Task Knowledge Injection via Interpolations and Reinstatement for
Large Language Model Generalization

Anonymous ACL submission

Abstract

Large language models have shown tremen-
dous potential across various NLP tasks, and
instruction tuning has been widely adopted to
elicit their superior performance. However, in-
struction tuning may overly tailor the models to
task-specific formats, potentially compromis-
ing their generalization on unseen tasks. We
attribute the issue to the spurious correlations
learned between inputs and targets. We pro-
pose explicit task knowledge injection to mit-
igate these shortcuts with latent task adapta-
tion and knowledge reinstatement. Latent tasks
serve as interpolations between new tasks and
facilitate knowledge sharing with joint adapta-
tion enabling the model to build task knowl-
edge more smoothly. Knowledge reinstate-
ment helps optimize building new knowledge
with prior knowledge. Specifically, we retrieve
input-relevant latent tasks and jointly learn the
task and the relevant latent tasks. Moreover, we
prompt the model to recall the forms of inputs
corresponding to the target and build the task
knowledge through the reinstatement of prior
knowledge while learning the new task. We
conduct extensive experiments on state-of-the-
art large language models including Llama3.1-
8B and Vicuna-13B across 1000+ instruction-
following tasks to demonstrate the effective-
ness of our method. The results demonstrate
our method improves generalization on both
in-domain and out-of-domain unseen tasks.

1 Introduction

Pre-trained large language models (Brown et al.,
2020; Achiam et al., 2023; Touvron et al., 2023;
OpenAl, 2024; Research, 2024) have become a
cornerstone in many NLP tasks due to their impres-
sive generalization capabilities (Von Oswald et al.,
2023; Minaee et al., 2024; Lotfi et al., 2024). These
models can be prompted with arbitrary demonstra-
tions to accomplish various tasks. To further en-
hance their performance on downstream tasks, in-
struction tuning is widely adopted (Ouyang et al.,

2022; Wei et al., 2021; Chung et al., 2024). Despite
its success, instruction tuning may inadvertently
overfit the model to specific task formats, thereby
impairing its ability to generalize to new, unseen
tasks (Wang et al., 2022a; Yang et al., 2024b).

Current techniques that help improve instruc-
tion tuning generalization can be categorized into
four groups: (1) Data-based methods (Yang et al.,
2024c; Wang et al., 2022b; Xu et al., 2023; Burns
et al., 2023; Yang et al., 2024a; Zhou et al., 2024;
Zhao et al., 2024; Chung et al., 2024) incorpo-
rate broad-coverage tasks, contextual demonstra-
tions, chain-of-thought demonstrations, similar
task augmentation, more complex and high-quality
data into the training data to improve generaliza-
tion, which requires carefully curated examples.
(2) Parameter-Efficient Fine-tuning (PEFT) meth-
ods (Lester et al., 2021; Li and Liang, 2021; Zheng
et al., 2024) such as LoRA (Hu et al., 2021) only
utilize a small number of (extra) parameters to en-
able the adaptation on downstream tasks, which
help improve generalization to some extent due to
the implicit regularization effect. (3) Adversarial
methods (Miyato et al., 2018; Jiang et al., 2019; Pan
et al., 2022; Ni et al., 2024) make the model learn
to handle adversarial attacks such as embedding
space perturbation, which improves generalization
in certain scenarios. (4) Regularization-based meth-
ods (Kirkpatrick et al., 2017; Aljundi et al., 2018;
Schwarz et al., 2018; Ritter et al., 2018; Foret et al.,
2021; Wang et al., 2024) employ parameter regular-
ization and gradient regularization to penalize large
changes between model parameters and conflicted
gradients. The parameter regularization may lead
to under- or over-constraint issues (Gu et al., 2022;
Liang et al., 2024). In contrast with these methods,
we aim to propose a data-efficient method to im-
prove generalization in instruction tuning without
relying on additional models or data.

Unlike previous studies, we attribute the issue of
generalization on unseen tasks to learned spurious

correlations between inputs and targets (McMilin,
2022; Zhou et al., 2023; Zhao et al., 2024). Specifi-
cally, a task can have multiple verbalizations, and if
a model is trained with only a few instructions, the
sequence-to-sequence training paradigm may cause
the model to learn shortcuts like certain words or
sentence structures. We address this by explic-
itly injecting relevant knowledge related to current
tasks to help the model build knowledge more ef-
fectively about the tasks rather than just superficial
patterns.

To this end, we propose task knowledge injec-
tion with latent task adaptation and knowledge rein-
statement. Our method first retrieves relevant latent
tasks by comparing the task input with latent task
keys. Latent tasks are interpolations between the
tasks represented as tuples of keys (vectors) and
corresponding knowledge (compiled as weight in-
crements), which are initialized randomly. Then
we make the model jointly learn the current task
and relevant latent tasks by re-parameterizing the
model parameters and weight increments. This
process facilitates knowledge sharing and enables
the model to build task knowledge more smoothly.
Moreover, our method prompts the model to re-
call which forms of inputs in the existing model
memory might generate the target. We make the
model learn through the reinstatement of the prior
knowledge during the current task learning, which
helps build more comprehensive knowledge about
the task.

We conduct extensive experiments on publicly
available large language models, Vicuna-13B and
Llama3.1-8B across 1000+ instruction-following
tasks. The experimental results demonstrate that
our approach improves generalization on both in-
domain and out-of-domain unseen tasks.

The contributions of our paper are summarized
as follows:

* We propose a novel method—task knowl-
edge injection—to enhance generalization in
instruction tuning, which is a data-efficient
method.

* We propose latent task adaptation and knowl-
edge reinstatement to establish correlations
both among new tasks and between new tasks
and prior knowledge, aiding the model to
build task knowledge more effectively.

* We conducted extensive experiments to
demonstrate the effectiveness of our method

and each component.

2 Related Work

Large Language Models Generalization. Pre-
trained large language models (Brown et al., 2020;
Achiam et al., 2023; Touvron et al., 2023; Ope-
nAl, 2024; Research, 2024) have demonstrated
great generalization capabilities (Von Oswald et al.,
2023; Minaee et al., 2024; Lotfi et al., 2024). The
success can be attributed to the self-attention mech-
anism, large-scale parameters, and pre-training on
web-scale data corpora (Jiang et al., 2024; Harun
et al., 2024). Their performance on downstream
tasks is achieved through in-context learning (Min
et al., 2022; Brown et al., 2020). To perform
better in downstream tasks, many post-training
techniques like supervised fine-tuning (Ouyang
et al., 2022; Wei et al., 2021; Chung et al., 2024),
PPO (Schulman et al., 2017), and DPO (Rafailov
et al., 2024), have been developed. However, re-
cent studies (Wang et al., 2022a; Kumar et al., 2022;
Yang et al., 2024b) point out that fine-tuning may
overly tailor the model to specific tasks and for-
mats, potentially compromising its generalization
to other new tasks. In this paper, we aim to im-
prove large language model generalization in the
fine-tuning stage.

Fine-tuning Methods for Improved Gener-
alization. We compile the methods related
to instruction-tuning, robustness, generalization,
and continual learning into (1) data-based, (2)
Parameter-Efficient Fine-Tuning (PEFT), (3) adver-
sarial training, (4) regularization-based methods.
(1) Data-based methods (Yang et al., 2024c; Wang
et al., 2022b; Xu et al., 2023; Burns et al., 2023;
Yang et al., 2024a; Zhou et al., 2024; Chung et al.,
2024) incorporate broad-coverage tasks, contextual
demonstrations, chain-of-thought data, synthetic
data, instruction augmentation, and more complex
and high-quality examples to fine-tune the model to
improve the generalization. They require carefully
curated examples and adjustments for the data dis-
tribution. (2) PEFT (Hu et al., 2021; Lester et al.,
2021; Li and Liang, 2021; Zheng et al., 2024) uti-
lizes only a small number of (extra) parameters
to enable the adaptation to downstream tasks and
can also help to extrapolate in the unseen data in
some extent. (3) Adversarial training (Miyato et al.,
2018; Jiang et al., 2019; Pan et al., 2022) learns
to handle adversarial attacks potentially improving
generalization in certain scenarios. Altinisik et al.

(2023) and Zhu et al. (2019) train with embedding
space perturbation and find it improves encoder-
based model generalization on classification tasks.
Gan et al. (2020) and Xhonneux et al. (2024) per-
form adversarial training in the embedding space
on generative models. PACE (Ni et al., 2024) reg-
ularizes the consistent behaviors between the fine-
tuned model with its perturbed version. (4) Parame-
ter regularization (Kirkpatrick et al., 2017; Aljundi
etal., 2018; Schwarz et al., 2018; Ritter et al., 2018)
discourages large changes between the model pa-
rameters by adding a penalty term in the learning
objective. However, this may lead to under- or
over-constraint issues(Gu et al., 2022; Liang et al.,
2024) due to the complex correlation between the
capability of a model and its parameters. PAC-
Bayes (Li and Zhang, 2021) is a layer-wise regular-
ization method that constrains the distance traveled
in each layer during fine-tuning. Regularization
in the optimizers (Foret et al., 2021; Wang et al.,
2024) accelerates the convergence towards flatter
minima. In contrast with the previous methods, we
propose a data-efficient method to improve gener-
alization in instruction tuning without collecting or
constructing additional data or referring to other
models.

3 Problem Formulation and Motivation

In this paper, we aim to fine-tune existing mod-
els to continually improve their performance on
downstream tasks. Given a set of tasks T' =
{T1,...,T}.} along with their training examples
S® = (X® y®) and an existing model fo(z),
the goal is to learn a new mapping function gg (@)
that generalizes better on similar downstream tasks
T = {Ty41, ..., T }. We improve the generaliza-
tion of instruction tuning on the provided data.
Instruction tuning may cause the model to
learn spurious correlations between inputs and
targets under the sequence-to-sequence training
paradigm (Wang et al., 2022a; Yang et al., 2024b),
resulting in limited performance. Inspired by (San-
toro et al., 2016; van Kesteren et al., 2020), which
suggests that congruency in reinstatement and
memory augmentation facilitates the assimilation
and construction of new knowledge, we propose
task knowledge injection with latent task adapta-
tion and knowledge reinstatement. Latent tasks
serve as interpolations between new tasks, allowing
the model to learn new knowledge more smoothly.
Joint adaptation with relevant latent tasks that share

common knowledge provides useful inductive bi-
ases, helping the model build a more comprehen-
sive understanding of the task. Fine-tuning often
leads to knowledge drift, where previously learned
information is overwritten. By reinstating prior
knowledge while learning new tasks, the model pre-
serves critical learned representations and strength-
ens its understanding of the new task in a way that
aligns with its existing knowledge base.

4 Task Knowledge Injection

In this section, we introduce our task knowledge
injection method. We introduce overview firstly in
subsection 4.1. We introduce latent task adaptation
in subsection 4.2 and then introduce knowledge
reinstatement in subsection 4.3.

4.1 Overview

The task knowledge injection includes two com-
ponents. The first component is input-guided
knowledge injection—Ilatent task adaptation (LTA)
and the second one is target-guided knowl-
edge injection—knowledge reinstatement (KR), as
shown in Figure 1. LTA first retrieves relevant la-
tent tasks by comparing the input representations
of a task with the keys of latent tasks and then
makes the model jointly learn the new task and
the relevant latent tasks. This joint task learning
mechanism helps the model acquire more knowl-
edge sharing among similar tasks. KR prompts
the model to recall which forms of inputs might
generate the target, and make the model reinstate
the knowledge while learning the current task. We
combine the two objectives as our final learning
objective.

4.2 Latent Task Adaptation

In this paper, we aggregate training examples for
tasks T' = {71, ..., T} } together as S = (X,Y),
making our method a task-agnostic method. The
learning objective is:

L=— Y CE(gy(=)y) (1)
(z4,9:)€S

where C'F denotes the cross-entropy loss.
For learning the downstream tasks, the model
parameters are updated through:

0 = arg min L, 0 =0+ A0 2)
9/

The corresponding parameter updates A6 are
learned from each example. We propose exploiting

1
Target
Top-k relevant tasks | 9 E § - g,'
| 8% "%
Reweighting .
}\’) | v
: L 4
' .
[Similarity Search } ! Prior Input Input
[.) : * *
: [Model]
Encoder <« Input ! v
1
| | Target |

(a) Latent Task Adaptation

(b) Knowledge Reinstatement

Figure 1: The overview of our task knowledge injection method.

relevant latent tasks as interpolation knowledge to
help build the task knowledge smoothly. The rel-
evant latent tasks are those sharing similar input
representations with actual examples. Thus, we use
the original examples along with their relevant la-
tent examples {(e1, Aby), ..., (ex, Abk)} to update
the model parameters. Each latent task is a tuple
(ei, AB;), where e; is the encoding of the latent task
which shares similar semantics with the actual task
and A#; is the corresponding weight increment.

Latent Task Retrieval. Firstly, we initialize M
latent tasks and then retrieve a small number of rel-
evant latent tasks for each actual example for joint
learning. Followed by (Lopez-Paz and Ranzato,
2017; Peng et al., 2024), we randomly initialize
M orthogonal vectors E' = (eq,...,epr), e; € RC
as keys for the latent tasks. c is the embedding
dimension of each key. Any two keys in the set are
orthogonal, which helps the latent tasks cover as
many task types as possible.

To initialize the corresponding M weight incre-
ments, we use LORA (Hu et al., 2021) technique
and initialize each A; € R™* and B; € R%*"
with zero and normal distribution where r is much
less than d helping to reduce the memory cost.
Thus each weight increment A#; is calculated as:

For each actual training example (z;,y;) € S,
we employ RoBERTa (Liu, 2019) to encode the
input as the query p; € R°. We then use KNN
algorithm to retrieve top k£ most similar latent tasks
{(e1, A0y), ..., (ex, AB)} by comparing the co-
sine similarity of the query p; with the key set
FE where k << M. The weight increments are
updated during the learning process while the keys
are frozen.

To improve retrieval efficiency, we partition the
latent tasks (keys and weight increments) into C'
groups with each group containing) keys. In
our setting, all tasks are mixed together. We ran-
domly partition the training samples into C groups
regardless of the task types corresponding to the
partitioned latent tasks.

Joint Task Learning. We incorporate the re-
trieved relevant tasks to jointly learn the training
objective as shown in Equation 1. Specifically, we
have a training example (z;,y;) coupled with k
most relevant weight increments { A6, ..., A }.
The parameter updates are formulated as:

Z?:l D<p17 e])AGJ

where D indicates the distance between the current
example and the latent task which is inferred from
their cosine similarity.

The weight increment Af; is updated multiple
times when it is chosen as one of the & most rele-
vant examples with the actual examples. The up-
dates of these {Afy, ..., Af}, in turn, affect the
parameter updates for the actual tasks. The com-
plete process is summarized in Algorithm 1. The
joint task learning mechanism mitigates knowledge
sharing when learning new tasks, reducing reliance
on spurious patterns and thereby improving gener-
alization in downstream tasks.

0 =0+ A0; =0+

“

4.3 Knowledge Reinstatement

In this subsection, we introduce target-guided task
knowledge injection in which we make the model
reinstate the prior knowledge while learning the
current task.

Firstly, we steer the model memory to recall
which forms of inputs lead to the target. Given

Algorithm 1 Latent Task Adaptation

1: Input: S = (X,Y), fe(z),C,Q
2: Output: gg ()
3: # Initialization Stage
4: Partition .S into C' groups randomly where S =
C ot
U s
for group index i = 1 to C' do
Initialize {e; 1, B;1} randomly, A;; with
Zeros
for key index j = 2to) do
Initialize e; ; orthogonal to e; ;1
: Initialize B; ; randomly, A; ; with zeros
10: end for
11: end for
12: # Fine-tuning Stage
13: for all (z;,y;) € St,t e {1,...,C} do
14: Encode z; via RoBERTa as p;
15: Retrieve {A#, ..., Af;} via cosine similar-
ity between p; and E* = {e; 1, ...,e 0}
16: Obtain the weight increment Af; =
(55 Do)A0;) /(54 Dl)
17: Calculate the loss L; = L(g;+Mi (i), vi)
18: Update the parameters {©, A6y, ..., A0y}
19: end for

AN

a training example (z;,7;), we calculate x; =
fo (y;) that have the highest probability gener-
ating y; for the existing model fg, which is similar
to x;. Directly calculating the x; is infeasible due
to the massive token combinations in input space,
we focus on the input embedding ¢; for :v; instead.
We propose to train an intermediate model to learn
the target-guided prior input. The input is ¢; and
the target is y;. The model parameters are initial-
ized from fg. The intermediate training objective
is shown as follows:

Llnter =

- E : CE(fo(qi,vi)) — W(gi, e:)
&)

In the intermediate training process, all parame-
ters except ¢; are frozen and ¢; is initialized with
the embedding result e; of x; from fg to accelerate
convergence speed. W (p;, e;) is the wasserstein
distance between the new form input p; with its
original version e;.

After we obtain the prior input p; for each ex-
ample, we train the model to repetitively generate
the target by adding the following reinstatement

training objective.

Lpemst =— »_ max(CE(ge (i), vi),
(zi,y:)€ES

CE(ge (i), i)
(0)
The final training objective is L = L+a X LRrernst-
To alleviate conflicts between learning the two
objectives, we employ gradient projection PC-
Grad (Yu et al., 2020) during the gradient updates.
The final objective helps the model learn varied
forms of inputs leading to similar target output.
Combined with the previously mentioned latent
task adaptation, this approach helps the model
reduce reliance on specific input-target patterns,
thereby improving its generalization in fine-tuning.

S Experiments

5.1 Experimental Setup

Datasets and Metrics. We employ two datasets
to evaluate the effectiveness of our method. (1)
Super Natural Instructions (SNI for short) (Wang
et al., 2022b), a broad-coverage instruction tuning
dataset with 1600+ diverse NLP tasks. We adopt
the default division of the training set and test set
where the task types of the two sets are different.
We randomly sample at most 100 instances for each
task to build the training, validation, and testing
sets. The numbers of tasks for training, validation,
and testing are 700, 128, and 119 respectively. The
test set is used to evaluate the in-domain general-
ization performance. (2) FLAN (Wei et al., 2022)
is another collection of natural language process-
ing tasks that differs in structures and formats with
SNI. We use FLAN to evaluate out-of-domain gen-
eralization performance. Specifically, we adopt
the default test set and randomly sample 2,048 in-
stances as our test set for evaluation. Note that
we use only the training data from SNI and report
evaluation metrics on SNI and FLAN. We report
BLEU-4, ROUGE-1, ROUGE-2, and ROUGE-L
scores on the two test sets.

Models. We verify our method on two open-
sourced large language models (LLMs): Vicuna-
13B (v1.5) ! and Llama-3.1-8B (Instruct Version) 2.

Baselines.
five state-of-the-art (SOTA) baselines:

We compare our method (TKI) with
(1) the

"https://huggingface.co/lmsys/vicuna-13b-v1.5
“https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

SNI FLAN
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L | BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Llama-3.1-8B

Vanilla 15.82 20.90 4.56 17.30 17.98 22.33 11.55 17.54

SFT 41.50 50.18 9.79 47.96 46.88 51.66 21.84 49.09

PACE 42.22 49.66 10.89 47.39 46.21 51.67 21.56 49.14

IACA 42.03 50.25 10.12 48.67 46.19 51.00 21.68 48.44

SLM 42.04 49.01 10.11 46.95 42.99 45.80 20.09 42.41

TKI (Ours) 43.27 52.17 10.98 50.04 48.44 53.13 22.28 50.61
Vicuna-13B

Vanilla 27.49 28.86 8.73 25.57 23.19 26.41 13.54 21.99

SFT 41.51 49.37 9.27 46.80 46.70 51.80 20.52 48.75

PACE 41.71 49.07 9.60 46.70 45.75 49.75 20.61 46.65

IACA 40.50 46.26 9.50 44.65 44.69 48.11 19.91 45.52

SLM 41.21 48.77 8.77 46.29 46.88 51.76 20.89 48.63

TKI (Ours) 42.12 49.81 10.44 47.96 47.58 52.20 22.71 49.76

Table 1: The overall performance of the compared methods trained on Llama3.1-8B and Vicuna-13B on Super
Natural Instructions (SNI) and FLAN. The best results are shown in bold.

vanilla LLM without additional fine-tuning. (2)
supervised fine-tuning (SFT) which fine-tunes the
model to generate the target sequence based on
the prompt (instruction + input). (3) PACE (Ni
et al., 2024), a method that improves general-
ization through consistency regularization. (4)
IACA (Zhao et al., 2024) is a data-augmented
method that improves generalization through in-
struction augmentation and consistency alignment.
(5) SLM (Peng et al., 2024), a SOTA continual
learning method that employs joint parameteriza-
tion with task-related knowledge retrieval to im-
prove generalization. All baselines are trained on
the same dataset (SNI) as our method.

Implementation Details. We use the SNI train-
ing dataset for our method. We implement our
code based on LLama-Factory® and modify the
original Transformer code to incorporate gradient
projection with PCGrad. We release our codes
in this url*. We use RoBERTa-base (Liu, 2019)
to encode the query (prompt) and pre-compute
the embeddings of each query, inserting them
into the offline training file to accelerate training
speed. We adopt C=16, Q=12, k=2 as the de-
fault setting for joint task learning. In the inter-
mediate learning process for knowledge reinstate-
ment, we use the model to be fine-tuned as the
reference model. The training results (token em-

*https://github.com/hiyouga/LLaMA-Factory/
*http://anonymous.com.cn

beddings) are also inserted into the training file
as offline data. This process is trained with SNI
with epochs=3, 1r=5e-6. We train our method
with LORA and set the following parameters:
lora_target=all, lora_rank=8, bsz=1, a=1,
gradient_accumulation_steps=4, 1lr=le-5,
epochs=3. The other hyper-parameters are set to
default as the Llama-Factory project and can be
found in our code. We train our method and the
baselines using 8 A100 40G GPU cards and our
method takes 12 hours.

5.2 Main results

Firstly, we evaluate whether the proposed method
improves generalization on unseen tasks. We re-
port the overall performance on the SNI and FLAN
test sets in Table 1. We observe that the proposed
method, TKI, outperforms all baselines across all
metrics on SNI, demonstrating its ability to en-
hance generalization on in-domain data. Moreover,
TKI also achieves the best results on the unseen
FLAN dataset, further validating its effectiveness
on out-of-domain tasks.

Notably, the vanilla models, Vicuna-13B and
LLaMA3.1-8B, exhibit different performances on
FLAN and SNI. LLaMA3.1-8B performs better on
FLAN than on SNI, whereas Vicuna-13B achieves
higher scores on SNI than on FLAN. To verify the
effectiveness of each method, we compare them
against the Vanilla. After supervised fine-tuned
(SFT), both models show significantly improved

instruction-following ability, leading to enhanced
performance on SNI as well as improved results on
FLAN.

PACE and IACA are strong baselines on SNI,
but their performance on the unseen dataset FLAN
is comparable to SFT. In contrast, our method not
only achieves significant improvements on unseen
tasks within the same dataset but also performs well
on an unseen dataset. This validates that our ap-
proach assimilates more comprehensive task knowl-
edge, enabling better capture of in-domain patterns
while also achieving strong generalization in out-
of-domain scenarios.

5.3 Detailed Analysis

In this subsection, we conduct a detailed analysis of
the effectiveness of input-guided latent task adap-
tation, target-guided knowledge reinstatement, the
effects of the choices of different «, the necessity
of gradient projection, and the hyperparameters
in joint task learning. We use Llama3.1-8B as the
backbone model as it achieves the best performance
in the previous test sets.

@O TKI-LTA EE TKI-KR [TKI

0.6 1

LI e LA | Bl

& & & ¢
Yoo Y Y Y G y/
A R A W, M, W,
\7)9@9@9@0@@4»

Figure 2: The comparisons of task knowledge injection
(TKI) without latent task adaptation (LTA) and knowl-
edge reinstatement (KR). B-4, R-1, R-2, and R-L are
BLUE-4, ROUGE-1, ROUGE-2, and ROUGE-L met-
rics for short.

Ablation Study of Latent Task Adaptation and
Knowledge Reinstatement. To conduct an ab-
lation study on the effectiveness of each compo-
nent, we compare the performance of our method
when excluding latent task adaptation (LTA) and
knowledge reinstatement (KR) against the full TKI
method on the SNI and FLAN test sets, as shown
in Figure 2. On the SNI dataset, we observe that
when LTA or KR is absent in TKI, the performance
degrades compared to the full version TKI, con-
firming the effectiveness of these two components.
Additionally, the decline is more noticeable when
LTA is excluded compared to when KR is excluded,

indicating that input-relevant latent tasks play a
more critical role. On the out-of-domain dataset
FLAN, the model’s performance does not show a
significant drop when LTA or KR is removed com-
pared to the full version. The reason is that the
model has been exposed to similar tasks and data
distributions, making it sensitive to subtle changes
on in-domain test set SNI. However, on the out-
of-domain test set, these subtle differences may be
ignored due to the larger distributional shift.

0.8

[TKI-PCGrad [EEA TKI

0.6 1

041
0.2 1

0.0- o o @l—. o N N A’—I

Vo, M, R, R Ty My T

Y Ry, Ry

A

<
;y
Y
A9

Figure 3: The comparison of task knowledge injection
(TKI) with and without PCGrad. B-4, R-1, R-2, and R-
L are BLUE-4, ROUGE-1, ROUGE-2, and ROUGE-L
metrics for short.

The Effect of Gradient Projection. We com-
pare the performance of using gradient projec-
tion (specifically, PCGrad) versus not using it
when combining the two learning objectives in
our method. As shown in Figure 3, on the SNI
dataset, omitting PCGrad leads to a slight perfor-
mance decline. This suggests a conflict between
the naive supervised fine-tuning and knowledge
reinstatement training objectives, thereby confirm-
ing the necessity of the projection gradient. On
the out-of-domain FLAN dataset, however, the dif-
ference between the two approaches is negligible.
The reason is that differences in gradient projection
are more likely to be overlooked due to the larger
distribution shift, as previously analyzed.

The Choice of different «. We then investigate
the effect of choosing different o on task knowl-
edge injection. We report the compared perfor-
mance on SNI and FLAN, as shown in Figure 4.
We observe that the model achieves its best per-
formance when « is set to 1. As « increases
from 0.1 to 1, the metrics on SNI show an upward
trend. This demonstrates that a greater emphasis
on knowledge reinstatement can help the model
develop a better understanding of the task, thereby
improving performance. While the trend on FLAN
is less noticeable, the reason is that the vanilla

—e— SNI(B-4) —&— SNI(R-L) -4 FLAN(R-2)
064 SNI(R-1) -@- FLAN(B-4) -4A- FLAN(R-L)
" | —— SNI(R-2) FLAN(R-1)

0.5+

0.4

0.3-
_______________ I S Y
024 ¢ .
y . . V'S —
014 ® o * ®
0.1 05 1 2 10

Figure 4: The comparison of different choice of . The
solid and dashed lines represent the metrics on SNI and
FLAN, respectively. B-4, R-1, R-2, and R-L are BLUE-
4, ROUGE-1, ROUGE-2, and ROUGE-L metrics for
short. The optimal choice is marked with the vertical
dashed line.

model performs better on FLAN compared to SNI.
As a result, the performance remains similar even
without the reinstatement of prior knowledge on
the unseen FLAN dataset. Additionally, when «
continues to increase exceeding 1, the overall per-
formance on both SNI and FLAN shows a slight
decline. This indicates that the reinstatement of
prior knowledge should not be overly emphasized
when learning new tasks.

The hyperparameters in Joint Task Learning.
Finally, we examine the effects of different cluster
numbers (C'), varying numbers of keys () within
each cluster, and different k-nearest latent tasks in
joint task learning on the model performance. We
report compared metrics on SNI and FLAN, where
C8Q6k2 represents C = 8,) = 6, and k = 2,
with others following the same pattern.

As shown in Figure 5, the model achieves its best
performance when C = 16,Q = 12,k = 2. The
model performance across different values of C, @,
and k varies slightly. From the ROUGE-L metric
perspective, when C' = 16 and () = 12 are fixed,
increasing k improves performance. This suggests
that incorporating more similar latent tasks helps
the model acquire additional relevant knowledge,
thereby enhancing its effectiveness. Conversely,
when C' = 16 and & = 2 are fixed, increasing
() leads to a decline in performance, likely due
to weakened knowledge sharing caused by finer-

—e— SNI(B-4) —&— SNI(R-L) -9 FLAN(R-2)
0.6 SNI(R-1) -® FLAN(B-4) -4- FLAN(R-L)
| —e— SNI(R-2) FLAN(R-1)

0.3
IR T S Y T S .
0.1{ ¢ ¢ ————
1o c
& (s 7 7 7 7 7
s 0 s s 6 6 &
o oy On Om On %

Figure 5: The compared performance of our method
on SNI and FLAN when using different numbers of
groups (C'), keys (@), and nearest neighbors (k) in joint
task learning. The solid and dashed lines represent the
metrics on SNI and FLAN, respectively. B-4, R-1, R-
2, and R-L are BLUE-4, ROUGE-1, ROUGE-2, and
ROUGE-L metrics for short. The optimal choice is
marked with the vertical dashed line.

grained key partitioning. Notably, the optimal hy-
perparameter settings depend on the scale of the
training samples and should be determined heuris-
tically.

6 Conclusion

In this paper, we propose a novel instruction-tuning
method called Task Knowledge Injection. It is a
data-efficient knowledge injection approach that
enhances task generalization without relying on ad-
ditional models or data. We conduct extensive ex-
periments on recent large language models, includ-
ing Llama3.1-8B and Vicuna-13B, across 1000+
tasks from Super Natural Instructions and FLAN
datasets. The experimental results demonstrate
the superior performance of our method and each
component on both in-domain and out-of-domain
datasets. Our method enables the model to estab-
lish correlations between new tasks and between
new tasks and prior knowledge, facilitating build-
ing task knowledge more effectively, and thereby
improving generalization performance. We con-
duct detailed analyses revealing that joint task adap-
tation plays a more critical role in the knowledge
injection process. We also show that incorporat-
ing more relevant latent tasks leads to slightly im-
proved performance while weakening knowledge
sharing results in degraded performance.

Limitations

Although our task knowledge injection effectively
improves generalization in instruction tuning, it
still has several limitations. First, in latent task
adaptation, we partition the latent tasks into several
clusters which may limit knowledge sharing across
inter-clusters. We plan to adopt a more efficient re-
trieval method eliminating the need for partitioning
in the future, which also helps reduce the number
of hyperparameters. Additionally, we employ an
intermediate learning process to derive input forms
for the target, which may introduce additional er-
rors across the modules. We plan to develop an
end-to-end training approach for knowledge rein-
statement and explore more effective methods to
acquire diverse prior knowledge.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-
seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In ECCV, pages 139-154.

Enes Altinisik, Hassan Sajjad, Husrev Sencar, Safa Mes-
saoud, and Sanjay Chawla. 2023. Impact of adver-
sarial training on robustness and generalizability of
language models. In Findings of ACL 2023, pages
7828-7840.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. In NeurlIPS, pages 1877-1901.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner,
Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan
Leike, and 1 others. 2023. Weak-to-strong general-
ization: Eliciting strong capabilities with weak super-
vision. arXiv preprint arXiv:2312.09390.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, and 1
others. 2024. Scaling instruction-finetuned language
models. JMLR, 25(70):1-53.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. 2021. Sharpness-aware mini-
mization for efficiently improving generalization. In
ICLR.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu,
Yu Cheng, and Jingjing Liu. 2020. Large-scale adver-
sarial training for vision-and-language representation
learning. In NeurIPS, pages 6616-6628.

Shuhao Gu, Bojie Hu, and Yang Feng. 2022. Continual
learning of neural machine translation within low for-
getting risk regions. In EMNLP, pages 1707-1718.

Md Yousuf Harun, Kyungbok Lee, Jhair Gallardo, Giri
Krishnan, and Christopher Kanan. 2024. What vari-
ables affect out-of-distribution generalization in pre-
trained models? arXiv preprint arXiv:2405.15018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-
trained natural language models through princi-
pled regularized optimization. arXiv preprint
arXiv:1911.03437.

Jiarui Jiang, Wei Huang, Miao Zhang, Taiji Suzuki, and
Ligiang Nie. 2024. Unveil benign overfitting for
transformer in vision: Training dynamics, conver-
gence, and generalization. In NeurlPS.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, and 1 others. 2017.
Overcoming catastrophic forgetting in neural net-
works. PNAS, 114(13):3521-3526.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew
Jones, Tengyu Ma, and Percy Liang. 2022. Fine-
tuning can distort pretrained features and underper-
form out-of-distribution. In /CLR.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Dongyue Li and Hongyang Zhang. 2021. Improved
regularization and robustness for fine-tuning in neural
networks. In NeurlPS, pages 27249-27262.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL, pages 4582-4597.

Yunlong Liang, Fandong Meng, Jiaan Wang, Jinan Xu,
Yufeng Chen, and Jie Zhou. 2024. Continual learning
with semi-supervised contrastive distillation for in-
cremental neural machine translation. In ACL, pages
10914-10928.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
NeurlPS.

Sanae Lotfi, Marc Anton Finzi, Yilun Kuang, Tim GJ
Rudner, Micah Goldblum, and Andrew Gordon Wil-
son. 2024. Non-vacuous generalization bounds for
large language models. In ICML.

Emily McMilin. 2022. Selection bias induced spurious
correlations in large language models. In ICML 2022:
Workshop on Spurious Correlations, Invariance and
Stability.

Sewon Min, Patrick Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Rethinking the role of
demonstrations: What makes in-context learning
work? arXiv preprint arXiv:2202.12837.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. arXiv preprint arXiv:2402.06196.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-
supervised learning. TPAMI, 41(8):1979-1993.

Yao Ni, Shan Zhang, and Piotr Koniusz. 2024. Pace:
marrying generalization in parameter-efficient fine-
tuning with consistency regularization. arXiv
preprint arXiv:2409.17137.

OpenAl. 2024. Gpt-4v: Multimodal language model.
OpenAl Technical Report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and
1 others. 2022. Training language models to follow
instructions with human feedback. In NeurIPS, pages
27730-27744.

Lin Pan, Chung-Wei Hang, Avirup Sil, and Saloni Pot-
dar. 2022. Improved text classification via contrastive
adversarial training. In AAAI, volume 36, pages
11130-11138.

Bohao Peng, Zhuotao Tian, Shu Liu, Mingchang Yang,
and Jiaya Jia. 2024. Scalable language model
with generalized continual learning. arXiv preprint
arXiv:2404.07470.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. In NeurlPS.

Google Research. 2024. Gemini: Multimodal large
language model. Google Al Blog.

Hippolyt Ritter, Aleksandar Botev, and David Barber.
2018. Online structured laplace approximations for
overcoming catastrophic forgetting. In NeurIPS.

10

Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy Lillicrap. 2016. Meta-
learning with memory-augmented neural networks.
In ICML, pages 1842-1850.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Jonathan Schwarz, Wojciech Czarnecki, Jelena
Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. 2018.
Progress & compress: A scalable framework for con-
tinual learning. In ICML, pages 4528-4537.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Marlieke TR van Kesteren, Paul Rignanese, Pierre G
Gianferrara, Lydia Krabbendam, and Martijn Meeter.
2020. Congruency and reactivation aid memory in-
tegration through reinstatement of prior knowledge.
Scientific Reports, 10(1):4776.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, Jodo Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. 2023.
Transformers learn in-context by gradient descent.
In ICML, pages 35151-35174.

Mingze Wang, Jinbo Wang, Haotian He, Zilin Wang,
Guanhua Huang, Feiyu Xiong, Zhiyu Li, Lei Wu, and
1 others. 2024. Improving generalization and con-
vergence by enhancing implicit regularization. arXiv
preprint arXiv:2405.20763.

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix
Yu, Cho-Jui Hsieh, Inderjit S Dhillon, and Sanjiv
Kumar. 2022a. Two-stage 1lm fine-tuning with less
specialization and more generalization. In /CLR.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, and 1 others. 2022b.
Super-naturalinstructions: Generalization via declar-
ative instructions on 1600+ nlp tasks. In EMNLP,
pages 5085-5109.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2022. Finetuned language
models are zero-shot learners. In ICLR.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Sophie Xhonneux, Alessandro Sordoni, Stephan Giin-
nemann, Gauthier Gidel, and Leo Schwinn. 2024.
Efficient adversarial training in llms with continuous
attacks. arXiv preprint arXiv:2405.15589.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Haoran Yang, Hongyuan Lu, Wai Lam, and Deng Cai.
2024a. Exploring compositional generalization of
large language models. In NAACL, pages 16-24.

Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu,
Pheng Ann Heng, and Wai Lam. 2024b. Unveiling
the generalization power of fine-tuned large language
models. arXiv preprint arXiv:2403.09162.

Tong Yang, Yu Huang, Yingbin Liang, and Yuejie
Chi. 2024c. In-context learning with representations:
Contextual generalization of trained transformers. In
NeurlPS.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey
Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. In NeurIPS.

Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang
Xing, Shuaigiang Wang, Chong Meng, Zhicong
Cheng, Zhaochun Ren, and Dawei Yin. 2024. Im-
proving the robustness of large language models via
consistency alignment. In LREC-COLING, pages
8931-8941.

Hongling Zheng, Li Shen, Yong Luo, Tongliang Liu,
Jialie Shen, and Dacheng Tao. 2024. Decomposed
prompt decision transformer for efficient unseen task
generalization. In NeurlPS.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, and 1 others. 2024. Lima: Less is more
for alignment. In NeurIPS.

Yuhang Zhou, Paiheng Xu, Xiaoyu Liu, Bang An, Wei
Ai, and Furong Huang. 2023. Explore spurious cor-
relations at the concept level in language models for
text classification. arXiv preprint arXiv:2311.08648.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2019. Freelb: Enhanced ad-
versarial training for natural language understanding.
arXiv preprint arXiv:1909.11764.

11

	Introduction
	Related Work
	Problem Formulation and Motivation
	Task Knowledge Injection
	Overview
	Latent Task Adaptation
	Knowledge Reinstatement

	Experiments
	Experimental Setup
	Main results
	Detailed Analysis

	Conclusion

