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ABSTRACT

Well-trained multi-agent systems can fail when deployed in real-world
environments due to model mismatches between the training and deployment
environments, caused by environment uncertainties including noise or adversarial
attacks. Distributionally Robust Markov Games (DRMGs) enhance system
resilience by optimizing for worst-case performance over a defined set of
environmental uncertainties. However, current methods are limited by their
dependence on simulators or large offline datasets, which are often unavailable.
This paper pioneers the study of online learning in DRMGs, where agents learn
directly from environmental interactions without prior data. We introduce the
Multiplayer Optimistic Robust Nash Value Iteration (MORNAVI) algorithm and
provide the first provable guarantees for this setting. Our theoretical analysis
demonstrates that the algorithm achieves low regret and efficiently finds the optimal
robust policy for uncertainty sets measured by Total Variation divergence and
Kullback-Leibler divergence. These results establish a new, practical path toward
developing truly robust multi-agent systems.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL), along with its stochastic game-based mathematical
formulation (Shapley, 1953; Littman, 1994), has emerged as a cornerstone paradigm for intelligent
multi-agent systems capable of complex, coordinated behavior. It provides the theoretical and
algorithmic foundation for enabling multiple agents to learn, adapt, and make sequential decisions
in shared, dynamic environments. Its practical impacts span from strategic gaming, where MARL
agents have achieved superhuman mastery (Silver et al., 2016; Vinyals et al., 2019); autonomous
transportation, where it is used to coordinate fleets of vehicles to navigate complex traffic scenarios
(Shalev-Shwartz et al., 2016; Hua et al., 2024); and distributed robotics, where teams of robots learn
to execute tasks (Lowe et al., 2017; Matignon et al., 2012).

Despite the remarkable progress in MARL, a fundamental and pervasive challenge severely restricts
its reliable deployment in the physical world: the Sim-to-Real gap (Zhao et al., 2020; Peng et al.,
2018). A standard pipeline of RL involves training extensively within a high-fidelity simulator and
then deploying in practice, as training directly in the real world can be prohibitively expensive,
time-consuming, or dangerously unsafe. However, any simulator inevitably fails to capture the full
richness and complexity of the real world, omitting subtle physical effects, unpredictable sensor noise,
unmodeled system dynamics, or latent environmental factors (Padakandla et al., 2020; Rajeswaran
et al., 2016). Consequently, a policy that appears optimal within the clean confines of a simulation
can prove to be brittle and perform poorly—or even fail catastrophically—when deployed into the
noisy, unpredictable environment it was designed for.

This vulnerability to model mismatch is magnified exponentially in the multi-agent context: this
uncertainty is amplified through a cascading feedback loop of agent interactions. A minor, unmodeled
perturbation that affects one agent can cause it to deviate from its expected behavior. This deviation
alters the environment for its peers, who in turn must adapt their policies. Their adaptations further
change the dynamics for all other agents, including the one first affected. This can trigger a chain of
unpredictable responses, destabilizing the collective strategy and leading to a highly non-stationary
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learning environment far more volatile than that caused by strategic adaptation alone (Papoudakis
et al., 2019; Canese et al., 2021; Wong et al., 2023). The entire multi-agent system becomes fragile,
as the intricate inter-agent dependencies act as amplifiers for even the smallest model inaccuracies.

To inoculate MARL agents against such environmental uncertainty, the framework of Distributionally
Robust Markov Games (DRMGs) offers a principled and powerful solution (Zhang et al., 2020;
Kardeş et al., 2011). Rather than trusting a single, nominal model of the environment (the simulator),
the DRMG approach embraces a principle of pessimism. It defines an uncertainty set of plausible
environment models centered around the nominal one. The agents’ goal is to maximize the worst-case
expected returns across the entire uncertainty set. This robust optimization strategy yields two
profound benefits. First, it provides a formal performance guarantee: if the true environment lies
within the uncertainty set, the policy’s performance is guaranteed to be no worse than the optimized
worst-case value. Second, it acts as a powerful regularizer, forcing agents to discover simpler and
more generalizable policies that are inherently less sensitive to minor perturbations, thereby enhancing
generalization even to environments outside the specified set (Vinitsky et al., 2020; Abdullah et al.,
2019; Liu et al., 2025).

However, despite its theoretical appeal, the current body of research on DRMGs is built upon
assumptions that create a critical disconnect from the realities of many high-stakes applications.
The prevailing algorithmic frameworks fall into two main categories: those that assume access to
a generative model (Shi et al., 2024b; Jiao & Li, 2024), which is tantamount to having a perfect,
queryable oracle or simulator, and those designed for the offline setting (Li et al., 2025; Blanchet
et al., 2023), which presuppose the existence of a large, static, and sufficiently comprehensive dataset
collected beforehand. These assumptions are untenable in precisely the domains where robustness is
most crucial. Consider applications in autonomous systems (Demontis et al., 2022) or personalized
healthcare (Alaa Eldin, 2023; Lu et al., 2021). In these settings, creating a high-fidelity simulator is
often impossible, and pre-collecting a dataset that covers all critical scenarios is infeasible. Agents
have no choice but to learn online, through direct, sequential interaction with the complex and
unknown real world. In this online paradigm, data is not a free commodity to be sampled at will;
it is earned through experience, where every action has a real cost and naive exploration can lead
to severe or irreversible outcomes. This necessitates a new class of algorithms that can navigate the
exploration-exploitation tradeoff under the additional burden of worst-case environmental uncertainty.

We aim for robustness that survives contact with reality: agents must cope with misspecification
while learning purely from experience. Without simulators or sizable offline datasets, existing
approaches struggle to bridge theory and practice. This shortfall clarifies the gap we address and
motivates our central question of our work: How to design a provably effective online algorithms
for distributionally robust Markov games?

In this paper, we answer the above question by designing a model-based online algorithm for DRMGs
and providing corresponding theoretical guarantees. Our contributions are summarized as follows.

Hardness in Online DRMGs: We first revealed the inherent hardness of online learning in DRMGs.
Specifically, we showed that the online learning can suffer from the support shifting issue, where
the support of the worst-case kernel is not fully covered by the support of the nominal environment,
by constructing a hard instance that achieve an Ω

(
Kmin{H,

∏
iAi}

)
-regret for any algorithm.

Moreover, we use another example to show that even without the support shifting issue, the regret
can still have a minimax lower bound of Ω(

√
K
∏

iAi). Here, K is the number of iteration episodes,
H is the DRMG horizon, and

∏
iAi is the size of the joint action space. These results directly imply

the hardness of online learning, comparing to other well-posed learning schemes including generative
model (Shi et al., 2024a; Jiao & Li, 2024) or offline learning (Li et al., 2025).

A Framework for Online Robust MARL: We introduce f -MORNAVI, a novel model-based
meta-algorithm designed specifically for online learning in DRMGs. Our framework pioneers a dual
approach that synergizes the pessimism required for robust optimization with the optimism essential
for provably efficient online exploration. At its core, f -MORNAVI learns the nominal environment
model from online interactions and then incorporates a carefully constructed, data-driven bonus
term, β. This bonus term is uniquely tailored to the geometry of the chosen uncertainty set, guiding
exploration while guaranteeing that the learned policy is robust to worst-case model perturbations.
We further present two concrete instantiations of our framework for uncertainty sets defined by Total
Variation (TV) distance and Kullback-Leibler (KL) divergence.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Near-Optimal Regret Bounds for Online DRMGs: We establish the first known theoretical
guarantees for online learning in general-sum DRMGs by providing rigorous, high-probability regret
bounds for our algorithms. The regret measures the performance gap between our algorithm and
an optimal robust policy, thus formally characterizing the sample complexity needed to solve the
DRMG. We futher prove that our algorithms converge to an ϵ-optimal robust policy with high sample
efficiency (see Corollary 1). Our results are significant as they are the first to demonstrate that finding
a robust equilibrium in a general-sum DRMG is achievable in a sample-efficient manner through
online interaction, without requiring a simulator or a pre-collected dataset.

2 PROBLEM FORMULATION

2.1 DISTRIBUTIONALLY ROBUST MARKOV GAMES

A Distributionally Robust Markov Game (DRMG) can be specified as MGrob ={
M,S,A, H, {Pi}i∈M, r

}
, where M = {1, ...,m} is the set of m agents, S = {1, 2, . . . , S}

denotes the finite state space, A denotes the joint action space for all agents as A = A1 × · · · × Am,
where Ai = {1, 2, . . . , Ai} being the action space of agent i, H denotes the horizon length. We
consider non-stationary DRMGs, i.e., r is the reward function: r = {ri,h}1≤i≤m,1≤h≤H with
ri,h : S × A 7→ [0, 1]. Specifically, for any (i, h, s,a) ∈ M × [H] × S × A, ri,h(s,a) is the
immediate (deterministic) reward received by the i-th agent in state s when the joint action profile
is a. The major difference between a DRMG and a standard Markov game is the transition kernel.
Instead of having a fixed transition kernel, agents in a DRMG maintain their own uncertainty sets of
transition kernels Pi, to capture the potential environment uncertainties in their perspective. At each
step, the environment does not transit following a fixed transition kernel, instead, it transits following
an arbitrary kernel from the uncertainty set.

In this work, we mainly consider uncertainty sets specified by f -divergence (Sason & Verdú, 2016).
Drawing inspiration from the rectangularity condition in robust single-agent RL (Iyengar, 2005;
Wiesemann et al., 2013; Zhou et al., 2021; Shi et al., 2023), and following standard DRMG studies
(Shi et al., 2024b;a; Zhang et al., 2020), we consider the agent-wise (s,a)-rectangular uncertainty
set, due to its computational tractability. Namely, for each agent i, the DRMG specify an uncertainty
set Pi, which is independently defined over all horizons, states, and joint actions:

Pi =
⊗

(h,s,a)∈[H]×S×A

Pρi

i,h,f (s,a), (1)

where ⊗ denotes the Cartesian product. At step h, if all agents take a joint action ah at the state sh,
each agent anticipates that the transition kernel is allowed to be chosen arbitrarily from the prescribed
uncertainty set Pρi

i,h,f (sh,ah). Here, the uncertainty set Pρi

i,h,f (s,a) is constructed centered on a
nominal kernel P ⋆ : S ×A → ∆(S):
Definition 1 (f -Divergence Uncertainty Set). The f -divergence uncertainty set is defined as:

Pρi

i,h,f (s,a) =
{
Ph ∈ ∆(S) : f

(
Ph, P

⋆
h (·|s,a)

)
≤ ρi

}
,

where the f -divergence is defined as f
(
Ph, P

⋆
h (·|s,a)

)
=
∑
s′∈S

f
(

Ph(s
′)

P⋆
h (s′|s,a)

)
P ⋆
h (s

′|s,a).

The f -divergence uncertainty sets with different f have been extensively studied in distributionally
robust RL (Clavier et al., 2023; Shi et al., 2023; Panaganti et al., 2022; Yang et al., 2022; Wang et al.,
2024e; Zhang et al., 2025). In this work, we focus on TV and KL-divergence.

Robust Value Functions. For a DRMG, each agent aims to maximize its own worst-case
performance over all possible transition kernels in its own (possibly different) prescribed uncertainty
set. The strategy of agent i taking actions is captured by a policy πi = {πi,h : S → ∆(Ai)}Hh=1.
Since the immediate rewards and transition kernels are determined by the joint actions, the worst-case
performance of the i-th agent over its own uncertainty set Pi is determined by a joint policy
π = {πh : S → ∆(A)}Hh=1, which we refer to as the robust value function V π,ρi

i,h and the robust
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Q-function Qπ,ρi

i,h , for an initial state s and initial action a:

Qπ,ρi

i,h (s,a) ≜ inf
P̃∈Pi

Eπ,P̃

[
H∑
t=h

ri,t(st,at)

∣∣∣∣∣ sh = s,ah = a

]
, V π,ρi

i,h (s) ≜
∑
a

π(a|s)Qπ,ρi

i,h (s,a),

where the expectation is taken over the randomness of the joint policy π and the kernel P̃ .

Solutions to DRMGs. Due to different objectives, the goal of a DRMG is to achieve some notions
of equilibrium (Fudenberg & Tirole, 1991). We begin by formalizing the best-response policy.

For any given joint policy π, we use π−i to represent the policies of all agents excluding the i-th
agent. The agent i’s best response policy to π−i, π

†,ρi

i (π−i), is the policy that maximizes its own
robust value function, at the give step h and state s:

π†,ρi

i (π−i) ≜ arg max
π′
i∈∆(Ai)

V
(π−i×π′

i),ρi

i,h (s). (2)

The corresponding robust value function is denoted as

V
†,π−i,ρi

i,h (s) ≜ max
π′
i∈∆(Ai)

V
π′
i×π−i,ρi

i,h (s). (3)

As noted, the objective in a DRMG is to compute an equilibrium policy (Fudenberg & Tirole, 1991):
each agent’s policy is a best response to the others, so no single agent can improve its robust value
by deviating while the rest remain fixed. Standard notions of equilibrium include robust Nash
Equilibrium (NE), robust Coarse Correlated Equilibrium (CCE), and robust Correlated Equilibrium
(CE) (all of them exist (Blanchet et al., 2023)). A DRMG aims to find some approximated equilibrium:

Robust ε-NE. A product policy π ∈ ∆(A1)× · · · ×∆(Am) is an robust-ε NE if for any s ∈ S:

gapNE(π, s) ≜ max
i∈M

{
V

†,π−i,ρi

i,1 (s)− V π,ρi

i,1 (s)
}
≤ ε.

Robust NE ensures that, the agent i’s policy induced by the NE is a best response policy
to the remaining agents’ joint policy (up to ϵ), thus no agent can improve its worst-case
performance—evaluated over its own uncertainty set Pi—by unilaterally deviating from the NE.

Robust ε-CCE. A (possibly correlated) joint policy π ∈ ∆(A) is an robust-ε CCE if for any s ∈ S:

gapCCE(π, s) ≜ max
i∈M

{
V

†,π−i,ρi

i,1 (s)− V π,ρi

i,1 (s)
}
≤ ε.

Robust CCE relaxes the notion of NE by allowing for potentially correlated policies, while still
ensuring that no agent has an incentive to unilaterally deviate from it.

Robust ε-CE. A joint policy π ∈ ∆(A) is an robust-ε CE if for any s ∈ S:

gapCE(π, s) ≜ max
i∈M

{
max
ϕ∈Φi

V ϕ⋄π,ρi

i,1 (s)− V π,ρi

i,1 (s)

}
≤ ε.

Here, a strategy modification ϕ ≜ {ϕh,s}(h,s)∈[H]×S for player i is a set of [H]× S functions from
Ai to itself. Let Φi denote the set of all possible strategy modifications for player i. Given a joint
policy π, applying a modification ϕ yields a new joint policy ϕ ⋄ π, which matches π everywhere
except that at each state s and timestep h, player i’s action ai is replaced by ϕh,s(ai).

Online Learning in DRMGs. We consider online learning in DRMGs, aiming to compute equilibria
{NASH,CCE,CE} via interaction with the nominal environment P ⋆ over K ∈ N episodes. Each
episode starts from sk1 , proceeds with a policy πk chosen from experience, and ends with an update
for the next round. We use robust regret as our performance metric, which compares the learned
outcome to the target equilibrium in the presence of model error.
Definition 2 (Robust Regret). Let πk be the execution policy in the kth episode. After a total of K
episodes, the corresponding robust regret is defined as

Regret{NASH,CCE,CE}(K) =

K∑
k=1

gap{NASH,CCE,CE}(π
k, sk1).

Notably, if an algorithm has a sub-linear regret, it achieves a robust equilibrium as K →∞.
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3 OPTIMISTIC ROBUST NASH VALUE ITERATION

We then present Multiplayer Optimistic Robust Nash Value Iteration for f -Divergence Uncertainty
Set (f -MORNAVI), a meta-algorithm for episodic, finite-horizon DRMGs with interactive data
collection. f -MORNAVI handles general f -divergences, with emphasis on KL and TV.

Algorithm 1: f -MORNAVI

1: Input: Uncertainty level ρi > 0 for all i ∈M.
2: Initialize: Dataset D = ∅
3: for episode k = 1, . . . ,K do

* Nominal Transition Estimation *
4: Compute the transition kernel estimator P̂ k

h (s,a, s
′) as given in eq. 4.

* Optimistic Robust Planning *
5: Set V

k,ρi

H+1(·) = V k,ρi

H+1(·) = 0 for all i ∈M.
6: for step h = H, . . . , 1 do
7: For all (s,a) ∈ S ×A and i ∈M, update Q

k,ρi

i,h (s,a) [eq. 5] and Qk,ρi

i,h
(s,a) [eq. 6].

8: For all s ∈ S, update πk
h(·|s) by eq. 7.

9: For all s ∈ S and i ∈M, update V
k,ρi

i,h (s) and V k,ρi

i,h (·) by eq. 8.
10: end for

* Execution of policy and data collection *
11: Receive initial State sk1 ∈ S
12: for step h = 1, . . . ,H do
13: Take action akh ∼ πk

h(· | skh), observe reward rh(skh,a
k
h) and next state skh+1.

14: end for
15: Set D = D ∪ {(skh,akh, skh+1)}Hh=1.
16: end for
17: Output: Return policy πout = {πk}Kk=1.

3.1 ALGORITHM DESIGN

Our algorithm has the following three stages.

Stage 1: Nominal Transition Estimation (Line 4). At the start of each episode k ∈ [K], we
maintain an estimate of the nominal kernel P ⋆ using the historical data D = {(sτh,aτh, sτh+1)}

k−1,H
τ=1,h=1

collected from past interactions with the training environment. Specifically, f -MORNAVI updates
the empirical transition kernel for each tuple (h, s,a, s′) ∈ [H]× S ×A× S as follows:

P̂ k
h (s

′|s,a) = Nk
h (s,a, s

′)

Nk
h (s,a)

(if Nk
h (s,a) > 0), and P̂ k

h (s
′|s,a) = 1

|S|
(if Nk

h (s,a) = 0), (4)

where Nk
h (s,a, s

′) and Nk
h (s,a), are calculated on the current dataset D by Nk

h (s,a, s
′) =

k−1∑
τ=1

1{(sτh,aτh, sτh+1) = (s,a, s′)}, and Nk
h (s,a) =

∑
s′∈S

Nk
h (s,a, s

′). Note that we adopt a

model-based approach that estimates transition kernels. Although this leads to higher memory
consumption, model-free DRMGs are inherently challenging due to the non-linearity of worst-case
expectation w.r.t. nominal kernels, which makes model-free estimators biased or sample-inefficient
(Liu et al., 2022; Wang et al., 2023c; 2024d; Zhang et al., 2025).

Stage 2: Optimistic Robust Planning (Lines 5–10). The f -MORNAVI constructs the episode
policy πk via optimistic robust planning based on the empirical model P̂ k. This involves estimating
an upper bound on the robust value function, following the principle of Upper-Confidence-Bound
(UCB) methods, which are well-established in online vanilla RL (Auer & Ortner, 2010; Azar et al.,
2017; Zanette & Brunskill, 2019; Zhang et al., 2021b; Ménard et al., 2021; Zhang et al., 2024), and
this optimism encourages exploration of less-visited state–action pairs.

To this end, f -MORNAVI maintains a bonus term at each episode k, capturing the gap between
the robust value function under P̂ k and that under the true model. This bonus is added to the robust

5
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Bellman estimate to ensure its optimism. Specifically, for each (h, s,a) ∈ [H]× S ×A, we set

Q
k,ρi

i,h (s,a) =min
{
ri,h(s,a) + σP̂ρi

i,h,f (s,a)
[V

k,ρi

i,h+1] + βk
i,h,f (s,a), H

}
. (5)

Qk,ρi

i,h
(s,a) =max

{
ri,h(s,a) + σP̂ρi

i,h,f (s,a)
[V k,ρi

i,h+1]− β
k
i,h,f (s,a), 0

}
, (6)

here, σP [V ] = infP∈P EP [V ] is the support function of V over the uncertainty set P , and can be
calculated through its dual representation (see Lemma 1); P̂ρi

i,h,f is the uncertainty set centered at P̂ k

from eq. 4: P̂ρi

i,h,f (s,a) =
{
Ph ∈ ∆(S) : f

(
Ph, P̂

k
h (·|s,a)

)
≤ ρi

}
.

Each of these estimates in eq. 5 and eq. 6 are based on estimated robust Bellman operators (see
Appendix C for details) and a bonus term βk

i,h,f (s,a) ≥ 0. The bonus term is constructed (we will
discuss the construction later) to ensure the estimation becomes a confidence interval of the true
robust value function, i.e., Q†,π−i,ρi

i,h (s,a) ∈ [Qk,ρi

i,h
(s,a), Q

k,ρi

i,h (s,a)], with high probability.

EQUILIBRIUM subroutine (Line 8). Given robust Q-function estimates Qk,ρi

i,h
(s,a) and

Q
k,ρi

i,h (s,a) for i ∈ M at step h, the sub-routine EQUILIBRIUM ∈ {NASH,CCE,CE} finds a

corresponding equilibrium πk
h(·|s) for the matrix-form game with pay-off matrices {Qk,ρi

i,h (s, ·)}i∈M:

πk
h(·|s)← EQUILIBRIUM

({
Q

k,ρi

i,h (s, ·)
}
i∈M

)
. (7)

Note that finding a NE can be PPAD-hard (Daskalakis et al., 2009), but computing CE or CCE
remains tractable in polynomial time (Liu et al., 2021).

We then update the estimation of V †,π−i,ρ
h as

V
k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)
]

and V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Qk,ρi

i,h
(s,a)

]
. (8)

Note that while the lower estimate in eq. 6 does not influence policy execution directly, it plays a
crucial role in constructing valid exploration bonuses and ensuring strong theoretical guarantees. By
leveraging both upper and lower bounds, the algorithm performs optimistic robust planning, enabling
structured, uncertainty-aware exploration that balances exploration, exploitation, and robustness.

Stage 3: Execution of Policy and Data Collection (Lines 11–17). After evaluating the policy
{πk

h}Hh=1 for episode k, the learner takes action based on πk
h and observes the reward rh(skh,a

k
h) and

next state skh+1, which get appended to the historical dataset collected till episode k − 1.

4 HARDNESS OF ONLINE LEARNING

In this section, we aim to discuss the inherent hardness of online learning in DRMGs from two
aspects: (1) When there is the support shift issue, no MARL algorithm can obtain a sub-linear regret
on a certainty DRMG; (2) Even if there is no support shift issue, there exists a DRMG such that
any online algorithm suffers from the curse of multi-agency. This is a separation between DRMGs
with interactive data collection and generative model/offline data, and also between DRMGs with
non-robust MGs, showing the inherent challenges of online DRMGs.

4.1 HARDNESS WITH SUPPORT SHIFT

Support shift (Lu et al., 2024) refers to the case that the support of the worst-case transition kernel is
not covered by the support of the nominal kernel. It can happen when, for instance, the uncertainty
set is defined through TV. It will result in a challenge that, for those states that is not covered by the
nominal kernel, there is no data available, so that the agent can never learn the optimal robust policy
efficiently. Specifically, we derive the following result to illustrate the hardness.
Theorem 1. There exists a TV-DRMG, such that any online learning algorithm suffers the following
regret lower bound:

inf
ALG

E[RegretNASH(K)] ≥ Ω
(
ρK ·min{H,

∏
i∈M

Ai}
)
.
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Our construction is deferred to Example 1 in Appendix. This regret bound is linear in the number of
episodes K, creating a combinatorial explosion that makes the problem information-theoretically
intractable. Moreover, our result shows that when the game horizon H is large enough, the minimax
lower bound depends on the joint action space, showing the hardness of online learning compared to
generative models and offline settings.

4.2 HARDNESS WITHOUT SUPPORT SHIFT

We then illustrate the hardness of online DRMGs when there is no support shift. Note that when the
uncertainty set is defined through, e.g., KL divergence, the worst-case support will be covered by the
nominal one, so there will not be any support shift. However, we construct another example to show
that, even without the support shift, the online learning can still be challenging and inefficient.
Theorem 2 (Lower Bound for Robust Learning without Support Shift). There exists a DRMG, such
that any learning algorithm suffers the following cumulative regret lower bound over K episodes:

inf
ALG

E[RegretNASH(K)] ≥ Ω
(√

K
∏
i∈M

Ai

)
.

Our construction is in Example 2 in Appendix. This result illustrates that, even without any support
shift, some hard instance can require at least Ω

(√
K
∏

iAi

)
regret. Our result hence suggests that

the dependence on the joint action space may be inevitable in online robust learning, which suffer
from the curse of multi-agency.

5 THEORETICAL GUARANTEES

We then develop the theoretical results of our algorithm under both TV and KL sets.

5.1 REGRET BOUND FOR TOTAL VARIATION

As discussed in Section 4, no efficient algorithm can be expected due to the support shifting issue. We
hence adopt a standard fail-state assumption (Lu et al., 2024; Liu et al., 2024) to ensure the worst-case
kernel support will be covered by the nominal one, bypassing the issue.
Assumption 1 (Failure States). For any agent i, there exists an (agent-specified) set of failure states
Sif ⊆ S, such that ri(s,a) = 0, and P ⋆

h (s
′|s,a) = 1, ∀a ∈ A,∀s ∈ Sif ,∀s′ ∈ Sif .

This assumption is only for TV case. Assumption 1 is a standard assumption in single-agent robust
RL studies (Panaganti et al., 2022; Lu et al., 2024), and we adapt it to multi-agent cases.

We then present our threotical guarantees.
Theorem 1 (Upper bound of TV-MORNAVI). Denote ρmin := mini∈M ρi. For any δ ∈ (0, 1),

we set βk
i,h,f (s,a) as

√√√√ c1ιVar
P̂k
h

(·|s,a)

[
V

k,ρi
i,h+1

+V
k,ρi
i,h+1

2

]
Nk

h (s,a)∨1
+ c2H

2Sι√
Nk

h (s,a)∨1
+

2E
P̂k
h

(·|s,a)

[
V

k,ρi
i,h+1−V

k,ρi
i,h+1

]
H +

1√
K

, where ι = log
(
S2(
∏m

i=1Ai)H
2K3/2/δ

)
and c1, c2 are absolute constants. Then under

Assumption 1, for EQUILIBRIUM being one of {NASH,CE,CCE}, with probability at least 1− δ, the
regret of our TV-MORNAVI algorithm can be bounded as:

Regret{NASH,CCE,CE}(K) = Õ

√min
{
ρ−1
min, H

}
H2SK

( ∏
i∈M

Ai

) ,

where f(K) = Õ(g(K)) means f(K) ≤ Poly(log(K)) · g(K) for sufficiently large K and some
polynomial of log(K).

5.2 REGRET BOUND FOR KL-DIVERGENCE

We then study the regret bound of KL-divergence set. As discussed, KL set is free from supporting
issue hence no additional assumption is required. Our regret bound result is as follows.
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Theorem 2. For any δ, set βk
i,h,f (s,a) in KL-DRMG as 2cfH

ρi

√
ι(

Nk
h (s,a)∨1

)
P̂k

min,h(s,a)
+
√

1
K ,

where P̂ k
min,h(s,a) = min

s′∈S
{P̂ k

h (s
′|s,a) : P̂ k

h (s
′|s,a) > 0}, ι = log

(
S2(
∏m

i=1Ai)H
2K3/2/δ

)
,

and cf is an absolute constant. Then for EQUILIBRIUM being one of {NASH,CE,CCE}, with
probability at least 1− δ, it holds that

Regret{NASH,CCE,CE}(K) = Õ

(√
H4 exp(2H2)KS

( ∏
i∈M

Ai

)(
ρ2minP

⋆
min

)−1
)
, (9)

here, P ⋆
min ≜ min(s,a,s′,h):Ph(s′|s,a)>0 P (s

′|s,a) is the smallest positive entry of the nominal kernel.

We note that exp(H) term in KL results can be replaced by P−1
min (Panaganti & Kalathil, 2022;

Blanchet et al., 2023), and both of these terms are inevitable.

5.3 SAMPLE COMPLEXITY

As a direct corollary, we derive the sample complexity to learn an ε-equilibrium. Using a standard
online-to-batch conversion (Cesa-Bianchi et al., 2001), we have the following results.
Corollary 1 (Sample Complexity). With probability at least 1−δ, and under the settings of Theorem 1
and Theorem 2, the number of samples required to find an ϵ-approximate equilibrium is bounded as:

KH =


Õ
(
ϵ−2 min

{
ρ−1
min, H

}
H3S

(∏
i∈MAi

))
, for TV-DRMG

Õ
(
ϵ−2H5 exp(2H2)S

(∏
i∈MAi

)(
ρ2minP

⋆
min

)−1
)
, for KL-DRMG

.

Our results hence implies that, despite the inherent hardness of online learning in DRMGs, our
algorithm is able to learn an equilibrium with efficient sample complexity. As we shall discussed in
the next section, our complexity bounds are near-optimal (expect the term

∏
i∈MAi), which hence

implies the efficiency of our method.

6 COMPARISON WITH PRIOR WORKS AND DISCUSSION

We then compare our results with prior works (the detailed Comparisons are shown in Table 1).

A substantial body of research on DRMGs has focused on two primary settings: (i) generative model
setting, where the agents can freely sample from all state-action pairs (Shi et al., 2024a;b; Jiao
& Li, 2024); (ii) offline setting, which relies on a comprehensive, pre-collected dataset (Blanchet
et al., 2023; Li et al., 2025). As we discuss in Section 4, both of these avoid exploration and are
therefore easier than the online regime we consider. Despite this added difficulty, our algorithm
attains complexities comparable to those reported for the generative and offline settings.

For both uncertainty sets, our results match or improve upon previous results and the minimax lower
bound in all parameters except for the action-product term,

∏
iAi, under the generative model setting.

In the offline setting, if the dataset is generated uniformly, the convergence coefficients C⋆
u/p from

(Li et al., 2025; Blanchet et al., 2023) introduce an additional
∏

iAi term into the sample complexity.
Consequently, our results also match or surpass the offline complexity in all parameter dependence.
This raises an important open question:

Can any online DRMG learning algorithm (or even under generative model settings) overcome
the curse of multi-agency and eliminate the dependence on

∏
iAi?

While some works (Shi et al., 2024a; Jiao & Li, 2024; Li et al., 2025; Ma et al., 2023) have achieved
independence from

∏
iAi, it remains unclear whether these improvements are applicable to general

DRMGs. Specifically, the results in (Shi et al., 2024a) and (Jiao & Li, 2024) are developed for special
uncertainty sets with desirable properties. For instance, the fictitious TV uncertainty set in (Shi et al.,
2024a) allows the global transition kernel to be estimated from a single agent’s local information;
And robust RL under contamination models is known to be equivalent to a non-robust problem with a
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Table 1: Comparison with prior results. C⋆
u/p are coverage coefficients for offline learning. In (Li

et al., 2025), f(H, ρ) =
(
Hρ− 1 + (1− ρ)H

)
/ρ2. The exp(H) term in KL results can be replaced

by P−1
min directly (Panaganti & Kalathil, 2022; Blanchet et al., 2023).

Setting &
Algorithm Uncertainty Set Sample Complexity

Generative
(Shi et al., 2024b) TV Õ

(
ϵ−2H3S(

∏
i∈MAi)min

{
ρ−1
min, H

})
Generative

(Jiao & Li, 2024) Contamination Õ(ϵ−2H3S(
∑

i∈MAi)min
{
ρ−1
min, H

}
)

Generative
(Shi et al., 2024a) TV (fictitious) Õ

(
ϵ−4H6S(

∑
i∈MAi)min

{
ρ−1
min, H

})
Offline

(Blanchet et al., 2023)
KL Õ

(
ϵ−2ρ−2

minC
⋆
uH

4 exp(H)S2(
∏

i∈MAi)
)

TV Õ
(
ϵ−2C⋆

uH
4S2(

∏
i∈MAi)

)
Offline

(Li et al., 2025) TV Õ
(
ϵ−2C⋆

pH
4S(
∑m

i=1Ai)min {f(H, ρ), H}
)

Online
(Ma et al., 2023) KL Õ(ϵ−2H5S(maxi{Ai})2) (with an oracle)

Online
(Our work)

TV Õ
(
ϵ−2H3S(

∏
i∈MAi)min

{
ρ−1
min, H

})
KL Õ

(
ϵ−2ρ−2

min(P
⋆
min)

−1H5 exp(2H2)S
(∏

i∈MAi

))
Generative

Lower bound
(Shi et al., 2024b)

TV Ω
(
ϵ−2H3S(maxi∈MAi)min

{
ρ−1
min, H

})

specific discount factor (Wang et al., 2023a). And the improvement in the offline setting is attributed
to the benefits of the coverage coefficient.

The only online method (which also breaks the curse of multi-agency) is presented in (Ma et al., 2023).
However, their algorithm relies on additional assumptions about uncertainty sets and a powerful oracle.
This oracle is required to provide an ϵ-accurate estimation of the worst-case performance, σPi

[V ]
(see Theorem 12 of (Ma et al., 2023)), without any need for exploration. A central challenge in the
analysis of robust learning algorithms is precisely quantifying this estimation error, as demonstrated
in works like (Shi et al., 2023; Xu et al., 2023; Panaganti & Kalathil, 2022; Liu & Xu, 2024). By
assuming the existence of such an oracle, they bypass this core challenge, which significantly reduces
their sample complexity. Moreover, their results need additional assumptions on the radius ρ. For
instance, it is assumed that ρ ≤ P⋆

min

H , whereas ours do not require any of them.

Therefore, it is still uncertain whether the complexity reduction in these papers is a blessing of
their specific uncertainty set structures, the properties of offline coverage coefficients, or the use
of an estimation oracle. Furthermore, based on our discussion in Section 4, it is not clear whether
the minimax lower bound for online DRMGs is independent of the size of the joint action space.
We, therefore, leave the exploration of this direction, including whether practical relaxations and
techniques can avoid it, for future work.

7 CONCLUSION

In this paper, we introduced the Multiplayer Optimistic Robust Nash Value Iteration (MORNAVI)
algorithm, pioneering the study of online learning in DRMGs. Our work provides the first provable
guarantees for this challenging setting, demonstrating that MORNAVI achieves low regret and
efficiently identifies optimal robust policies for TV-divergence and KL-divergence uncertainty sets.
This research establishes a practical path toward developing truly robust multi-agent systems that
learn directly from environmental interactions. Despite the inherent hardness of online DRMGs, our
algorithm achieves complexity results comparable to generative model and offline settings. This work
also highlights a critical open question: whether online DRMG learning algorithms can overcome the
curse of multi-agency and eliminate the dependence on the joint action space size. Future work will
explore this fundamental challenge to advance the scalability of robust MARL.
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Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the Generalization Ability of On-Line
Learning Algorithms. Advances in neural information processing systems, 14, 2001.

Zixiang Chen, Dongruo Zhou, and Quanquan Gu. Almost optimal algorithms for two-player zero-sum
linear mixture markov games. In Sanjoy Dasgupta and Nika Haghtalab (eds.), Proceedings of
The 33rd International Conference on Algorithmic Learning Theory, volume 167 of Proceedings
of Machine Learning Research, pp. 227–261. PMLR, 29 Mar–01 Apr 2022. URL https:
//proceedings.mlr.press/v167/chen22d.html.

Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards Minimax Optimality of Model-based
Robust Reinforcement Learning. arXiv preprint arXiv:2302.05372, 2023.

Qiwen Cui, Kaiqing Zhang, and Simon Du. Breaking the curse of multiagents in a large state space:
Rl in markov games with independent linear function approximation. In The Thirty Sixth Annual
Conference on Learning Theory, pp. 2651–2652. PMLR, 2023.

Constantinos Daskalakis. On the complexity of approximating a nash equilibrium. ACM Transactions
on Algorithms (TALG), 9(3):1–35, 2013.

10

https://medium.com/@baraa.alaa.eldin/why-applying-deep-reinforcement-learning-in-healthcare-is-hard-ffc6e05ab7ca
https://medium.com/@baraa.alaa.eldin/why-applying-deep-reinforcement-learning-in-healthcare-is-hard-ffc6e05ab7ca
https://proceedings.mlr.press/v167/chen22d.html
https://proceedings.mlr.press/v167/chen22d.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a nash equilibrium. Communications of the ACM, 52(2):89–97, 2009.

Ambra Demontis, Maura Pintor, Luca Demetrio, Kathrin Grosse, Hsiao-Ying Lin, Chengfang Fang,
Battista Biggio, and Fabio Roli. A survey on reinforcement learning security with application to
autonomous driving, 2022. URL https://arxiv.org/abs/2212.06123.

Xiaotie Deng, Ningyuan Li, David Mguni, Jun Wang, and Yaodong Yang. On the complexity of
computing markov perfect equilibrium in general-sum stochastic games. National Science Review,
10(1):nwac256, 2023.

Jing Dong, Jingwei Li, Baoxiang Wang, and Jingzhao Zhang. Online policy optimization for robust
mdp. arXiv preprint arXiv:2209.13841, 2022.

Devdatt P Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

Songtao Feng, Ming Yin, Yu-Xiang Wang, Jing Yang, and Yingbin Liang. Improving sample
efficiency of model-free algorithms for zero-sum markov games. arXiv preprint arXiv:2308.08858,
2023.

Arlington M Fink. Equilibrium in a stochastic n-person game. Journal of science of the hiroshima
university, series ai (mathematics), 28(1):89–93, 1964.

Drew Fudenberg and Jean Tirole. Game theory. MIT press, 1991.

Debamita Ghosh, George K. Atia, and Yue Wang. Provably near-optimal distributionally robust
reinforcement learning in online settings, 2025. URL https://arxiv.org/abs/2508.
03768.

Amy Greenwald, Keith Hall, Roberto Serrano, et al. Correlated q-learning. In ICML, volume 3, pp.
242–249, 2003.

Songyang Han, Sanbao Su, Sihong He, Shuo Han, Haizhao Yang, Shaofeng Zou, and Fei Miao.
What is the solution for state-adversarial multi-agent reinforcement learning? Transactions on
Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/
forum?id=HyqSwNhM3x.

Thomas Dueholm Hansen, Peter Bro Miltersen, and Uri Zwick. Strategy iteration is strongly
polynomial for 2-player turn-based stochastic games with a constant discount factor. Journal of
the ACM (JACM), 60(1):1–16, 2013.

Sihong He, Songyang Han, Sanbao Su, Shuo Han, Shaofeng Zou, and Fei Miao. Robust multi-agent
reinforcement learning with state uncertainty, 2023. URL https://arxiv.org/abs/2307.
16212.

Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

Min Hua, Dong Chen, Xinda Qi, Kun Jiang, Zemin Eitan Liu, Quan Zhou, and Hongming
Xu. Multi-agent reinforcement learning for connected and automated vehicles control: Recent
advancements and future prospects, 2024. URL https://arxiv.org/abs/2312.11084.

Garud N Iyengar. Robust Dynamic Programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Yuchen Jiao and Gen Li. Minimax-optimal multi-agent robust reinforcement learning. arXiv preprint
arXiv:2412.19873, 2024.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?
In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 4868–4878, 2018.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentralized
algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

11

https://arxiv.org/abs/2212.06123
https://arxiv.org/abs/2508.03768
https://arxiv.org/abs/2508.03768
https://openreview.net/forum?id=HyqSwNhM3x
https://openreview.net/forum?id=HyqSwNhM3x
https://arxiv.org/abs/2307.16212
https://arxiv.org/abs/2307.16212
https://arxiv.org/abs/2312.11084


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yujia Jin, Vidya Muthukumar, and Aaron Sidford. The complexity of infinite-horizon general-sum
stochastic games. arXiv preprint arXiv:2204.04186, 2022.
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Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–384,
2021a.

Runyu Zhang, Yang Hu, and Na Li. Soft Robust MDPs and Risk-Sensitive MDPs: Equivalence,
Policy Gradient, and Sample Complexity. arXiv preprint arXiv:2306.11626, 2023.

Zihan Zhang, Xiangyang Ji, and Simon Du. Is Reinforcement Learning More Difficult Than Bandits?
A Near-optimal Algorithm Escaping the Curse of Horizon. In Conference on Learning Theory, pp.
4528–4531. PMLR, 2021b.

Zihan Zhang, Yuxin Chen, Jason D Lee, and Simon S Du. Settling the sample complexity of online
reinforcement learning. In Proc. Annual Conference on Learning Theory (CoLT), pp. 5213–5219.
PMLR, 2024.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep
reinforcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737–744. IEEE, 2020.

Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter Glynn.
Finite-Sample Regret Bound for Distributionally Robust Offline Tabular Reinforcement Learning.
In International Conference on Artificial Intelligence and Statistics, pp. 3331–3339. PMLR, 2021.

Ziyuan Zhou, Guanjun Liu, and Mengchu Zhou. A robust mean-field actor-critic reinforcement
learning against adversarial perturbations on agent states. IEEE Transactions on Neural Networks
and Learning Systems, 35(10):14370–14381, October 2024. ISSN 2162-2388. doi: 10.1109/tnnls.
2023.3278715. URL http://dx.doi.org/10.1109/TNNLS.2023.3278715.

16

http://dx.doi.org/10.1109/TNNLS.2023.3278715

	Introduction
	Problem Formulation
	Distributionally Robust Markov Games

	Optimistic Robust Nash Value Iteration
	Algorithm Design

	Hardness of Online Learning
	Hardness with Support Shift
	Hardness without support shift

	Theoretical Guarantees
	Regret Bound for Total Variation
	Regret Bound for KL-Divergence
	Sample Complexity

	Comparison with Prior Works and Discussion
	Conclusion

