt, Vt) ∈ Rd×2 at time t, the goal
is to store these vectors in a distributed cache that minimizes
redundancy and maximizes parallel retrieval. Unlike tradi-
tional schemes that replicate the full KV across G GPUs,
we assign tokens to shards via a hash function h(t, e) and
assign each shard to one GPU:

s(t, e) = (t mod Ntok)⊕ (e mod Nexp) .

Each GPU stores only O(L/G + L/E) tokens, reducing
per-device memory cost from O(EL).

Storage invariants. Each shard s maintains a circular
buffer of capacity S, so that insertions costO(1) time and re-
allocation is avoided. If (Kt, Vt) is compressed to (K̂t, V̂t)
of dimension d′, the per-shard memory is:

Ms = 2d′S =
2dS

ρ
, with ρ = d/d′.

Total memory per GPU is then:

Mkv =
2d

ρ

(
L

GS
+KS

)
,

where K is the number of retained pages in PiKV schedul-
ing.

3.2. PiKV Routing

PiKV Routing decides which experts gt ⊆ E to activate
for each query qt. Formally, we define a routing function
R : Rd → {0, 1}E satisfying ∥gt∥0 = k. PiKV supports
multiple routing methods as in the following table 1.

ID Mechanism Penalty Term Cost

RB Base hash / round-robin — O(1)
RT TopK softmax — O(Elog k)
RLB TopK + load balance −α(µe − µ̄) O(E)
RP Cache-aware (PiKVRouter) −λ log

(
1 + misse

)
O(E)

RE Entropy-penalised LB (EPLB) −β H(pe) O(E)

RA RL-adaptive gating learned O(k2)
RH Hierarchical coarse→fine two-stage TopK O(E + k log k)

Table 1. PiKV routing methods and their computational profiles
(E = experts).

Attention Complexity Reduction of PiKV Routing. Let
B be batch size, L sequence length, h head width, E experts,
k≪E routed per token.

Cdense = B LhE , Csparse = B Lhk , =⇒ speed-up =
E

k
.

Memory traffic (Key–Value fetch, bytes):

Mdense = 2B LhE, Msparse = 2B Lhk, relief =
E

k
.

Reuse-distance:

RDdense=
L

E
, RDsparse=

L

k
=⇒ hit-rate ≈ k

E
.

3.3. PiKV Compression

PiKV compression controls the space–fidelity trade-off for
KV storage. Given (K,V ) ∈ Rd × Rd, a compressor C
maps:

C(K,V ) = (K̂, V̂ ) ∈ Rd′
× Rd′

, d′ < d.

We define the reconstruction error as:

ϵ =
∥K −D(K̂)∥2
∥K∥2

, with decoder D.

PiKV supports multiple compression methods as in the fol-
lowing table 2.

Compression-Aware Latency of PiKV Compression.
Variables: d full width, d′ = d/ρ compressed width (ρ > 1),
k experts/query, B tokens/batch, β HBM bandwidth (B/s),
γ core throughput (B/s), η ≤ 2 decode factor.

1Full SVD is offline; at inference only the O(dr) projection is
executed.
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ID Mechanism ϵ2 (squared error bound) Cost (Big-O)

CLo LoRA (rank r)
d∑

i=r+1

σ
2
i O(dr)

CLo+ LoRA++
∥∥K − WdWuK − b

∥∥2
2

O(dr)

CPy PyramidKV (L levels)
L−1∑
ℓ=0

∥P (ℓ)K − K∥22
4ℓ

O(d)

CCh ChunkKV (block PCA)
∑
blk

∑
i>r

σ
2
i O(dr)

CSVD Truncated SVD (r)
∑
i>r

σ
2
i O(d2r)1

CF FastV (crop to r) ∥Kr:d∥22 O(d)

CDis Distillation (offline) KL(qteach ∥qstud) O(d r)

CPr Structured Pruning
∑
j∈Z

K
2
j O(d)

Table 2. Analytic reconstruction bounds and asymptotic compres-
sion cost (d = width, r≪d retained rank).

Tread =
2d′kB

β
=

2dkB

ρβ
, (1)

Tdecode =
ηd′kB

γ
=

ηdkB

ργ
, (2)

Tstep = Tread + Tdecode =
dkB

ρ

(
2
β + η

γ

)
. (3)

Speed-up. For two compression ratios ρ1 < ρ2,

Speedup(ρ1→ρ2) =
Tstep(ρ1)

Tstep(ρ2)
=

ρ2
ρ1

. (4)

Higher ρ linearly reduces both read and decode time until
Tdecode≈Tread, after which the gain plateaus.

3.4. PiKV Scheduling

PiKV Scheduler implements dynamic retention of cached
KV pages under bounded memory. Instead of static eviction
rules, PiKV formulates scheduling as a per-page scoring
problem, where each entry i is assigned a scalar utility score
ui based on features such as attention intensity, recency of
access, and reuse patterns. PiKV supports multiple schedul-
ing methods as in following table 3

Memory Usage of PiKV. We analyze the total per-GPU
memory consumption Mtotal of PiKV under compressed
KV storage and bounded scheduling. Let:

• d: original hidden size of each KV vector;

• ρ = d/d′: compression ratio, where d′ is the reduced
dimensionality;

• L: number of cached tokens per expert globally;

• G: number of GPUs (i.e., KV shards);

ID Scheduling Methods ui Adaptive

SH2O ui = ai ×
SSL ui = I[ti > τ ] ×
SQUEST ui = MLPθ

(
[Ki, Vi]

)
✓

SFlex ui =Mplan(ti) ×
SLRU ui = −ri ×
SLRU+ ui = −ri + λ · fi ×
SAdaKV ui =

∑
j αjϕj(i), θ ← θ + γ(η∗ − η) ✓

SDuo ui =
∑L

ℓ=1 a
(ℓ)
i ✓

Table 3. Summary of PiKV scheduling strategies. Notation: ai =
attention, ri = recency, fi = frequency, ti = age, ϕj(i) = feature
scores, θ = eviction threshold, η = hit-rate. ✓ = adaptive threshold,
× = fixed.

• S: circular buffer size (in tokens) per expert shard;

• K: number of active cache pages selected by the sched-
uler per GPU.

The total memory per GPU decomposes into two parts:

Mtoken =
2d′

G
· L
S
, (sharded token buffer)

Mpage = 2d′ ·K · S, (scheduled page buffer)

Summing the two and replacing d′ = d/ρ yields:

Mtotal =Mtoken +Mpage =
2d

ρ

(
L

GS
+KS

)
.

To minimizeMtotal with respect to S, we take the derivative:

∂Mtotal

∂S
= − 2dL

ρGS2
+
2dK

ρ
, set

∂Mtotal

∂S
= 0⇒ S∗ =

√
L

KG
.

Therefore, the optimal buffer size S∗ trades off between
sharding granularity and reuse coverage. Substituting back:

M∗
total =

4d

ρ

√
KL

G
.

This closed-form provides a practical design rule for setting
shard capacity S to minimize GPU memory cost under fixed
compression ρ, token budget L, and scheduler retention K.

4. Conclusion
We present PiKV, a parallel and distributed KV cache man-
agement framework optimized for sparsely activated MoE-
based large language models. PiKV introduces a KV cache
management system for MoE, including sparse expert rout-
ing, cache compression, and stream-aware scheduling. This
architecture rethinks KV caching not only as passive mem-
ory storage, but as a dynamic, query-driven retrieval system.
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PiKV is a living project for scalable MoE serving, aim-
ing for briding MoE sparsity and efficient system design
optimization. Future work will explore online adaptation,
hierarchical memory tiers, and integration with training-
time sparsity strategies for end-to-end efficient large model
deployment with MoE architecture.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report, 2023.

An, C., Huang, F., Zhang, J., Gong, S., Qiu, X., Zhou,
C., and Kong, L. Training-free long-context scaling of
large language models. arXiv preprint arXiv:2402.17463,
2024.

Bai, S., Chen, K., Liu, X., Wang, J., Ge, W., Song, S., Dang,
K., Wang, P., Wang, S., Tang, J., et al. Qwen2. 5-vl
technical report. arXiv preprint arXiv:2502.13923, 2025.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Cai, Z., Zhang, Y., Gao, B., Liu, Y., Liu, T., Lu, K., Xiong,
W., Dong, Y., Chang, B., Hu, J., et al. Pyramidkv: Dy-
namic kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069, 2024.

Chen, L., Zhao, H., Liu, T., Bai, S., Lin, J., Zhou, C., and
Chang, B. An image is worth 1/2 tokens after layer
2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer
Vision, pp. 19–35. Springer, 2024.

Chen, S., Wong, S., Chen, L., and Tian, Y. Extending con-
text window of large language models via positional inter-
polation, 2023. URL https://arxiv. org/abs/2306.15595.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
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