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Abstract— We present NeuroVIO, a hybrid end-to-end ar-
chitecture that integrates conventional and spiking neural net-
works for multimodal visual-inertial odometry in underwater
mobile robots. NeuroVIO addresses the need for using energy-
efficient and accurate pose estimation methods in underwater
mobile robots. In our approach, a CNN backbone extracts
visual features from successive frames and converts them
into time-encoded sequences, which are processed by adap-
tive leaky-integrate-and-fire neurons with learnable thresholds.
Concurrently, inertial measurements are encoded via an SNN
feature extractor. Fused features pass through a spike LSTM
to capture temporal dependencies, and a spiking regression
head predicts the six-dimensional pose vector. Evaluated on
the AQUALOC dataset, the proposed NeuroVIO framework
reduces the energy consumption by 80.4% relative to its
non-spiking counterpart while preserving the pose estimation
accuracy. The experimental results demonstrate that integrating
neuromorphic paradigms into resource-limited marine robotics
platforms enhances the autonomy of underwater robots in
exploration tasks.

I. INTRODUCTION

Accurate pose estimation is vital for navigation of au-
tonomous underwater vehicles (AUVs) and remotely oper-
ated vehicles (ROVs). Underwater VIO is challenged by
degraded visibility, low texture, dynamic lighting, and lim-
ited onboard computational resources [1]. Geometry-based
methods such as MSCKF [2], OKVIS [2], and VINS [3]
perform well in controlled settings but often fail underwater.
Learning-based SOTA approaches exploit deep multimodal
features, yet their high computational demand hinders real-
time use on resource-limited robotic platforms [4].

Visual-inertial SLAM (viSLAM) fuses vision and IMU
data, improving robustness in low-texture or blurred im-
agery while correcting IMU drift [5]. IMUs are compact,
efficient, and cost-effective, suiting lightweight AUV appli-
cations. Data-driven models replace hand-crafted pipelines;
PoseLSTM [6] couples CNNs with LSTMs for motion blur
and illumination robustness, while RNNs capture inertial
dynamics. Advanced fusion strategies address noise and
synchronization issues, e.g., selective fusion [7] and SelfVIO
[8], which estimates six-DoF pose and depth from monocular
images and IMU data without predefined sensor calibration.
Policy-based adaptive VIO [9], [10] further reduces visual
redundancy. Despite progress, large parameter counts and
high computation cost still restrict deployment on underwater
robots. The main limitations of existing VIO methods are:
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1) High computational cost: Deep VIO models are
resource-intensive, limiting real-time use on low-power
underwater robots.

2) Weak generalization: Existing methods degrade under
poor illumination, turbidity, or weak texture leading to
reduced positioning accuracy.

3) Dense data dependency: Processing dense image and
IMU data causes inefficiency; introducing sparsity data
processing can improve VIO efficiency.

To address these challenges, we propose NeuroVIO, a
hybrid end-to-end VIO framework integrating CNNs with
spiking neural networks (SNNs). NeuroVIO combines robust
CNN-based visual feature extraction with energy-efficient
SNN-based inertial encoding. Visual features are converted
into sparse spike sequences via adaptive leaky-integrate-
and-fire (ALIF) neurons, while IMU data is encoded by
a parallel SNN. A spike-LSTM fuses these multimodal
temporal features, followed by an SNN regression head for
relative pose estimation. The key contributions are:

o End-to-End Hybrid Architecture: Developed an end-to-
end trainable CNN-SNN model for underwater VIO.
The architecture leverages CNN-based visual feature ex-
traction and SNN-based inertial processing, to capitalize
the strengths of both paradigms for underwater VIO.

o Direct Training of the Hybrid Model: Enables direct
optimization by training the hybrid model as a unified
framework, simplifying the pipeline.

e Adaptive Spike Representation: Adaptive LIF (ALIF)
neurons convert the continuous feature maps at each
layer into sparse spike representations, reducing com-
putational complexity.

e Energy-Efficient Operation: Validated on the open-
source AQUALOC dataset, NeuroVIO demonstrates
potential for energy-efficient long-term operation in
challenging underwater environments

To the best of our knowledge, no prior work applies
a hybrid CNN-SNN framework for visual-inertial pose
estimation in underwater robots. Existing SNN-based re-
search focuses on optical flow estimation from event cameras
(event-only or event+RGB) without IMU integration for six-
DoF pose estimation [11], [12], [13]. NeuroVIO is the first
to unify CNN-based visual feature extraction, SNN-based
inertial encoding, and SNN pose regression in an end-to-
end model. This approach combines the high representational
capacity of CNN-based visual feature extraction with SNNs
for energy-efficient sequential inertial processing, enabling
deployment on resource-constrained platforms.
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Fig. 1: Schematic representation of hybrid CNN-SNN framework for 6D pose estimation

II. SNN-BASED MULTIMODAL VISUAL-INERTIAL
POSE ESTIMATION

The NeuroVIO framework presented in Fig. 1 integrates
CNN-based visual feature extraction with SNN-based inertial
processing. Visual features are converted into spike trains
via adaptive LIF neurons, while raw inertial signals are first
passed through the spike-coding module, which converts
them into their corresponding sparse, spike-based represen-
tations. The spike-based multimodal features are fused and
passed to a spike-LSTM, followed by a fully connected SNN
regression head for 6-DoF pose estimation.

A. Spike Coding of Continuous-Valued Signals

Continuous signals are encoded with an adaptive threshold
LIF mechanism. For visual inputs, 2D convolutions generate
feature maps, where spikes fire when membrane potential
(V) exceeds adaptive threshold membrane potential (V;p,).
Inertial data use 1D convolutions with the same mechanism.
The mathematical formulation of the spike coding process is
represented as:

1) Visual modality signals
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where Sfj is the output spike at (i, j) in k" output
channel, Z(j44—1)(j+w—1)c i the input tensor at (7 +
h—1, j+w—1), w}, is the kernel weights of size F},
x F,, b is the bias, and V% (¢) is the time-dependent
adaptive threshold of the spiking neuron.

2) Inertial signals
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where SF is the output spike at position i in k"
output channel, x(;y.,—1)c is the inertial input signal
at position (i +w — 1), wk _ is the kernel weights of
size F,, x C.

B. Visual Feature Extractor

The visual feature extractor (Ey, (.)) uses pre-trained
FlowNetSimple [14], a 9-layer CNN-based architecture orig-
inally designed for optical flow, to extract geometric features
from successive frames I; and I;4 ;. With stride-2 in the first
six layers and kernel sizes reducing from 7 X 7 to 3 x 3
followed by Leaky-ReLU, features are flattened and passed
through a fully connected layer to obtain f,:

fo=FE; (I, I141) € RP=ea”Pro, 3)

where I; and I, represent consecutive image frames cap-
tured at time ¢ and ¢ + 1. These features are converted into
time-dependent spike sequences (f,) via an ALIF layer:

St, = Ey, (fo) € {0,1}7 7 oea” s €

C. Inertial Feature Extractor

The SNN-based inertial feature encoder (Ey,(.)) consists
of three 1D CNN layers and a fully connected layer, each
followed by ALIF neurons. IMU measurements between two
consecutive image frames (I; and I;4;) are aggregated and
encoded into spikes S, :

Sy, = B, (Xt imus s Xeg1,imu) € {0,117 FreaxPri
)]
where X; imy and Xyy1 im. represent the IMU measure-
ments at time ¢ and ¢ + 1.

D. Pose Regression

Spike-based visual and inertial features are concatenated
and processed by a spike-LSTM [15], followed by linear
layers with ALIF neurons, and a final LIF neuron layer
without spike firing (LI F'f;pq1). The spike-LSTM extends
conventional LSTMs by integrating spiking gates controlled
by membrane potential V;,,. Spike activations o1 (V},,) and
o2 (Vi) regulate gate operations, producing spike or null
outputs. As in standard LSTMs, the cell state c; manages
information flow: the forget gate f; discards, the input gate
i, admits, and the auxiliary layer g; is modulated by spike
activation o9 (V},,). The final output depends on the output
gate o; and the cell state c¢; [16]. The membrane potential
at the last timestep of each neuron at the LIFf;,q; layer is



the six-dimensional network-predicted pose P= [@,
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P = LIFfina(lin(ALIF (lin( Eemp(concat(Sy, , Sg;)))))-

(6)
where Eyepmp(.) is the temporal feature extractor module
using spike-LSTM.

E. Loss Function

In this work, a unified loss function is used by integrating
translational and rotational errors. For the network-predicted
vectors (’f', O) and their corresponding reference vectors
(T, ©), the loss is defined as:
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where P;., denotes the sequence length.

III. RESULTS

The NeuroVIO framework is implemented in three stages
using SpikinglJelly [17] and PyTorch, trained on an NVIDIA
RTX 4070 GPU (16GB RAM) for 50 epochs with early
stopping. The Adam optimizer [18] is used with a learning
rate of 0.001 to ensure stable convergence and efficient
gradient updates. Input images are resized to 512 x 256,
timestep 7' = 4, and BPTT with surrogate gradients [19]
is applied to update the network weights by minimizing
the unified loss function L,,s.. The AQUALOC dataset
[20] with linearly interpolated translational pose vectors
and spherical linear interpolated [21] rotational vectors is
used for training, validation, and testing of the NeuroVIO
model. The AQUALOC-Harbor site was split into train-
ing ({h02, h04, h06}), validation ({h03,h05}), and testing
({h01, h07}). In our implementation, we assume that all
images, IMU data, and corresponding pose vectors are tem-
porally synchronized, with no missing values.
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TABLE [I: Hardware-oriented performance evaluation of
baseline and NeuroVIO models.

Model [ # Operators (G) [ Energy (J) [ AE (%)
Baseline 7.767 0.035

NeuroVIO (V;;, = —0.025) 7.788 0.007 80.38
NeuroVIO (Adaptive V;;) 7.781 0.007 80.40

In Stage 1, a CNN-based baseline model was designed for
underwater environments with limited visual cues. It predicts
relative translation and rotation from visual-inertial inputs.
The visual encoder was initialized with pre-trained weights
from a larger optical flow estimation dataset (FlyingChairs)
[27], to leverage strong feature extraction capabilities. The
IMU encoder used three 1D convolution layers, while tem-
poral modeling employed LSTMs without dropout, ensuring
stable training. This stage verified synchronization and fea-
ture extraction before spiking conversion. In Stage 2, the
baseline was converted into a hybrid CNN-SNN: the pre-
trained visual encoder was frozen, while inertial, temporal,

(a) Sequence hO1

(b) Sequence h07
Fig. 2: Reference trajectory and the trajectory sequences
predicted by the baseline and NeuroVIO model with fixed
and adaptive threshold membrane potential (a) hO1 sequence,
and (b) hO7 sequence.

and pose modules were implemented using spiking LIF neu-
rons with fixed threshold membrane potential. This preserved
visual features while introducing spike-driven processing,
reduces computational complexity without significantly re-
ducing pose estimation accuracy. Stage 3 further optimizes
the NeuroVIO model by replacing fixed LIF neurons with
adaptive LIF (ALIF) neurons that learn threshold membrane
potentials. This adaptation improves temporal coding and
yields the final NeuroVIO framework, which balances CNN
feature extraction with SNN energy efficiency.

By advancing through three stages, our approach integrates
analytical insights into a robust learning-based framework.
The final NeuroVIO model fuses visual and inertial data,
achieving energy efficiency while preserving accuracy in
challenging environments. Experiments focused on energy
efficiency, computational complexity, and pose estimation
accuracy at each developmental stages. In Stage I, the
fully CNN-based baseline predicted 6D pose accurately but
consumed significant energy. Replacing non-visual modules
with spiking counterparts in Stage 2 reduces energy from
0.035J to 0.007 J (—80.38%) with negligible change in
operations (7.767 GFLOPs to 7.788 GSOPs). Using adaptive
thresholds in Stage 3, the number of operations marginally
decreases to 7.781 GSOPs, maintaining same energy cost.
Adaptive NeuroVIO variant offers best efficiency without
additional hardware overhead (refer to Table I).

On sequence hO1 (refer to Table II), the baseline gave the
lowest translational errors (ATE= 0.0174 m), while the adap-
tive SNN achieved comparable translation (0.0201 m) and
superior rotation (ATE = 0.8167° vs. 2.1692°). On sequence
h07, baseline again led in translation (0.0220 m), but the
adaptive variant reduced rotation errors (1.3024° vs. 2.1366°)
and attained the lowest drift (0.9154 m). Trajectory plots



TABLE II: Evaluation of translational (trans) and rotational (ror) estimates for baseline and NeuroVIO models with fixed
and adaptive thresholds on sequences 0] and h07 from the Harbor site subset. Best values are shown in bold, second-best

are underlined.

Sequence | Model ATE RPE MAE Drift Rate

q trans(m) | rot(®) | trans(m) | rot(®) | trans(m) | rot(°) (m)
Baseline 0.0174 2.1692 0.0083 1.2302 0.0136 1.5105 0.7077

h01 NeuroVIO (V;;, = —0.025) 0.0224 1.1296 0.0109 0.5845 0.0182 0.9092 0.7690
NeuroVIO (Adaptive V;;) 0.0201 0.8167 0.0084 0.3524 0.0164 0.6668 0.7163
Baseline 0.0220 2.1366 0.0101 1.2565 0.0175 1.5143 0.9475

ho7 NeuroVIO (V;;, = —0.025) 0.0346 1.5684 0.0161 0.8042 0.0281 1.2652 1.2325
NeuroVIO (Adaptive V) 0.0304 1.3024 0.0126 0.5910 0.0248 1.0632 0.9154

TABLE III: Effect of threshold membrane potential on VIO performance, evaluated on sequence h0! with V;, €

{-0.075, —0.050, —0.025, 0.025, 0.050, 0.075}

v, ATE RPE MAE Drift Rate
th trans(m) | rot(°) trans(m) | ror(°) trans(m) | ro1(°) (m)
-0.075 0.0184 0.8159 0.0076 0.3492 0.0150 0.6660 0.6626
-0.050 0.0184 0.8192 0.0076 0.3509 0.0150 0.6690 0.6624
-0.025 0.0224 1.1296 0.0109 0.5845 0.0182 0.9092 0.7690
0.025 0.2573 25.1098 0.1479 12.0338 0.2135 20.4953 10.3626
0.050 0.4211 63.3624 0.2346 28.4777 0.3496 51.7500 16.8742
0.075 0.5287 90.3052 0.2868 40.2785 0.4382 73.6282 20.6651

TABLE IV: Evaluation of NeuroVIO with SOTA VIO meth-
ods on the AQUALOC dataset using the 7 ., s metric. Best
values are in bold, second-best are underlined.

adaptive-threshold NeuroVIO ranks second-best (0.0084 m
on h0I and 0.0126 m on h07), closely matching it. The fixed-
threshold NeuroVIO variant also demonstrates competitive

accuracy (0.0109 m and 0.0161 m), outperforming state-

of-the-art geometry-based methods (OKVIS, ORB-SLAM3)
and CNN-based VINet and U-VIO, while being comparable

to DU-VIO. These findings show that NeuroVIO matches
baseline performance while drastically reducing energy. The
adaptive variant, though slightly less accurate than the CNN
baseline, closely approaches it and consistently outperforms

Methods [ h01 sequence (m) | h07 sequence (m)
Geometry-based

OKVIS [22] 0.0404 0.1171
ORB-SLAMS3 [23] 0.0198 0.0212
CNN-based

VINet [24] 0.0487 0.1495
U-VIO [25] 0.0570 0.0759
DU-VIO [26] 0.0111 0.0188
Baseline 0.0083 0.0101
SNN-based

NeuroVIO (V;;, = —0.025) 0.0109 0.0161
NeuroVIO (Adaptive Vi) 0.0084 0.0126

most geometric and CNN-based methods.
Hardware analysis (refer to Table I) confirms the effi-

(refer to Fig. 2) illustrate closer reference path alignment for
the adaptive model, particularly in high-curvature regions.

A. Effect of Threshold Membrane Potential

Table III demonstrates that VIO performance is highly
sensitive to the choice of fixed threshold membrane potential.
Low values (Vi = {—0.075,—0.050}) yield acceptable
accuracy, but higher thresholds cause sharp degradation. For
instance, at Vi, = 0.075, translational ATE increases to
0.5287 m, angular ATE to 90.3052°, and drift rate exceeds
20 m. This highlights the strong dependence of spiking
neuron behavior on threshold selection. Careful manual
tuning of V},, is required to ensure accuracy, which is labor-
intensive and sequence- or task-dependent, limiting real-
world practicality. In contrast, the adaptive NeuroVIO model
learns optimal thresholds during training, adapting to data
characteristics and eliminating the need for heuristic tuning.

B. Performance Comparison of NeuroVIO with state-of-the-
art Methods

Table IV compares NeuroVIO with SOTA geometric and
learning-based underwater VIO methods on AQUALOC se-
quences h01 and hO7 using the T ,.,se metric. The CNN-
based Baseline achieves the lowest errors (0.0083 m and
0.0101 m, respectively), while the NeuroVIO variant with

ciency of spiking implementations. Both fixed and adaptive
threshold NeuroVIO reduce energy from 0.035J to 0.007 J
(—80.4%) with negligible change in number of operations.
While the fixed-threshold model offers limited accuracy
gains, it achieves substantial energy savings. The adaptive
variant preserves these savings while delivering the best
accuracy-per-joule ratio, making it well-suited for battery-
constrained AUVs.

IV. CONCLUSIONS

This article introduced NeuroVIO, a hybrid CNN-SNN
framework for underwater visual-inertial odometry. By com-
bining time-encoded visual features with SNN-based in-
ertial processing, NeuroVIO reduces energy consumption
by 80.4% compared to its non-spiking counterpart while
maintaining pose accuracy. This efficiency makes it a strong
candidate for low-power neuromorphic and edge-Al deploy-
ment on energy-constrained underwater robots. Future work
includes replacing the CNN visual encoder with an SNN-
based module and integrating spike-driven image enhance-
ment to evaluate performance under turbidity and distortion.
In addition, NeuroVIO will be deployed on embedded hard-
ware such as AMD Kria KV260 and Intel Loihi to validate
real-time performance and energy efficiency. These steps
will further demonstrate the potential of SNN-based pose
estimation for autonomous marine robotics at the edge.
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