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Abstract

Complex Query Answering (CQA) has been
extensively studied in recent years. In order to
model data that is closer to real-world distribu-
tion, knowledge graphs with different modali-
ties have been introduced. Triple KGs, as the
classic KGs composed of entities and relations
of binary, have limited representation of real-
world facts. Real-world data is more sophisti-
cated. While hyper-relational graphs have been
introduced, there are limitations in representing
relationships of varying arity that contain enti-
ties with equal contributions. To address this
gap, we sampled new CQA datasets: JF17k-
HCQA and M-FB15k-HCQA. Each dataset
contains various query types that include logi-
cal operations such as projection, negation, con-
junction, and disjunction. In order to answer
knowledge hypergraph (KHG) existential first-
order queries, we propose a two-stage trans-
former model, the Logical Knowledge Hyper-
graph Transformer (LKHGT), which consists
of a Projection Encoder for atomic projection
and a Logical Encoder for complex logical op-
erations. Both encoders are equipped with Type
Aware Bias (TAB) for capturing token interac-
tions. Experimental results on CQA datasets
show that LKHGT is a state-of-the-art CQA
method over KHG and is able to generalize to
out-of-distribution query types.

1 Introduction

Knowledge graphs (KG), comprising facts with en-
tities as nodes and relations as edges, have gained
much attention recently. Triplets (head, relation,
tail) represent binary relational facts in KG. Un-
der the Open World Assumption (OWA) (Ji et al.,
2022), most existing graphs are considered incom-
plete. Both embedding methods and message pass-
ing approaches have been proposed to learn the
underlying representations of entities and relations
in KG, aiming to mine undiscovered facts.
Complex Query Answering (CQA) in KG is an
important task in Neural Graph Database (NGDB)

(Ren et al., 2023). In NGDB, KG serves as the
data source, where CQA involves performing logi-
cal queries over incomplete KG via parameteriza-
tion of entities, relations, and logical operators like
projection, negation, conjunction, and disjunction.
Various neural query approaches have been devel-
oped to infer missing links in KG and enrich the
answer set.

Existentially quantified First Order queries with
a single variable (EFO-1) are the primary type of
complex query. While classic KG representations
(Trouillon et al., 2016) excel in one-hop inference,
they fall short for complex queries. Different ap-
proaches have been proposed for answering EFO-1
queries. Embedding models (Chen et al., 2022; Ren
and Leskovec, 2020; Zhang et al., 2021) model en-
tities and relations in vector spaces, transforming
queries into operator tree formats, with logical op-
erators interacting with entity embeddings. Other
methods, like CQD (Arakelyan et al., 2021) and
LMPNN (Wang et al., 2023), utilize pretrained KG
embeddings to tackle EFO-1 queries. CQD for-
mulates logical inference as an optimization prob-
lem, while LMPNN treats EFO-1 queries as query
graphs, instantiating nodes with pretrained embed-
dings and executing message passing to predict
answer embeddings.

However, less attention has been given to com-
plex queries beyond binary relations. Most cur-
rent models focus on ordinary KG, despite the
abundance of n-ary facts in modern large KG. Hy-
pergraphs and hyper-relation graphs are suitable
for constructing KG to accommodate n-ary rela-
tions. StarQE (Alivanistos et al., 2022) introduces
hyper-relational graphs in WD50K-QE, where each
triple is built from qualified statements (head, re-
lation, tail, qp), with gp as contextual information.
However, hyper-relational graphs differ from hy-
pergraphs; they treat n-ary facts as triples with sup-
porting facts, focusing on query answering. Hyper-
graphs better represent entities with equal contribu-



tions in relations. For instance, the relation coau-
thor(authorA,authorB,authorC) can be correctly de-
picted by a hyperedge in a hypergraph but mis-
represented in a hyper-relational graph. Efforts
have been made to create Knowledge Hypergraph
(KHG) embeddings in M-FB15k (Fatemi et al.,
2020) and JF17k (Wen et al., 2016), primarily for
link prediction. However, little work has focused
on CQA in KHG, with LSGT (Bai et al., 2024) be-
ing the only study investigating CQA with ordered
hyperedges, using binary relations for intermediate
variable nodes.

In this paper, we propose a novel two-stage trans-
former model, Logical Knowledge Hypergraph
Transformer (LKHGT), a transformer-based ap-
proach for reasoning over KHGs, extending CQA
from binary to n-ary relations. LKHGT consists of
two encoders: the Projection Encoder, which pre-
dicts answers for variables in atomic hyperedges,
and the Logical Encoder, which derives interme-
diate variable embeddings for logical operations.
Both encoders are equipped with Type Aware Bias
(TAB), which helps identify each input token type
and capture their interactions. We define the logi-
cal query in EFO-1 Disjunctive Normal Form and
construct ordered query hypergraphs. Each ordered
hyperedge represents an atomic formula, including
a predicate and potentially a negation operator.

We investigate LKHGT’s performance against
baseline models. To ensure fair experiments, we
included multiple methods capable of reasoning on
hypergraphs and extended LMPNN (Wang et al.,
2023) to relational ordered knowledge hypergraphs,
utilizing pretrained KHG embeddings with logical
inference capabilities.

Our experiments show that LKHGT outperforms
other n-ary CQA models in ordered hyperedge set-
tings. The model generalizes from edges of bi-
nary to arity N and achieves promising results. Af-
ter learning basic logical operations, our model
also demonstrates good performance on out-of-
distribution queries. By comparing the Logical
Encoder and fuzzy logic (Zadeh, 1988) for logical
operations, we show that our transformer-based en-
coder outperforms neural symbolic methods using
fuzzy logic. Thus, our approach bridges the gap
between CQA and Knowledge Hypergraphs.

2 Related Works

2.1 Knowledge Hypergraphs Embedding

BoxE (Abboud et al., 2020), HypE, ReAlE (Fatemi
et al., 2021, 2020), n-Tucker (Liu et al., 2020), m-
TransH (Wen et al., 2016) and RAE (Zhang et al.,
2018) are Knowledge Hypergraphs Embeddings
that considered n-ary facts in the form of r(el, e2
. . .). These methods aims to perform link predic-
tion by encoding entities and relations into embed-
dings continuous spaces. These models are equiva-
lently performing projection on atomic hyperedge.
Although they can perform well in atomic query
projection task, they lack the ability to perform
multi-hop query, where performance degrades as
projection continues on sub-queries. To enable log-
ical operations on these embeddings, fuzzy logic
(Zadeh, 1988; Chen et al., 2022) or message pass-
ing methods (Wang et al., 2023) can be applied.

2.2 Complex Query Answering

Complex Query Answering (CQA) leverages var-
ious approaches, including transformers, query
embeddings, neural-symbolic methods, and mes-
sage passing techniques. The introduction of Logi-
cal Message Passing Neural Networks (LMPNN)
(Wang et al., 2023) has facilitated the use of dif-
ferent pretrained Knowledge Graph (KG) embed-
dings, which serve as initial entity and relation em-
beddings. Final answer embeddings are obtained
through message passing on query graphs, utilizing
embeddings such as RESCAL (Nickel et al., 2011),
TransE (Bordes et al., 2013), DistMult, ComplEx
(Trouillon et al., 2016), ConvE (Dettmers et al.,
2018), and RotatE(Sun et al., 2019).

For query embeddings, GQE (Hamilton et al.,
2019) addresses queries with existential quantifiers
and conjunctions, while FuzzQE (Chen et al., 2022)
employs fuzzy logic to define logical operators. In
the neural-symbolic domain, methods like BetaE
(Ren and Leskovec, 2020), ConE (Zhang et al.,
2021), QUERY2BOX (Ren et al., 2020) and ENeSy
(Xu et al., 2022), project symbols into continuous
spaces. MLPMix (Amayuelas et al., 2022) and
NewLook (Liu et al., 2021) utilize MLPs and at-
tention mechanisms for CQA. Additionally, QTO
(Bai et al., 2023b), CQD (Arakelyan et al., 2021)
and FIT (Yin et al., 2024) apply combinatorial op-
timization to query computation trees.

Since the introduction of Transformers (Vaswani
et al., 2023), several methods have applied this
architecture to CQA. SQE (Bai et al., 2023a) lin-



earizes EFO-1 queries for sequence encoding, Path-
Former (Zhang et al., 2024) recursively process
EFO-1 queries tree like NQE (Luo et al., 2023) and
Tree-LSTM did (Tai et al., 2015). While QTP (Xu
et al., 2023) separates simple and complex queries,
employing distinct neural link predictors and query
encoders.

Additionally, HAN (Wang et al., 2021b) imple-
ments transformers for link prediction in knowl-
edge graphs, and KnowFormer (Liu et al., 2024a)
tailors the transformer for simple query answering.
TEGA (Zheng et al., 2025) applies inductive biases
based on token type interactions for EFO-syntax
queries.

Previous studies on CQA have primarily fo-
cused on knowledge graphs, with extensive re-
search on ordinary knowledge graphs addressing
ordinary query answering (OWA) by predicting
unseen triples. EFO-1 queries can be effectively
answered when the arity equals two. However,
few attempts have been made to extend these ap-
proaches to general n-ary facts in hyperedge or
hyper-relational formats.

2.3 N-ary Graph Reasoning

First N-ary reasoning problem introduced in the
field of CQA is performed on hyper-relational
knowledge graph. StarQE (Alivanistos et al., 2022)
utilize StarE (Galkin et al., 2020) as graph en-
coder for StarQE, equip it with message passing
to have the ability to deal with multi-hop queries.
TransEQ (Liu et al., 2024b) is an query embedding
models that generalize star expansion (Agarwal
et al., 2006) for hyper-edges to hyper-relational
graphs, then use encoder-decoder to capture struc-
tural information and semantic information for
hyper-relational knowledge graph completion task.
Neulnfer (Guan et al., 2020) chose to represent n-
ary fact as a primary triple coupled with a set of its
auxiliary descriptive attribute-value pair(s) and use
neural network to perform knowledge inference.
NQE (Luo et al., 2023) use dual-heterogeneous
Transformer encoder and fuzzy logic (Zadeh, 1988)
to recursively process hyper-relational query tree.
Hyper-relational edges encode entities with possi-
bly different relation in a single triples, which does
not exhibit same characteristics as hyperedges. The
encoder input format for NQE generalize n-ary in-
puts, thus it can be naturally extend to be used in
hyper-edges query answering. SessionCQA (Bai
et al., 2024), The first CQA model incorporates the
concept of hyper-edges, encoding user sessions as

hyper-edges for item recommendations. However,
its query type does not follow a fully hyper-edge
setting; only the initial first hop is represented as
a hyper-edge, while subsequent hops use binary
relation edges. The query input format for Session-
CQA can also naturally extend for N-ary facts.

3 PRELIMINARIES

3.1 Knowledge Hypergraphs

A knowledge hypergraph G = (£,R,H), where
£ is the set of entities e in the knowledge hyper-
graph, R is the set of relations 7, and H is the set
of ordered hyperedges h = r(ey,...,ex) € H,
where e1,...,e; € £ and r € R. The arity of a
hyperedge h is defined as k = ar(r), where each
relation type has a fixed arity size. Each position
in a relation type has a specific semantic meaning
that constructs the ordered hyperedge. Although
through star expansion (Agarwal et al., 2006) of
hyperedge, an hyperedge can be converted to ho-
mogeneous graph, however structural information
will be loss in process.

3.2 EFO-1 Query in Hypergraphs

In this paper, we will focus on Existential First
Order queries with a single free variable with logi-
cal formulas (EFO-1) under the disjunctive normal
form in hypergraph settings. In the following dis-
cussions, we will refer to hyper-projection simply
as projection without explicitly specifying it. We
aim to emphasize the unique properties of projec-
tions within hypergraph structures.

An atomic formula a is composed of term, rela-
tion and variable. A simplest atomic formula can
be intuitively represented by an ordered hyperedge
h =ri(eq,...,vr), where ej is a term, vy, is an vari-
able at position k and r is the relation. Let ar(r)
is the arity of the given relation r. A knowledge
graph is a relational knowledge hypergraph where
for all » € R, ar(r) = 2. An atomic formula can
be negated by adding — to form —r(ey, ..., vg). A
first order formula can be iteratively constructed by
atomic formula a using connectives conjunction A
and disjunction V. Quantifiers can be added to vari-
ables in a using quantifiers like 3 and V. Variables
without quantifiers is considered as free.

Given a knowledge hypergraph G, an EFO-1
query ¢ is defined as a first-order formula in the
below Disjunctive Normal Form (DNF),
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Figure 1: Example of LKHGT processing query tree of ip type
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where y is the only free variable, and z; for
1 < ¢ < m are existential variables. Each brackets
represent an complex query where each a;; is an
atomic formula with constants y, x; and variables
that can be either negated or not. To address the
EFO-1 queries, one must determine the answer
set A[@Q, K] such that for each a € A[Q, KG],
q(y = a,x1, ..., x,) returns true.

Considering a query in the form of

r1(y1, €1, e2) A —ra(z1,e3) Ar3(yr, x1,€q)

there are 2 ways to represent EFO-1 queries in
hypergraphs, which are query graphs and operator
tree.

Operator tree. In operator tree, draws from exis-
tential quantifiers, allowing us to transform first-
order logic into corresponding set logic operations.
Each node itself is an operator node that corre-
sponds to set logical operations like, projection,
conjunction, disjunction, negation. In knowledge
hypergraph settings, each projection node consists
of set of entities for itself and a variable nodes in
random arity position. As Figure 1 shown, each
atomic query is represented by the projection nodes.
Then, two projection nodes pointed to the intersec-
tion node, and the intersection node represent the
conjunction of answer sets from its pointers. Inter-
section node use the intersected variable to obtain
the final answer.

Query Hypergraph. In Figurel, it shows an alter-
native way to represent EFO-1 query following the
style of query graph in LMPNN (Wang et al., 2023).
Each hyper edge representing an atomic formula
containing edge information like relation types and

negation information. The nodes involved are ei-
ther constant symbol, free variable or existential
variable.

In this paper, each Knowledge Hypergraph EFO-
1 query is presented in the form operator tree for
LKHGT. As we can see that in order to allow trans-
former to perform message passing alike operation
through the self-attention mechanism, we have to
encode whole query in a single pass. When trans-
former based model encode whole query graphs as
a sequence of tokens, it becomes more challenging
for transformers to focus on solving each atomic
query in the multihop-query. Thus, operator tree is
more suitable for our choice of modeling.

4 Logical Knowledge Hyper Graph
Transformer

In this section, we will describe the how operator
tree is used to represent complex query, and explain
how the 2 stage encoder, Logical Knowledge Hyper
Graph Transformer (LKHGT), works given a query
tree input. In order to allow precise estimation of
answer set, we propose to use 2 stage encoder to
process the query tree iteratively. For example, re-
fer to Figure 2, we can see that each projection
node at bottom level first receive necessary infor-
mation like, negation, relation, entities and position
of variable node inside the hyperedge. Then these
information is fed into projection encoder for each
projection. For second hop of the atomic query,
previous projected variable embedding is fed as
one of the input. Projection is performed using
the answer set embeddings output from projection
encoder. Finally, intersection is then performed
with logical encoder, which is done by receive all
variable embeddings output from each projection
encoder. Although using iterative method to pro-
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Figure 2: Example of LKHGT processing query tree

cess query tree is slower comparing to encoding
whole query graph at once, we maximize the cor-
rectness of answer set embeddings output for each
atomic formula.

4.1 Tokens Input and Output

Operators type included in operator tree are pro-
jection (p), negation (—), intersection (A), union
(V). As defined, each complex query is composed
of atomic formula which is made of relaiton (1),
subject (s), variable (e). Overally speaking, there
are 8 types of token. Relation, existential variable,
free variable, entity and negation type of tokens
will be fed into projection encoder. Projection, in-
tersection, union types of token will be fed into
logical encoder.

Projection Encoder Given the fact that negation
can only applied to atomic formula which is repre-
sented as projection operation, we chose to process
negation operation in projection encoder. Projec-
tion Encoder projects tokens into continuous space
according to their token type. If negation is in-
volved, the input tokens will be,

tokens =T}, = [n,r1, €1, x2, ...] 2
The corresponding projected sequence will be,

X = W, T = [Wyn, Wyry, Weey, ...] € R4

3)
where W), € R%djs the linear projection weight,
where p € {n,r,z,e,y}. Since projection encoder
is performing projection over ordered hyperedge,
we will also add absolute positional encoding to
entities node and variable node. Let the set of nodes
be N for an hyperedge, then the input embeddings
will be.

XUGN = XvEN + PEpos (4)

Logical Encoder Logical encoder will focus in
dealing with logical task that involves more than 1
projection node, which is intersection (conjunction)
and union (disjunction). These nodes will receive
pointers from more than one operators node, we use
transformer logical encoder to encode all projected
variable, the input tokens for logical encoder will
be,

tokens = Tyl = [i/uaplap%p?n ] (5)
The corresponding projected sequence will be,

X = WiT} = Wy {i/u}, Wpp1,..] € R™

(6)
where W, € R%*%s the linear projection weight,
where | € {i,u,p}. Both projected sequence
is then further process with modified version of
(Vaswani et al., 2023). Finally, Projection Encoder
will output embeddings of variable node in hyper-
edge and Logical Encoder will output the embed-
dings of the logical operator tokens.

4.2 Type Aware Bias (TAB) for Projection
Encoder and Logical Encoder

Inspired by the idea of introducing inductive bias
for meta paths in (Wang et al., 2021b), LKHGT
also introduced modified inductive bias tailored
for CQA task. With the given 8 token types, we
can observe there are types of token interaction
bias to be added into self attention matrix. For
Projection Encoder there are Py edge types for
token types [n,r,z,e,y]. For Logical Encoder,
there are Py edge types for token types. In order to
cater for these edge types differences, we construct
the attention matrix with Type Aware Bias (TAB)



as below:
_ mW(WE + Byy)T
eij = \/g

,Cbij = softmax(eij)
. (7
2= ay(z;Wy)) ®)

j=1

Where (W@, WX WV) is the linear projection
matrix € R4 and {o,i,j} can be the eight to-
ken types t € {n,r,x,e,y,i,u,p}, B;j is the Type
Aware Bias (TAB) vector in token interaction bias
matrix B € RI*I/11¥d These bias able to differen-
tiate the token types interaction and help facilitates
the capture of nuanced interactions among token
types, allowing the transformer to adaptively weigh
the importance of each token based on its role in
the context.

In our case, we can treat Transformer as a spe-
cial case of GNN. For Projection encoder, each
hyperedge is an fully connected graph input in the
perspective of GNN. We are doing aggregation with
attention on this fully connected graph and predict
the embeddings of the projection node using trans-
former self-attention mechanism. This aggregation
process not only enriches the embeddings of the
projection node but also ensures that the model
can dynamically adjust to the significance of dif-
ferent tokens based on the context. The result is a
robust embedding that encapsulates the rich rela-
tional structure inherent in the input data.

4.3 Transformer as the replacement for Fuzzy
Logic

Transformers serve as a compelling alternative to
fuzzy logic in our CQA models due to their supe-
rior representation capabilities and scalability. Un-
like fuzzy logic-based methods (Bai et al., 2023b;
Yin et al., 2024) that requires pre-computing adja-
cency matrices, which is impractical due to com-
putational costs of O(NN?2) for binary relations and
O(N*) for k-ary relations in our case. Transform-
ers efficiently use attention mechanisms to gener-
ate detailed low-dimensional embeddings. This
aligns with approaches that use low-dimensional
embeddings with fuzzy operators, like NQE, but
provides a more adaptable framework, offering a
better contextual understanding of projected nodes’
embeddings through TAB. Thus, within the con-
straints of low-dimensional vector representations,
transformers provide a more powerful and adapt-
able framework for processing and representing
information in CQA models.

4.4 Training LKHGT

After obtaining the output embeddings f € R,
we can compute the output label of the entity by
a simple MLP decoder and have output § € RI¢!.
Given a the query embedding ¢, we can first use a
softmax function to obtain the probability scores
of query embedding between all entity,

R eyi 9
o(y) = -
(4) S ©)
Then we can construct the cross-entropy loss to
maximize the log probability of ¢ matching the
answer a,

L= —% ;log(a(y)) (10)

where N is the batch size.

5 Experiments

In this section, we will describe the experiment
set up including dataset, baselines and evaluation
methods.

5.1 Dataset

Since Knowledge Hypergraph CQA is a subfield of
CQA problem that has not been investigated before,
thus we created custom Dataset JF17k-HCQA and
M-FB15k-HCQA. Following the rationale from bi-
nary CQA sampling methods (Wang et al., 2021c),
we modified the sampling methods into hypergraph
version (Appendix B), created datasets consists of
query types (1P 2P 3P 21 31 PI IP 2U UP 2IN 3IN
INP PIN PNI), total 14 types, including all logical
operation. Statistics for the number of examples
sampled for each query type are listed in Table 4.

5.2 Baselines

For baseline models, we chose NQE (Luo et al.,
2023) and LSGT (Bai et al., 2024) as our base-
line models. NQE is a method that encode hyper-
relational facts from HKG into embeddings. LSGT
encode query graph information like, nodes ids,
graph structure and logical structure using trans-
former.As NQE (Luo et al., 2023) uses hyper-
relational edges as input for its encoder. So, we
followed the implementation of NQE in (Bai et al.,
2024) and modified our data format to feed it into
NQE. For LSGT, we transformed our data into
unified id format for input. For fair comparison,
we replace all models encoder with simple basic



Table 1: MRR results of different CQA models on two KHGs. AP represents the average score of EPFO queries and
AN represents the average score of queries with negation. The boldface indicates the best results for each KG.

KHG Model 1P 2P 3p 21 31 PI 1P 20U up 2IN 3IN INP PIN PNI AP AN

JE17k HLMPNN 4566  6.58 1224 46.03  47.27 1552 791 25.45 12.75 10.43 14.49 10.83  7.26 8.29 24.38 10.26
LSGT 49.51 21.73 13.10 5046 3485 3207 23.00 2227 20.33 16.05 1345 844 10.10 1239 29.70 12.09
NQE 56.19 3829 3472 6488 7040 5395 3824 29.11 3839 2251 27.80 15.04 17.84  21.83  47.13  21.00
LKHGT 58.19 41.87 3876 6847 4271 57.48 4201  33.38 41.70  26.28 1826  20.66  18.32 2487 47.17  21.68

M-FB15k HLMPNN  47.86 28.04 2302 4578 4565 3289 2612 2535 26.27 1732 2258 2198 947 1585  33.44 17.44
LSGT 44.15 3035 987 3947 3119 30.01 28.57 16.46 27.28 16.55 10.10 10.59 11.37 19.29  28.59 13.58
NQE 4643 3343 2980 4375 48.84 3494  32.09 16.83 3020 2226 2628 20.19 17.51 2495 3515 22.24
LKHGT 46.81 35.04  30.66 4538 4031 38.65  32.63 2714 3137 2285 19.65  26.50 16.21 2496  36.44 2203

Table 2: MRR results for LKHGT in fuzzy settings, excluding absolute positional encoding and under a variable

cardinality configuration.

KHG Model 1P 2P 3P 21 31 PI 1P 2U up 2IN 3IN INP PIN PNI AP AN

JF17k LKHGT 58.19 4187 38.76 68.47 4271 5748 4201 3338 41.70  26.28 1826 20.66 18.32 24.87 4717  21.68
LKHGT w/ fuzzy. 5726 40.62 3795 6548 71.04 5446 4025 29.87 4051 23.00 27.58 1856  19.65  22.80 48.60 2232
LKHGT w/o abs. 5740  41.01 37.51 67.87 4194  57.02 41.63 31.56 4072  26.19 1775 20.92 18.53  25.00 46.30  21.68
LKHGT w/ var cardinality 57.55 4131 3835  67.13 41.61 56.68 4123 3202 4079  25.79 17.69  21.04 18.58  24.81 46.30  21.59
LKHGT w/ full training set 5843 4389 4275  69.11 75.19 5819 4316 3205 4251 2626 3162 2318 1874 2535 5170 25.03
LKHGT w/ full train & var card. ~ 58.54 4440 4358  69.20 7446 5856 4356 3291 4290 2648 3151 24.06 1930 25.59 52.01 25.39

transformer layer without modifying the other im-
plementation details. Transformer embedding size
is set to be 400 for iterative model like NQE and
LKHGT. For LSGT, its embedding size is set to
be 1024 in order to have it converge. Aside from
transformer based model, we also implemented
HLMPNN (Appendix A), a hypergraph version of
LMPNN (Wang et al., 2023), which is set to have
embedding size of 200. All models are trained on
single 3090 GPU with 400 epochs.

5.3 Evaluation

In all experiments, we follow the common prac-
tice, sampled query from Knowledge Hypergr-
pahs Girain, Guals Gtest» Where Eirain C Eyar and
Eval C Etest. For all models, we will train on all
query types except [3p, 3in, 3i, inp], in order to test
the generalization of logical operations. We select
the mean reciprocal rank (MRR),

1 1
MERR(9) = émnk(ui) an

as the evaluation metric to evaluate the ranking. For
each query instance, we initially rank all entities,
excluding those identified as easy answers, by their
cosine similarity to the query variable embedding.
The rankings of the hard answers are then used to
calculate the Mean Reciprocal Rank (MRR) for that
particular query instance. Finally, we compute the
average of the metrics across all query instances. In
this paper, we report and compare the MRR results.

5.4 Results

Table 1 presents the MRR results of LKHGT and
other baseline models for answering EFO-1 queries

across the two CQA datasets. It demonstrates that
LKHGT achieves state-of-the-art performance on
average for both EPFO and negation queries for n-
ary hypergraph queries. When comparing LKHGT
with transformer-based and message-passing meth-
ods, we observe that the message-passing methods
underperform in complex query types. Addition-
ally, when comparing the Iterative Model (LKHGT
& NQE) to the Sequential Model (LSGT), the It-
erative Model shows superior performance. This
disadvantage may be attributed to their approach of
encoding the entire query at once, which can hinder
performance on complex queries. In contrast, the
LKHGT model shows notable improvements with
a logical encoder instead of fuzzy set operation,
enhancing its ability to handle conjunctions and
disjunctions effectively. LKHGT surpasses NQE on
negation queries by integrating negation directly
into the Projection Encoder, rather than using fuzzy
logic. This suggests that fuzzy logic may not be
sufficient for addressing hypergraph complex query
answering tasks. The 1p, 2p, and 3p performance
of LKHGT outperforming NQE is evidence that
Type Aware Bias is contributing, as these query
types do not involve the use of logical encoder. This
distinction from the NQE model suggests that this
bias is better at capturing the different interactions
of token inputs. Overall, these findings confirm that
the two-stage architecture of LKHGT successfully
enhances performance in complex query scenarios,
demonstrating its effectiveness and robustness in
the context of query answering.

However, based on the performance of the LKHGT
model in 3i and 3in, we observe that it is signif-



Table 3: MRR results for CQA models under full training set.

2U UP 2IN 3IN INP PIN PNI AP AN

KHG Model 1P 2P 3p 21 31 PI 1P

JE17K LKHGT 5843 4389 4275  69.11 75.19  58.19  43.16
LSGT 50.56  21.85 17.75 5334  53.71 32.06  20.78
HLMPNN 4526 7.26 1338 46.08  48.36 16.01 8.54
NQE 56.37  39.18  39.21 65.41 7237 5536 39.22

32.05 4251 2626  31.62  23.18 18.74 2535 51.70  25.03
22.49 18.33 14.00 1640  6.05 7.44 8.59 32.32 10.50
24.99 13.28 10.35 15.49 1148 732 8.24 24.80 10.58
29.05 3936  21.68 2883  20.25 16.21 22,13 4839  21.82

Table 4: Statistics for each query types

Dataset 1P Others
Train 60,000 20,000
Valid 10,000 10,000
Test 10,000 10,000

icantly lower than NQE. This discrepancy arises
because the logical encoder did not encounter the
input combinations generated by the output em-
bedding of the projection encoder and the logical
encoder itself, preventing it from effectively pro-
cess the input. To provide a fair comparison of
the effectiveness of LKHGT, we trained another
instance using the full training set. The results are
presented in Tables 2 and 3, where its performance
in 3i and 3in shows significant improvement.

5.5 Ablation Study

In the ablation study, we conduct further experi-
ments to justify the effects of the logical encoder
and the positional encoding of LKHGT. We also ex-
amine how input cardinality affects the logical en-
coder, comparing processing embeddings in pairs
versus handling multiple embeddings simultane-
ously for operations like intersection and union. All
experiments are performed on queries over JF17k
with same settings as before. Table 2 presents the
results of the ablation study. From the results, we
observe that without the positional encoding, the
model’s performance degrades, indicating the im-
portance of this bias for identifying the position
of each nodes to enhance performance. This may
be due to the fact that each position contains a
different semantic meaning within an hyperedge
of ordered knowledge hypergraph. Such position
information helps identify the entity properties in
hyperedges. When using LKHGT with fuzzy logic,
the results are still slightly better than NQE ex-
cept for 3i and 3in due to the reason stated before,
suggesting that the transformer-based projection
encoder improve performance in negation and pro-
jection, and for logical encoder, it able to replace
fuzzy logic operation, given that all types of in-
put combination has been trained beforehand. For

the Operator Cardinality, interestingly, for the logi-
cal encoder, processing all inputs simultaneously
outperforms handling them in pairs.

6 Conclusion

In this paper, we present the Knowledge Hyper-
graph CQA dataset to bridge the current gap in com-
plex question answering (CQA) within hypergraph
settings. We propose LKHGT to answer complex
queries over Knowledge Hypergraphs, particularly
EFO-1 queries. LKHGT achieves strong perfor-
mance through its two-stage architecture with Type
Aware Bias (TAB). In the ablation study, we demon-
strate that the use of absolute positional encoding
further enhances performance. Our research effec-
tively addresses the gap in EFO-1 query answer-
ing tasks in hypergraph settings while emphasizing
the advantages of transformer-based approaches
for logical operations. The experiments show that,
given sufficient training on various query types,
LKHGT is the state-of-the-art model for current
CQA tasks involving Knowledge Hypergraphs.

7 Limitation

A key limitation of our model is the time com-
plexity linked to the projection and logical en-
coder components. The shift from fuzzy logic to
a transformer-based logical encoder has increased
complexity due to a larger parameter count and
attention mechanisms. Additionally, the inductive
bias requires training all combinations of token
interactions, which can introduce noise if not prop-
erly managed, resulting in suboptimal performance
and longer training times.

Potential Risks The increased time complexity
may lead to longer training and inference times,
limiting practical applications. If the inductive bias
is not addressed effectively, it might mislead the
model toward noise rather than meaningful pat-
terns. Furthermore, reliance on transformer archi-
tectures may create scalability challenges when
dealing with larger datasets or complex tasks. Ad-
dressing these limitations and risks is crucial for
the model’s effectiveness.
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Supplimentary Materials

A  Appendix A

A.1 Inspiration from LMPNN

Many previous works emphasize hypergraph mes-
sage passing (Agarwal et al., 2006; Yadati et al.,
2019; Yadati, 2020), with some tailored for hyper-
relational graphs. Notable attempts include StarE
(Galkin et al., 2020) and GRAN (Wang et al.,
2021a), which address one-hop queries on hyper-
relational KGs. HR-MPNN (Huang et al., 2024)
established the General Relational Ordered Hyper-
graphs Message Passing Framework. Our baseline
combines HR-MPNN (Huang et al., 2024) with
pretrained embeddings, drawing inspiration from
LMPNN (Wang et al., 2023).

A.2 A Natrual Extension of Logical Message
Passing Nueral Network to Answer
Hypergraph Queries

» Statement 1:
Nj(h‘)}a T,j, O)
p(h,r, h2t,0).
Where N;(h) as the positional neighborhood
of a hyperedge h.

Prove p({eil(e,i) €

is a generalization of

Let p be the hypergraph logical mesage
encoding function of four input parameters,
including neighboring entity embedding,
relation embedding, query node position, and
logical negation information.

Suppose that each edge with head at posi-
tion 0 and tail at position 1, in the format of
(h,0) — (t,1) for edge with arity = 2. Then
with the definition of the ordered hyperedge,
there are 2 cases representing normal binary
edge in hyperedge message encoding function.
Their equivalent representation according to
our definition:

1. p(h,r,h2t,0) = p(h,r,1,0)
2. p(t,r,t2h,0) = p(t,7,0,0)

We simply replaced h2t and t2h flag with
positional information.

For example, suppose a particular
edge with arity 6, in the form of
r(e1,es,e3,eq,€5,x), we can use the mes-
sage encoding function express in the form of

p({ela €2,€3, €4, 65}7 r, 6) O)
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 Statement 2: Suppose p(eg,r,1,0)
p(h,r, h2t,0) and p(h,r, h2t,0) = f(h,r)
are true, where f is a binary function (e.g.
elementwise multiplication).
Prove p({eil(e,i) € Nj(e)},r,4,0)
f(9({Nj(e)}),r) and is a generalization
of KG message encoding function, where
GAN () = F(fler, - (Flen-1sen)))) is

a function that recursively apply f.

As in LMPNN (Wang et al., 2023), there are
2 types of KG embeddings, characterized
by their scoring functions, which are the
inner-product-based scoring function and
distance-based scoring function. The proof
for closed-form logical messages for KHG
representation is the same. Due to the fact
that the properties of recursive function g
does not affect the proving in LMPNN(Wang
et al., 2023), so as long as we can we prove
our recursive function g can obtain the same
equation for normal KG closed-form logi-
cal messages with arity = 2, we can prove that:

p({eil(e, i) € Nj(h)}, 7, 4,0)

Suppose we have an hyperedge ¢ and j = 1,
with arity = 2.

Nj(g) = h

9(Nj(q)) = f(h,r)

p(h,’l", thaO) = p({ei | (evi) € NJ(EO)}vraja 0)

p({ei | (e,i) € Nj(eo)},r,5,0) = f(h,7)
So for any edge with arity > k

p({ei | (e,4) € Nj(eo)},r, 4, 0)

A.3 Closed-form logical messages for KHG
representation

Table 5 is a table of KHG embeddings that
can be express in the form of p({e;|(e,i) €

Nj(e)},r,3,0)

B Sampling Algorithm for Knowledge
Hypergraph Query

In this section, we introduce the algorithm for sam-
pling EFO-1 queries from a Knowledge Graph of
any arity, detailed in Algorithm 1. We adopt the
general sampling approach for knowledge graphs

Flg({Nj(e)}), )

f(g(N;(e),r)



KHG Embedding f(h, r) Estimate Function
HypE e; @ e;j ®(r, g({Nj(e)}))
m-DistMult e ®ej @(r,g({Nj(e)}))
m-CP ei ®ej ®(r,g({Nj(e)}))
HSimplE e; @ shift(e;,len(e;)/a)  ®(r,g({N;(e)}))

Table 5: Closed form foward estimation function f for KHG representations.

from (Wang et al., 2021c). Given a graph G and
query type t, we randomly select a node as the root
answer. From there, we sample a hyperedge to
determine the relation type and its neighbors. If
the operation is projection, we randomly choose
a neighboring node as the answer for the subse-
quent query and recursively sample based on the
next operation. The key distinction from ordinary
sampling is that the position of the sampled neigh-
bor may differ between sub-queries a; and asg; for
example, in (e, e2,x) and r2(z, e, e4,y), the
varaible x can occupy different positions. To ac-
commodate these differences, position information
is stored for both backward and forward passes.

C Complexity and Runtime Analysis

As shown in Table 6, if we consider the inference
time for any transformer model to be approximately
0.5 seconds per batch, it is evident that the compu-
tational time for the iterative model grows with the
number of nodes in the Query Operator Tree.

Let P represent the number of projection nodes
and L the number of logical nodes in the query
operator tree. The total number of nodes in the
query operator tree can be expressed as:

n=P+ L,

where n denotes the total number of nodes.
Time Complexity:

* Single Pass Model: In the single-pass model,
only one transformer inference is required for
all queries, which can be represented as O(1).

LKHGT Time Complexity: In the LKHGT
framework, the time complexity primarily
stems from the number of transformer in-
ferences required. Each query type necessi-
tates processing through the transformer for
each node in the operator tree. Therefore, for
LKHGT, the time complexity is:

O(n).
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Algorithm 1 Ground Query Type

Require: G is KG with arity >=2.
function SAMPLEQUERY (T, q)
T is an arbitrary node of the Knowledge
graph
q is the query structure
if g.operation is projection then
Sample edge to obtain relation r and
neighbor set n
RelationType + r
NextAnswer <— random select n
NeighborSet <— n — {T, Next Answer}
Store current position of T in previous
edge (if any) and current sampled edge
Subquery < SampleQuery(NextAnswer,
Q)
return (T.op, RelationType,
borSet, SubQuery)
else if g.operation is negation then
return (T.op, SubQuery)
else if g.operation is union or intersection
then OperationResult < []
for T.subquery_structure do
OperationRe-
sult.append(SampleQuery(T.subquery_structure,

Q)

Neigh-

end for
return (T.op, OperationResult)
end if
end function




Query Type(/s) Single Pass (LSGT) Iterative Model (LKHGT)

Ip 0.5187 0.7516
2p 0.5449 1.5486
2i 0.5901 1.7755
pi 0.5096 2.4583
ip 0.5480 2.4869
2in 0.5375 1.8202
pin 0.5310 2.5221
pni 0.5752 2.5202
2u 0.5634 1.7913
up 0.5366 2.4643

Table 6: Query Type Process Time (in seconds) for 1024 Queries per Batch

Space Complexity: Assume there are a total of
8 token types for both the Logical Encoder and
the Projection Encoder. Each token type has a
unique set of Query, Key, and Value matrices. Thus,
the total number of parameters required for self-
attention in LKHGT is:

O(8d?),

where d is the dimensionality of the embeddings.
In contrast, the native self-attention mechanism has
a space complexity of:

O(d?).

The space complexity for other components of the
model remains consistent with the original trans-
former architecture.
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