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Abstract001

Large language models have shown tremen-002
dous potential across various NLP tasks, and003
instruction tuning has been widely adopted to004
elicit their superior performance. However, in-005
struction tuning may overly tailor the models to006
task-specific formats, potentially compromis-007
ing their generalization on unseen tasks. We008
attribute the issue to the spurious correlations009
learned between inputs and targets. We pro-010
pose explicit task knowledge injection to mit-011
igate these shortcuts with latent task adapta-012
tion and knowledge reinstatement. Latent tasks013
serve as interpolations between new tasks and014
facilitate knowledge sharing with joint adapta-015
tion enabling the model to build task knowl-016
edge more smoothly. Knowledge reinstate-017
ment helps optimize building new knowledge018
with prior knowledge. Specifically, we retrieve019
input-relevant latent tasks and jointly learn the020
task and the relevant latent tasks. Moreover, we021
prompt the model to recall the forms of inputs022
corresponding to the target and build the task023
knowledge through the reinstatement of prior024
knowledge while learning the new task. We025
conduct extensive experiments on state-of-the-026
art large language models including Llama3.1-027
8B and Vicuna-13B across 1000+ instruction-028
following tasks to demonstrate the effective-029
ness of our method. The results demonstrate030
our method improves generalization on both031
in-domain and out-of-domain unseen tasks.032

1 Introduction033

Pre-trained large language models (Brown et al.,034

2020; Achiam et al., 2023; Touvron et al., 2023;035

OpenAI, 2024; Research, 2024) have become a036

cornerstone in many NLP tasks due to their impres-037

sive generalization capabilities (Von Oswald et al.,038

2023; Minaee et al., 2024; Lotfi et al., 2024). These039

models can be prompted with arbitrary demonstra-040

tions to accomplish various tasks. To further en-041

hance their performance on downstream tasks, in-042

struction tuning is widely adopted (Ouyang et al.,043

2022; Wei et al., 2021; Chung et al., 2024). Despite 044

its success, instruction tuning may inadvertently 045

overfit the model to specific task formats, thereby 046

impairing its ability to generalize to new, unseen 047

tasks (Wang et al., 2022a; Yang et al., 2024b). 048

Current techniques that help improve instruc- 049

tion tuning generalization can be categorized into 050

four groups: (1) Data-based methods (Yang et al., 051

2024c; Wang et al., 2022b; Xu et al., 2023; Burns 052

et al., 2023; Yang et al., 2024a; Zhou et al., 2024; 053

Zhao et al., 2024; Chung et al., 2024) incorpo- 054

rate broad-coverage tasks, contextual demonstra- 055

tions, chain-of-thought demonstrations, similar 056

task augmentation, more complex and high-quality 057

data into the training data to improve generaliza- 058

tion, which requires carefully curated examples. 059

(2) Parameter-Efficient Fine-tuning (PEFT) meth- 060

ods (Lester et al., 2021; Li and Liang, 2021; Zheng 061

et al., 2024) such as LoRA (Hu et al., 2021) only 062

utilize a small number of (extra) parameters to en- 063

able the adaptation on downstream tasks, which 064

help improve generalization to some extent due to 065

the implicit regularization effect. (3) Adversarial 066

methods (Miyato et al., 2018; Jiang et al., 2019; Pan 067

et al., 2022; Ni et al., 2024) make the model learn 068

to handle adversarial attacks such as embedding 069

space perturbation, which improves generalization 070

in certain scenarios. (4) Regularization-based meth- 071

ods (Kirkpatrick et al., 2017; Aljundi et al., 2018; 072

Schwarz et al., 2018; Ritter et al., 2018; Foret et al., 073

2021; Wang et al., 2024) employ parameter regular- 074

ization and gradient regularization to penalize large 075

changes between model parameters and conflicted 076

gradients. The parameter regularization may lead 077

to under- or over-constraint issues (Gu et al., 2022; 078

Liang et al., 2024). In contrast with these methods, 079

we aim to propose a data-efficient method to im- 080

prove generalization in instruction tuning without 081

relying on additional models or data. 082

Unlike previous studies, we attribute the issue of 083

generalization on unseen tasks to learned spurious 084
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correlations between inputs and targets (McMilin,085

2022; Zhou et al., 2023; Zhao et al., 2024). Specifi-086

cally, a task can have multiple verbalizations, and if087

a model is trained with only a few instructions, the088

sequence-to-sequence training paradigm may cause089

the model to learn shortcuts like certain words or090

sentence structures. We address this by explic-091

itly injecting relevant knowledge related to current092

tasks to help the model build knowledge more ef-093

fectively about the tasks rather than just superficial094

patterns.095

To this end, we propose task knowledge injec-096

tion with latent task adaptation and knowledge rein-097

statement. Our method first retrieves relevant latent098

tasks by comparing the task input with latent task099

keys. Latent tasks are interpolations between the100

tasks represented as tuples of keys (vectors) and101

corresponding knowledge (compiled as weight in-102

crements), which are initialized randomly. Then103

we make the model jointly learn the current task104

and relevant latent tasks by re-parameterizing the105

model parameters and weight increments. This106

process facilitates knowledge sharing and enables107

the model to build task knowledge more smoothly.108

Moreover, our method prompts the model to re-109

call which forms of inputs in the existing model110

memory might generate the target. We make the111

model learn through the reinstatement of the prior112

knowledge during the current task learning, which113

helps build more comprehensive knowledge about114

the task.115

We conduct extensive experiments on publicly116

available large language models, Vicuna-13B and117

Llama3.1-8B across 1000+ instruction-following118

tasks. The experimental results demonstrate that119

our approach improves generalization on both in-120

domain and out-of-domain unseen tasks.121

The contributions of our paper are summarized122

as follows:123

• We propose a novel method—task knowl-124

edge injection—to enhance generalization in125

instruction tuning, which is a data-efficient126

method.127

• We propose latent task adaptation and knowl-128

edge reinstatement to establish correlations129

both among new tasks and between new tasks130

and prior knowledge, aiding the model to131

build task knowledge more effectively.132

• We conducted extensive experiments to133

demonstrate the effectiveness of our method134

and each component. 135

2 Related Work 136

Large Language Models Generalization. Pre- 137

trained large language models (Brown et al., 2020; 138

Achiam et al., 2023; Touvron et al., 2023; Ope- 139

nAI, 2024; Research, 2024) have demonstrated 140

great generalization capabilities (Von Oswald et al., 141

2023; Minaee et al., 2024; Lotfi et al., 2024). The 142

success can be attributed to the self-attention mech- 143

anism, large-scale parameters, and pre-training on 144

web-scale data corpora (Jiang et al., 2024; Harun 145

et al., 2024). Their performance on downstream 146

tasks is achieved through in-context learning (Min 147

et al., 2022; Brown et al., 2020). To perform 148

better in downstream tasks, many post-training 149

techniques like supervised fine-tuning (Ouyang 150

et al., 2022; Wei et al., 2021; Chung et al., 2024), 151

PPO (Schulman et al., 2017), and DPO (Rafailov 152

et al., 2024), have been developed. However, re- 153

cent studies (Wang et al., 2022a; Kumar et al., 2022; 154

Yang et al., 2024b) point out that fine-tuning may 155

overly tailor the model to specific tasks and for- 156

mats, potentially compromising its generalization 157

to other new tasks. In this paper, we aim to im- 158

prove large language model generalization in the 159

fine-tuning stage. 160

Fine-tuning Methods for Improved Gener- 161

alization. We compile the methods related 162

to instruction-tuning, robustness, generalization, 163

and continual learning into (1) data-based, (2) 164

Parameter-Efficient Fine-Tuning (PEFT), (3) adver- 165

sarial training, (4) regularization-based methods. 166

(1) Data-based methods (Yang et al., 2024c; Wang 167

et al., 2022b; Xu et al., 2023; Burns et al., 2023; 168

Yang et al., 2024a; Zhou et al., 2024; Chung et al., 169

2024) incorporate broad-coverage tasks, contextual 170

demonstrations, chain-of-thought data, synthetic 171

data, instruction augmentation, and more complex 172

and high-quality examples to fine-tune the model to 173

improve the generalization. They require carefully 174

curated examples and adjustments for the data dis- 175

tribution. (2) PEFT (Hu et al., 2021; Lester et al., 176

2021; Li and Liang, 2021; Zheng et al., 2024) uti- 177

lizes only a small number of (extra) parameters 178

to enable the adaptation to downstream tasks and 179

can also help to extrapolate in the unseen data in 180

some extent. (3) Adversarial training (Miyato et al., 181

2018; Jiang et al., 2019; Pan et al., 2022) learns 182

to handle adversarial attacks potentially improving 183

generalization in certain scenarios. Altinisik et al. 184
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(2023) and Zhu et al. (2019) train with embedding185

space perturbation and find it improves encoder-186

based model generalization on classification tasks.187

Gan et al. (2020) and Xhonneux et al. (2024) per-188

form adversarial training in the embedding space189

on generative models. PACE (Ni et al., 2024) reg-190

ularizes the consistent behaviors between the fine-191

tuned model with its perturbed version. (4) Parame-192

ter regularization (Kirkpatrick et al., 2017; Aljundi193

et al., 2018; Schwarz et al., 2018; Ritter et al., 2018)194

discourages large changes between the model pa-195

rameters by adding a penalty term in the learning196

objective. However, this may lead to under- or197

over-constraint issues(Gu et al., 2022; Liang et al.,198

2024) due to the complex correlation between the199

capability of a model and its parameters. PAC-200

Bayes (Li and Zhang, 2021) is a layer-wise regular-201

ization method that constrains the distance traveled202

in each layer during fine-tuning. Regularization203

in the optimizers (Foret et al., 2021; Wang et al.,204

2024) accelerates the convergence towards flatter205

minima. In contrast with the previous methods, we206

propose a data-efficient method to improve gener-207

alization in instruction tuning without collecting or208

constructing additional data or referring to other209

models.210

3 Problem Formulation and Motivation211

In this paper, we aim to fine-tune existing mod-212

els to continually improve their performance on213

downstream tasks. Given a set of tasks T =214

{T1, ..., Tk} along with their training examples215

S(t) = (X(t), Y (t)) and an existing model fΘ(x),216

the goal is to learn a new mapping function gΘ′ (x)217

that generalizes better on similar downstream tasks218

T
′
= {Tk+1, ..., Tm}. We improve the generaliza-219

tion of instruction tuning on the provided data.220

Instruction tuning may cause the model to221

learn spurious correlations between inputs and222

targets under the sequence-to-sequence training223

paradigm (Wang et al., 2022a; Yang et al., 2024b),224

resulting in limited performance. Inspired by (San-225

toro et al., 2016; van Kesteren et al., 2020), which226

suggests that congruency in reinstatement and227

memory augmentation facilitates the assimilation228

and construction of new knowledge, we propose229

task knowledge injection with latent task adapta-230

tion and knowledge reinstatement. Latent tasks231

serve as interpolations between new tasks, allowing232

the model to learn new knowledge more smoothly.233

Joint adaptation with relevant latent tasks that share234

common knowledge provides useful inductive bi- 235

ases, helping the model build a more comprehen- 236

sive understanding of the task. Fine-tuning often 237

leads to knowledge drift, where previously learned 238

information is overwritten. By reinstating prior 239

knowledge while learning new tasks, the model pre- 240

serves critical learned representations and strength- 241

ens its understanding of the new task in a way that 242

aligns with its existing knowledge base. 243

4 Task Knowledge Injection 244

In this section, we introduce our task knowledge 245

injection method. We introduce overview firstly in 246

subsection 4.1. We introduce latent task adaptation 247

in subsection 4.2 and then introduce knowledge 248

reinstatement in subsection 4.3. 249

4.1 Overview 250

The task knowledge injection includes two com- 251

ponents. The first component is input-guided 252

knowledge injection—latent task adaptation (LTA) 253

and the second one is target-guided knowl- 254

edge injection—knowledge reinstatement (KR), as 255

shown in Figure 1. LTA first retrieves relevant la- 256

tent tasks by comparing the input representations 257

of a task with the keys of latent tasks and then 258

makes the model jointly learn the new task and 259

the relevant latent tasks. This joint task learning 260

mechanism helps the model acquire more knowl- 261

edge sharing among similar tasks. KR prompts 262

the model to recall which forms of inputs might 263

generate the target, and make the model reinstate 264

the knowledge while learning the current task. We 265

combine the two objectives as our final learning 266

objective. 267

4.2 Latent Task Adaptation 268

In this paper, we aggregate training examples for 269

tasks T = {T1, ..., Tk} together as S = (X,Y ), 270

making our method a task-agnostic method. The 271

learning objective is: 272

L = −
∑

(xi,yi)∈S

CE(gΘ′ (xi), yi) (1) 273

where CE denotes the cross-entropy loss. 274

For learning the downstream tasks, the model 275

parameters are updated through: 276

θ
′
= argmin

θ′
L, θ

′
= θ +∆θ (2) 277

The corresponding parameter updates ∆θ are 278

learned from each example. We propose exploiting 279
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Figure 1: The overview of our task knowledge injection method.

relevant latent tasks as interpolation knowledge to280

help build the task knowledge smoothly. The rel-281

evant latent tasks are those sharing similar input282

representations with actual examples. Thus, we use283

the original examples along with their relevant la-284

tent examples {(e1,∆θ1), ..., (ek,∆θk)} to update285

the model parameters. Each latent task is a tuple286

(ei,∆θi), where ei is the encoding of the latent task287

which shares similar semantics with the actual task288

and ∆θi is the corresponding weight increment.289

Latent Task Retrieval. Firstly, we initialize M290

latent tasks and then retrieve a small number of rel-291

evant latent tasks for each actual example for joint292

learning. Followed by (Lopez-Paz and Ranzato,293

2017; Peng et al., 2024), we randomly initialize294

M orthogonal vectors E = (e1, ..., eM ), ei ∈ Rc295

as keys for the latent tasks. c is the embedding296

dimension of each key. Any two keys in the set are297

orthogonal, which helps the latent tasks cover as298

many task types as possible.299

To initialize the corresponding M weight incre-300

ments, we use LORA (Hu et al., 2021) technique301

and initialize each Ai ∈ Rr×k and Bi ∈ Rd×r302

with zero and normal distribution where r is much303

less than d helping to reduce the memory cost.304

Thus each weight increment ∆θi is calculated as:305

∆θi = Bi ×Ai (3)306

For each actual training example (xj , yj) ∈ S,307

we employ RoBERTa (Liu, 2019) to encode the308

input as the query pi ∈ Rc. We then use KNN309

algorithm to retrieve top k most similar latent tasks310

{(e1,∆θ1), ..., (ek,∆θk)} by comparing the co-311

sine similarity of the query pi with the key set312

E where k << M . The weight increments are313

updated during the learning process while the keys314

are frozen.315

To improve retrieval efficiency, we partition the 316

latent tasks (keys and weight increments) into C 317

groups with each group containing Q keys. In 318

our setting, all tasks are mixed together. We ran- 319

domly partition the training samples into C groups 320

regardless of the task types corresponding to the 321

partitioned latent tasks. 322

Joint Task Learning. We incorporate the re- 323

trieved relevant tasks to jointly learn the training 324

objective as shown in Equation 1. Specifically, we 325

have a training example (xi, yi) coupled with k 326

most relevant weight increments {∆θ1, ...,∆θk}. 327

The parameter updates are formulated as: 328

θ
′
= θ +∆θi = θ +

∑k
j=1D(pi, ej)∆θj∑k

j=1D(pi, ej)
(4) 329

where D indicates the distance between the current 330

example and the latent task which is inferred from 331

their cosine similarity. 332

The weight increment ∆θj is updated multiple 333

times when it is chosen as one of the k most rele- 334

vant examples with the actual examples. The up- 335

dates of these {∆θ1, ...,∆θk}, in turn, affect the 336

parameter updates for the actual tasks. The com- 337

plete process is summarized in Algorithm 1. The 338

joint task learning mechanism mitigates knowledge 339

sharing when learning new tasks, reducing reliance 340

on spurious patterns and thereby improving gener- 341

alization in downstream tasks. 342

4.3 Knowledge Reinstatement 343

In this subsection, we introduce target-guided task 344

knowledge injection in which we make the model 345

reinstate the prior knowledge while learning the 346

current task. 347

Firstly, we steer the model memory to recall 348

which forms of inputs lead to the target. Given 349
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Algorithm 1 Latent Task Adaptation

1: Input: S = (X,Y ), fΘ(x), C,Q
2: Output: gΘ′ (x)
3: # Initialization Stage
4: Partition S into C groups randomly where S =⋃C

t St

5: for group index i = 1 to C do
6: Initialize {ei,1, Bi,1} randomly, Ai,1 with

zeros
7: for key index j = 2 to Q do
8: Initialize ei,j orthogonal to ei,j−1

9: Initialize Bi,j randomly, Ai,j with zeros
10: end for
11: end for
12: # Fine-tuning Stage
13: for all (xi, yi) ∈ St, t ∈ {1, ..., C} do
14: Encode xi via RoBERTa as pi
15: Retrieve {∆θ1, ...,∆θk} via cosine similar-

ity between pi and Et = {et,1, ..., et,Q}
16: Obtain the weight increment ∆θi =

(
∑k

j D(pi, ej)∆θj)/(
∑k

j D(pi, ej))

17: Calculate the loss Li = L(g
′
θ+∆θi

(xi), yi)
18: Update the parameters {Θ,∆θ1, ...,∆θk}
19: end for

a training example (xi, yi), we calculate x
′
i =350

f−1
Θ (yi) that have the highest probability gener-351

ating yi for the existing model fΘ, which is similar352

to xi. Directly calculating the x
′
i is infeasible due353

to the massive token combinations in input space,354

we focus on the input embedding qi for x
′
i instead.355

We propose to train an intermediate model to learn356

the target-guided prior input. The input is qi and357

the target is yi. The model parameters are initial-358

ized from fΘ. The intermediate training objective359

is shown as follows:360

LInter = −
∑

(xi,yi)∈S

CE(fΘ(qi, yi))−W (qi, ei)

(5)361

In the intermediate training process, all parame-362

ters except qi are frozen and qi is initialized with363

the embedding result ei of xi from fΘ to accelerate364

convergence speed. W (pi, ei) is the wasserstein365

distance between the new form input pi with its366

original version ei.367

After we obtain the prior input pi for each ex-368

ample, we train the model to repetitively generate369

the target by adding the following reinstatement370

training objective. 371

LReInst = −
∑

(xi,yi)∈S

max(CE(gΘ′ (qi), yi),

CE(gΘ′ (xi), yi))
(6) 372

The final training objective is L = L+α×LReInst. 373

To alleviate conflicts between learning the two 374

objectives, we employ gradient projection PC- 375

Grad (Yu et al., 2020) during the gradient updates. 376

The final objective helps the model learn varied 377

forms of inputs leading to similar target output. 378

Combined with the previously mentioned latent 379

task adaptation, this approach helps the model 380

reduce reliance on specific input-target patterns, 381

thereby improving its generalization in fine-tuning. 382

5 Experiments 383

5.1 Experimental Setup 384

Datasets and Metrics. We employ two datasets 385

to evaluate the effectiveness of our method. (1) 386

Super Natural Instructions (SNI for short) (Wang 387

et al., 2022b), a broad-coverage instruction tuning 388

dataset with 1600+ diverse NLP tasks. We adopt 389

the default division of the training set and test set 390

where the task types of the two sets are different. 391

We randomly sample at most 100 instances for each 392

task to build the training, validation, and testing 393

sets. The numbers of tasks for training, validation, 394

and testing are 700, 128, and 119 respectively. The 395

test set is used to evaluate the in-domain general- 396

ization performance. (2) FLAN (Wei et al., 2022) 397

is another collection of natural language process- 398

ing tasks that differs in structures and formats with 399

SNI. We use FLAN to evaluate out-of-domain gen- 400

eralization performance. Specifically, we adopt 401

the default test set and randomly sample 2,048 in- 402

stances as our test set for evaluation. Note that 403

we use only the training data from SNI and report 404

evaluation metrics on SNI and FLAN. We report 405

BLEU-4, ROUGE-1, ROUGE-2, and ROUGE-L 406

scores on the two test sets. 407

Models. We verify our method on two open- 408

sourced large language models (LLMs): Vicuna- 409

13B (v1.5) 1 and Llama-3.1-8B (Instruct Version) 2. 410

Baselines. We compare our method (TKI) with 411

five state-of-the-art (SOTA) baselines: (1) the 412

1https://huggingface.co/lmsys/vicuna-13b-v1.5
2https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
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SNI FLAN
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Llama-3.1-8B
Vanilla 15.82 20.90 4.56 17.30 17.98 22.33 11.55 17.54
SFT 41.50 50.18 9.79 47.96 46.88 51.66 21.84 49.09
PACE 42.22 49.66 10.89 47.39 46.21 51.67 21.56 49.14
IACA 42.03 50.25 10.12 48.67 46.19 51.00 21.68 48.44
SLM 42.04 49.01 10.11 46.95 42.99 45.80 20.09 42.41
TKI (Ours) 43.27 52.17 10.98 50.04 48.44 53.13 22.28 50.61

Vicuna-13B
Vanilla 27.49 28.86 8.73 25.57 23.19 26.41 13.54 21.99
SFT 41.51 49.37 9.27 46.80 46.70 51.80 20.52 48.75
PACE 41.71 49.07 9.60 46.70 45.75 49.75 20.61 46.65
IACA 40.50 46.26 9.50 44.65 44.69 48.11 19.91 45.52
SLM 41.21 48.77 8.77 46.29 46.88 51.76 20.89 48.63
TKI (Ours) 42.12 49.81 10.44 47.96 47.58 52.20 22.71 49.76

Table 1: The overall performance of the compared methods trained on Llama3.1-8B and Vicuna-13B on Super
Natural Instructions (SNI) and FLAN. The best results are shown in bold.

vanilla LLM without additional fine-tuning. (2)413

supervised fine-tuning (SFT) which fine-tunes the414

model to generate the target sequence based on415

the prompt (instruction + input). (3) PACE (Ni416

et al., 2024), a method that improves general-417

ization through consistency regularization. (4)418

IACA (Zhao et al., 2024) is a data-augmented419

method that improves generalization through in-420

struction augmentation and consistency alignment.421

(5) SLM (Peng et al., 2024), a SOTA continual422

learning method that employs joint parameteriza-423

tion with task-related knowledge retrieval to im-424

prove generalization. All baselines are trained on425

the same dataset (SNI) as our method.426

Implementation Details. We use the SNI train-427

ing dataset for our method. We implement our428

code based on LLama-Factory3 and modify the429

original Transformer code to incorporate gradient430

projection with PCGrad. We release our codes431

in this url4. We use RoBERTa-base (Liu, 2019)432

to encode the query (prompt) and pre-compute433

the embeddings of each query, inserting them434

into the offline training file to accelerate training435

speed. We adopt C=16, Q=12, k=2 as the de-436

fault setting for joint task learning. In the inter-437

mediate learning process for knowledge reinstate-438

ment, we use the model to be fine-tuned as the439

reference model. The training results (token em-440

3https://github.com/hiyouga/LLaMA-Factory/
4http://anonymous.com.cn

beddings) are also inserted into the training file 441

as offline data. This process is trained with SNI 442

with epochs=3, lr=5e-6. We train our method 443

with LORA and set the following parameters: 444

lora_target=all, lora_rank=8, bsz=1, α=1, 445

gradient_accumulation_steps=4, lr=1e-5, 446

epochs=3. The other hyper-parameters are set to 447

default as the Llama-Factory project and can be 448

found in our code. We train our method and the 449

baselines using 8 A100 40G GPU cards and our 450

method takes 12 hours. 451

5.2 Main results 452

Firstly, we evaluate whether the proposed method 453

improves generalization on unseen tasks. We re- 454

port the overall performance on the SNI and FLAN 455

test sets in Table 1. We observe that the proposed 456

method, TKI, outperforms all baselines across all 457

metrics on SNI, demonstrating its ability to en- 458

hance generalization on in-domain data. Moreover, 459

TKI also achieves the best results on the unseen 460

FLAN dataset, further validating its effectiveness 461

on out-of-domain tasks. 462

Notably, the vanilla models, Vicuna-13B and 463

LLaMA3.1-8B, exhibit different performances on 464

FLAN and SNI. LLaMA3.1-8B performs better on 465

FLAN than on SNI, whereas Vicuna-13B achieves 466

higher scores on SNI than on FLAN. To verify the 467

effectiveness of each method, we compare them 468

against the Vanilla. After supervised fine-tuned 469

(SFT), both models show significantly improved 470
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instruction-following ability, leading to enhanced471

performance on SNI as well as improved results on472

FLAN.473

PACE and IACA are strong baselines on SNI,474

but their performance on the unseen dataset FLAN475

is comparable to SFT. In contrast, our method not476

only achieves significant improvements on unseen477

tasks within the same dataset but also performs well478

on an unseen dataset. This validates that our ap-479

proach assimilates more comprehensive task knowl-480

edge, enabling better capture of in-domain patterns481

while also achieving strong generalization in out-482

of-domain scenarios.483

5.3 Detailed Analysis484

In this subsection, we conduct a detailed analysis of485

the effectiveness of input-guided latent task adap-486

tation, target-guided knowledge reinstatement, the487

effects of the choices of different α, the necessity488

of gradient projection, and the hyperparameters489

in joint task learning. We use Llama3.1-8B as the490

backbone model as it achieves the best performance491

in the previous test sets.492

SNI(B-4)

SNI(R-1)

SNI(R-2)

SNI(R-L)

FLAN(B-4)

FLAN(R-1)

FLAN(R-2)

FLAN(R-L)

0.0

0.2

0.4

0.6
TKI - LTA TKI - KR TKI

Figure 2: The comparisons of task knowledge injection
(TKI) without latent task adaptation (LTA) and knowl-
edge reinstatement (KR). B-4, R-1, R-2, and R-L are
BLUE-4, ROUGE-1, ROUGE-2, and ROUGE-L met-
rics for short.

Ablation Study of Latent Task Adaptation and493

Knowledge Reinstatement. To conduct an ab-494

lation study on the effectiveness of each compo-495

nent, we compare the performance of our method496

when excluding latent task adaptation (LTA) and497

knowledge reinstatement (KR) against the full TKI498

method on the SNI and FLAN test sets, as shown499

in Figure 2. On the SNI dataset, we observe that500

when LTA or KR is absent in TKI, the performance501

degrades compared to the full version TKI, con-502

firming the effectiveness of these two components.503

Additionally, the decline is more noticeable when504

LTA is excluded compared to when KR is excluded,505

indicating that input-relevant latent tasks play a 506

more critical role. On the out-of-domain dataset 507

FLAN, the model’s performance does not show a 508

significant drop when LTA or KR is removed com- 509

pared to the full version. The reason is that the 510

model has been exposed to similar tasks and data 511

distributions, making it sensitive to subtle changes 512

on in-domain test set SNI. However, on the out- 513

of-domain test set, these subtle differences may be 514

ignored due to the larger distributional shift. 515

SNI(B-4)

SNI(R-1)

SNI(R-2)

SNI(R-L)

FLAN(B-4)

FLAN(R-1)

FLAN(R-2)

FLAN(R-L)

0.0

0.2

0.4

0.6

0.8
TKI - PCGrad TKI

Figure 3: The comparison of task knowledge injection
(TKI) with and without PCGrad. B-4, R-1, R-2, and R-
L are BLUE-4, ROUGE-1, ROUGE-2, and ROUGE-L
metrics for short.

The Effect of Gradient Projection. We com- 516

pare the performance of using gradient projec- 517

tion (specifically, PCGrad) versus not using it 518

when combining the two learning objectives in 519

our method. As shown in Figure 3, on the SNI 520

dataset, omitting PCGrad leads to a slight perfor- 521

mance decline. This suggests a conflict between 522

the naive supervised fine-tuning and knowledge 523

reinstatement training objectives, thereby confirm- 524

ing the necessity of the projection gradient. On 525

the out-of-domain FLAN dataset, however, the dif- 526

ference between the two approaches is negligible. 527

The reason is that differences in gradient projection 528

are more likely to be overlooked due to the larger 529

distribution shift, as previously analyzed. 530

The Choice of different α. We then investigate 531

the effect of choosing different α on task knowl- 532

edge injection. We report the compared perfor- 533

mance on SNI and FLAN, as shown in Figure 4. 534

We observe that the model achieves its best per- 535

formance when α is set to 1. As α increases 536

from 0.1 to 1, the metrics on SNI show an upward 537

trend. This demonstrates that a greater emphasis 538

on knowledge reinstatement can help the model 539

develop a better understanding of the task, thereby 540

improving performance. While the trend on FLAN 541

is less noticeable, the reason is that the vanilla 542
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Figure 4: The comparison of different choice of α. The
solid and dashed lines represent the metrics on SNI and
FLAN, respectively. B-4, R-1, R-2, and R-L are BLUE-
4, ROUGE-1, ROUGE-2, and ROUGE-L metrics for
short. The optimal choice is marked with the vertical
dashed line.

model performs better on FLAN compared to SNI.543

As a result, the performance remains similar even544

without the reinstatement of prior knowledge on545

the unseen FLAN dataset. Additionally, when α546

continues to increase exceeding 1, the overall per-547

formance on both SNI and FLAN shows a slight548

decline. This indicates that the reinstatement of549

prior knowledge should not be overly emphasized550

when learning new tasks.551

The hyperparameters in Joint Task Learning.552

Finally, we examine the effects of different cluster553

numbers (C), varying numbers of keys (Q) within554

each cluster, and different k-nearest latent tasks in555

joint task learning on the model performance. We556

report compared metrics on SNI and FLAN, where557

C8Q6k2 represents C = 8, Q = 6, and k = 2,558

with others following the same pattern.559

As shown in Figure 5, the model achieves its best560

performance when C = 16, Q = 12, k = 2. The561

model performance across different values of C, Q,562

and k varies slightly. From the ROUGE-L metric563

perspective, when C = 16 and Q = 12 are fixed,564

increasing k improves performance. This suggests565

that incorporating more similar latent tasks helps566

the model acquire additional relevant knowledge,567

thereby enhancing its effectiveness. Conversely,568

when C = 16 and k = 2 are fixed, increasing569

Q leads to a decline in performance, likely due570

to weakened knowledge sharing caused by finer-571

C8Q6k2

C8Q12k2

C16Q12k1

C16Q12k2

C16Q12k4

C16Q24k2

C16Q48k2

0.1

0.2

0.3

0.4

0.5

0.6

SNI(B-4)
SNI(R-1)
SNI(R-2)

SNI(R-L)
FLAN(B-4)
FLAN(R-1)

FLAN(R-2)
FLAN(R-L)

Figure 5: The compared performance of our method
on SNI and FLAN when using different numbers of
groups (C), keys (Q), and nearest neighbors (k) in joint
task learning. The solid and dashed lines represent the
metrics on SNI and FLAN, respectively. B-4, R-1, R-
2, and R-L are BLUE-4, ROUGE-1, ROUGE-2, and
ROUGE-L metrics for short. The optimal choice is
marked with the vertical dashed line.

grained key partitioning. Notably, the optimal hy- 572

perparameter settings depend on the scale of the 573

training samples and should be determined heuris- 574

tically. 575

6 Conclusion 576

In this paper, we propose a novel instruction-tuning 577

method called Task Knowledge Injection. It is a 578

data-efficient knowledge injection approach that 579

enhances task generalization without relying on ad- 580

ditional models or data. We conduct extensive ex- 581

periments on recent large language models, includ- 582

ing Llama3.1-8B and Vicuna-13B, across 1000+ 583

tasks from Super Natural Instructions and FLAN 584

datasets. The experimental results demonstrate 585

the superior performance of our method and each 586

component on both in-domain and out-of-domain 587

datasets. Our method enables the model to estab- 588

lish correlations between new tasks and between 589

new tasks and prior knowledge, facilitating build- 590

ing task knowledge more effectively, and thereby 591

improving generalization performance. We con- 592

duct detailed analyses revealing that joint task adap- 593

tation plays a more critical role in the knowledge 594

injection process. We also show that incorporat- 595

ing more relevant latent tasks leads to slightly im- 596

proved performance while weakening knowledge 597

sharing results in degraded performance. 598
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Limitations599

Although our task knowledge injection effectively600

improves generalization in instruction tuning, it601

still has several limitations. First, in latent task602

adaptation, we partition the latent tasks into several603

clusters which may limit knowledge sharing across604

inter-clusters. We plan to adopt a more efficient re-605

trieval method eliminating the need for partitioning606

in the future, which also helps reduce the number607

of hyperparameters. Additionally, we employ an608

intermediate learning process to derive input forms609

for the target, which may introduce additional er-610

rors across the modules. We plan to develop an611

end-to-end training approach for knowledge rein-612

statement and explore more effective methods to613

acquire diverse prior knowledge.614
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