
TabNAS: Rejection Sampling for
Neural Architecture Search on Tabular Datasets

Chengrun Yang1, Gabriel Bender1, Hanxiao Liu1, Pieter-Jan Kindermans1,
Madeleine Udell2, Yifeng Lu1, Quoc V. Le1, Da Huang1

{chengrun, gbender, hanxiaol, pikinder}@google.com,
udell@stanford.edu, {yifenglu, qvl, dahua}@google.com

1 Google Research, Brain Team 2 Stanford University

Abstract

The best neural architecture for a given machine learning problem depends on
many factors: not only the complexity and structure of the dataset, but also on
resource constraints including latency, compute, energy consumption, etc. Neural
architecture search (NAS) for tabular datasets is an important but under-explored
problem. Previous NAS algorithms designed for image search spaces incorpo-
rate resource constraints directly into the reinforcement learning (RL) rewards.
However, for NAS on tabular datasets, this protocol often discovers suboptimal
architectures. This paper develops TabNAS, a new and more effective approach to
handle resource constraints in tabular NAS using an RL controller motivated by
the idea of rejection sampling. TabNAS immediately discards any architecture that
violates the resource constraints without training or learning from that architecture.
TabNAS uses a Monte-Carlo-based correction to the RL policy gradient update to
account for this extra filtering step. Results on several tabular datasets demonstrate
the superiority of TabNAS over previous reward-shaping methods: it finds better
models that obey the constraints.

1 Introduction

To make a machine learning model better, one can scale it up. But larger networks are more expensive
as measured by inference time, memory, energy, etc, and these costs limit the application of large
models: training is slow and expensive, and inference is often too slow to satisfy user requirements.

Many applications of machine learning in industry use tabular data, e.g., in finance, advertising and
medicine. It was only recently that deep learning has achieved parity with classical tree-based models
in these domains [9, 11]. For vision, optimizing models for practical deployment often relies on
Neural Architecture Search (NAS). Most NAS literature targets convolutional networks on vision
benchmarks [14, 5, 10, 19]. Despite the practical importance of tabular data, however, NAS research
on this topic is quite limited [8, 7]. (See Appendix A for a more comprehensive literature review.)

Weight-sharing reduces the cost of NAS by training a SuperNet that is the superset of all candidate
architectures [2]. This trained SuperNet is then used to estimate the quality of each candidate
architecture or child network by allowing activations in only a subset of the components of the
SuperNet and evaluating the model. Reinforcement learning (RL) has shown to efficiently find the
most promising child networks [16, 5, 3] for vision problems.

In our experiments, we show that a direct application of approaches designed for vision to tabular
data often fails. For example, the TuNAS [3] approach from vision struggles to find the optimal
architectures for tabular datasets (see experiments). The failure is caused by the interaction of the
search space and the factorized RL controller. To understand why, consider the following toy example

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

0 250 500
epochs

Abs
Reward
β = -1

Abs
Reward
β = -2

rejection
w/

estimated

sa
m

pl
in

g
pr

ob
ab

ilit
y

0

1

losses of 9 candidate
networks

parameters of 9
candidate networks

sampling probabilities of 9 candidate networks over time

Figure 1: A toy example for tabular NAS in a 2-layer search space with a 2-dimensional input and
a limit of 25 parameters. Each cell represents an architecture. The left half shows the number of
parameters and loss of each candidate in the search space. Infeasible architectures have red-striped
cells. The bottom left cell (bold border) is the global optimum with size 4 for the first hidden layer and
size 2 for the second. The right half shows the change of sampling probabilities in NAS with different
RL rewards. Sampling probabilities are shown both as percentages in cells, and intensity indicated by
the right colorbar. Orange bars on the top and right sides show the (independent) sampling probability
distributions of size candidates for individual layers. With the Abs Reward, the sampling probability
of each architecture is the product of sampling probabilities of each layer; with the rejection-based
reward, the probability of an infeasible architecture is 0, and probabilities of feasible architectures
are normalized to sum to 1. At epoch 500, the cell squared in bold shows the architecture picked
by the corresponding RL controller. RL with the Abs Reward Q(y) + β|T (y)/T0 − 1| proposed
in TuNAS [3] either converges to a feasible but suboptimal architecture (β = −2, middle row) or
violates the resource constraint (β = −1, top row). Other latency-aware reward functions show
similar failures. In contrast, TabNAS converges to the optimum (bottom row).

with 2 layers, illustrated in Figure 1. For each layer, we can choose a layer size of 2, 3, or 4, and
the maximum number of parameters is set to 25. The optimal solution is to set the size of the first
hidden layer to 4 and the second to 2. Finding this solution with RL is difficult with a cost penalty
approach. The RL controller is initialized with uniform probabilities. As a result, it is quite likely
that the RL controller will initially be penalized heavily when choosing option 4 for the first layer,
since two thirds of the choices for the second layer will result in a model that is too expensive. As a
result, option 4 for the first layer is quickly discarded by the RL controller and we get stuck in a local
optimum.

This co-adaptation problem is caused by the fact that existing NAS methods for computer vision often
use factorized RL controllers, which force all choices to be be made independently. While factorized
controllers can be optimized easily and are parameter-efficient, they cannot capture all of the nuances
in the loss landscape. A solution to this could be to use a more complex model such as an LSTM
(e.g., [16, 4]). However, LSTMs are often much slower to train and are far more difficult to tune.

Our proposed method, TabNAS, uses a solution inspired by rejection sampling. It updates the RL
controller only when the sampled model satisfies the cost constraint. The RL controller is then
discouraged from sampling poor models within the cost constraint and encouraged to sample the
high quality models. Rather than penalizing models that violate the constraints, the controller silently
discards them. This trick allows the RL controller to see the true constrained loss landscape, in which

2

0 2 4 6 8 10
time relative to stand-alone training

0.445

0.446

0.447

lo
ss

RL with rejection-based reward (num_parameters 41,153)
RL with TuNAS reward (num_parameters target 41,153)
random sampling (num_parameters in [40000, 42000])
skyline (num_parameters in [40000, 42000])

Figure 2: TabNAS reward distributionally out-
performs random search and resource-aware Abs
Reward on the Criteo dataset within a 3-layer
search space. All error bars and shaded regions
are 95% confidence intervals. The x axis is the
time relative to train time for a single architec-
ture. The y axis is the validation loss. More
details in Appendix C.2.3.

0.0 0.5 1.0 1.5 2.0
parameters

1e5

0.442

0.446

0.450

0.454

lo
g

lo
ss 32-144-24

 (reference architecture)
other architectures
parameters
 40,000 to 42,000

Figure 3: Validation loss (logistic) vs. number of
parameters on Criteo with a 3-layer search space.
The standard deviation (std) of architecture per-
formance for different runs is 0.0002, so archi-
tectures whose performance difference is larger
than 2std are qualitatively different with high
probability. The search space and Pareto-optimal
architectures are shown in Appendix C.2.1.

having some large layers is beneficial, allowing TabNAS to efficiently find global (not just local)
optima for tabular NAS problems. Our contributions can be summarized as follows:

• We identify failure cases of existing resource-aware NAS methods on tabular data and provide
evidence this failure is due to the cost penalty in the reward together with the factorized space.
• We propose and evaluate an alternative: a rejection sampling mechanism that ensures the RL

controller only selects architectures that satisfy resource constraint. This extra rejection step
allows the RL controller to explore parts of the search space that would otherwise be overlooked.
• The rejection mechanism also introduces a systematic bias into the RL gradient updates, which

can skew the results. To compensate for this bias, we introduce a theoretically motivated and
empirically effective correction into the gradient updates. This correction can be computed
exactly for small search spaces and efficiently approximated by Monte-Carlo sampling otherwise.
• We show the resulting method, TabNAS, automatically learns whether a bottleneck structure is

needed in an optimal architecture, and if needed, where to place the bottleneck in the network.

These contributions form TabNAS, our RL-based weight-sharing NAS with rejection-based reward.
TabNAS robustly and efficiently finds a feasible architecture with optimal performance within the
resource constraint. Figure 2 shows an example.

2 Notation and terminology

Math basics. We define [n] = {1, ··· , n} for a positive integer n. With a Boolean variable X , the
indicator function 1(X) equals 1 if X is true, and 0 otherwise. |S| denotes the cardinality of a set S;
stop_grad(f) denotes the constant value (with gradient 0) corresponding to a differentiable quantity
f , and is equivalent to tensorflow.stop_gradient(f) in TensorFlow [1] or f.detach() in
PyTorch [15]. ⊆ and ⊂ denote subset and strict subset, respectively. ∇ denotes the gradient with
respect to the variable in the context.

Weight, architecture, and hyperparameter. We use weights to refer to the parameters of the
neural network. The architecture of a neural network is the structure of how nodes are connected;
examples of architectural choices are hidden layer sizes and activation types. Hyperparameters are
the non-architectural parameters that control the training process of either stand-alone training or RL,
including learning rate, optimizer type, optimizer parameters, etc.

Neural architecture. A neural network with specified architecture and hyperparameters is called a
model. We only consider fully-connected feedforward networks (FFNs) in this paper, since they can
already achieve SOTA performance on tabular datasets [11]. The number of hidden nodes after each
weight matrix and activation function is called a hidden layer size. We denote a single network in our
search space with hyphen-connected choices. For example, when searching for hidden layer sizes,
in the space of 3-hidden-layer ReLU networks, 32-144-24 denotes the candidate where the sizes of

3

the first, second and third hidden layers are 32, 144 and 24, respectively. We only search for ReLU
networks; for brevity, we will not mention the activation function type in the sequel.

Loss-resource tradeoff and reference architectures. In the hidden layer size search space, the
validation loss in general decreases with the increase of the number of parameters, giving the loss-
resource tradeoff (e.g., Figure 3). Here loss and number of parameters serve as two costs for NAS.
Thus there are Pareto-optimal models that achieve the smallest loss among all models with a given
bound on the number of parameters. With an architecture that outperforms others with a similar or
fewer number of parameters, we do resource-constrained NAS with the number of parameters of this
architecture as the resource target or constraint. We call this architecture the reference architecture
(or reference) of NAS, and its performance the reference performance. We do NAS with the goal of
matching (the size and performance of) the reference. Note that the RL controller only has knowledge
of the number of parameters of the reference, and is not informed of its hidden layer sizes.

Search space. When searching L-layer networks, we use capital letters like X = X1- ··· -XL to
denote the random variable of sampled architectures, in which Xi is the random variable for the size
of the i-th layer. We use lowercase letters like x = x1- ··· -xL to denote an architecture sampled from
the distribution over X , in which xi is an instance of the i-th layer size. When there are multiple
samples drawn, we use a bracketed superscript to denote the index over samples: x(k) denotes the
k-th sample. The search space S = {sij}i∈[L],j∈[Ci] has Ci choices for the i-th hidden layer, in
which sij is the j-th choice for the size of the i-th hidden layer: for example, when searching for a
one-hidden-layer network with size candidates {5, 10, 15}, we have s13 = 15.

Reinforcement learning. The RL algorithm learns the set of logits {`ij}i∈[L],j∈[Ci], in which `ij is
the logit associated with the j-th choice for the i-th hidden layer. With a fully factorized distribution
of layer sizes (we learn a separate distribution for each layer), the probability of sampling the j-th
choice for the i-th layer pij is given by the SoftMax function: pij = exp(`ij)/

∑
j∈[Ci]

exp(`ij). In
each RL step, we sample an architecture y to compute the single-step RL objective J(y), and update
the logits with∇J(y): an unbiased estimate of the gradient of the RL value function.

Resource metric and number of parameters. We use the number of parameters, which can be
easily computed for neural networks, as a cost metric in this paper. However, our approach does not
depend on the specific cost used, and can be easily adapted to other cost metrics.

3 Methodology

Our NAS methodology can be decomposed into three main components: weight-sharing with layer
warmup, REINFORCE with one-shot search, and Monte Carlo (MC) sampling with rejection.

As an overview, our method starts with a SuperNet, which is a network that layer-wise has width
equal to the largest choice within the search space. We first stochastically update the weights of
the entire SuperNet to “warm up” over the first 25% of search epochs. Then we alternate between
updating the shared model weights (which are used to estimate the quality of different child models)
and the RL controller (which focuses the search on the most promising parts of the space). In each
iteration, we first sample a child network from the current layer-wise probability distributions and
update the corresponding weights within the SuperNet (weight update). We then sample another
child network to update the layerwise logits that give the probability distributions (RL update). The
latter RL update is only performed if the sampled network is feasible, in which case we use rejection
with MC sampling to update the logits with a sampling probability conditional on the feasible set.

To avoid overfitting, we split the labelled portion of a dataset into training and validation splits.
Weight updates are carried out on the training split; RL updates are performed on the validation split.

3.1 Weight sharing with layer warmup

The weight-sharing approach has shown success on various computer vision tasks and NAS bench-
marks [16, 2, 5, 3]. To search for an FFN on tabular datasets, we build a SuperNet where the size
of each hidden layer is the largest value in the search space. Figure 4 shows an example. When
we sample a child network with a hidden layer size `i smaller than the SuperNet, we only use the
first `i hidden nodes in that layer to compute the output in the forward pass and the gradients in the

4

backward pass. Similarly, in RL updates, only the weights of the child network are used to estimate
the quality reward that is used to update logits.

In weight-sharing NAS, warmup helps to ensure that the SuperNet weights are sufficiently trained
to properly guide the RL updates [3]. With probability p, we train all weights of the SuperNet, and
with probability 1− p we only train the weights of a random child model. When we run architecture
searches for FFNs, we do warmup in the first 25% epochs, during which the probability p linearly
decays from 1 to 0 (Figure 5(a)). The RL controller is disabled during this period.

3.2 One-shot training and REINFORCE

We do NAS on FFNs with a REINFORCE-based algorithm. Previous works have used this type
of algorithm to search for convolutional networks on vision tasks [18, 5, 3]. When searching for
L-layer FFNs, we learn a separate probability distribution over Ci size candidates for each layer.
The distribution is given by Ci logits via the SoftMax function. Each layer has its own independent
set of logits. With Ci choices for the ith layer, where i = 1, 2, ··· , L, there are

∏
i∈[L] Ci candidate

networks in the search space but only
∑
i∈[L] Ci logits to learn. This technique significantly reduces

the difficulty of RL and make the NAS problem practically tractable [5, 3].

The REINFORCE-based algorithm trains the SuperNet weights and learns the logits {`ij}i∈[L],j∈[Ci]

that give the sampling probabilities {`ij}i∈[L],j∈[Ci] over size candidates by alternating between
weight and RL updates. In each iteration, we first sample a child network x from the SuperNet
and compute its training loss in the forward pass. Then we update the weights in x with gradients
of the training loss computed in the backward pass. This weight update step trains the weights of
x. The weights in architectures with larger sampling probabilities are sampled and thus trained
more often. We then update the logits for the RL controller by sampling a child network y that
is independent of the network x from the same layerwise distributions, computing the quality
reward Q(y) as 1− loss(y) on the validation set, and then updating the logits with the gradient of
J(y) = stop_grad(Q(y)− Q̄) logP(y): the product of the advantage of y’s reward over past rewards
(usually an exponential moving average) and the log-probability of the current sample.

The alternation creates a positive feedback loop that trains the weights and updates the logits of the
large-probability child networks; thus the layer-wise sampling probabilities gradually converge to
more deterministic distributions, under which one or several architectures are finally selected.

Details of a resource-oblivious version is shown as Appendix B Algorithm 1, which does not take
into account a resource constraint. In Section 3.3, we show an algorithm that combines Monte-Carlo
sampling with rejection sampling, which serves as a subroutine of Algorithm 1 by replacing the
probability in J(y) with a conditional version.

3.3 Rejection-based reward with MC sampling

Only a subset of the architectures in the search space S will satisfy resource constraints; V denotes
this set of feasible architectures. To find a feasible architecture, a resource target T0 is often used in an
RL reward. Given an architecture y, a resource-aware reward combines its quality Q(y) and resource
consumption T (y) into a single reward. MnasNet [18] proposes the rewards Q(y)(T (y)/T0)β and
Q(y) max{1, (T (y)/T0)β} while TuNAS [3] proposes the absolute value reward (or Abs Reward)
Q(y) + β|T (y)/T0 − 1|. The idea behind is to encourage models with high quality with respect the
resource target. In these rewards β is a hyperparameter that needs careful tuning.

We find that on tabular data, RL controllers using these resource-aware rewards above can struggle to
discover high quality structures. Figure 1 shows a toy example in the search space in Figure 4, in
which we know the validation losses of each child network and only train the RL controller for 500
steps. The optimal network is 4-2 among architectures with number of parameters no more than 25,
but the RL controller rarely chooses it. In Section 4.1, we show examples on real datasets.

This phenomenon reveals a gap between the true distribution we want to sample from and the
distributions obtained by sampling from this factorized search space:

• We only want to sample from the set of feasible architectures V , whose distribution is {P(y |y ∈
V)}y∈V . The resources (e.g., number of parameters) used by an architecture, and thus its
feasibility, is determined jointly by the sizes of all layers.

5

in
pu

t
re

pr
es

en
ta

tio
n

hidden layers

1st 2nd

output layer

Figure 4: Illustration of weight-sharing on two-
layer FFNs for a binary classification task. Edges
denote weights; arrows at the end of lines denote
ReLU activations; circles denote hidden nodes;
the square in the output layer denotes the output
logit. The size of each hidden layer can be one of
{2, 3, 4}, thus the SuperNet is a two-layer FFN
with size 4-4. At this moment, the controller
picks the child network 3-2, thus only the first
3 hidden nodes in the first hidden layer and the
first 2 hidden nodes in the second hidden layer,
together with the connected edges (in red), are
enabled to compute the output logits.

0 15 30 45 60
epochs

0.0

0.5

1.0

wa
rm

up
 p

ro
b

(a) Warmup probability

0 30 60 90 120
epochs

0

1

va
lid

 p
ro

b estimated
 (N=2048)
true

(b) Valid probability

Figure 5: Examples of layer warmup and valid
probabilities. Figure (a) shows our schedule: lin-
early decay from 1 to 0 in the first 25% epochs.
Figure (b) shows an example of the change of
true and estimated valid probabilities (P(V) and
P̂(V)) in a successful search, with 8,000 archi-
tectures in the search space and the number of
MC samples N = 1024. Both probabilities
are (nearly) constant during warmup before RL
starts, then increase after RL starts because of
rejection sampling.

• On the other hand, the factorized search space learns a separate (independent) probability distri-
bution for the choices of each layer. While this distribution is efficient to learn, independence
between layers discourages an RL controller with a resource-aware reward from choosing a
bottleneck structure. A bottleneck requires the controller to select large sizes for some layers
and small for others. But decisions for different layers are made independently, and both very
large and very small layer sizes, considered independently, have poor expected rewards: small
layers are estimated to perform poorly, while large layers easily exceed the resource constraints.

To bridge the gap and efficiently learn layerwise distributions that take into account the architecture
feasibility, we propose a rejection-based RL reward for Algorithm 1. We next sketch the idea; detailed
pseudocode is provided as Algorithm 2 in Appendix B.

REINFORCE optimizes a set of logits {`ij}i∈[L],j∈[Ci] which define a probability distribution p over
architectures. In the original algorithm, we sample a random architecture y from p and then estimate
its quality Q(y). Updates to the logits `ij take the form `ij ← `ij + η ∂

∂`ij
J(y), where η is the

learning rate, Q is a moving average of recent rewards, and J(y) = stop_grad(Q(y)−Q) · logP(y).
If y is better (worse) than average, then Q(y)−Q will be positive (negative), so the REINFORCE
update will increase (decrease) the probability of sampling the same architecture in the future.

In our new REINFORCE variant, motivated by rejection sampling, we do not update the logits when
y is infeasible. When y is feasible, we replace the probability P(y) in the REINFORCE update
equation with the conditional probability P(y | y ∈ V) = P(y)/P(y ∈ V). So J(y) becomes

J(y) = stop_grad(Q(y)−Q) · log [P(y)/P(y ∈ V)] . (1)
We can compute the probability of sampling a feasible architecture P(V) := P(y ∈ V) exactly when
the search space is small, but this computation is too expensive when the space is large. Instead, we
replace the exact probability P(y) with a differential approximation P̂(y) obtained with Monte-Carlo
(MC) sampling. In each RL step, we sample N architectures {z(k)}k∈[N] within the search space
with a proposal distribution q and estimate P(V) as

P̂(V) =
1

N

∑
k∈[N]

p(k)

q(k)
· 1(z(k) ∈ V). (2)

For each k ∈ [N], p(k) is the probability of sampling z(k) with the factorized layerwise distributions
and so is differentiable with respect to the logits. In contrast, q(k) is the probability of sampling z(k)
with the proposal distribution, and is therefore non-differentiable.

P̂(V) is an unbiased and consistent estimate of P(V); ∇ log[P(y)/P̂(V)] is a consistent estimate of
∇ log[P(y | y ∈ V)] (Appendix J). A larger N gives better results (Appendix H); in experiments, we

6

0 15 30 45 60
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 1

0

1

pr
ob

ab
ilit

y

(a) Layer 1 (finally 32)

0 15 30 45 60
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 2

0

1

pr
ob

ab
ilit

y

(b) Layer 2 (finally 64)

0 15 30 45 60
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 3

0

1

pr
ob

ab
ilit

y

(c) Layer 3 (finally 96)

0 15 30 45 60
epochs

0.445

0.450

lo
g

lo
ss

32-64-96 (41,345 params)
32-144-24 (41,153 params)

(d) retrain performance

Figure 6: Failure case of the Abs Reward on Criteo in a search space of 3-layer FFNs. The change
of sampling probabilities and comparison of retrain performance between the 32-144-24 reference
and the 32-64-96 architecture found with the Q(y) + β|T (y)/T0 − 1| Abs Reward, the target for
the reward was 41,153 parameters. Repeated runs of the same search find the same architecture.
Figure 6(d) shows the retrain validation losses of 32-64-96 (NAS-found) and 32-144-24 (reference).

need smaller than the size of the sample space to get a faithful estimate (Figure 5(b), Appendix D and I)
because neighboring RL steps can correct the estimates of each other. We set q = stop_grad(p) in
experiments for convenience: use the current distribution over architectures for MC sampling. Other
distributions that have a larger support on V may be used to reduce sampling variance (Appendix J).

At the end of NAS, we pick as our final architecture the layer sizes with largest sampling probabilities
if the layerwise distributions are deterministic, or sample from the distributions m times and pick n
feasible architectures with the largest number of parameters if not. Appendix B Algorithm 3 provides
the full details. We find m = 500 and n ≤ 3 suffice to find an architecture that matches the reference
(optimal) architecture in our experiments.

In practice, the distributions often (almost) converge after twice the number of epochs used to train a
stand-alone child network. Indeed the distributions are often useful after training the same number of
epochs in that the architectures found by Algorithm 3 are competitive. Figure 1 shows TabNAS finds
the best feasible architecture, 4-2, in our toy example, using P̂(V) estimated by MC sampling.

4 Experimental results

Our implementation can be found at https://github.com/google-research/tabnas. We ran
all experiments using TensorFlow on a Cloud TPU v2 with 8 cores. We use a 1,027-dimensional input
representation for the Criteo dataset and 180 features for Volkert1. The best architectures in our FFN
search spaces already produce near-state-of-the-art results; details in Appendix C.2. More details of
experiment setup and results in other search spaces can be found in Appendix C and D. Appendix E
tabulates the performance of all RL rewards on all tabular datasets in our experiments. Appendix F
shows a comparison with Bayesian optimization and evolutionary search in similar settings; Ablation
studies in Appendix I show TabNAS components collectively deliver desirable results; Appendix H
shows TabNAS has easy-to-tune hyperparameters.

4.1 When do previous RL rewards fail?

Section 3.3 discussed the resource-aware RL rewards and highlighted a potential failure case. In
this section, we show several failure cases of three resource-aware rewards, Q(y)(T (y)/T0)β ,
Q(y) max{1, (T (y)/T0)β}, and the Abs Reward Q(y) + β|T (y)/T0 − 1|, on our tabular datasets.

4.1.1 Criteo – 3 layer search space

We use the 32-144-24 reference architecture (41,153 parameters). Figure 3 gives an overview of the
costs and losses of all architectures in the search space. The search space requires us to choose one of
20 possible sizes for each hidden layer; details in Appendix D. The search has 1.7× the cost of a
stand-alone training run.

1Our paper takes these features as given. It is worth noting that methods proposed in feature engineering
works like [12] and [13] are complementary to and can work together with TabNAS.

7

https://github.com/google-research/tabnas

Failure of latency rewards. Figure 6 shows the sampling probabilities from the search when using
the Abs Reward, and the retrain validation losses of the found architecture 32-64-96. In Figures 6(a)
– 6(c), the sampling probabilities for the different choices are uniform during warmup and then
converge quickly. The final selected model (32-64-96) is much worse than the reference model
(32-144-24) even though the reference model is actually less expensive. We also observed similar
failures for the MnasNet rewards. With the MnasNet rewards, the RL controller also struggles to
find a model within ±5% of the constraint despite a grid search of the RL parameters (details in
Appendix C). In both cases, almost all found models are worse than the reference architecture.

0.443 0.448 0.453
stand-alone loss

0.43

0.44

0.45

on
e-

sh
ot

 lo
ss

015 60 100
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 2

0

1

pr
ob

ab
ilit

y

Figure 7: Left: 3-layer Criteo SuperNet cali-
bration after 60 epochs (search space in Ap-
pendix C): Pearson correlation is 0.96. The
one-shot loss is validation loss of each child
network with weights taken from a Super-
Net trained with the same hyperparameters
as in Figure 6 but with no RL in the first 60
epochs; the stand-alone loss of each child
network is computed by training the same ar-
chitecture with the same hyperparameters
from scratch, and has std 0.0003. Right:
change in probabilities in layer 2 after 60
epochs of SuperNet training and 40 of RL.
Note the rapid changes due to RL.

The RL controller is to blame. To verify that a low
quality SuperNet was not the culprit, we trained a Su-
perNet without updating the RL controller, and man-
ually inspected the quality of the resulting SuperNet.
The sampling probabilities for the RL controller re-
mained uniform throughout the search; the rest of the
training setup was kept the same. At the end of the
training, we compare two sets of losses on each of the
child networks: the validation loss from the SuperNet
(one-shot loss), and the validation loss from training
the child network from scratch. Figure 7(a) shows that
there is a strong correlation between these accuracies;
Figure 7(b) shows RL that starts from the sufficiently
trained SuperNet weights in 7(a) still chooses the sub-
optimal choice 64. This suggests that the suboptimal
search results on Criteo are likely due to issues with
the RL controller, rather than issues with the one-shot
model weights. In a 3 layer search space we can actu-
ally find good models without the RL controller, but
in a 5 layer search space, we found an RL controller
whose training is interleaved with the SuperNet is im-
portant to achieve good results.

4.1.2 Volkert – 4 layer search space

0 30 60 90 120
epochs

0.31
0.33
0.35

ba
la

nc
ed

 lo
ss

80-64-32-144 (27,946 params)
 (found by Abs Reward)
48-160-32-144 (27,882 params)
 (reference)

(a) β = −10, RL learning
rate η = 0.001

0 30 60 90 120
epochs

0.31
0.33
0.35

ba
la

nc
ed

 lo
ss

96-48-32-96 (27,738 params)
 (found by Abs Reward)
48-160-32-144 (27,882 params)
 (reference)

(b) β = −25, RL learning
rate η = 0.001

Figure 8: Abs Reward misses the global optimum on
Volkert. Figure shows the retrain validation losses of
two architectures found by the Abs Reward vs. the 48-
160-32-144 reference.

We search for 4-layer and 9-layer net-
works on the Volkert dataset; details in Ap-
pendix D. For resource-aware RL rewards,
we ran a grid search over the RL learning
rate and β hyperparameter. The reference
architecture for the 4 layer search space
is 48-160-32-144 with 27,882 parameters.
Despite a hyperparameter grid search, it
was difficult to find models with the right
target cost reliably using the MnasNet re-
wards. Using the Abs Reward (Figure 8),
searched models met the target cost but
their quality was suboptimal, and the trend
is similar to what has been shown in the toy example (Figure 1): a smaller |β| gives an infeasible
architecture that is beyond the reference number of parameters, and a larger |β| gives an architecture
that is feasible but suboptimal.

4.1.3 A common failure pattern

Apart from Section 4.1.1 and 4.1.2, more examples in search spaces of deeper FFNs can be found in
Appendix D. In cases on Criteo and Volkert where where the RL controller with soft constraints cannot
match the quality of the reference architectures, the reference architecture often has a bottleneck
structure. For example, with a 1,027-dimensional input representation, the 32-144-24 reference on
Criteo has bottleneck 32; with 180 features, the 48-160-32-144 reference on Volkert has bottleneck
48 and 32. As the example in Section 3.3 shows, the wide hidden layers around the bottlenecks get
penalized harder in the search, and it is thus more difficult for RL with the Abs Reward to find a

8

0 30 60 90 120
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 1

0

1

pr
ob

ab
ilit

y

(a) Layer 1 (finally 32)

0 30 60 90 120
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 2

0

1

pr
ob

ab
ilit

y

(b) Layer 2 (finally 144)

0 30 60 90 120
epochs

8
16
24
32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
384
512hi

dd
en

 la
ye

r 3

0

1

pr
ob

ab
ilit

y

(c) Layer 3 (finally 24)

0 30 60 90 120
epochs

0

1

va
lid

 p
ro

b

estimated
 (N=3072)
true

(d) valid probabilities

Figure 9: Success case: on Criteo in a search space of 3-layer FFNs, Monte-Carlo sampling with
rejection eventually finds 32-144-24, the reference architecture, with RL learning rate 0.005 and
number of MC samples 3,072. Figure 9(d) shows the change of true and estimated valid probabilities.

model that can match the reference performance. Also, Appendix C.2.1 shows the Pareto-optimal
architectures in the tradeoff points in Figure 3 often have bottleneck structures, so resource-aware RL
rewards in previous NAS practice may have more room for improvement than previously believed.

4.2 NAS with TabNAS reward

With proper hyperparameters (Appendix H), our RL controller with TabNAS reward finds the global
optimum when RL with resource-aware rewards produces suboptimal results.

TabNAS does not introduce a resource-aware bias in the RL reward (Section 3.3). Instead, it uses
conditional probabilities to update the logits in feasible architectures. We run TabNAS for 120 epochs
with RL learning rate 0.005 and N = 3072 MC samples.2 The RL controller converges to two
architectures, 32-160-16 (40,769 parameters, with loss 0.4457 ± 0.0002) and 32-144-24 (41,153
parameters, with loss 0.4455 ± 0.0003), after around 50 epochs of NAS, then oscillates between
these two solutions (Figure 9). After 120-epochs, we sample from the layerwise distribution and pick
the largest feasible architecture: the global optimum 32-144-24.

On the same hardware, the search takes 3× the runtime of stand-alone training. Hence, as can be
seen in Figure 2, the proposed architecture search method is much faster than a random baseline.

4.3 TabNAS automatically determines whether bottlenecks are needed

Previous NAS works like MnasNet and TuNAS (often or only on vision tasks) often have inverted
bottleneck blocks [17] in their search spaces. However, the search spaces used there have a hard-
coded requirement that certain layers must have bottlenecks. In contrast, our search spaces permit the
controller to automatically determine whether to use bottleneck structures based on the task under
consideration. TabNAS automatically finds high-quality architectures, both in cases where bottlenecks
are needed and in cases where they are not. This is important because networks with bottlenecks do not
always outperform others on all tasks. For example, the reference architecture 32-144-24 outperforms
the TuNAS-found 32-64-96 on Criteo, but the reference 64-192-48-32 (64,568 parameters, 0.0662 ±
0.0011) is on par with the TuNAS-and-TabNAS-found 96-80-96-32 (64,024 parameters, 0.0669 ±
0.0013) on Aloi. TabNAS automatically finds an optimal (bottleneck) architecture for Criteo, and
automatically finds an optimal architecture that does not necessarily have a bottleneck structure for
Aloi. Previous reward-shaping rewards like the Abs Reward only succeed in the latter case.

4.4 Rejection-based reward outperforms Abs Reward in NATS-Bench size search space

Although we target resource-constrained NAS on tabular datasets in this paper, our proposed method
is not specific to NAS on tabular datasets. In Appendix G, we show the rejection-based reward in
TabNAS outperforms RL with the Abs Reward in the size search space of NATS-Bench [6], a NAS
benchmark on vision tasks.

2The 3-layer search space has 203 = 8000 candidate architectures, which is small enough to compute
P(V) exactly. However, MC can scale to larger spaces which are prohibitively expensive for exhaustive search
(Appendix D).

9

5 Conclusion

We investigate the failure of resource-aware RL rewards to discover optimal structures in tabular
NAS and propose TabNAS for tabular NAS in a constrained search space. The TabNAS controller
uses a rejection mechanism to compute the policy gradient updates from feasible architectures only,
and uses Monte-Carlo sampling to reduce the cost of debiasing this rejection-sampling approach.
Experiments show TabNAS finds better architectures than previously proposed RL methods with
resource-aware rewards in resource-constrained searches.

Many questions remain open. For example: 1) Can the TabNAS strategy find better architectures
on other types of tasks such as vision and language? 2) Can TabNAS improve RL results for more
complex architectures? 3) Is TabNAS useful for resource-constrained RL problems more broadly?

Acknowledgments and Disclosure of Funding

This work was done when Madeleine Udell was a visiting researcher at Google. The authors thank
Ruoxi Wang, Mike Van Ness, Ziteng Sun, Xuanyi Dong, Lijun Ding, Yanqi Zhou, Chen Liang,
Zachary Frangella, Yi Su, and Ed H. Chi for helpful discussions, and thank several anonymous
reviewers for useful comments.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Under-
standing and simplifying one-shot architecture search. In International Conference on Machine
Learning, pages 550–559. PMLR, 2018.

[3] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans,
and Quoc V Le. Can weight sharing outperform random architecture search? An investigation
with TuNAS. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14323–14332, 2020.

[4] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search
by network transformation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[6] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-bench: Benchmarking
nas algorithms for architecture topology and size. IEEE transactions on pattern analysis and
machine intelligence, 2021.

[7] Romain Egele, Prasanna Balaprakash, Isabelle Guyon, Venkatram Vishwanath, Fangfang Xia,
Rick Stevens, and Zhengying Liu. Agebo-tabular: joint neural architecture and hyperparameter
search with autotuned data-parallel training for tabular data. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–14,
2021.

[8] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv
preprint arXiv:2003.06505, 2020.

10

https://www.tensorflow.org/
https://www.tensorflow.org/

[9] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in Neural Information Processing Systems, 34, 2021.

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1314–1324,
2019.

[11] Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets
excel on tabular datasets. In Thirty-Fifth Conference on Neural Information Processing Systems,
2021.

[12] Farhan Khawar, Xu Hang, Ruiming Tang, Bin Liu, Zhenguo Li, and Xiuqiang He. Autofeature:
Searching for feature interactions and their architectures for click-through rate prediction.
In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 625–634, 2020.

[13] Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He,
Zhenguo Li, and Yong Yu. Autofis: Automatic feature interaction selection in factorization
models for click-through rate prediction. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2636–2645, 2020.

[14] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32:8026–8037, 2019.

[16] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International Conference on Machine Learning, pages
4095–4104. PMLR, 2018.

[17] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[18] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2820–2828,
2019.

[19] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search. In International Conference
on Machine Learning, pages 7105–7114. PMLR, 2019.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Appendix H: the number of
MC samples N needs to be large enough.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix J.

11

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix J.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The datasets are
publicly available. We also provide pseudocode and full details of our hyperparameters
to reproduce our results in Table A1 and A2.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] See Figure A3 and A5 in the
appendix, and the beginning of Section 4 in the main paper.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix C.2

for the links to datasets and the citation of the OpenML dataset repository.
(b) Did you mention the license of the assets? [No] But we include links to every asset we

used in the footnotes of the Appendix, and we followed the dictates of their licenses.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We only used public open-source datasets for experiments.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

	Introduction
	Notation and terminology
	Methodology
	Weight sharing with layer warmup
	One-shot training and REINFORCE
	Rejection-based reward with MC sampling

	Experimental results
	When do previous RL rewards fail?
	Criteo – 3 layer search space
	Volkert – 4 layer search space
	A common failure pattern

	NAS with TabNAS reward
	TabNAS automatically determines whether bottlenecks are needed
	Rejection-based reward outperforms Abs Reward in NATS-Bench size search space

	Conclusion

