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Abstract
Complex Query Answering (CQA) has been001
extensively studied in recent years. In order to002
model data that is closer to real-world distribu-003
tion, knowledge graphs with different modali-004
ties have been introduced. Triple KGs, as the005
classic KGs composed of entities and relations006
of binary, have limited representation of real-007
world facts. Real-world data is more sophisti-008
cated. While hyper-relational graphs have been009
introduced, there are limitations in representing010
relationships of varying arity that contain enti-011
ties with equal contributions. To address this012
gap, we sampled new CQA datasets: JF17k-013
HCQA and M-FB15k-HCQA. Each dataset014
contains various query types that include logi-015
cal operations such as projection, negation, con-016
junction, and disjunction. In order to answer017
knowledge hypergraph (KHG) existential first-018
order queries, we propose a two-stage trans-019
former model, the Logical Knowledge Hyper-020
graph Transformer (LKHGT), which consists021
of a Projection Encoder for atomic projection022
and a Logical Encoder for complex logical op-023
erations. Both encoders are equipped with Type024
Aware Bias (TAB) for capturing token interac-025
tions. Experimental results on CQA datasets026
show that LKHGT is a state-of-the-art CQA027
method over KHG and is able to generalize to028
out-of-distribution query types.029

1 Introduction030

Knowledge graphs (KG), comprising facts with en-031

tities as nodes and relations as edges, have gained032

much attention recently. Triplets (head, relation,033

tail) represent binary relational facts in KG. Un-034

der the Open World Assumption (OWA) (Ji et al.,035

2022), most existing graphs are considered incom-036

plete. Both embedding methods and message pass-037

ing approaches have been proposed to learn the038

underlying representations of entities and relations039

in KG, aiming to mine undiscovered facts.040

Complex Query Answering (CQA) in KG is an041

important task in Neural Graph Database (NGDB)042

(Ren et al., 2023). In NGDB, KG serves as the 043

data source, where CQA involves performing logi- 044

cal queries over incomplete KG via parameteriza- 045

tion of entities, relations, and logical operators like 046

projection, negation, conjunction, and disjunction. 047

Various neural query approaches have been devel- 048

oped to infer missing links in KG and enrich the 049

answer set. 050

Existentially quantified First Order queries with 051

a single variable (EFO-1) are the primary type of 052

complex query. While classic KG representations 053

(Trouillon et al., 2016) excel in one-hop inference, 054

they fall short for complex queries. Different ap- 055

proaches have been proposed for answering EFO-1 056

queries. Embedding models (Chen et al., 2022; Ren 057

and Leskovec, 2020; Zhang et al., 2021) model en- 058

tities and relations in vector spaces, transforming 059

queries into operator tree formats, with logical op- 060

erators interacting with entity embeddings. Other 061

methods, like CQD (Arakelyan et al., 2021) and 062

LMPNN (Wang et al., 2023), utilize pretrained KG 063

embeddings to tackle EFO-1 queries. CQD for- 064

mulates logical inference as an optimization prob- 065

lem, while LMPNN treats EFO-1 queries as query 066

graphs, instantiating nodes with pretrained embed- 067

dings and executing message passing to predict 068

answer embeddings. 069

However, less attention has been given to com- 070

plex queries beyond binary relations. Most cur- 071

rent models focus on ordinary KG, despite the 072

abundance of n-ary facts in modern large KG. Hy- 073

pergraphs and hyper-relation graphs are suitable 074

for constructing KG to accommodate n-ary rela- 075

tions. StarQE (Alivanistos et al., 2022) introduces 076

hyper-relational graphs in WD50K-QE, where each 077

triple is built from qualified statements (head, re- 078

lation, tail, qp), with qp as contextual information. 079

However, hyper-relational graphs differ from hy- 080

pergraphs; they treat n-ary facts as triples with sup- 081

porting facts, focusing on query answering. Hyper- 082

graphs better represent entities with equal contribu- 083
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tions in relations. For instance, the relation coau-084

thor(authorA,authorB,authorC) can be correctly de-085

picted by a hyperedge in a hypergraph but mis-086

represented in a hyper-relational graph. Efforts087

have been made to create Knowledge Hypergraph088

(KHG) embeddings in M-FB15k (Fatemi et al.,089

2020) and JF17k (Wen et al., 2016), primarily for090

link prediction. However, little work has focused091

on CQA in KHG, with LSGT (Bai et al., 2024) be-092

ing the only study investigating CQA with ordered093

hyperedges, using binary relations for intermediate094

variable nodes.095

In this paper, we propose a novel two-stage trans-096

former model, Logical Knowledge Hypergraph097

Transformer (LKHGT), a transformer-based ap-098

proach for reasoning over KHGs, extending CQA099

from binary to n-ary relations. LKHGT consists of100

two encoders: the Projection Encoder, which pre-101

dicts answers for variables in atomic hyperedges,102

and the Logical Encoder, which derives interme-103

diate variable embeddings for logical operations.104

Both encoders are equipped with Type Aware Bias105

(TAB), which helps identify each input token type106

and capture their interactions. We define the logi-107

cal query in EFO-1 Disjunctive Normal Form and108

construct ordered query hypergraphs. Each ordered109

hyperedge represents an atomic formula, including110

a predicate and potentially a negation operator.111

We investigate LKHGT’s performance against112

baseline models. To ensure fair experiments, we113

included multiple methods capable of reasoning on114

hypergraphs and extended LMPNN (Wang et al.,115

2023) to relational ordered knowledge hypergraphs,116

utilizing pretrained KHG embeddings with logical117

inference capabilities.118

Our experiments show that LKHGT outperforms119

other n-ary CQA models in ordered hyperedge set-120

tings. The model generalizes from edges of bi-121

nary to arity N and achieves promising results. Af-122

ter learning basic logical operations, our model123

also demonstrates good performance on out-of-124

distribution queries. By comparing the Logical125

Encoder and fuzzy logic (Zadeh, 1988) for logical126

operations, we show that our transformer-based en-127

coder outperforms neural symbolic methods using128

fuzzy logic. Thus, our approach bridges the gap129

between CQA and Knowledge Hypergraphs.130

2 Related Works 131

2.1 Knowledge Hypergraphs Embedding 132

BoxE (Abboud et al., 2020), HypE, ReAlE (Fatemi 133

et al., 2021, 2020), n-Tucker (Liu et al., 2020), m- 134

TransH (Wen et al., 2016) and RAE (Zhang et al., 135

2018) are Knowledge Hypergraphs Embeddings 136

that considered n-ary facts in the form of r(e1, e2 137

. . .). These methods aims to perform link predic- 138

tion by encoding entities and relations into embed- 139

dings continuous spaces. These models are equiva- 140

lently performing projection on atomic hyperedge. 141

Although they can perform well in atomic query 142

projection task, they lack the ability to perform 143

multi-hop query, where performance degrades as 144

projection continues on sub-queries. To enable log- 145

ical operations on these embeddings, fuzzy logic 146

(Zadeh, 1988; Chen et al., 2022) or message pass- 147

ing methods (Wang et al., 2023) can be applied. 148

2.2 Complex Query Answering 149

Complex Query Answering (CQA) leverages var- 150

ious approaches, including transformers, query 151

embeddings, neural-symbolic methods, and mes- 152

sage passing techniques. The introduction of Logi- 153

cal Message Passing Neural Networks (LMPNN) 154

(Wang et al., 2023) has facilitated the use of dif- 155

ferent pretrained Knowledge Graph (KG) embed- 156

dings, which serve as initial entity and relation em- 157

beddings. Final answer embeddings are obtained 158

through message passing on query graphs, utilizing 159

embeddings such as RESCAL (Nickel et al., 2011), 160

TransE (Bordes et al., 2013), DistMult, ComplEx 161

(Trouillon et al., 2016), ConvE (Dettmers et al., 162

2018), and RotatE(Sun et al., 2019). 163

For query embeddings, GQE (Hamilton et al., 164

2019) addresses queries with existential quantifiers 165

and conjunctions, while FuzzQE (Chen et al., 2022) 166

employs fuzzy logic to define logical operators. In 167

the neural-symbolic domain, methods like BetaE 168

(Ren and Leskovec, 2020), ConE (Zhang et al., 169

2021), QUERY2BOX (Ren et al., 2020) and ENeSy 170

(Xu et al., 2022), project symbols into continuous 171

spaces. MLPMix (Amayuelas et al., 2022) and 172

NewLook (Liu et al., 2021) utilize MLPs and at- 173

tention mechanisms for CQA. Additionally, QTO 174

(Bai et al., 2023b), CQD (Arakelyan et al., 2021) 175

and FIT (Yin et al., 2024) apply combinatorial op- 176

timization to query computation trees. 177

Since the introduction of Transformers (Vaswani 178

et al., 2023), several methods have applied this 179

architecture to CQA. SQE (Bai et al., 2023a) lin- 180
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earizes EFO-1 queries for sequence encoding, Path-181

Former (Zhang et al., 2024) recursively process182

EFO-1 queries tree like NQE (Luo et al., 2023) and183

Tree-LSTM did (Tai et al., 2015). While QTP (Xu184

et al., 2023) separates simple and complex queries,185

employing distinct neural link predictors and query186

encoders.187

Additionally, HAN (Wang et al., 2021b) imple-188

ments transformers for link prediction in knowl-189

edge graphs, and KnowFormer (Liu et al., 2024a)190

tailors the transformer for simple query answering.191

TEGA (Zheng et al., 2025) applies inductive biases192

based on token type interactions for EFO-syntax193

queries.194

Previous studies on CQA have primarily fo-195

cused on knowledge graphs, with extensive re-196

search on ordinary knowledge graphs addressing197

ordinary query answering (OWA) by predicting198

unseen triples. EFO-1 queries can be effectively199

answered when the arity equals two. However,200

few attempts have been made to extend these ap-201

proaches to general n-ary facts in hyperedge or202

hyper-relational formats.203

2.3 N-ary Graph Reasoning204

First N-ary reasoning problem introduced in the205

field of CQA is performed on hyper-relational206

knowledge graph. StarQE (Alivanistos et al., 2022)207

utilize StarE (Galkin et al., 2020) as graph en-208

coder for StarQE, equip it with message passing209

to have the ability to deal with multi-hop queries.210

TransEQ (Liu et al., 2024b) is an query embedding211

models that generalize star expansion (Agarwal212

et al., 2006) for hyper-edges to hyper-relational213

graphs, then use encoder-decoder to capture struc-214

tural information and semantic information for215

hyper-relational knowledge graph completion task.216

NeuInfer (Guan et al., 2020) chose to represent n-217

ary fact as a primary triple coupled with a set of its218

auxiliary descriptive attribute-value pair(s) and use219

neural network to perform knowledge inference.220

NQE (Luo et al., 2023) use dual-heterogeneous221

Transformer encoder and fuzzy logic (Zadeh, 1988)222

to recursively process hyper-relational query tree.223

Hyper-relational edges encode entities with possi-224

bly different relation in a single triples, which does225

not exhibit same characteristics as hyperedges. The226

encoder input format for NQE generalize n-ary in-227

puts, thus it can be naturally extend to be used in228

hyper-edges query answering. SessionCQA (Bai229

et al., 2024), The first CQA model incorporates the230

concept of hyper-edges, encoding user sessions as231

hyper-edges for item recommendations. However, 232

its query type does not follow a fully hyper-edge 233

setting; only the initial first hop is represented as 234

a hyper-edge, while subsequent hops use binary 235

relation edges. The query input format for Session- 236

CQA can also naturally extend for N-ary facts. 237

3 PRELIMINARIES 238

3.1 Knowledge Hypergraphs 239

A knowledge hypergraph G = (E ,R,H), where 240

E is the set of entities e in the knowledge hyper- 241

graph,R is the set of relations r, andH is the set 242

of ordered hyperedges h = r(e1, . . . , ek) ∈ H, 243

where e1, . . . , ek ∈ E and r ∈ R. The arity of a 244

hyperedge h is defined as k = ar(r), where each 245

relation type has a fixed arity size. Each position 246

in a relation type has a specific semantic meaning 247

that constructs the ordered hyperedge. Although 248

through star expansion (Agarwal et al., 2006) of 249

hyperedge, an hyperedge can be converted to ho- 250

mogeneous graph, however structural information 251

will be loss in process. 252

3.2 EFO-1 Query in Hypergraphs 253

In this paper, we will focus on Existential First 254

Order queries with a single free variable with logi- 255

cal formulas (EFO-1) under the disjunctive normal 256

form in hypergraph settings. In the following dis- 257

cussions, we will refer to hyper-projection simply 258

as projection without explicitly specifying it. We 259

aim to emphasize the unique properties of projec- 260

tions within hypergraph structures. 261

An atomic formula a is composed of term, rela- 262

tion and variable. A simplest atomic formula can 263

be intuitively represented by an ordered hyperedge 264

h = r1(e1, ..., vk), where e1 is a term, vk is an vari- 265

able at position k and r1 is the relation. Let ar(r) 266

is the arity of the given relation r. A knowledge 267

graph is a relational knowledge hypergraph where 268

for all r ∈ R, ar(r) = 2. An atomic formula can 269

be negated by adding ¬ to form ¬r(e1, ..., vk). A 270

first order formula can be iteratively constructed by 271

atomic formula a using connectives conjunction ∧ 272

and disjunction ∨. Quantifiers can be added to vari- 273

ables in a using quantifiers like ∃ and ∀. Variables 274

without quantifiers is considered as free. 275

Given a knowledge hypergraph G, an EFO-1 276

query q is defined as a first-order formula in the 277

below Disjunctive Normal Form (DNF), 278
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𝜙 𝑦, 𝑥! = ∃𝑥!Authorship(𝑦,Person A, Person B)∧ (¬Editorship(𝑥!, Person A)) ∧Publication(𝑦, 𝑥!, Year 1)

(b) Query Hypergraph

(n)
hp hp

𝑥!:= ¬Editorship(
?, Person A

)

𝑥! := Authorship(
𝑦, Person A, Person B

)
hp

𝑦 := Publication(
𝑦, 𝑥!, Year 1

)

(a) Query Operator Tree with (Hyper) Projection

i
Year 1

𝑦
Person B

Person A

Person A 𝑥!

Authorship

¬Editorship
Publication

Figure 1: Example of LKHGT processing query tree of ip type

q(y, x1, ..., xn) = ∃x1, . . . ,∃xm[(a11∧a12∧· · ·279

∧ a1n1) ∨ · · · ∨ (ap1 ∧ ap2 ∧ · · · ∧ apnp)] (1)280

where y is the only free variable, and xi for281

1 ≤ i ≤ m are existential variables. Each brackets282

represent an complex query where each aij is an283

atomic formula with constants y, xi and variables284

that can be either negated or not. To address the285

EFO-1 queries, one must determine the answer286

set A[Q,KG] such that for each a ∈ A[Q,KG],287

q(y = a, x1, ..., xn) returns true.288

Considering a query in the form of289

r1(y1, e1, e2) ∧ ¬r2(x1, e3) ∧ r3(y1, x1, e4)290

there are 2 ways to represent EFO-1 queries in291

hypergraphs, which are query graphs and operator292

tree.293

Operator tree. In operator tree, draws from exis-294

tential quantifiers, allowing us to transform first-295

order logic into corresponding set logic operations.296

Each node itself is an operator node that corre-297

sponds to set logical operations like, projection,298

conjunction, disjunction, negation. In knowledge299

hypergraph settings, each projection node consists300

of set of entities for itself and a variable nodes in301

random arity position. As Figure 1 shown, each302

atomic query is represented by the projection nodes.303

Then, two projection nodes pointed to the intersec-304

tion node, and the intersection node represent the305

conjunction of answer sets from its pointers. Inter-306

section node use the intersected variable to obtain307

the final answer.308

Query Hypergraph. In Figure1, it shows an alter-309

native way to represent EFO-1 query following the310

style of query graph in LMPNN (Wang et al., 2023).311

Each hyper edge representing an atomic formula312

containing edge information like relation types and313

negation information. The nodes involved are ei- 314

ther constant symbol, free variable or existential 315

variable. 316

In this paper, each Knowledge Hypergraph EFO- 317

1 query is presented in the form operator tree for 318

LKHGT. As we can see that in order to allow trans- 319

former to perform message passing alike operation 320

through the self-attention mechanism, we have to 321

encode whole query in a single pass. When trans- 322

former based model encode whole query graphs as 323

a sequence of tokens, it becomes more challenging 324

for transformers to focus on solving each atomic 325

query in the multihop-query. Thus, operator tree is 326

more suitable for our choice of modeling. 327

4 Logical Knowledge Hyper Graph 328

Transformer 329

In this section, we will describe the how operator 330

tree is used to represent complex query, and explain 331

how the 2 stage encoder, Logical Knowledge Hyper 332

Graph Transformer (LKHGT), works given a query 333

tree input. In order to allow precise estimation of 334

answer set, we propose to use 2 stage encoder to 335

process the query tree iteratively. For example, re- 336

fer to Figure 2, we can see that each projection 337

node at bottom level first receive necessary infor- 338

mation like, negation, relation, entities and position 339

of variable node inside the hyperedge. Then these 340

information is fed into projection encoder for each 341

projection. For second hop of the atomic query, 342

previous projected variable embedding is fed as 343

one of the input. Projection is performed using 344

the answer set embeddings output from projection 345

encoder. Finally, intersection is then performed 346

with logical encoder, which is done by receive all 347

variable embeddings output from each projection 348

encoder. Although using iterative method to pro- 349
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Projection Transformer
Encoder with TAB

[¬][Editorship][Person A][VAR]

[¬][Editorship][Person A][VAR]

Projection Transformer
Encoder with TAB

[Publication][VAR][slot][Year 1]

[Publication][VAR][slot][Year 1]

Projection Transformer
Encoder with TAB

[Authorship][Person A][VAR]

[Authorship][Person A][VAR]

Logical Transformer 
Encoder with TAB

[i][slot1][slot2]

[i][slot1][slot2]

Final output embedding

Relation
Embed.

Negation
Emb.

Entity
Embed.

Shared VAR
Embed.

[¬]

[Editorship]

[Person A]
[VAR]

[¬
]

[Editorship]

[Person A]

[n]

[VAR]

[p]

[n]

[p]

[e]

[y]

[e]
[y]

Type-Aware Bias (TAB)
(QB)

Original Attention Logits
(QK)

Figure 2: Example of LKHGT processing query tree

cess query tree is slower comparing to encoding350

whole query graph at once, we maximize the cor-351

rectness of answer set embeddings output for each352

atomic formula.353

4.1 Tokens Input and Output354

Operators type included in operator tree are pro-355

jection (p), negation (¬), intersection (∧), union356

(∨). As defined, each complex query is composed357

of atomic formula which is made of relaiton (r),358

subject (s), variable (e). Overally speaking, there359

are 8 types of token. Relation, existential variable,360

free variable, entity and negation type of tokens361

will be fed into projection encoder. Projection, in-362

tersection, union types of token will be fed into363

logical encoder.364

Projection Encoder Given the fact that negation365

can only applied to atomic formula which is repre-366

sented as projection operation, we chose to process367

negation operation in projection encoder. Projec-368

tion Encoder projects tokens into continuous space369

according to their token type. If negation is in-370

volved, the input tokens will be,371

tokens = Tp = [n, r1, e1, x2, ...] (2)372

The corresponding projected sequence will be,373

X = WpTp = [Wnn,Wrr1,Wee1, ...] ∈ Rn×d

(3)374

where Wp ∈ Rd×dis the linear projection weight,375

where p ∈ {n, r, x, e, y}. Since projection encoder376

is performing projection over ordered hyperedge,377

we will also add absolute positional encoding to378

entities node and variable node. Let the set of nodes379

be N for an hyperedge, then the input embeddings380

will be.381

Xv∈N = Xv∈N + PEpos (4)382

Logical Encoder Logical encoder will focus in 383

dealing with logical task that involves more than 1 384

projection node, which is intersection (conjunction) 385

and union (disjunction). These nodes will receive 386

pointers from more than one operators node, we use 387

transformer logical encoder to encode all projected 388

variable, the input tokens for logical encoder will 389

be, 390

tokens = Tl = [i/u, p1, p2, p3, ...] (5) 391

The corresponding projected sequence will be, 392

X = WlTl = [Wi/u{i/u},Wpp1, ...] ∈ Rn×d

(6) 393

where Wl ∈ Rd×dis the linear projection weight, 394

where l ∈ {i, u, p}. Both projected sequence 395

is then further process with modified version of 396

(Vaswani et al., 2023). Finally, Projection Encoder 397

will output embeddings of variable node in hyper- 398

edge and Logical Encoder will output the embed- 399

dings of the logical operator tokens. 400

4.2 Type Aware Bias (TAB) for Projection 401

Encoder and Logical Encoder 402

Inspired by the idea of introducing inductive bias 403

for meta paths in (Wang et al., 2021b), LKHGT 404

also introduced modified inductive bias tailored 405

for CQA task. With the given 8 token types, we 406

can observe there are types of token interaction 407

bias to be added into self attention matrix. For 408

Projection Encoder there are P 5
2 edge types for 409

token types [n, r, x, e, y]. For Logical Encoder, 410

there are P 3
2 edge types for token types. In order to 411

cater for these edge types differences, we construct 412

the attention matrix with Type Aware Bias (TAB) 413
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as below:414

eij =
xiW

Q
o (xjW

k
o +Bij)

T

√
d

, aij = softmax(eij)

(7)415416

zi =
n∑

j=1

aij(xjW
V
o ) (8)417

Where (WQ,WK ,W V ) is the linear projection418

matrix ∈ Rd×d and {o, i, j} can be the eight to-419

ken types t ∈ {n, r, x, e, y, i, u, p}, Bij is the Type420

Aware Bias (TAB) vector in token interaction bias421

matrix B ∈ R|t|×|t|×d. These bias able to differen-422

tiate the token types interaction and help facilitates423

the capture of nuanced interactions among token424

types, allowing the transformer to adaptively weigh425

the importance of each token based on its role in426

the context.427

In our case, we can treat Transformer as a spe-428

cial case of GNN. For Projection encoder, each429

hyperedge is an fully connected graph input in the430

perspective of GNN. We are doing aggregation with431

attention on this fully connected graph and predict432

the embeddings of the projection node using trans-433

former self-attention mechanism. This aggregation434

process not only enriches the embeddings of the435

projection node but also ensures that the model436

can dynamically adjust to the significance of dif-437

ferent tokens based on the context. The result is a438

robust embedding that encapsulates the rich rela-439

tional structure inherent in the input data.440

4.3 Transformer as the replacement for Fuzzy441

Logic442

Transformers serve as a compelling alternative to443

fuzzy logic in our CQA models due to their supe-444

rior representation capabilities and scalability. Un-445

like fuzzy logic-based methods (Bai et al., 2023b;446

Yin et al., 2024) that requires pre-computing adja-447

cency matrices, which is impractical due to com-448

putational costs of O(N2) for binary relations and449

O(Nk) for k-ary relations in our case. Transform-450

ers efficiently use attention mechanisms to gener-451

ate detailed low-dimensional embeddings. This452

aligns with approaches that use low-dimensional453

embeddings with fuzzy operators, like NQE, but454

provides a more adaptable framework, offering a455

better contextual understanding of projected nodes’456

embeddings through TAB. Thus, within the con-457

straints of low-dimensional vector representations,458

transformers provide a more powerful and adapt-459

able framework for processing and representing460

information in CQA models.461

4.4 Training LKHGT 462

After obtaining the output embeddings f ∈ Rd, 463

we can compute the output label of the entity by 464

a simple MLP decoder and have output ŷ ∈ R|E|. 465

Given a the query embedding ŷ, we can first use a 466

softmax function to obtain the probability scores 467

of query embedding between all entity, 468

σ(ŷ) =
eŷi∑
j e

ŷj
(9) 469

Then we can construct the cross-entropy loss to 470

maximize the log probability of ŷ matching the 471

answer a, 472

L = − 1

N

∑
i

log(σ(ŷ)) (10) 473

where N is the batch size. 474

5 Experiments 475

In this section, we will describe the experiment 476

set up including dataset, baselines and evaluation 477

methods. 478

5.1 Dataset 479

Since Knowledge Hypergraph CQA is a subfield of 480

CQA problem that has not been investigated before, 481

thus we created custom Dataset JF17k-HCQA and 482

M-FB15k-HCQA. Following the rationale from bi- 483

nary CQA sampling methods (Wang et al., 2021c), 484

we modified the sampling methods into hypergraph 485

version (Appendix B), created datasets consists of 486

query types (1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN 487

INP PIN PNI), total 14 types, including all logical 488

operation. Statistics for the number of examples 489

sampled for each query type are listed in Table 4. 490

5.2 Baselines 491

For baseline models, we chose NQE (Luo et al., 492

2023) and LSGT (Bai et al., 2024) as our base- 493

line models. NQE is a method that encode hyper- 494

relational facts from HKG into embeddings. LSGT 495

encode query graph information like, nodes ids, 496

graph structure and logical structure using trans- 497

former.As NQE (Luo et al., 2023) uses hyper- 498

relational edges as input for its encoder. So, we 499

followed the implementation of NQE in (Bai et al., 500

2024) and modified our data format to feed it into 501

NQE. For LSGT, we transformed our data into 502

unified id format for input. For fair comparison, 503

we replace all models encoder with simple basic 504
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Table 1: MRR results of different CQA models on two KHGs. AP represents the average score of EPFO queries and
AN represents the average score of queries with negation. The boldface indicates the best results for each KG.

KHG Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

JF17k HLMPNN 45.66 6.58 12.24 46.03 47.27 15.52 7.91 25.45 12.75 10.43 14.49 10.83 7.26 8.29 24.38 10.26
LSGT 49.51 21.73 13.10 50.46 34.85 32.07 23.00 22.27 20.33 16.05 13.45 8.44 10.10 12.39 29.70 12.09
NQE 56.19 38.29 34.72 64.88 70.40 53.95 38.24 29.11 38.39 22.51 27.80 15.04 17.84 21.83 47.13 21.00
LKHGT 58.19 41.87 38.76 68.47 42.71 57.48 42.01 33.38 41.70 26.28 18.26 20.66 18.32 24.87 47.17 21.68

M-FB15k HLMPNN 47.86 28.04 23.02 45.78 45.65 32.89 26.12 25.35 26.27 17.32 22.58 21.98 9.47 15.85 33.44 17.44
LSGT 44.15 30.35 9.87 39.47 31.19 30.01 28.57 16.46 27.28 16.55 10.10 10.59 11.37 19.29 28.59 13.58
NQE 46.43 33.43 29.80 43.75 48.84 34.94 32.09 16.83 30.20 22.26 26.28 20.19 17.51 24.95 35.15 22.24
LKHGT 46.81 35.04 30.66 45.38 40.31 38.65 32.63 27.14 31.37 22.85 19.65 26.50 16.21 24.96 36.44 22.03

Table 2: MRR results for LKHGT in fuzzy settings, excluding absolute positional encoding and under a variable
cardinality configuration.

KHG Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

JF17k LKHGT 58.19 41.87 38.76 68.47 42.71 57.48 42.01 33.38 41.70 26.28 18.26 20.66 18.32 24.87 47.17 21.68
LKHGT w/ fuzzy. 57.26 40.62 37.95 65.48 71.04 54.46 40.25 29.87 40.51 23.00 27.58 18.56 19.65 22.80 48.60 22.32
LKHGT w/o abs. 57.40 41.01 37.51 67.87 41.94 57.02 41.63 31.56 40.72 26.19 17.75 20.92 18.53 25.00 46.30 21.68
LKHGT w/ var cardinality 57.55 41.31 38.35 67.13 41.61 56.68 41.23 32.02 40.79 25.79 17.69 21.04 18.58 24.81 46.30 21.59

LKHGT w/ full training set 58.43 43.89 42.75 69.11 75.19 58.19 43.16 32.05 42.51 26.26 31.62 23.18 18.74 25.35 51.70 25.03
LKHGT w/ full train & var card. 58.54 44.40 43.58 69.20 74.46 58.56 43.56 32.91 42.90 26.48 31.51 24.06 19.30 25.59 52.01 25.39

transformer layer without modifying the other im-505

plementation details. Transformer embedding size506

is set to be 400 for iterative model like NQE and507

LKHGT. For LSGT, its embedding size is set to508

be 1024 in order to have it converge. Aside from509

transformer based model, we also implemented510

HLMPNN (Appendix A), a hypergraph version of511

LMPNN (Wang et al., 2023), which is set to have512

embedding size of 200. All models are trained on513

single 3090 GPU with 400 epochs.514

5.3 Evaluation515

In all experiments, we follow the common prac-516

tice, sampled query from Knowledge Hypergr-517

pahs Gtrain,Gval,Gtest, where Etrain ⊂ Eval and518

Eval ⊂ Etest. For all models, we will train on all519

query types except [3p, 3in, 3i, inp], in order to test520

the generalization of logical operations. We select521

the mean reciprocal rank (MRR),522

MRR(q) =
1

||v||
∑
vi∈v

1

rank(vi)
(11)523

as the evaluation metric to evaluate the ranking. For524

each query instance, we initially rank all entities,525

excluding those identified as easy answers, by their526

cosine similarity to the query variable embedding.527

The rankings of the hard answers are then used to528

calculate the Mean Reciprocal Rank (MRR) for that529

particular query instance. Finally, we compute the530

average of the metrics across all query instances. In531

this paper, we report and compare the MRR results.532

5.4 Results533

Table 1 presents the MRR results of LKHGT and534

other baseline models for answering EFO-1 queries535

across the two CQA datasets. It demonstrates that 536

LKHGT achieves state-of-the-art performance on 537

average for both EPFO and negation queries for n- 538

ary hypergraph queries. When comparing LKHGT 539

with transformer-based and message-passing meth- 540

ods, we observe that the message-passing methods 541

underperform in complex query types. Addition- 542

ally, when comparing the Iterative Model (LKHGT 543

& NQE) to the Sequential Model (LSGT), the It- 544

erative Model shows superior performance. This 545

disadvantage may be attributed to their approach of 546

encoding the entire query at once, which can hinder 547

performance on complex queries. In contrast, the 548

LKHGT model shows notable improvements with 549

a logical encoder instead of fuzzy set operation, 550

enhancing its ability to handle conjunctions and 551

disjunctions effectively.LKHGT surpasses NQE on 552

negation queries by integrating negation directly 553

into the Projection Encoder, rather than using fuzzy 554

logic. This suggests that fuzzy logic may not be 555

sufficient for addressing hypergraph complex query 556

answering tasks. The 1p, 2p, and 3p performance 557

of LKHGT outperforming NQE is evidence that 558

Type Aware Bias is contributing, as these query 559

types do not involve the use of logical encoder. This 560

distinction from the NQE model suggests that this 561

bias is better at capturing the different interactions 562

of token inputs. Overall, these findings confirm that 563

the two-stage architecture of LKHGT successfully 564

enhances performance in complex query scenarios, 565

demonstrating its effectiveness and robustness in 566

the context of query answering. 567

However, based on the performance of the LKHGT 568

model in 3i and 3in, we observe that it is signif- 569
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Table 3: MRR results for CQA models under full training set.

KHG Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

JF17k LKHGT 58.43 43.89 42.75 69.11 75.19 58.19 43.16 32.05 42.51 26.26 31.62 23.18 18.74 25.35 51.70 25.03
LSGT 50.56 21.85 17.75 53.34 53.71 32.06 20.78 22.49 18.33 14.00 16.40 6.05 7.44 8.59 32.32 10.50
HLMPNN 45.26 7.26 13.38 46.08 48.36 16.01 8.54 24.99 13.28 10.35 15.49 11.48 7.32 8.24 24.80 10.58
NQE 56.37 39.18 39.21 65.41 72.37 55.36 39.22 29.05 39.36 21.68 28.83 20.25 16.21 22.13 48.39 21.82

Table 4: Statistics for each query types

Dataset 1P Others

Train 60,000 20,000
Valid 10,000 10,000
Test 10,000 10,000

icantly lower than NQE. This discrepancy arises570

because the logical encoder did not encounter the571

input combinations generated by the output em-572

bedding of the projection encoder and the logical573

encoder itself, preventing it from effectively pro-574

cess the input. To provide a fair comparison of575

the effectiveness of LKHGT, we trained another576

instance using the full training set. The results are577

presented in Tables 2 and 3, where its performance578

in 3i and 3in shows significant improvement.579

5.5 Ablation Study580

In the ablation study, we conduct further experi-581

ments to justify the effects of the logical encoder582

and the positional encoding of LKHGT. We also ex-583

amine how input cardinality affects the logical en-584

coder, comparing processing embeddings in pairs585

versus handling multiple embeddings simultane-586

ously for operations like intersection and union. All587

experiments are performed on queries over JF17k588

with same settings as before. Table 2 presents the589

results of the ablation study. From the results, we590

observe that without the positional encoding, the591

model’s performance degrades, indicating the im-592

portance of this bias for identifying the position593

of each nodes to enhance performance. This may594

be due to the fact that each position contains a595

different semantic meaning within an hyperedge596

of ordered knowledge hypergraph. Such position597

information helps identify the entity properties in598

hyperedges. When using LKHGT with fuzzy logic,599

the results are still slightly better than NQE ex-600

cept for 3i and 3in due to the reason stated before,601

suggesting that the transformer-based projection602

encoder improve performance in negation and pro-603

jection, and for logical encoder, it able to replace604

fuzzy logic operation, given that all types of in-605

put combination has been trained beforehand. For606

the Operator Cardinality, interestingly, for the logi- 607

cal encoder, processing all inputs simultaneously 608

outperforms handling them in pairs. 609

6 Conclusion 610

In this paper, we present the Knowledge Hyper- 611

graph CQA dataset to bridge the current gap in com- 612

plex question answering (CQA) within hypergraph 613

settings. We propose LKHGT to answer complex 614

queries over Knowledge Hypergraphs, particularly 615

EFO-1 queries. LKHGT achieves strong perfor- 616

mance through its two-stage architecture with Type 617

Aware Bias (TAB). In the ablation study, we demon- 618

strate that the use of absolute positional encoding 619

further enhances performance. Our research effec- 620

tively addresses the gap in EFO-1 query answer- 621

ing tasks in hypergraph settings while emphasizing 622

the advantages of transformer-based approaches 623

for logical operations. The experiments show that, 624

given sufficient training on various query types, 625

LKHGT is the state-of-the-art model for current 626

CQA tasks involving Knowledge Hypergraphs. 627

7 Limitation 628

A key limitation of our model is the time com- 629

plexity linked to the projection and logical en- 630

coder components. The shift from fuzzy logic to 631

a transformer-based logical encoder has increased 632

complexity due to a larger parameter count and 633

attention mechanisms. Additionally, the inductive 634

bias requires training all combinations of token 635

interactions, which can introduce noise if not prop- 636

erly managed, resulting in suboptimal performance 637

and longer training times. 638

Potential Risks The increased time complexity 639

may lead to longer training and inference times, 640

limiting practical applications. If the inductive bias 641

is not addressed effectively, it might mislead the 642

model toward noise rather than meaningful pat- 643

terns. Furthermore, reliance on transformer archi- 644

tectures may create scalability challenges when 645

dealing with larger datasets or complex tasks. Ad- 646

dressing these limitations and risks is crucial for 647

the model’s effectiveness. 648
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Supplimentary Materials864

A Appendix A865

A.1 Inspiration from LMPNN866

Many previous works emphasize hypergraph mes-867

sage passing (Agarwal et al., 2006; Yadati et al.,868

2019; Yadati, 2020), with some tailored for hyper-869

relational graphs. Notable attempts include StarE870

(Galkin et al., 2020) and GRAN (Wang et al.,871

2021a), which address one-hop queries on hyper-872

relational KGs. HR-MPNN (Huang et al., 2024)873

established the General Relational Ordered Hyper-874

graphs Message Passing Framework. Our baseline875

combines HR-MPNN (Huang et al., 2024) with876

pretrained embeddings, drawing inspiration from877

LMPNN (Wang et al., 2023).878

A.2 A Natrual Extension of Logical Message879

Passing Nueral Network to Answer880

Hypergraph Queries881

• Statement 1: Prove ρ({ei|(e, i) ∈882

Nj(h)}, r, j, 0) is a generalization of883

ρ(h, r, h2t, 0).884

Where Ni(h) as the positional neighborhood885

of a hyperedge h.886

887

Let ρ be the hypergraph logical mesage888

encoding function of four input parameters,889

including neighboring entity embedding,890

relation embedding, query node position, and891

logical negation information.892

Suppose that each edge with head at posi-893

tion 0 and tail at position 1, in the format of894

(h, 0)→ (t, 1) for edge with arity = 2. Then895

with the definition of the ordered hyperedge,896

there are 2 cases representing normal binary897

edge in hyperedge message encoding function.898

Their equivalent representation according to899

our definition:900

1. ρ(h, r, h2t, 0) = ρ(h, r, 1, 0)901

2. ρ(t, r, t2h, 0) = ρ(t, r, 0, 0)902

We simply replaced h2t and t2h flag with903

positional information.904

For example, suppose a particular905

edge with arity = 6, in the form of906

r(e1, e2, e3, e4, e5, x), we can use the mes-907

sage encoding function express in the form of908

ρ({e1, e2, e3, e4, e5}, r, 6, 0).909

910

• Statement 2: Suppose ρ(e0, r, 1, 0) = 911

ρ(h, r, h2t, 0) and ρ(h, r, h2t, 0) = f(h, r) 912

are true, where f is a binary function (e.g. 913

elementwise multiplication). 914

Prove ρ({ei|(e, i) ∈ Nj(e)}, r, j, 0) = 915

f(g({Nj(e)}), r) and is a generalization 916

of KG message encoding function, where 917

g({Nj(e)}) = f(f(e1, ...(f(en−1, en)))) is 918

a function that recursively apply f . 919

920

As in LMPNN (Wang et al., 2023), there are 921

2 types of KG embeddings, characterized 922

by their scoring functions, which are the 923

inner-product-based scoring function and 924

distance-based scoring function. The proof 925

for closed-form logical messages for KHG 926

representation is the same. Due to the fact 927

that the properties of recursive function g 928

does not affect the proving in LMPNN(Wang 929

et al., 2023), so as long as we can we prove 930

our recursive function g can obtain the same 931

equation for normal KG closed-form logi- 932

cal messages with arity = 2, we can prove that: 933

934

ρ({ei|(e, i) ∈ Nj(h)}, r, j, 0) = f(g({Nj(e)}), r) 935

Suppose we have an hyperedge q and j = 1, 936

with arity = 2. 937

Nj(q) = h 938

939
g(Nj(q)) = f(h, r) 940

941
ρ(h, r, h2t, 0) = ρ({ei | (e, i) ∈ Nj(e0)}, r, j, 0) 942

943
ρ({ei | (e, i) ∈ Nj(e0)}, r, j, 0) = f(h, r) 944

So for any edge with arity ≥ k 945

946

ρ({ei | (e, i) ∈ Nj(e0)}, r, j, 0) = f(g(Nj(e), r) 947

A.3 Closed-form logical messages for KHG 948

representation 949

Table 5 is a table of KHG embeddings that 950

can be express in the form of ρ({ei|(e, i) ∈ 951

Nj(e)}, r, j, 0) 952

B Sampling Algorithm for Knowledge 953

Hypergraph Query 954

In this section, we introduce the algorithm for sam- 955

pling EFO-1 queries from a Knowledge Graph of 956

any arity, detailed in Algorithm 1. We adopt the 957

general sampling approach for knowledge graphs 958

11



KHG Embedding f(h, r) Estimate Function

HypE ei ⊗ ej ⊗(r, g({Nj(e)}))
m-DistMult ei ⊗ ej ⊗(r, g({Nj(e)}))
m-CP ei ⊗ ej ⊗(r, g({Nj(e)}))
HSimplE ei ⊗ shift(ej , len(ej)/α) ⊗(r, g({Nj(e)}))

Table 5: Closed form foward estimation function f for KHG representations.

from (Wang et al., 2021c). Given a graph G and959

query type t, we randomly select a node as the root960

answer. From there, we sample a hyperedge to961

determine the relation type and its neighbors. If962

the operation is projection, we randomly choose963

a neighboring node as the answer for the subse-964

quent query and recursively sample based on the965

next operation. The key distinction from ordinary966

sampling is that the position of the sampled neigh-967

bor may differ between sub-queries a1 and a2; for968

example, in r1(e1, e2, x) and r2(x, e3, e4, y), the969

varaible x can occupy different positions. To ac-970

commodate these differences, position information971

is stored for both backward and forward passes.972

C Complexity and Runtime Analysis973

As shown in Table 6, if we consider the inference974

time for any transformer model to be approximately975

0.5 seconds per batch, it is evident that the compu-976

tational time for the iterative model grows with the977

number of nodes in the Query Operator Tree.978

Let P represent the number of projection nodes979

and L the number of logical nodes in the query980

operator tree. The total number of nodes in the981

query operator tree can be expressed as:982

n = P + L,983

where n denotes the total number of nodes.984

Time Complexity:985

• Single Pass Model: In the single-pass model,986

only one transformer inference is required for987

all queries, which can be represented as O(1).988

• LKHGT Time Complexity: In the LKHGT989

framework, the time complexity primarily990

stems from the number of transformer in-991

ferences required. Each query type necessi-992

tates processing through the transformer for993

each node in the operator tree. Therefore, for994

LKHGT, the time complexity is:995

O(n).996

Algorithm 1 Ground Query Type

Require: G is KG with arity >= 2.
function SAMPLEQUERY(T, q)

T is an arbitrary node of the Knowledge
graph

q is the query structure
if q.operation is projection then

Sample edge to obtain relation r and
neighbor set n

RelationType← r
NextAnswer← random select n
NeighborSet← n−{T,NextAnswer}
Store current position of T in previous

edge (if any) and current sampled edge
Subquery← SampleQuery(NextAnswer,

q)
return (T.op, RelationType, Neigh-

borSet, SubQuery)
else if q.operation is negation then

return (T.op, SubQuery)
else if q.operation is union or intersection

then OperationResult← []
for T.subquery_structure do

OperationRe-
sult.append(SampleQuery(T.subquery_structure,
q))

end for
return (T.op, OperationResult)

end if
end function

12



Query Type(/s) Single Pass (LSGT) Iterative Model (LKHGT)
1p 0.5187 0.7516
2p 0.5449 1.5486
2i 0.5901 1.7755
pi 0.5096 2.4583
ip 0.5480 2.4869
2in 0.5375 1.8202
pin 0.5310 2.5221
pni 0.5752 2.5202
2u 0.5634 1.7913
up 0.5366 2.4643

Table 6: Query Type Process Time (in seconds) for 1024 Queries per Batch

Space Complexity: Assume there are a total of997

8 token types for both the Logical Encoder and998

the Projection Encoder. Each token type has a999

unique set of Query, Key, and Value matrices. Thus,1000

the total number of parameters required for self-1001

attention in LKHGT is:1002

O(8d2),1003

where d is the dimensionality of the embeddings.1004

In contrast, the native self-attention mechanism has1005

a space complexity of:1006

O(d2).1007

The space complexity for other components of the1008

model remains consistent with the original trans-1009

former architecture.1010
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