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ESANS: Effective and Semantic-Aware Negative Sampling for
Large-Scale Retrieval Systems

Anonymous Author(s)∗

Abstract
Industrial recommendation systems typically involve a two-stage
process: retrieval and ranking, which aims to match users with
millions of items. In the retrieval stage, classic embedding-based
retrieval (EBR) methods depend on effective negative sampling
techniques to enhance both performance and efficiency. However,
existing techniques often suffer from false negatives, high cost
for sampling quality and semantic information deficiency. To ad-
dress these limitations, we propose Effective and Semantic-Aware
Negative Sampling (ESANS), which integrates two key compo-
nents: Effective Dense Interpolation Strategy (EDIS) and Multi-
modal Semantic-Aware Clustering (MSAC). EDIS generates virtual
samples within the low-dimensional embedding space to improve
the diversity and density of the sampling distribution while mini-
mizing computational costs. MSAC refines the negative sampling
distribution by hierarchically clustering item representations based
on multimodal information (visual, textual, behavioral), ensuring
semantic consistency and reducing false negatives. Extensive offline
and online experiments demonstrate the superior efficiency and
performance of ESANS.

CCS Concepts
• Information systems→ Retrieval models and ranking.

Keywords
Recommendation systems, Embedding-based retrieval, Negative
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1 Introduction
Recommendation systems have been widely adopted across diverse
domains, including online e-commerce, advertising, short video
platforms and delivery services [16, 17, 59], due to their effective-
ness in mitigating information overload by providing tailored rec-
ommendations from large-scale item collections [18, 19]. Industrial
recommendation systems typically involve two stages: retrieval
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Positive Sample

ESANS method adjusts sampling difficulty by the semantic distance, avoids false negatives 
with secondary clustering, and increases the sampling scale with interpolation strategy.

UNS method randomly selects negatives, failing to capture minority cluster semantics. 

In-batch method selects popular items(denoted as    ) as hard negatives, causing false negatives.

Semantic Distance between Clusters

Primary Semantic Cluster(neg)

Secondary Semantic Cluster

FairNeg method samples uniformly across groups but fails to generate sufficient hard negatives.

Primary Semantic Cluster(pos)

 Dense Interpolation Plane

Figure 1: Visual diagram of our ESANS compared with other
methods. Each method has sampled ten negatives equally.

and ranking. The retrieval stage is responsible for retrieving thou-
sands of candidate items, whereas the ranking stage predicts the
likelihood of user interaction with these candidates. Considering
that retrieval tasks can be formulated as identifying the nearest
neighbors in a vector space, substantial research has been devoted
to developing high-quality representations for both users and items.
Collaborative Filtering (CF) methods [8, 24, 42, 45] address this
issue by encoding user preference and item representation into
low-dimensional embedding space, based on historical interacted
information. With the rapid development of deep learning, neural
networks have been widely adopted in personalized recommenda-
tion systems [5, 20, 55]. Recently, Embedding-Based Retrieval (EBR)
methods [3, 12, 30] have demonstrated significantly better perfor-
mance compared to traditional CFmethods, establishing themselves
as the dominant approach in recommendation systems. EBR meth-
ods encode user and item information into separate embeddings
using parallel neural networks, and these embeddings are trained
through the strategy of contrastive learning [15, 36, 44].

EBR methods rely heavily on the contrast between positive and
negative samples to produce distinguishable representations. The
careful selection of negatives is crucial to enhancing the model’s
ability to differentiate between relevant and irrelevant items, signifi-
cantly impacting overall retrieval performance. The classic Uniform
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Negative Sampling (UNS) method [23, 44] randomly selects nega-
tives from the item candidate set, providing efficiency but yielding
low-quality samples. Following this, additive margin [50] and
temperature coefficient [33, 51] adjust the contrastive loss func-
tion to mine high-quality negatives from naive negatives sampled
by UNS. FairNeg [9] reweights negatives in accordence with item
group fairness to provide high-quality samples. Adap-𝜏 [4] dynam-
ically adjusts the temperature coefficient for reweighting uniform
negatives in accordence with their relevance to user interests. How-
ever, these methods fail to introduce more challenging negatives
and further expand the scale of sampling which limit the perfor-
mance of EBR methods. To address this issue, In-batch sampling
[7] introduces relatively harder negatives by the in-batch sharing
strategy. Airbnb [21] heuristically introduces orders from the same
city as harder negatives. MixGCF [27] employs a hop-mixing inter-
polation technique in Graph Neural Networks (GNNs) to generate
virtual hard negatives. However, these methods fail to effectively
adjust the difficulty of negatives and distinguish users’ potential
interests from hard negatives, which may exacerbate the issue of
false negatives (i.e. items relevant to users’ potential interests but
incorrectly regarded as negatives). Moreover, existing methods re-
quire substantial computational resources to further improve the
sampling quality (i.e. sufficient hard negatives) [6]. Furthermore,
from a contrastive learning perspective, these methods are unable
to regulate sampling strategies based on semantic information
in the real world, rendering the sampling process a black box.

Inspired by recent works in multi-modal learning [35, 40] and
vector quantization techniques [47], we propose the Effective and
Semantical-Aware Negative Sampling (ESANS) to address these
challenges in the sampling process. Our method consists of two
main components: the first part is Effective Dense Interpolation
Strategy (EDIS), and the second part is Multimodal Semantic-Aware
Clustering (MSAC). EDIS is devised to generate a sufficient number
of virtual samples within the low-dimensional embedding space.
More specifically, generating virtual samples among existing nega-
tives creates a more uniform, dense, and diverse sampling distribu-
tion. Virtual samples positioned between the positive sample and
surrounding negative samples contribute to gradually enhance the
discriminatory ability of the neural network. By adjusting the inter-
polation parameters and strategies, we can control the difficulty of
generated negatives and generate sufficient hard negatives. Mean-
while, in contrast to memory banks [22], interpolation within the
low-dimensional embedding space leads to minimal computational
cost and eliminates the need for extra memory storage.

Nevertheless, EDIS strongly relies on the judicious selection
of negative sample anchors. In practice, virtual negative samples
generated via interpolation may lack clear semantic information,
occasionally producing meaningless samples. For example, interpo-
lating between "iPhone" and "Cola" produces meaningless results,
potentially introducing noise. Moreover, interpolating among ran-
domly sampled negative anchors may introduce false negatives,
further complicating the training process.

To address these deficiencies, we propose the MSAC method to
optimize the sampling space by integrating the real-world semantic
information. Firstly, we propose a multimodal-aligned technique to
fuse multi-perspective item information from visual, textual and
behavioral perspectives. Subsequently, a two-level vector quantized

clustering approach is employed to assign semantic representations
into multiple secondary clusters. Consequently, we can mitigate
the issue of false negatives by selecting hard negatives from the
same primary cluster as the positive sample, while ensuring they
belong to a different secondary cluster. Additionally, we dynami-
cally calibrate the sampling probabilities for each negative cluster
to control the difficulty of negatives and refine the sampling qual-
ity. It is worth noting that this calibration is precisely guided by
the semantic distance between the cluster centers of positives and
negatives. This allows us to adjust the difficulty of the sampling
process by increasing the sampling probabilities of clusters that
are semantically similar to the positive cluster. Once the MSAC is
introduced, EDIS based on semantics can be performed within the
well-established semantic clusters. More specifically, we can ensure
that the interpolated outcomes remain confined within the convex
hull of that cluster. This intrinsic constraint preserves a measurable
degree of semantic consistency and "real-world applicability"
in the interpolated samples. Furthermore, interpolation between
positives and hard negatives is also employed to generate addi-
tional high-quality hard negatives. Figure 1 shows the comparison
between our ESANS and other methods. Our contributions can be
summarized as follows:
• We propose a novel and effective sampling approach called

ESANS, which provides explicit semantics guidance for interpo-
lation negative sampling. Moreover, ESANS effectively enhances
the diversity and richness of negative samples and allows for
controllable negative sample difficulty, thereby boosting perfor-
mance.

• We propose a general multimodal-aligned clustering approach
that captures the multi-perspective similarities among candidate
items on e-commerce platforms, thereby enabling a more refined
semantic description in the interpolation space and eliminating
false negative instances in the hard negative sampling process.

• We provide both extensive offline and online experiments to
demonstrate the effectiveness and the efficiency of ESANS.

2 Related Work
This section presents a brief review of the relevant literature, specif-
ically addressing techniques for negatives re-weighting, heuristic
negative sampling, and model-based negative sampling.
NegativesRe-weighting.UNS [23, 44] represents the foundational
negative sampling method, where negative samples are uniformly
drawn from the entire dataset. The simplicity of UNS’s algorithmic
design provides substantial efficiency gains. Nevertheless, it exhibits
notable deficiencies in the quality of negative samples. UMA2 [33]
computes the sampling probabilities of random negative samples ac-
cording to the current model and subsequently employs the Inverse
Probability Weighting (IPW) technique to assign loss weights to
these negative samples. The method proposed by [43] implements
position-weighted approach for negative samples, where the weight
is determined by the sample’s ranking position. These approaches
mine high-quality negatives from naive negatives sampled by UNS,
which fails to introduce more challenging negatives.
Heuristic Negative Sampling. Heuristic negative sampling al-
gorithms primarily define the sampling distribution by predefined

2
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heuristic rules. Popularity-biased Negative Sampling (PNS) [7] uti-
lizes item popularity as the sampling probability. Airbnb [21] ap-
plies personalized negative sampling within the same city, assum-
ing bookings in the same location exhibit similar patterns. While
this approach enhances the sampling process, it solely focuses on
similarity-based sampling, neglecting sampling bias. CBNS [54]
employs in-batch negative sampling and expands the negative sam-
ple set by incorporating previously trained items. The method [57]
incorporates estimated item frequency into the batch softmax cross-
entropy loss to reduce sampling bias within the batch. MNS [56]
integrates UNS with in-batch negative sampling, adopting a hybrid
strategy. While these methods enhance sampling quality, they intro-
duce popularity bias, aggravating the Sample Selection Bias (SSB)
issue. Our method enhances sampling quality via a multimodal-
aligned clustering algorithm and dense interpolation negative sam-
pling, while also mitigating sampling bias.
Model-based Negative Sampling. Model-based negative sam-
pling algorithms are highly effective at selecting high-quality neg-
ative samples. Model-based scoring methods are demonstrated
by Dynamically Negative Sampling (DNS) [58] and ESAM [10],
where the current model scores samples and selects the highest-
scoring ones as negative samples. Adversarial learning methods
also contribute to sampling improvements. MixGCF [27] employs
a hop-mixing technique to synthesize hard negative samples by
leveraging the user-item graph structure and the aggregation mech-
anism of Graph Neural Networks (GNNs). IRGAN [53] utilizes two
recommendation models, a discriminator and a generator, trained
adversarially. AdvIR [38] and RNS [13] further optimize IRGAN’s
structure, improving both efficiency and performance. The Adap-𝜏
[4] adaptively adjusts the temperature coefficient of the loss func-
tion by calculating the loss for each user and the corresponding
random negative samples. This method leverages personalized user
preferences to effectively identify hard negative samples. FairNeg
[9] enhances the sampling distribution by fairly sampling from
groups and then reweighting based on their relevance to the user.
Our method precisely controls the difficulty of negatives, improving
sampling quality and eliminating false negatives without increasing
the complexity of the retrieval model.

3 Methodology
In this section, we formulate the problem and describe our proposed
framework specifically, as well as introducing the detailed process
of our negative sampling method.

3.1 Problem Formulation
The primary objective of the retrieval stage in industrial recom-
mendation systems is to efficiently retrieve a potentially relevant
subset of items from a large item pool I for each user 𝑢 ∈ U. In
pursuit of this objective, each instance can be represented by a
tuple (B𝑢 ,P𝑢 ,I𝑖 ) where B𝑢 denotes the sequence of user historical
behaviors, P𝑢 denotes the basic profile of user 𝑢, I𝑖 denotes the
information of target item such as item id and category id. In the
classical two-tower architecture [50] of the EBR models, users and
items are separated into two individual encoders to reduce online
computational complexity. We can define the user encoder as 𝑓𝑢𝑠𝑒𝑟

and the item encoder as 𝑔𝑖𝑡𝑒𝑚 , so we have:

u𝑢 = 𝑓𝑢𝑠𝑒𝑟 (B𝑢 ,P𝑢 )
v𝑖 = 𝑔𝑖𝑡𝑒𝑚 (I𝑖 )

(1)

where u𝑢 ∈ R𝑑𝑘×1 is the output vector of the user encoder
called user embedding, and v𝑖 ∈ R𝑑𝑘×1 is the output vector of the
item encoder called item embedding. 𝐾 denotes the dimension of
output embeddings. Finally, the relevance of a user-item pair can
be estimated by a scoring function:

𝑠 (u, v) = u⊤v (2)

3.2 Overall Framework
As previously discussed, existing methods fail to balance sampling
quality, bias, and efficiency simultaneously. To address these limita-
tions, we designed ESANS, as illustrated in Figure 2. ESANS consists
of two main components:
• Multimodal Semantic-Aware Clustering(MSAC), which per-

forms hierarchical clustering based on visual, textual, and behavi-
or based representations to optimize the sampling process by in-
tegrating semantic information. Our proposed method addresses
the limitations of unclear anchor semantics, improves sampling
quality, and reduces the risk of introducing false negatives.

• Effective Dense Interpolation Strategy(EDIS), which em-
ploys linear interpolation among existing samples within the
same semantic cluster to make sure the semantic consistency.
Our proposed method works with minimal computational cost,
enhances the diversity and richness of negative samples, and
facilitates the controllable difficulty of hard negative samples.

3.3 Multimodal Semantic-Aware Clustering
Most existing negative sampling methods tend to ignore the seman-
tic correlations among samples. Against this deficiency, our MSAC
is proposed to capture the multi-perspective similarities among
items and incorporate explicit semantics into the negative sampling
process.

3.3.1 Multimodal-aligned Technique. When users browse items on
the e-commerce platform, they primarily perceive items through
three views: visual images, descriptive text, and collaborative filter-
ing recommendations. To generate a comprehensive description of
items, it is necessary to consider these views concurrently. The vi-
sual representations RI and textual representations RT can be pre-
trained by specific encoders [28, 31] in advance. The behavior-based
representations RG can be pretrained using graph representation
learned based on a substantial number of user behaviors. Given a
mini-batch of N items, we design multimodal-aligned encoders for
each view.

MI = 𝐻I (RI ) ∈ R𝑁×𝑑𝑚

MT = 𝐻T (RT ) ∈ R𝑁×𝑑𝑚

MG = 𝐻G (RG) ∈ R𝑁×𝑑𝑚

(3)

where 𝐻∗ denotes the encoder of each view, M∗ denotes the
output embedding of each view, 𝑑𝑚 denotes the output dimension
of each multimodal-aligned encoder.

3
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Figure 2: Our proposed ESANS framework. a) Multimodal-aligned Technique. b) Vector Quantized Clustering with Cascaded
Codebooks. c) Semantic-Aware Negative Sampling & Effective Dense Interpolation Strategy (EDIS).

Inspired by the Contrastive Language-Image Pre-training (CLIP)
[40], We propose a multimodal alignment method to fuse item rep-
resentations from three perspectives. Given a dataset ofM∗ that
consists of a collection of output embeddings {M𝑖

I ,M
𝑖
T ,M

𝑖
G}

𝑁
𝑖=1,

we contrast congruent and incongruent pairs across any two modal-
ities. For instance, we sample from the joint distribution of image-
text modals xI−T ∽ P(MI ,MT ) or xI−T = {M𝑖

I ,M
𝑖
T }, which

we call positive samples. We sample from the product of marginals,
yI−T ∽ P(MI )P(MT ) or yI−T = {M𝑖

I ,M
𝑗

T }, which we call
negative samples. Multimodal-aligned encoders are optimized to
correctly select a single positive sample xI−T out of the set S =

{xI−T , y1I−T , ..., y
𝑁−1
I−T } which contains 𝑁 − 1 negative samples:

LI−T
𝑎𝑙𝑖𝑔𝑛

= −E
S
[𝑙𝑜𝑔 ℎ(xI−T )

ℎ(xI−T ) +
∑𝑁−1
𝑖=1 ℎ(y𝑖I−T )

]

LI−G
𝑎𝑙𝑖𝑔𝑛

= −E
S
[𝑙𝑜𝑔

ℎ(xI−G)
ℎ(xI−G) +

∑𝑁−1
𝑖=1 ℎ(y𝑖I−G)

]

LG−T
𝑎𝑙𝑖𝑔𝑛

= −E
S
[𝑙𝑜𝑔

ℎ(xG−T )
ℎ(xG−T ) +

∑𝑁−1
𝑖=1 ℎ(y𝑖G−T )

]

(4)

whereℎ(·) is the cosine similarity operation after exponentiation,
LI−T
𝑎𝑙𝑖𝑔𝑛

is the alignment loss between visual and textual modals,

LI−G
𝑎𝑙𝑖𝑔𝑛

is the alignment loss between visual and behavior-based

modals, LG−T
𝑎𝑙𝑖𝑔𝑛

is the alignment loss between behavior-based and
textual modals.

3.3.2 VectorQuantized Clustering with Cascaded Codebooks. While
aligning MI ,MT ,MG into the same embedding space, we simul-
taneously quantize these representations into several clusters with
cascaded codebooks, as illustrated in Figure 2. Specifically, the pri-
mary codebook is designed to effectively differentiate coarse-level
item representations, while the secondary codebook enhances this
distinction by refining the differentiation of fine-grained item rep-
resentations, especially when significant disparities persist among
aligned representations across partial modalities.

The primary codebook 𝐶𝑝 = {𝑧𝑘𝑝 }
𝐾𝑝

𝑘=1 consists of 𝐾𝑝 codewords
[29] and the dimension of each codeword is𝑑𝑚 . The clustering stage
is conducted by calculating the mean of the aligned embeddings:

R𝑖𝑝 =
1
3
(M𝑖

I +M𝑖
T +M𝑖

G) (5)

Subsequently R𝑝 = {R𝑖𝑝 }𝑁𝑖=1 is quantized by assigning it to the
nearest codeword within the primary codebook. We denote that
the nearest codeword to R𝑖𝑝 is 𝐶𝑖𝑝 = argmin𝑘 ∥R𝑖𝑝 − 𝑧𝑘𝑝 ∥.

In the secondary codebook, we compute the residual between

{MI ,MT ,MG} and the primary corresponding codeword 𝑧
𝐶𝑖
𝑝

𝑝 .
These residuals are concatenated to a vector R𝑖𝑠 , which is used to

4
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Figure 3: The visualization of items in the representation
space during secondary clustering. Although item 1-3 and
item 4-5 have similar mean embeddings, but in each view
thier embeddings differ significantly, resulting in their as-
signment to different secondary clusters. By leveraging three
modalities, clustering accuracy is significantly enhanced.

describe the modal-specific information between different items.

R𝑖𝑠 = [M𝑖
I − 𝑧𝐶

𝑖
𝑝

𝑝 ;M𝑖
T − 𝑧𝐶

𝑖
𝑝

𝑝 ;M𝑖
G − 𝑧𝐶

𝑖
𝑝

𝑝 ] (6)

The advantages of using information from three modalities for
secondary clustering are illustrated in Figure 3. Similar to the pri-
mary clustering, we select the codeword closest to R𝑠 = {R𝑖𝑠 }𝑁𝑖=1
from another codebook 𝐶𝑠 = {𝑧𝑘𝑠 }

𝐾𝑠

𝑘=1, where 𝐾𝑠 denotes the num-
ber of codewords in the secondary codebook. The nearest secondary
codeword to R𝑖𝑠 is recorded as 𝐶𝑖𝑠 = argmin𝑘 ∥R𝑖𝑠 − 𝑧𝑘𝑠 ∥.

Once we have all cluster indice for an item, the clustering loss
can be defined as:

LSQ =

𝑁∑︁
𝑖=1

∥R𝑖𝑝 − 𝑧𝐶
𝑖
𝑝

𝑝 ∥2 +
𝑁∑︁
𝑖=1

∥R𝑖𝑠 − 𝑧
𝐶𝑖
𝑠
𝑠 ∥2 (7)

Finally, the loss function for multimodal-aligned clustering is
given by Equation 8:

L = 𝛽1LI−T
𝑎𝑙𝑖𝑔𝑛

+ 𝛽2LI−G
𝑎𝑙𝑖𝑔𝑛

+ 𝛽3LG−T
𝑎𝑙𝑖𝑔𝑛

+ LSQ (8)

3.3.3 Semantic-Aware Negative Sampling. Based on the above frame-
work, we divide the whole set of candidate items into multiple
semantic clusters. Then we introduce the semantic-aware nega-
tive sampling which includes simple negative sampling and hard
negative sampling. In simple negative sampling, we select primary
clusters for each positive sample based on the following probability
formula, ensuring that none of these selected clusters are the same

as the primary cluster of the positive sample.

𝑄 (𝐶𝑝 = 𝑖) = 1
𝑑 (𝑧𝑖𝑝 , 𝑧+𝑝 )𝛾

, 𝑖 ≠ +

𝑃 (𝐶𝑝 = 𝑖) =
𝑄 (𝐶𝑝 = 𝑖)∑

𝑗≠+
𝑄 (𝐶𝑝 = 𝑗)

(9)

where 𝑑 (·, ·) measures the distance between primary codewords
using an inner-product operation, which is subsequently normal-
ized to a range from 0 to 1. 𝑧+𝑝 is the primary cluster of the positive
sample,𝑄 (𝐶𝑝 = 𝑖) is the unnormalized sampling probability of sim-
ilar primary clusters with 𝛾 , 𝑃 (𝑐𝑝 = 𝑖) is the normalized sampling
probability of primary cluster 𝑧𝑖𝑝 . Then, we randomly select samples
from each cluster which enhances the diversity of negative samples.
After being encoded by the item tower [25], the embedding set of
simple negative samples can be represented as 𝑉𝑠 :

𝑉𝑠 = {𝑉 1
𝑠 , ...,𝑉

𝑘
𝑠 , ...,𝑉

𝑚𝑐
𝑠 }

𝑉𝑘𝑠 = {v(𝑘−1)𝑚𝑜+1
𝑠 , ..., v𝑘𝑚𝑜

𝑠 }
(10)

where 𝑉𝑘𝑠 is the embedding set of the simple negative samples
in k-th cluster, 𝑚𝑐 is the number of selected clusters and 𝑚𝑜 is
the number of selected samples in each cluster. In this way, we
dynamically adjust the difficulty of the simple negatives as well as
mitigate group-level sampling biases.

In hard negative sampling strategy, we randomly select partially
similar samples within the positive primary cluster. Then, we con-
sider samples in the same secondary cluster as false negatives and
remove these samples from the hard negative samples set. The out-
put embedding set of hard negative samples can be represented as
𝑉ℎ = {v1

ℎ
, v2
ℎ
, ..., v𝑚ℎ

ℎ
}, where𝑚ℎ is the number of selected samples

in the positive primary cluster.

3.4 Effective Dense Interpolation Strategy
By employing our negative sampling process, we obtain negative
sample clusters and randomly selected negative sample anchors for
each cluster. It’s a well-established principle [6] that increasing the
negative sampling size can enhance the performance of the EBR
models. However, the process mentioned above does not guarantee
a sufficient sampling size for each cluster. To solve this problem,
we propose a parameter-adaptive negative sampling augmentation
technique based on the linear interpolation to increase the number
of negative samples. The detailed interpolation process is applied
to both simple negative samples and hard negative samples, which
is illustrated in Figure 2.

3.4.1 Interpolation on Simple Negative Samples. Suppose we select
𝑛𝑜 negative anchors (2 ≤ 𝑛𝑜 ≤ 𝑚𝑜 ) from the 𝑘-th cluster. The
output item embeddings are reordered as 𝑉𝑠𝑘 = {v1𝑠𝑘 , ..., v

𝑛𝑜
𝑠𝑘
}. Each

vector in the embedding set is selected once as the anchor vector v𝑎𝑠𝑘 ,
and generate the virtual negative samples similar to the embedding
set by linear interpolation:

ṽ𝑎𝑠𝑘 =

𝑛𝑜∑︁
𝑖=1

𝛼𝑖v𝑖𝑠𝑘

𝛼 𝑗 =
𝑑 (v𝑎𝑠𝑘 , v

𝑗
𝑠𝑘
)𝜂∑𝑛𝑜

𝑗=1 𝑑 (v
𝑎
𝑠𝑘
, v𝑗𝑠𝑘 )𝜂

(11)
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where ṽ𝑎𝑠𝑘 denotes the virtual negative sample obtained by linear
interpolation, 𝑑 (·, ·) is the inner-product operation to measure the
embedding distance between item vectors, 𝜂 is designed to adjust
the magnitude of impact resulting from surrounding vectors, 𝛼 𝑗
is the adaptive parameter to fuse negative samples. Our method
ensures that each virtual sample is proximate to the anchor and
can be disturbed by other negative samples in terms of similar-
ity. The quantity𝑚𝑣𝑐 of virtual samples in each primary cluster is
proportional to 𝑂 (𝑚2

𝑜 ), which can be solve as follow:

𝑚𝑣𝑐 = (𝑚𝑜 + 2) (𝑚𝑜 − 1)/2 ∝ 𝑂 (𝑚2
𝑜 ) (12)

In this way, we efficiently enhance the diversity and richness of
negative samples.

3.4.2 Interpolation on Hard Negative Samples. As mentioned in the
previous explanation, the hard negative samples are selected from
the same primary cluster but different secondary cluster. The inter-
polation on hard negative samples is proposed to further augment
the quantity of samples and facilitate the controllable difficulty of
hard negative samples. We denote the output embedding of positive
sample as v+. We conduct the linear interpolation between v+ and
each existing hard negative sample v𝑎

ℎ
:

ṽ𝑎
ℎ
= 𝜆v+ + (1 − 𝜆)v𝑎

ℎ
(13)

where 𝜆 is a hyperparameter used to adjust the difficulty of hard
negatives during the training process. When 0 < 𝜆 < 1, virtual hard
negatives are generated between positive samples and existing hard
nagetives which provides more challenging samples. When 𝜆 < 0,
virtual hard negatives are easier than existing hard nagetives which
provides relatively simple samples. By this strategy, we enhance
the challenge of discriminating the classification boundary and
incorporate the stochastic uncertainty into the model which also
improves its generalization performance.

3.5 Model Learning
Following the widely used EBR method, Deep Structured Semantic
Model (DSSM) [26, 50], we can optimize the similarity between
user embeddings u and item embeddings v by contrastive learning
method. The objective function applied is the InfoNCE loss, which
is defined as follows:

L𝑠𝑚 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒u

𝑇
𝑖
v+𝑖 /𝜏

𝑒u
𝑇
𝑖
v+
𝑖
/𝜏 +∑𝑁𝑠

𝑖=1 𝑒
u𝑇
𝑗
v𝑗−
𝑖

/𝜏
(14)

Where 𝑁𝑠 is the number of negatives effectively sampled by our
ESANS method, v𝑗−

𝑖
denotes the 𝑗-th negative sample of the 𝑖-th

positive sample v+
𝑖
, u𝑇 v is also called as the target logit [39] of the

𝑖-th positive sample, 𝜏 is the temperature hyperparameter used to
adjust the distribution of logits.

The pseudocode for the algorithm is presented in Figure 4.

4 Offline Experiments
In this section, we conduct offline experiments on three real-world
datasets to demonstrate the effectiveness and efficiency of our pro-
posed method. The first two are public datasets, while the third
is an industrial dataset. The descriptions and statistics of the two
public datasets and the industrial dataset are detailed in Tables 1
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CORD: Generalizable Cooperation via Role Diversity

Algorithm 1 : ESANS

Input: A large item pool I with multimodal representation (RI ,RT ,RG).
Training set R = {(u, i) ∈ (U , I)}, embedding dimension K;

Output: Multimodal-aligned Model (HI , HT , HG).
2 Vector Quantization Codebook (Cp, Cs).
Final user embeddings {uu|u ∈ U} and item embeddings {vi|i ∈ I};

1: Initialize (HI , HT , HG), (Cp, Cs), {uu|u ∈ U} and {vi|i ∈ I};
2: for t = 1 To T do
3: Sample a mini-batch Ibatch ∈ I of size B;
4: Get the output embedding after aligning (Mbatch

I ,Mbatch
T ,Mbatch

G ) from Equation (3);
5: Get the embedding (Rbatch

p ,Rbatch
s ) from Equation (5) and Equation (6);

6: Update Models (HI , HT , HG) and codebooks (Cp, Cs) based on Loss function (8).
7: end for
8: for t = 1 To T do
9: Sample a mini-batch Rbatch ∈ R of size B;

10: for each (u, i) ∈ Rbatch do
11: Get the prime Ci

p and secondary cluster Ci
s of item i;

12: Sample mc prime clusters base on the Equation (9);
13: Uniformly sample mo items from each prime cluster k and mh hard negatives;
14: for k = 1 To mc do
15: for j = 1 To no do
16: Get the virtual hard negatives ṽa

sk
based on the Equation (11);

17: end for
18: end for
19: for j = 1 To mh do
20: Get the virtual hard negatives ṽa

h based on the Equation (13);
21: end for
22: Update embeddings (uu,vi) based on gradient w.r.t. (14);
23: end for
24: end for

and bring them home while intercepting invaders to defend the home. Agents have 5 actions and observe entities within 0.2
units. Agents can only hold one resource at a time, so they must bring the holding resource home before collecting another
one. Invaders periodically appear and move to the home. Episodes last 145 timesteps. In resource collection, we implement
the default settings of COPA and AQMIX in Liu et al. (2021) and we use the configuration of REFIL in Shao et al. (2022)
with the MIT license. For the implementation of CORD, the details are the same in MPE (C.1) except we train all methods
for 10M timesteps. The environment and model are implemented in Python. All models are built on PyTorch and are trained
on a machine with 1 Nvidia GPU (GTX 1080 TI) and 12 Intel CPU Cores.

C.3. SMAC

In StarCraft II, for CORD, we use a learning rate of 5× 10−4. The hyperparameters of causal inference in role λc and role
heterogeneity λd are fixed as 0.0025 throughout the 6M training timesteps for all maps. Except the above three parameters,
the implementation of CORD is the same as it in MPE. For AQMIX and REFIL, we implement the default configurations
for each scenario. Our implementation of CORD and COPA derives from REFIL (Iqbal et al., 2021) with the MIT license.
The environment and model are configured in Python. All models are constructed utilizing PyTorch and trained on a system
with 4 Nvidia GPUs (A100) and 224 Intel CPU cores.

14

Figure 4: The pseudocode of our proposed algorithm.

and 2, respectively. Additionally, we perform an ablation study of
our modules and address the following research questions:
• RQ1: How does our ESANS perform compared to other state-of-

the-art models?
• RQ2: What is the impact of each component on the overall

model’s performance?
• RQ3: What is the effect of the hyper-parameters on the perfor-

mance of our model?

Table 1: Statistics of Public Datasets.

Dataset Amazon PixelRec

#User 247,446 29,845,039
#Item 88,408 408,374

#Interaction 2,146,317 195,755,320

4.1 Experimental Setup
Dataset.
• Amazon Review. It was first introduced by Van Gysel et al.

[48, 49] and has become a benchmark dataset for evaluating
product recommendation methods [14, 34, 46]. We select the
Electronics subset which products a sufficient number of user
reviews and includes comprehensive metadata, such as prod-
uct titles and categories. The textual features are extracted by
sentence-transformers [41] from [60] and the visual features are
extracted and published in [37].

• Pixel-Rec. This dataset [11] is derived from a global online
video platform which captures approximately 200 million user
consumption from September 2021 to October 2022. It focuses on
content-driven recommendations spanning diverse categories
such as food, games, fashion, and makeup. The textual and visual
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features of these contents have already been extracted using
PixelNet, a network proposed concurrently with Pixel-Rec.

• Industrial Dataset.We establish the offline dataset by collecting
the users’ sequential behaviors and feedback logs from Alibaba’s
international e-commerce platform, Lazada. The dataset com-
prises four categories, each representing a distinct Southeast
Asian country, labeled from #A1 to #A4.

Table 2: Statistics of the Industrial Dataset.

Scenarios #A1 #A2 #A3 #A4

#User 4,930,611 24,931,581 17,037,221 15,914,765
#Item 2,163,338 4,268,324 2,905,716 3,067,253
#Click 61,579,472 336,744,161 149,341,806 163,611,291

#Impression 2,353M 9,648M 4,274M 6,134M

Graph Construction. Due to space limitation, the introduction
of the behavior-based graph construction is provided in Appendix
Section A.
Baselines. We compared our ESANS with five representative neg-
ative sampling methods based on the classical two-tower architec-
ture. The methods are as follows:
• UNS [23, 44]: A widely used negative sampling approach in-

volves randomly selecting instances from a uniform distribution.
• PNS [7]: A negative sampling method that adjusts the sampling

distribution based on item popularity.
• Debiased MNS [56, 57]: A method that integrates UNS with in-

batch negative sampling, and introduces a technique to address
the oversampling issue of popular items.

• MixGCF [27]: A method synthesizes hard negatives between
negatives and positives in a graph-based model. We adapt this to
a two-tower structure to generate virtual hard negatives in the
item representation space.

• FairNeg [9]: A method that improves item group fairness by
adaptively adjusting the distribution of negative samples at the
group level.

• Adap-𝜏 [4]: A method that adjusts the temperature coefficient
of the loss function by the embedding similarity between users
and corresponding negatives.

Evaluation Metrics. For the evaluation metrics in recommenda-
tion tasks, we follow [2, 52] and use Recall@K for each group based
on the Top-K recommendation results. Finally, the Recall@K is
averaged over all users.
Parameter settings.We divide users in each public dataset into
three subsets: training, validation, and testing, with a ratio of 8:1:1.
As for the Industrial Dataset, we set aside the instances from the
final day for testing, while using the preceding instances for training.
For each user in the training set, we employ their first 𝑘 actions to
predict the (𝑘+1)-th action. To ensure computational manageability,
we limit the length of user behavior sequences to 10 for the Amazon
Review dataset, 32 for the Pixel-Rec dataset and 64 for the Industrial
dataset. Due to space limitation, additional implementation details
are provided in Appendix Section B.

4.2 Performance Comparison (RQ1)
Table 3 summarizes the overall performance of our ESANS as well
as the baselines on both industrial and public datasets, with the

best results emphasized in bold and the second-best results under-
lined. It is noteworthy that ESANS consistently outperforms all
baseline methods across the aforementioned datasets, achieving
an average improvement of up to 15.32% in recall@50 and 10.73%
in recall@200 compared to its base method UNS. PNS generally
outperforms UNS across most datasets, indicating that boosting
the sampling possibility for popular items improves sampling qual-
ity. However, it is worth noting that PNS does not exceed UNS
performance in the #A3 dataset, which might be attributed to the
introduced popularity bias. Once the challenge of popularity bias is
addressed, the debiased MNS Sampling method outperforms UNS
and PNS across all datasets and outperforms other baselines on #A4.
MixGCF introduces virtual hard negatives by hop-mixing interpo-
lation which achieves similar performance with the debiased MNS
and proves the feasibility of hard negatives augmentation. How-
ever, the interpolation process fails to consider semantics and yields
noisy negatives, so it is outperformed by our method. FairNeg is
another work conducted to reduce the sampling bias via adjusting
the group-level negative sampling distribution which provides the
best recommendation utility on Pixel-Rec and #A2 in all baselines.
However, this work determines the groups by the only item at-
tribute view which is not comprehensive and thus is surpassed
by our method. Ada-𝜏 is proposed to design a learnable 𝜏 , which
enables the adaptive adjustment of the difficulty level for negatives.
This work outperforms other baseline models on Amazon Elecs.
However, Ada-𝜏 fails to provide incremental information by deriv-
ing more challenging negatives during the training process so that
it is beaten by our method.

In summary, our method effectively addresses the inherent limi-
tations of these methods and achieves SOTA performance across
all datasets in terms of retrieval efficiency. It is worth noting that
the MSAC module is actually detached from the training process
of DSSM and the EDIS module is only applied to the output of the
deep neural network. Therefore, our method does not introduce
the additional computational complexity for either offline training
and online serving.

4.3 Ablation Study (RQ2)
To investigate the effectiveness of each component in the proposed
model, in this subsection, we conduct a series of ablation studies
on the #A2 industrial datasets as follows:
• w/oMSAC, removes the Multimodal Semantic-Aware Clustering

before the Interpolation-based negative sampling.
• w/o EDIS, removes the Effective Dense Interpolation Strategy

employed in both simple negative sampling and hard negative
sampling strategies.

• w/o Multimodal Aligning, removes the textual and visual
modalities and reserves the behavior-based modality for further
clustering.

• w/o Secondary Codebook, removes the secondary codebook
in the Vector Quantized Clustering, thereby invalidating the
interpolation-based hard negative sampling.

Table 4 presents the performance of these ablation experiments.
Firstly, we can observe that adopting Multimodal-aligned Cluster-
ing Algorithm improves recall@50 by 6.41% and recall@200 by
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Table 3: Performance Comparison across baselines. The last column(AVG) denotes the average improvement of sampling
methods across all datasets. The last row(RI) denotes the relative improvement of our ESANS over UNS.

Method Amazon Elecs Pixel-Rec #A1 #A2 #A3 #A4 AVG
Recall@50 Recall@200 Recall@50 Recall@200 Recall@50 Recall@200 Recall@50 Recall@200 Recall@50 Recall@200 Recall@50 Recall@200 Recall@50 Recall@200

UNS 0.1633 0.4512 0.0737 0.1522 0.4276 0.6087 0.3108 0.5155 0.3859 0.6478 0.3857 0.6277 0.2912 0.5005
PNS 0.1695 0.4696 0.0783 0.1587 0.4332 0.6401 0.3370 0.5318 0.3803 0.6405 0.3883 0.6321 0.2978 0.5121

debiased MNS 0.1874 0.4726 0.0801 0.1655 0.4549 0.6562 0.3597 0.5647 0.3970 0.6513 0.4074 0.6549 0.3144 0.5275
MixGCF 0.1963 0.4759 0.0794 0.1631 0.4593 0.6577 0.3621 0.5703 0.4012 0.6574 0.3924 0.6483 0.3151 0.5288
FairNeg 0.1792 0.4705 0.0836 0.1782 0.4790 0.6688 0.3669 0.6052 0.4043 0.6687 0.3983 0.6501 0.3186 0.5403
Adap-t 0.2018 0.4873 0.0763 0.1684 0.4694 0.6757 0.3538 0.5883 0.4097 0.6625 0.4046 0.6437 0.3193 0.5377

ESANS (ours) 0.2135 0.4948 0.0908 0.1828 0.4862 0.6918 0.3887 0.6216 0.4176 0.6732 0.4182 0.6609 0.3358 0.5542

RI +30.74% +9.66% +23.20% +20.11% +13.70% +13.65% +25.06% +20.58% +8.21% +3.92% +8.43% +5.29% +15.32% +10.73%

Table 4: Ablation Study on the #A2 Dataset.

Method #A2
Recall@50 Recall@200

Ours 0.3887 0.6216
w/o MSAC 0.3653 0.5976
w/o EDIS 0.3788 0.6134

w/o Multimodal Aligning 0.3802 0.6163
w/o Secondary Codebook 0.3724 0.6082

4.02%, which proves that the semantic clustering algorithm em-
ployed for interpolation significantly improves sampling quality.
The dense interpolation respectively brings a 2.61% and a 1.34% im-
provement for recall@50 and recall@200, which demonstrates the
efficient of our sample augment strategy. Besides, the Multimodal
clustering performs better than the Unimodal clustering(2.24%
on recall@50 and 0.86% on recall@200), which superiority the
multi-view representations. The interpolation-based hard negative
sampling conducted by the secondary codebook also shows the
improvement(4.38% on recall@50 and 2.20% on recall@200), which
proves the feasibility of selecting hard negative samplings with
heuristics semantic constraint.

4.4 Hyperparameters Sensitivity Analysis (RQ3)
In this section, we investigate the sensitivity of our model’s hyper-
parameters, specifically the number of primary clusters 𝐾𝑝 and the
number of secondary clusters𝐾𝑠 . These experiments are carried out
on the #A1-#A4 industrial datasets, employing five distinct values
for 𝐾𝑝 (100, 200, 300, 400, 500) and 𝐾𝑠 (5, 10, 15, 20, 25). Figure 5
illustrates the performance of these hyperparameter tuning experi-
ments. We observe that the model’s performance stays consistently
high when 𝐾𝑝 is increased from 200 to 500. However, reducing 𝐾𝑝
to 100 leads to a slight decrease in performance. This observation
encourages us to consider a higher value for 𝐾𝑝 to further enhance
the intra-cluster semantic consistency. 𝐾𝑠 shows optimal prediction
performance between 5 to 15. We recommend to set a relatively
small value for 𝐾𝑠 in order to minimize the occurrence of false
negatives.

5 Online Experiments
To further validate the effectiveness of our approach, we conducted
an online A/B test on an e-commerce recommendation platform
from September 13 to 19, 2024. The control group used a two-tower

#A1 #A2 #A3 #A4
Industrial datasets

0.575

0.600

0.625

0.650

0.675

0.700

0.725

Hi
tra

te
@
20

0

Sensitivity Analysis of Parameter Kp

k=100
k=200
k=300
k=400
k=500

#A1 #A2 #A3 #A4
Industrial datasets

0.575

0.600

0.625

0.650

0.675

0.700

0.725
Hi
tra

te
@
20

0
Sensitivity Analysis of Parameter Ks

k=5
k=10
k=15
k=20
k=25

Figure 5: The performance of ESANS under different hyper-
parameters(𝐾𝑝 and 𝐾𝑠 ) on #A1-#A4 industrial datasets.

model with debiased mixed negative sampling (MNS) [56], while
the experiment group applied our proposed method. Both groups
consisted of 30% randomly selected users. Specifically, we observed
2.83% increase in the Advertising Revenue, 1.19% increase in
the Click-Through-Rate(CTR) and 1.94% increase in the Gross
Merchandise Volume(GMV). The results of the online experiment
once again confirm the efficiency and effectiveness of our method
ESANS in negative sampling for recommendation systems.

6 Conclusion
In this study, we proposed a novel negative sampling method, Ef-
fective and Semantic-Aware Negative Sampling (ESANS), which
integrates an Effective Dense Interpolation Strategy (EDIS) and
Multimodal Semantic-Aware Clustering (MSAC). Extensive experi-
ments demonstrated that ESANS significantly improves sampling
quality and efficiency compared to baselines. Specifically, EDIS
improves the diversity and density of the sampling distribution.
MSAC enhances semantic consistency and reduces false negatives.
These modules advance the effectiveness of negative sampling in
recommendation systems. For future work, we will pursue two
directions. The first is to further optimize the multimodal represen-
tations based on MSAC. The second direction is to design a more
complex interpolation strategy among the outputs of hidden layers.
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A Graph Construction
For each dataset, we pretrain a heterogeneous graph network [32]
based on user behaviors. The types of graph nodes include user,
item, and its side information (brand / category / price features
for Amazon Review dataset, tag / statistical features for Pixel-Rec
dataset and brand / shop / category for industrial datasets). The
graph edges include: 1) user-item edge. If user 𝑢 clicks item 𝑖 , there
is an edge between 𝑢 and 𝑖 . 2) user-side information edge. If user 𝑢

clicks an item with side information 𝑣 (e.g., shop), there is an edge
between 𝑢 and 𝑣 . 3) item-item edge. If item 𝑖 and item 𝑗 are adjacent
in user behavior sequence and the time interval between item 𝑖 and
item 𝑗 is within 60 seconds, there is an edge between 𝑖 and 𝑗 . 4)
item-side information edge. If item 𝑖 has a side info 𝑣 , there is an
edge between 𝑖 and 𝑣 .

B Parameter Settings
In this section, we elaborate on the parameter settings for the imple-
mentation of our algorithm. The training process is implemented
using a distributed TensorFlow[1] platform, consisting of 10 parame-
ter servers and 40 workers with 12 CPUs per worker. In the negative
sampling process, for each in-batch positive sample, we randomly
select𝑚𝑐 = 2 clusters and then draw𝑚𝑜 = 5 negative samples from
each of these clusters. In contrast, the baseline model selects 10 neg-
ative samples randomly for each positive sample. These negatives
are sampled based on an online sampling framework in the training
process and shared across the batch. Additionally, the interpolation
coefficient 𝜆 of hard negatives is set to 0.1 for a harder interpolation
and -0.1 for a easier interpolation. The rest of the hyperparameters
settings are demonstrated in Table 5.

Table 5: Hyper-parameter settings of Our ESANS.

Hyper-parameter Choice

𝐵 512
𝜏 0.05
𝑑𝑘 64
𝑑𝑚 512
𝐾𝑝 300
𝐾𝑠 15
𝛽1 2.0
𝛽2 2.0
𝛽3 2.0
𝜂 0.6

Optimizer Adam
Learning rate 0.0002

Amazon modal emb size Img: 4096, Text:384, Graph:128
PixelRec modal emb size Img: 1024, Text:1024, Graph:1024
#A1-#A4 modal emb size Img: 1024, Text:1024, Graph:1024
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