

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SAMPLE-EFFICIENT DISTRIBUTIONALLY ROBUST MULTI-AGENT REINFORCEMENT LEARNING VIA ONLINE INTERACTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Well-trained multi-agent systems can fail when deployed in real-world environments due to model mismatches between the training and deployment environments, caused by environment uncertainties including noise or adversarial attacks. Distributionally Robust Markov Games (DRMGs) enhance system resilience by optimizing for worst-case performance over a defined set of environmental uncertainties. However, current methods are limited by their dependence on simulators or large offline datasets, which are often unavailable. This paper pioneers the study of online learning in DMRGs, where agents learn directly from environmental interactions without prior data. We introduce the *Multiplayer Optimistic Robust Nash Value Iteration (MORNAVI)* algorithm and provide the first provable guarantees for this setting. Our theoretical analysis demonstrates that the algorithm achieves low regret and efficiently finds the optimal robust policy for uncertainty sets measured by Total Variation divergence and Kullback-Leibler divergence. These results establish a new, practical path toward developing truly robust multi-agent systems.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL), along with its stochastic game-based mathematical formulation (Shapley, 1953; Littman, 1994), has emerged as a cornerstone paradigm for intelligent multi-agent systems capable of complex, coordinated behavior. It provides the theoretical and algorithmic foundation for enabling multiple agents to learn, adapt, and make sequential decisions in shared, dynamic environments. Its practical impacts span from strategic gaming, where MARL agents have achieved superhuman mastery (Silver et al., 2016; Vinyals et al., 2019); autonomous transportation, where it is used to coordinate fleets of vehicles to navigate complex traffic scenarios (Shalev-Shwartz et al., 2016; Hua et al., 2024); and distributed robotics, where teams of robots learn to execute tasks (Lowe et al., 2017; Matignon et al., 2012).

Despite the remarkable progress in MARL, a fundamental and pervasive challenge severely restricts its reliable deployment in practice: the *Sim-to-Real* gap (Zhao et al., 2020; Peng et al., 2018). A standard pipeline of RL involves training extensively within a high-fidelity simulator and then deploying in practice. However, any simulator inevitably fails to capture the full richness and complexity of the real world, omitting subtle physical effects, unpredictable sensor noise, unmodeled system dynamics, or latent environmental factors (Padakandla et al., 2020; Rajeswaran et al., 2016). Consequently, a policy that appears optimal within the simulation can be brittle and perform poorly—or even fail catastrophically—when deployed into the noisy, unpredictable environment.

This vulnerability to model mismatch is magnified exponentially in the multi-agent context: this uncertainty is amplified through a cascading feedback loop of agent interactions. A minor, unmodeled perturbation that affects one agent can cause it to deviate from its expected behavior. This deviation alters the environment for its peers, who in turn must adapt their policies. Their adaptations further change the dynamics for all other agents, including the one first affected. This can trigger a chain of unpredictable responses, destabilizing the collective strategy and leading to a highly non-stationary learning environment far more volatile than that caused by strategic adaptation alone (Papoudakis

054 et al., 2019; Canese et al., 2021; Wong et al., 2023). The entire multi-agent system becomes fragile,
 055 as the intricate inter-agent dependencies act as amplifiers for even the smallest model inaccuracies.
 056

057 To enable MARL against such uncertainty, the framework of Distributionally Robust Markov Games
 058 (DRMGs) offers a principled and powerful solution (Zhang et al., 2020; Kardeş et al., 2011). DRMG
 059 approach embraces a principle of pessimism. It defines an uncertainty set of plausible environment
 060 models centered around the nominal one, and the goal is to maximize the worst-case expected returns
 061 across the entire uncertainty set. This robust optimization strategy yields two profound benefits.
 062 First, it provides a formal performance guarantee: if the true environment lies within the uncertainty
 063 set, the policy’s performance is guaranteed to be no worse than the optimized worst-case value.
 064 Second, it acts as a powerful regularizer, forcing agents to discover more generalizable policies that
 065 are inherently less sensitive to perturbations, thereby enhancing generalization even to environments
 066 outside the set (Vinitsky et al., 2020; Abdullah et al., 2019; Liu et al., 2025).

067 However, despite its theoretical appeal, the current body of research on DRMGs is built upon
 068 assumptions that create a critical disconnect from the realities of many high-stakes applications.
 069 The prevailing algorithmic frameworks fall into two main categories: those that assume access to
 070 a generative model (Shi et al., 2024b; Jiao & Li, 2024), which is tantamount to having a perfect,
 071 queryable oracle or simulator, and those designed for the offline setting (Li et al., 2025; Blanchet
 072 et al., 2023), which presuppose the existence of a large, static, and sufficiently comprehensive dataset
 073 collected beforehand. These assumptions are untenable in precisely the domains where robustness is
 074 most crucial. Consider applications in autonomous systems (Demontis et al., 2022) or personalized
 075 healthcare (Alaa Eldin, 2023; Lu et al., 2021). In these settings, creating a high-fidelity simulator is
 076 often impossible, and pre-collecting a dataset that covers all critical scenarios is infeasible. Agents
 077 have no choice but to learn online, through direct, sequential interaction with the complex and
 078 unknown real world. In this online paradigm, data is not a free commodity to be sampled at will;
 079 it is earned through experience, where every action has a real cost and naive exploration can lead
 080 to severe or irreversible outcomes. This necessitates a new class of algorithms that can navigate the
 081 exploration-exploitation tradeoff under the additional burden of worst-case environmental uncertainty.
 082

083 We aim for robustness that survives contact with reality: agents must cope with misspecification
 084 while learning purely from experience. Without simulators or sizable offline datasets, existing
 085 approaches struggle to bridge theory and practice. This shortfall clarifies the gap we address and
 086 motivates our central question of our work: ***How to design a provably effective online algorithms***
 087 ***for distributionally robust Markov games?***

088 In this paper, we answer the above question by designing a model-based online algorithm for DRMGs
 089 and providing corresponding theoretical guarantees. Our contributions are summarized as follows.
 090

091 **Hardness in Online DRMGs:** We first revealed the inherent hardness of online learning in DRMGs.
 092 Specifically, we first showed that the online learning can suffer from the support shifting issue, where
 093 the support of the worst-case kernel is not fully covered by the support of the nominal environment,
 094 by constructing a hard instance that achieve an $\Omega(K \min\{H, \prod_i A_i\})$ -regret for any algorithm.
 095 Moreover, we use another example to show that even without the support shifting issue, the regret can
 096 still have a minimax lower bound of $\Omega(\sqrt{K \prod_i A_i})$. Here, K is the number of iteration episodes, H
 097 is the DRMG horizon, and $\prod_i A_i$ is the size of the joint action space. These results directly imply the
 098 hardness of online learning, comparing to other well-posed learning schemes, including generative
 099 model (Shi et al., 2024a; Jiao & Li, 2024) or offline learning (Li et al., 2025).

100 **A Framework for Online Robust MARL:** We introduce f -MORNAVI, a novel model-based
 101 meta-algorithm designed specifically for online learning in DRMGs. Our framework pioneers a dual
 102 approach that synergizes the *pessimism* required for robust optimization with the *optimism* essential
 103 for provably efficient online exploration. At its core, f -MORNAVI learns the nominal environment
 104 model from online interactions and then incorporates a carefully constructed, data-driven bonus
 105 term, β . This bonus term is uniquely tailored to the geometry of the chosen uncertainty set, guiding
 106 exploration while guaranteeing that the learned policy is robust to worst-case model perturbations.
 107 We further present two concrete instantiations of our framework for uncertainty sets defined by Total
 108 Variation (TV) distance and Kullback-Leibler (KL) divergence.

109 **Near-Optimal Regret Bounds for Online DRMGs:** We establish the first known theoretical
 110 guarantees for online learning in general-sum DRMGs by providing rigorous, high-probability regret
 111 bounds for our algorithms. The regret measures the performance gap between our algorithm and

108 an optimal robust policy, thus formally characterizing the sample complexity needed to solve the
 109 DRMG. We further prove that our algorithms converge to an ϵ -optimal robust policy with high sample
 110 efficiency (see Corollary 6). Our results are significant as they are the first to demonstrate that finding
 111 a robust equilibrium in a general-sum DRMG is achievable in a sample-efficient manner through
 112 online interaction, without requiring a simulator or a pre-collected dataset.

2 PROBLEM FORMULATION

2.1 DISTRIBUTIONALLY ROBUST MARKOV GAMES

A *Distributionally Robust Markov Game* (DRMG) can be specified as $\mathcal{MG}_{\text{rob}} = \{\mathcal{M}, \mathcal{S}, \mathcal{A}, H, \{\mathcal{P}_i\}_{i \in \mathcal{M}}, r\}$, where $\mathcal{M} = \{1, \dots, m\}$ is the set of m agents, $\mathcal{S} = \{1, 2, \dots, S\}$ denotes the finite state space, \mathcal{A} denotes the joint action space for all agents as $\mathcal{A} = \mathcal{A}_1 \times \dots \times \mathcal{A}_m$, where $\mathcal{A}_i = \{1, 2, \dots, A_i\}$ being the action space of agent i , H denotes the horizon length. We consider non-stationary DRMGs, i.e., r is the reward function: $r = \{r_{i,h}\}_{1 \leq i \leq m, 1 \leq h \leq H}$ with $r_{i,h} : \mathcal{S} \times \mathcal{A} \mapsto [0, 1]$. Specifically, for any $(i, h, s, \mathbf{a}) \in \mathcal{M} \times [H] \times \mathcal{S} \times \mathcal{A}$, $r_{i,h}(s, \mathbf{a})$ is the immediate (deterministic) reward received by the i -th agent in state s when the joint action profile is \mathbf{a} . Agents in a DRMG maintain their own uncertainty sets of transition kernels \mathcal{P}_i , to capture the potential environment uncertainties in their perspective. At each step, the environment transits following an arbitrary kernel from the uncertainty set.

Drawing inspiration from the rectangularity condition in robust single-agent RL (Iyengar, 2005; Wiesemann et al., 2013a; Zhou et al., 2021b; Shi et al., 2023), and following standard DRMG studies (Shi et al., 2024b;a; Zhang et al., 2020), we consider the *agent-wise* (s, \mathbf{a}) -rectangular uncertainty set, due to its computational tractability¹. Namely, for each agent i , the DRMG specify an uncertainty set \mathcal{P}_i , which is independently defined over all horizons, states, and joint actions:

$$\mathcal{P}_i = \bigotimes_{(h, s, \mathbf{a}) \in [H] \times \mathcal{S} \times \mathcal{A}} \mathcal{P}_{i,h,f}^{\rho_i}(s, \mathbf{a}), \quad (1)$$

where \otimes denotes the Cartesian product. At step h , if all agents take a joint action \mathbf{a}_h at the state s_h , the transition kernel can be chosen arbitrarily from the prescribed uncertainty set $\mathcal{P}_{i,h,f}^{\rho_i}(s_h, \mathbf{a}_h)$. We consider the uncertainty set $\mathcal{P}_{i,h,f}^{\rho_i}(s, \mathbf{a})$ centered on a *nominal kernel* P^* :

Definition 1 (f -Divergence Uncertainty Set). The f -divergence uncertainty set is defined as:

$$\mathcal{P}_{i,h,f}^{\rho_i}(s, \mathbf{a}) = \left\{ P_h \in \Delta(\mathcal{S}) : f\left(P_h, P_h^*(\cdot|s, \mathbf{a})\right) \leq \rho_i \right\}, \quad (2)$$

where the f -divergence is $f(P_h, P_h^*(\cdot|s, \mathbf{a})) = \sum_{s' \in \mathcal{S}} f\left(\frac{P_h(s')}{P_h^*(s'|s, \mathbf{a})}\right) P_h^*(s'|s, \mathbf{a})$.

The f -divergence uncertainty sets with different f have been extensively studied in distributionally robust RL (Clavier et al., 2023; Shi et al., 2023; Panaganti et al., 2022; Yang et al., 2022; Wang et al., 2024e; Zhang et al., 2025). In this work, we focus on TV and KL-divergence.

Robust Value Functions. For a DRMG, each agent aims to maximize its own worst-case performance over all possible transition kernels in its own (possibly different) prescribed uncertainty set. The strategy of agent i taking actions is captured by a policy $\pi_i = \{\pi_{i,h} : \mathcal{S} \rightarrow \Delta(\mathcal{A}_i)\}_{h=1}^H$. Since the immediate rewards and transition kernels are determined by the joint actions, the worst-case performance of the i -th agent over its own uncertainty set \mathcal{P}_i is determined by a joint policy $\pi = \{\pi_h : \mathcal{S} \rightarrow \Delta(\mathcal{A})\}_{h=1}^H$, which we refer to as the robust value function $V_{i,h}^{\pi, \rho_i}$ and the robust Q -function $Q_{i,h}^{\pi, \rho_i}$, for an initial state s and initial action \mathbf{a} : $Q_{i,h}^{\pi, \rho_i}(s, \mathbf{a}) \triangleq \inf_{\tilde{P} \in \mathcal{P}_i} \mathbb{E}_{\pi, \tilde{P}} \left[\sum_{t=h}^H r_{i,t}(s_t, \mathbf{a}_t) \mid s_h = s, \mathbf{a}_h = \mathbf{a} \right]$, and $V_{i,h}^{\pi, \rho_i}(s) \triangleq \sum_{\mathbf{a}} \pi(\mathbf{a}|s) Q_{i,h}^{\pi, \rho_i}(s, \mathbf{a})$.

where the expectation is taken over the randomness of the joint policy π and the kernel \tilde{P} .

¹Robust MDPs without rectangular assumption can be NP-hard to solve (Wiesemann et al., 2013b).

162 **Solutions to DRMGs.** Due to different objectives among players, the goal of a DRMG is to achieve
 163 some notions of equilibrium (Fudenberg & Tirole, 1991). For any given joint policy π , π_{-i} is the
 164 marginal policies of all agents excluding the i -th agent. The agent i 's best response policy to π_{-i} ,
 165 $\pi_i^{\dagger, \rho_i}(\pi_{-i})$, is the policy that maximizes its own robust value function, at the give step h and state s :
 166 $\pi_i^{\dagger, \rho_i}(\pi_{-i}) \triangleq \arg \max_{\pi'_i \in \Delta(\mathcal{A}_i)} V_{i,h}^{(\pi_{-i} \times \pi'_i), \rho_i}(s)$. The corresponding robust value function is
 167

$$V_{i,h}^{\dagger, \pi_{-i}, \rho_i}(s) \triangleq \max_{\pi'_i \in \Delta(\mathcal{A}_i)} V_{i,h}^{\pi'_i \times \pi_{-i}, \rho_i}(s). \quad (3)$$

170 The goal of a DRMG is to compute an equilibrium policy (Fudenberg & Tirole, 1991), such that
 171 each agent's policy is the best response to the others, so that no single agent can improve its robust
 172 value by deviating while the rest remain fixed. Standard notions of equilibria include *robust Nash*
 173 *Equilibrium (NE)*, *robust Coarse Correlated Equilibrium (CCE)*, and *robust Correlated Equilibrium*
 174 (*CE*) (their exist are shown in (Blanchet et al., 2023)), defined as follows:

175 **Robust ε -NE.** A *product policy* $\pi \in \Delta(\mathcal{A}_1) \times \cdots \times \Delta(\mathcal{A}_m)$ is a *robust- ε NE* if for any $s \in \mathcal{S}$:
 176 $\text{gap}_{\text{NE}}(\pi, s) \triangleq \max_{i \in \mathcal{M}} \left\{ V_{i,1}^{\dagger, \pi_{-i}, \rho_i}(s) - V_{i,1}^{\pi, \rho_i}(s) \right\} \leq \varepsilon$.

177 Robust NE ensures that, the agent i 's policy induced by the NE is a best response policy
 178 to the remaining agents' joint policy (up to ε), thus no agent can improve its worst-case
 179 performance—evaluated over its own uncertainty set \mathcal{P}_i —by unilaterally deviating from the NE.

180 **Robust ε -CCE.** A *(possibly correlated) joint policy* $\pi \in \Delta(\mathcal{A})$ is a *robust- ε CCE* if for any $s \in \mathcal{S}$:
 181 $\text{gap}_{\text{CCE}}(\pi, s) \triangleq \max_{i \in \mathcal{M}} \left\{ V_{i,1}^{\dagger, \pi_{-i}, \rho_i}(s) - V_{i,1}^{\pi, \rho_i}(s) \right\} \leq \varepsilon$. Robust CCE relaxes the notion of NE
 182 by allowing for potentially correlated policies, while still ensuring that no agent has an incentive to
 183 unilaterally deviate from it.

184 **Robust ε -CE.** A joint policy $\pi \in \Delta(\mathcal{A})$ is a *robust- ε CE* if for any $s \in \mathcal{S}$:
 185 $\text{gap}_{\text{CE}}(\pi, s) \triangleq \max_{i \in \mathcal{M}} \left\{ \max_{\phi \in \Phi_i} V_{i,1}^{\phi \diamond \pi, \rho_i}(s) - V_{i,1}^{\pi, \rho_i}(s) \right\} \leq \varepsilon$. Here, a strategy modification
 186 $\phi \triangleq \{\phi_{h,s}\}_{(h,s) \in [H] \times \mathcal{S}}$ for player i is a set of $[H] \times \mathcal{S}$ functions from \mathcal{A}_i to itself. Let Φ_i denote the
 187 set of all possible strategy modifications for player i . Given a joint policy π , applying a modification
 188 ϕ yields a new joint policy $\phi \diamond \pi$, which matches π everywhere except that at each state s and timestep
 189 h , player i 's action a_i is replaced by $\phi_{h,s}(a_i)$.

190 **Online Learning in DRMGs.** We consider online learning in DRMGs, aiming to compute equilibria
 191 $\{\text{NASH}, \text{CCE}, \text{CE}\}$ via interaction with the nominal environment P^* over $K \in \mathbb{N}$ episodes. Each
 192 episode starts from s_1^k , proceeds with a policy π^k chosen from experience, and ends with an update
 193 for the next round. We use *robust regret* as our performance metric, which compares the learned
 194 outcome to the target equilibrium in the presence of model error.

195 **Definition 2** (Robust Regret). Let π^k be the execution policy in the k^{th} episode. After a
 196 total of K episodes, the corresponding robust regret is defined as $\text{Regret}_{\{\text{NASH}, \text{CCE}, \text{CE}\}}(K) =$
 197 $\sum_{k=1}^K \text{gap}_{\{\text{NASH}, \text{CCE}, \text{CE}\}}(\pi^k, s_1^k)$.

198 Notably, if an algorithm has a sub-linear regret, it achieves a robust equilibrium as $K \rightarrow \infty$.

200 3 OPTIMISTIC ROBUST NASH VALUE ITERATION

201 We then present Multiplayer Optimistic Robust Nash Value Iteration for f -Divergence Uncertainty
 202 Set (f -MORNAVI), a meta-algorithm for episodic, finite-horizon DRMGs with interactive data
 203 collection. f -MORNAVI handles general f -divergences, with emphasis on KL and TV.

204 3.1 ALGORITHM DESIGN

205 Our algorithm has the following three stages.

206 **Stage 1: Nominal Transition Estimation (Line 4).** At the start of each episode $k \in [K]$, we
 207 maintain an estimate of the nominal kernel P^* using the historical data $\mathbb{D} = \{(s_h^\tau, \mathbf{a}_h^\tau, s_{h+1}^\tau)\}_{\tau=1, h=1}^{k-1, H}$

216 Algorithm 1: f -MORNAVI

```

217 1: Input: Uncertainty level  $\rho_i > 0$  for all  $i \in \mathcal{M}$ .
218 2: Initialize: Dataset  $\mathbb{D} = \emptyset$ 
219 3: for episode  $k = 1, \dots, K$  do
220 4:   Compute the transition kernel estimator  $\widehat{P}_h^k(s, \mathbf{a}, s')$  as given in eq. 4.
221 5:   Set  $\overline{V}_{H+1}^{k, \rho_i}(\cdot) = \underline{V}_{H+1}^{k, \rho_i}(\cdot) = 0$  for all  $i \in \mathcal{M}$ .
222 6:   for step  $h = H, \dots, 1$  do
223 7:     For all  $(s, \mathbf{a}) \in \mathcal{S} \times \mathcal{A}$  and  $i \in \mathcal{M}$ , update  $\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})$  [eq. 5] and  $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})$  [eq. 6].
224 8:     For all  $s \in \mathcal{S}$ , update  $\pi_h^k(\cdot | s)$  by eq. 7, update  $\overline{V}_{i,h}^{k, \rho_i}(s)$  and  $\underline{V}_{i,h}^{k, \rho_i}(\cdot)$  by eq. 8.
225 9:   end for
226 10:  Receive initial State  $s_1^k \in \mathcal{S}$ 
227 11:  for step  $h = 1, \dots, H$  do
228 12:    Take action  $\mathbf{a}_h^k \sim \pi_h^k(\cdot | s_h^k)$ , observe reward  $r_h(s_h^k, \mathbf{a}_h^k)$  and next state  $s_{h+1}^k$ .
229 13:  end for
230 14:  Set  $\mathbb{D} = \mathbb{D} \cup \{(s_h^k, \mathbf{a}_h^k, s_{h+1}^k)\}_{h=1}^H$ .
231 15: end for
232 16: Output: Return policy  $\pi^{\text{out}} = \{\pi^k\}_{k=1}^K$ .

```

236 collected from past interactions with the training environment. Specifically, f -MORNAVI updates
237 the empirical transition kernel for each tuple $(h, s, \mathbf{a}, s') \in [H] \times \mathcal{S} \times \mathcal{A} \times \mathcal{S}$ as follows:

238

$$\widehat{P}_h^k(s' | s, \mathbf{a}) = \frac{N_h^k(s, \mathbf{a}, s')}{N_h^k(s, \mathbf{a})} \text{ (if } N_h^k(s, \mathbf{a}) > 0\text{), and } \widehat{P}_h^k(s' | s, \mathbf{a}) = \frac{1}{|\mathcal{S}|} \text{ (if } N_h^k(s, \mathbf{a}) = 0\text{),} \quad (4)$$

239

240 where $N_h^k(s, \mathbf{a}, s')$ and $N_h^k(s, \mathbf{a})$, are calculated on the current dataset \mathbb{D} by $N_h^k(s, \mathbf{a}, s') = \sum_{\tau=1}^{k-1} \mathbf{1}\{(s_\tau^{\tau}, \mathbf{a}_\tau^{\tau}, s_{\tau+1}^{\tau}) = (s, \mathbf{a}, s')\}$, and $N_h^k(s, \mathbf{a}) = \sum_{s' \in \mathcal{S}} N_h^k(s, \mathbf{a}, s')$. Note that we adopt a
241 model-based approach that estimates transition kernels. Although this leads to higher memory
242 consumption, model-free DRMGS are inherently challenging due to the non-linearity of worst-case
243 expectation w.r.t. nominal kernels, which makes model-free estimators biased or sample-inefficient
244 (Liu et al., 2022; Wang et al., 2023c; 2024d; Zhang et al., 2025).

245 **Stage 2: Optimistic Robust Planning (Lines 5–9).** The f -MORNAVI constructs the episode policy
246 π^k via optimistic robust planning based on the empirical model \widehat{P}^k . This involves estimating an
247 upper bound on the robust value function, following the principle of Upper-Confidence-Bound (UCB)
248 methods, which are well-established in online vanilla RL (Auer & Ortner, 2010; Azar et al., 2017;
249 Zanette & Brunskill, 2019; Zhang et al., 2021b; Ménard et al., 2021; Zhang et al., 2024), and this
250 optimism encourages exploration of less-visited state–action pairs.

251 To this end, f -MORNAVI maintains a bonus term at each episode k , capturing the gap between
252 the robust value function under \widehat{P}^k and that under the true model. This bonus is added to the robust
253 Bellman estimate to ensure its optimism. Specifically, for each $(h, s, \mathbf{a}) \in [H] \times \mathcal{S} \times \mathcal{A}$, we set

254

$$\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) = \min \{r_{i,h}(s, \mathbf{a}) + \sigma_{\widehat{P}_{i,h,f}^{\rho_i}(s, \mathbf{a})}[\overline{V}_{i,h+1}^{k, \rho_i}] + \beta_{i,h,f}^k(s, \mathbf{a}), H\}. \quad (5)$$

255

$$\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) = \max \{r_{i,h}(s, \mathbf{a}) + \sigma_{\widehat{P}_{i,h,f}^{\rho_i}(s, \mathbf{a})}[\underline{V}_{i,h+1}^{k, \rho_i}] - \beta_{i,h,f}^k(s, \mathbf{a}), 0\}, \quad (6)$$

256

257 here, $\sigma_{\mathcal{P}}[V] = \inf_{P \in \mathcal{P}} \mathbb{E}_P[V]$ is the support function of V over the uncertainty set \mathcal{P} , and can be
258 calculated through its dual representation (see Lemma 7); $\widehat{P}_{i,h,f}^{\rho_i}$ is the uncertainty set centered at \widehat{P}^k
259 from eq. 4: $\widehat{P}_{i,h,f}^{\rho_i}(s, \mathbf{a}) = \{P_h \in \Delta(\mathcal{S}) : f(P_h, \widehat{P}_h^k(\cdot | s, \mathbf{a})) \leq \rho_i\}$.

260 Each of these estimates in eq. 5 and eq. 6 are based on estimated robust Bellman operators (see
261 Appendix C for details) and a bonus term $\beta_{i,h,f}^k(s, \mathbf{a}) \geq 0$. The bonus term is constructed (we will
262 discuss the construction later) to ensure the estimation becomes a confidence interval of the true
263 robust value function, i.e., $Q_{i,h}^{\dagger, \pi^k, \rho_i}(s, \mathbf{a}) \in [\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})]$, with high probability.

270 **EQUILIBRIUM subroutine (Line 8).** Given robust Q -function estimates $\underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a})$ and
 271 $\overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a})$ for $i \in \mathcal{M}$ at step h , the sub-routine $\text{EQUILIBRIUM} \in \{\text{NASH}, \text{CCE}, \text{CE}\}$ finds a
 272 corresponding equilibrium $\pi_h^k(\cdot|s)$ for the matrix-form game with pay-off matrices $\{\overline{Q}_{i,h}^{k,\rho_i}(s, \cdot)\}_{i \in \mathcal{M}}$:
 273

$$\pi_h^k(\cdot|s) \leftarrow \text{EQUILIBRIUM}\left(\left\{\overline{Q}_{i,h}^{k,\rho_i}(s, \cdot)\right\}_{i \in \mathcal{M}}\right). \quad (7)$$

277 Note that finding a NE can be PPAD-hard (Daskalakis et al., 2009), but computing CE or CCE
 278 remains tractable in polynomial time (Liu et al., 2021). We follow standard MG studies, assuming
 279 **EQUILIBRIUM** can be executed, and mainly focus on sample complexity and statistic efficiency.

280 We then update the estimation of $V_h^{\dagger, \pi_{-i}, \rho}$ as
 281

$$\overline{V}_{i,h}^{k,\rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \right] \quad \text{and} \quad \underline{V}_{i,h}^{k,\rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \right]. \quad (8)$$

285 Note that while the lower estimate in eq. 6 does not influence policy execution directly, it plays a
 286 crucial role in constructing valid exploration bonuses and ensuring strong theoretical guarantees. By
 287 leveraging both upper and lower bounds, the algorithm performs optimistic robust planning, enabling
 288 structured, uncertainty-aware exploration that balances exploration, exploitation, and robustness.

289 **Stage 3: Execution of Policy and Data Collection (Lines 10–16).** After evaluating the policy
 290 $\{\pi_h^k\}_{h=1}^H$ for episode k , the learner takes action based on π_h^k and observes the reward $r_h(s_h^k, \mathbf{a}_h^k)$ and
 291 next state s_{h+1}^k , which get appended to the historical dataset collected till episode $k - 1$.

293 4 HARDNESS OF ONLINE LEARNING

295 In this section, we aim to discuss the inherent hardness of online learning in DRMGs from two
 296 aspects: (1) When there is the support shift issue, no MARL algorithm can obtain a sub-linear regret
 297 on a certainty DRMG; (2) Even if there is no support shift issue, there exists a DRMG such that
 298 any online algorithm suffers from the curse of multi-agency. This is a separation between DRMGs
 299 with interactive data collection and generative model/offline data, and also between DRMGs with
 300 non-robust MGs, showing the inherent challenges of online DRMGs.

302 4.1 HARDNESS WITH SUPPORT SHIFT

304 Support shift (Lu et al., 2024) refers to the case that the support of the worst-case transition kernel is
 305 not covered by the support of the nominal kernel. It can happen when, for instance, the uncertainty
 306 set is defined through TV. It will result in a challenge that, for those states that is not covered by the
 307 nominal kernel, there is no data available, so that the agent can never learn the optimal robust policy
 308 efficiently. Specifically, we derive the following result to illustrate the hardness.

309 **Theorem 1.** *There exists a TV-DRMG, such that any online learning algorithm satisfies that:*

$$\inf_{\mathcal{ALG}} \mathbb{E}[\text{Regret}_{\text{NASH}}(K)] \geq \Omega\left(\rho K \cdot \min\{H, \prod_{i \in \mathcal{M}} A_i\}\right).$$

313 Our construction is deferred to Example 10 in Appendix. This regret bound is linear in the number of
 314 episodes K , creating a combinatorial explosion that makes the problem information-theoretically
 315 intractable. Moreover, our result shows that when the game horizon H is large enough, the minimax
 316 lower bound depends on the joint action space, showing the hardness of online learning compared to
 317 generative models and offline settings.

319 4.2 HARDNESS WITHOUT SUPPORT SHIFT

321 We then illustrate the hardness of online DRMGs when there is no support shift. Note that when the
 322 uncertainty set is defined through, e.g., KL divergence, the worst-case support will be covered by the
 323 nominal one, so there will not be any support shift. However, we construct another example to show
 that, even without the support shift, the online learning can still be challenging and inefficient.

324 **Theorem 2** (Lower Bound for Robust Learning without Support Shift). *There exists a DRMG, such*
 325 *that any learning algorithm suffers the following cumulative regret lower bound over K episodes:*

$$327 \inf_{\mathcal{ALG}} \mathbb{E}[\text{Regret}_{\text{NASH}}(K)] \geq \Omega\left(\sqrt{K \prod_{i \in \mathcal{M}} A_i}\right).$$

330 This result illustrates that, even without any support shift, some hard instance can require at least
 331 $\Omega(\sqrt{K \prod_i A_i})$ regret. Our result hence suggests that the dependence on the joint action space
 332 may be inevitable in online DRMGs, which suffer from the curse of multi-agency. Specifically, in
 333 DRMGs, agents need to solve the robust optimization (i.e., estimate the support function $\sigma_{\mathcal{P}}(\cdot)$),
 334 which requires knowledge of the whole transition kernels to find the worst-case from the uncertainty
 335 set. Thus the agents have to explore the whole model, introducing an inevitable dependence on
 336 $\prod_i A_i$. In non-robust MGs, however, agents can estimate the single nominal performance merely
 337 from samples instead of model estimations, thus the multi-agency curse can be broken.

338 5 THEORETICAL GUARANTEES

339 5.1 REGRET BOUND FOR TOTAL VARIATION

342 As discussed in Section 4, no efficient algorithm can be expected due to the support shifting issue. We
 343 hence adopt a standard fail-state assumption (Lu et al., 2024; Liu et al., 2024) to ensure the worst-case
 344 kernel support will be covered by the nominal one, bypassing the issue.

345 **Assumption 3** (Failure States). *For any agent i , there exists an (agent-specified) set of failure states*
 346 $\mathcal{S}_f^i \subseteq \mathcal{S}$, *such that $r_i(s, \mathbf{a}) = 0$, and $P_h^*(s'|s, \mathbf{a}) = 0$, $\forall \mathbf{a} \in \mathcal{A}, \forall s \in \mathcal{S}_f^i, \forall s' \notin \mathcal{S}_f^i$.*

348 This assumption is only needed for TV case. Assumption 3 is a standard assumption in single-agent
 349 robust RL studies (Panaganti et al., 2022; Lu et al., 2024), and we adapt it to multi-agent cases.

350 We then present our theoretical guarantees.

352 **Theorem 4** (Upper bound of TV-MORNAVI). *Denote $\rho_{\min} := \min_{i \in \mathcal{M}} \rho_i$. For any $\delta \in (0, 1)$,*

353 we set $\beta_{i,h,f}^k(s, \mathbf{a})$ as $\sqrt{\frac{c_1 \iota \text{Var}_{\hat{P}_h^k(\cdot|s, \mathbf{a})} \left[\frac{\bar{V}_{i,h+1}^{k, \rho_i} + \bar{V}_{i,h+1}^{k, \rho_i}}{2} \right]}{N_h^k(s, \mathbf{a}) \vee 1}} + \frac{c_2 H^2 S \iota}{\sqrt{N_h^k(s, \mathbf{a}) \vee 1}} + \frac{2 \mathbb{E}_{\hat{P}_h^k(\cdot|s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} - \bar{V}_{i,h+1}^{k, \rho_i} \right]}{H} +$
 354 $\frac{1}{\sqrt{K}}$, where $\iota = \log \left(S^2 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta \right)$ and c_1, c_2 are absolute constants. Then under
 355 Assumption 3, for EQUILIBRIUM being one of $\{\text{NASH}, \text{CE}, \text{CCE}\}$, with probability at least $1 - \delta$, the regret of our TV-MORNAVI algorithm can be bounded as: $\text{Regret}_{\{\text{NASH}, \text{CCE}, \text{CE}\}}(K) = \tilde{\mathcal{O}} \left(\sqrt{\min \{ \rho_{\min}^{-1}, H \} H^2 S K \left(\prod_{i \in \mathcal{M}} A_i \right)} \right)$.

362 5.2 REGRET BOUND FOR KL-DIVERGENCE

364 We then study the regret bound of KL-divergence set. As discussed, KL set is free from supporting
 365 issue hence no additional assumption is required. Our regret bound result is as follows.

366 **Theorem 5.** *For any δ , set $\beta_{i,h,f}^k(s, \mathbf{a})$ in KL-DRMG as $\frac{2c_f H}{\rho_i} \sqrt{\frac{\iota}{(N_h^k(s, \mathbf{a}) \vee 1) \hat{P}_{\min, h}^k(s, \mathbf{a})}} +$*

367 $\sqrt{\frac{1}{K}}$, where $\hat{P}_{\min, h}^k(s, \mathbf{a}) = \min_{s' \in \mathcal{S}} \{ \hat{P}_h^k(s'|s, \mathbf{a}) : \hat{P}_h^k(s'|s, \mathbf{a}) > 0 \}$, $\iota =$
 368 $\log \left(S^2 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta \right)$, and c_f is an absolute constant. Then for EQUILIBRIUM
 369 being one of $\{\text{NASH}, \text{CE}, \text{CCE}\}$, with probability at least $1 - \delta$, it holds that
 370 $\text{Regret}_{\{\text{NASH}, \text{CCE}, \text{CE}\}}(K) = \tilde{\mathcal{O}} \left(\sqrt{H^4 \exp(2H^2) K S \left(\prod_{i \in \mathcal{M}} A_i \right) \left(\rho_{\min}^2 P_{\min}^* \right)^{-1}} \right)$, here,

371 $P_{\min}^* \triangleq \min_{(s, \mathbf{a}, s', h): P_h(s'|s, \mathbf{a}) > 0} P(s'|s, \mathbf{a})$ is the smallest positive entry of the nominal kernel.

372 We note that $\exp(H)$ term is inherently from the duality form of the distributionally robust
 373 optimization with KL-ball (see equation 12). It is standard in existing robust RL studies under

KL settings, and can be directly replaced by $(P_{\min}^*)^{-1}$ (see, e.g., (Panaganti & Kalathil, 2022; Blanchet et al., 2023; Ghosh et al., 2025; Si et al., 2020; Xu et al., 2023b; Zhou et al., 2021a)). It reflects the inherent hardness of the KL-based robust RL, and are inevitable in sample complexity. In practice, for moderate horizons, $P_{\min}^* > 0$, and non-vanishing σ , these worst-case factors remain controlled and do not pose serious issues.

We then briefly discuss the construction of β under the two cases. Recall that in our meta-algorithm f -MORNAVI, for each agent i , episode k and step h , we maintain an optimistic and a pessimistic robust Q -estimate $Q_{k,i,h}^{\rho_i}(s, a)$, $\underline{Q}_{k,i,h}^{\rho_i}(s, a)$, defined via the empirical robust Bellman operators as in eqs 5-6, and shifted by an exploration bonus $\beta_{i,h,f}^k(s, a) \geq 0$. We use $\sigma_{\mathcal{P}}[V] := \inf_{P \in \mathcal{P}} \mathbb{E}_P[V]$ for the support function over the uncertainty set. The purpose of the bonus is to make these estimates form a tight, uniform high-probability confidence interval around the true robust Q -values, i.e.

$$Q_{i,h}^{\dagger, \pi_{-i}, \rho_i}(s, a) \in \left[Q_{k,i,h}^{\rho_i}(s, a), \bar{Q}_{k,i,h}^{\rho_i}(s, a) \right] \quad \text{for all } (i, h, k, s, a). \quad (9)$$

TV-uncertainty. For TV-balls we use the dual representation of the robust Bellman operator in equation 11. Under Assumption 3 (failure states) it holds that $\min_s V(s) = 0$, and the deviation between the true and empirical robust operators at (h, s, a) then decomposes as

$$\left| \sigma_{\mathcal{P}_{\text{TV}}^{\rho_i}(P_h^*(\cdot|s,a))}[V] - \sigma_{\mathcal{P}_{\text{TV}}^{\rho_i}(\hat{P}_h^*(\cdot|s,a))}[V] \right| \leq \max_{\eta \in [0, H/\rho_{\min}]} \left| \mathbb{E}_{P_h^*(\cdot|s,a)}[V_{\eta}] - \mathbb{E}_{\hat{P}_h^*(\cdot|s,a)}[V_{\eta}] \right|.$$

To simultaneously control the estimation error for all (i, h, k, s, a) and all value functions of the form $V = V_{k,i,h+1}^{\rho_i}$ and $\underline{V}_{k,i,h+1}^{\rho_i}$, we utilize the standard ϵ -net (Shi & Chi, 2022; Li et al., 2024a) of the interval $[0, H/\rho_{\min}]$, and construct a Bernstein-type concentration inequality for empirical expectations of the random functions V_{η} as

$$\left| \mathbb{E}_{P_h^*(\cdot|s,a)}[U] - \mathbb{E}_{\hat{P}_h^*(\cdot|s,a)}[U] \right| \lesssim \sqrt{\frac{\text{Var}_{\hat{P}_h^*(\cdot|s,a)}(U) \iota}{N_h^k(s, a) \vee 1}} + \frac{H^2 \sqrt{S \iota}}{\sqrt{N_h^k(s, a) \vee 1}}, \quad (10)$$

for all U with $\|U\|_{\infty} \leq H$. In our algorithm we set $U = \frac{\bar{V}_{k,i,h+1}^{\rho_i} + \underline{V}_{k,i,h+1}^{\rho_i}}{2}$, and $\Delta V := \bar{V}_{k,i,h+1}^{\rho_i} - \underline{V}_{k,i,h+1}^{\rho_i}$, which allows us to relate the variance under P^* and \hat{P}^k and to control the gap $\mathbb{E}[\Delta V]$ that appears in the robustness amplification term. Combining equation 10 with these comparisons yields

$$\begin{aligned} & \left| \sigma_{\mathcal{P}_{\text{TV}}^{\rho_i}(P_h^*(\cdot|s,a))}[V_{k,i,h+1}^{\rho_i}] - \sigma_{\mathcal{P}_{\text{TV}}^{\rho_i}(\hat{P}_h^*(\cdot|s,a))}[V_{k,i,h+1}^{\rho_i}] \right| \\ & \lesssim \sqrt{\frac{\text{Var}_{\hat{P}_h^*(\cdot|s,a)}\left[\frac{1}{2}(V_{k,i,h+1}^{\rho_i} + \underline{V}_{k,i,h+1}^{\rho_i})\right] \iota}{N_h^k(s, a) \vee 1}} + \frac{H^2 \sqrt{S \iota}}{\sqrt{N_h^k(s, a) \vee 1}} + \frac{1}{H} \mathbb{E}_{\hat{P}_h^*(\cdot|s,a)}[\Delta V]. \end{aligned}$$

This motivates choosing the TV-bonus as

$$\beta_{i,h,f}^k(s, a) = \sqrt{\frac{c_1 \iota \text{Var}_{\hat{P}_h^*(\cdot|s,a)}\left[\frac{1}{2}(\bar{V}_{k,i,h+1}^{\rho_i} + \underline{V}_{k,i,h+1}^{\rho_i})\right]}{N_h^k(s, a) \vee 1}} + \frac{2}{H} \mathbb{E}_{\hat{P}_h^*(\cdot|s,a)}[\Delta V] + \frac{c_2 H^2 \sqrt{S \iota}}{\sqrt{N_h^k(s, a) \vee 1}} + \frac{1}{\sqrt{K}}.$$

With this choice, Lemma 20 shows that equation 9 holds under TV-uncertainty.

KL-uncertainty. For KL-balls we again appeal to the dual formulation equation 12. Thus the robust Bellman operator becomes a *log-moment generating function* of V . The key difficulty is that we now need to control the deviation between the true and empirical log-MGFs,

$$\left| -\frac{1}{\lambda} \log \mathbb{E}_{P_h^*(\cdot|s,a)}[\exp(-\lambda V)] + \frac{1}{\lambda} \log \mathbb{E}_{\hat{P}_h^*(\cdot|s,a)}[\exp(-\lambda V)] \right|,$$

uniformly over all (i, h, k, s, a) and the random value functions $V = V_{k,i,h+1}^{\rho_i}$ generated by the algorithm. We utilize the Hoeffding's inequality to derive a self-normalized concentration inequality for empirical MGFs:

$$\left| \log \mathbb{E}_{P^*}[e^{-\lambda V}] - \log \mathbb{E}_{\hat{P}^k}[e^{-\lambda V}] \right| \lesssim \sqrt{\frac{\iota}{(N_h^k(s, a) \vee 1) P_{\min,h}^*(s, a)}}.$$

432 Multiplying both sides by H/ρ_i (since $\lambda \asymp \rho_i/H$) and using the boundedness $\|V\|_\infty \leq H$ to control
 433 higher-order terms in the MGF expansion, we obtain the local deviation
 434

$$435 \left| \sigma_{\mathcal{P}_{\text{KL}}^{\rho_i}(P_h^*(\cdot|s,a))}[V] - \sigma_{\mathcal{P}_{\text{KL}}^{\rho_i}(\hat{P}_h^k(\cdot|s,a))}[V] \right| \lesssim \frac{H}{\rho_i} \sqrt{\frac{\iota}{(N_h^k(s,a) \vee 1) P_{\min,h}^*(s,a)}}.$$

437 Since only the support of P^* matters, and we only observe empirical transitions, we replace
 438 $P_{\min,h}^*(s,a)$ by its empirical counterpart $\hat{P}_{\min,h}^k(s,a)$, at the cost of an extra factor that is absorbed
 439 into the constants (cf. Lemma 31). This leads to the KL-bonus
 440

$$441 \beta_{i,h,f}^k(s,a) = 2c_f \frac{H}{\rho_i} \sqrt{\frac{\iota}{(N_h^k(s,a) \vee 1) \hat{P}_{\min,h}^k(s,a)}} + \sqrt{\frac{1}{K}}.$$

445 5.3 SAMPLE COMPLEXITY

446 As a direct corollary, we derive the sample complexity to learn an ε -equilibrium. Using a standard
 447 online-to-batch conversion (Cesa-Bianchi et al., 2001), we have the following results.
 448

449 **Corollary 6** (Sample Complexity). *With probability at least $1 - \delta$, and under the settings of Theorem 4
 450 and Theorem 5, the number of samples required to find an ϵ -approximate equilibrium is bounded as:*

$$451 \quad KH = \begin{cases} \tilde{\mathcal{O}}\left(\epsilon^{-2} \min\{\rho_{\min}^{-1}, H\} H^3 S\left(\prod_{i \in \mathcal{M}} A_i\right)\right), & \text{for TV-DRMG} \\ 452 \quad \tilde{\mathcal{O}}\left(\epsilon^{-2} H^5 \exp(2H^2) S\left(\prod_{i \in \mathcal{M}} A_i\right) (\rho_{\min}^2 P_{\min}^*)^{-1}\right), & \text{for KL-DRMG} \end{cases}.$$

453 Our results hence implies that, despite the inherent hardness of online learning in DRMGs, our
 454 algorithm is able to learn an equilibrium with efficient sample complexity. As we shall discussed in
 455 the next section, our complexity bounds are near-optimal (expect the term $\prod_{i \in \mathcal{M}} A_i$).
 456

458 6 COMPARISON WITH PRIOR WORKS AND DISCUSSION

460 We then compare our results with prior works (the detailed Comparisons are shown in Table 1).
 461

462 Table 1: Comparison with prior results. $C_{u/p}^*$ are coverage coefficients for offline learning.
 463

464 Setting & 465 Algorithm	466 Uncertainty Set	467 Sample Complexity
468 Generative (Shi et al., 2024b)	469 TV	$\tilde{\mathcal{O}}(\epsilon^{-2} H^3 S(\prod_{i \in \mathcal{M}} A_i) \min\{\rho_{\min}^{-1}, H\})$
470 Generative (Jiao & Li, 2024)	471 Contamination	$\tilde{\mathcal{O}}(\epsilon^{-2} H^3 S(\sum_{i \in \mathcal{M}} A_i) \min\{\rho_{\min}^{-1}, H\})$
472 Generative (Shi et al., 2024a)	473 TV (fictitious)	$\tilde{\mathcal{O}}(\epsilon^{-4} H^6 S(\sum_{i \in \mathcal{M}} A_i) \min\{\rho_{\min}^{-1}, H\})$
474 Offline (Blanchet et al., 2023)	475 KL	$\tilde{\mathcal{O}}(\epsilon^{-2} \rho_{\min}^{-2} C_u^* H^4 \exp(H) S^2(\prod_{i \in \mathcal{M}} A_i))$
	476 TV	$\tilde{\mathcal{O}}(\epsilon^{-2} C_u^* H^4 S^2(\prod_{i \in \mathcal{M}} A_i))$
477 Offline (Li et al., 2025)	478 TV	$\tilde{\mathcal{O}}(\epsilon^{-2} C_p^* H^4 S(\sum_{i=1}^m A_i) \min\{f(H, \rho), H\})$
479 Online (Ma et al., 2023)	480 KL	$\tilde{\mathcal{O}}(\epsilon^{-2} H^5 S(\max_i\{A_i\})^2)$ (with an oracle)
481 Online (Our work)	482 TV	$\tilde{\mathcal{O}}(\epsilon^{-2} H^3 S(\prod_{i \in \mathcal{M}} A_i) \min\{\rho_{\min}^{-1}, H\})$
	483 KL	$\tilde{\mathcal{O}}(\epsilon^{-2} \rho_{\min}^{-2} (P_{\min}^*)^{-1} H^5 \exp(2H^2) S(\prod_{i \in \mathcal{M}} A_i))$
484 Generative <i>Lower bound</i> (Shi et al., 2024b)	485 TV	$\tilde{\Omega}(\epsilon^{-2} H^3 S(\max_{i \in \mathcal{M}} A_i) \min\{\rho_{\min}^{-1}, H\})$

486 A substantial body of research on DRMGs has focused on two primary settings: (i) generative model
 487 setting, where the agents can freely sample from all state-action pairs (Shi et al., 2024a;b; Jiao

& Li, 2024); (ii) offline setting, which relies on a comprehensive, pre-collected dataset (Blanchet et al., 2023; Li et al., 2025). As we discuss in Section 4, both of these avoid exploration and are therefore easier than the online regime we consider. Despite this added difficulty, our algorithm attains complexities comparable to those reported for the generative and offline settings.

For both uncertainty sets, our results match or improve upon previous results and the minimax lower bound in all parameters except for the action-product term, $\prod_i A_i$, under the generative model setting. In the offline setting, if the dataset is generated uniformly, the convergence coefficients $C_{u/p}^*$ from (Li et al., 2025; Blanchet et al., 2023) introduce an additional $\prod_i A_i$ term into the sample complexity. Consequently, our results also match or surpass the offline complexity in all parameter dependence. This raises an important open question: **Can any DRMG learning algorithm overcome the curse of multi-agency and eliminate the dependence on $\prod_i A_i$ under general settings?**

While some works (Shi et al., 2024a; Jiao & Li, 2024; Li et al., 2025; Ma et al., 2023) have achieved independence from $\prod_i A_i$, it remains unclear whether these improvements are applicable to general DRMGs. Specifically, the results in (Shi et al., 2024a) and (Jiao & Li, 2024) are developed for special uncertainty sets with desirable properties. For instance, the fictitious TV uncertainty set in (Shi et al., 2024a) allows the global transition kernel to be estimated from a single agent’s local information; And robust RL under contamination models is known to be equivalent to a non-robust problem with a specific discount factor (Wang et al., 2023a). And the improvement in the offline setting is attributed to the benefits of the coverage coefficient.

The only online method (which also breaks the curse of multi-agency) is presented in (Ma et al., 2023). However, their algorithm relies on additional assumptions about uncertainty sets and a powerful oracle. This oracle is required to provide an ϵ -accurate estimation of the worst-case performance, $\sigma_{\mathcal{P}_i}[V]$ (see Theorem 12 of (Ma et al., 2023)), without any need for exploration. A central challenge in the analysis of robust learning algorithms is precisely quantifying this estimation error, as demonstrated in works like (Shi et al., 2023; Xu et al., 2023a; Panaganti & Kalathil, 2022; Liu & Xu, 2024). By assuming the existence of such an oracle, they bypass this core challenge, which significantly reduces their sample complexity. Moreover, their results need additional assumptions on the radius ρ . For instance, it is assumed that $\rho \leq \frac{P_{\min}^*}{H}$, whereas ours do not require any of them.

Therefore, the complexity reduction in these works is in fact a blessing of their specific uncertainty set structures, the properties of offline coverage coefficients, or the use of an impractical oracle. As our lower bound derived in Section 4, we argue that the dependence on the joint action space may be inevitable in DRMGs. In the robust settings, agents need to estimate the entire nominal kernel so that they can learn the worst-case from the uncertainty set through distributionally robust optimization, which requires samples from all joint actions to estimate the whole transition kernel; Whereas in non-robust case, there is only one transition kernel and agents can use samples to directly estimate the performance under it, instead of estimating the whole transition model. We leave the exploration of this direction, including whether practical relaxations and techniques can avoid it, for future work.

7 CONCLUSION

In this paper, we introduced the Multiplayer Optimistic Robust Nash Value Iteration (MORNAVI) algorithm, pioneering the study of online learning in DRMGs. Our work provides the first provable guarantees for this challenging setting, demonstrating that MORNAVI achieves low regret and efficiently identifies optimal robust policies for TV-divergence and KL-divergence uncertainty sets. This research establishes a practical path toward developing truly robust multi-agent systems that learn directly from environmental interactions. Despite the inherent hardness of online DRMGs, our algorithm achieves complexity results comparable to generative model and offline settings. This work also highlights a critical open question: whether online DRMG learning algorithms can overcome the curse of multi-agency and eliminate the dependence on the joint action space size. Future work will explore this fundamental challenge to advance the scalability of robust MARL.

REFERENCES

Mohammed Amin Abdullah, Hang Ren, Haitham Bou Ammar, Vladimir Milenkovic, Rui Luo, Mingtian Zhang, and Jun Wang. Wasserstein robust reinforcement learning. *arXiv preprint*

arXiv:1907.13196, 2019.

Baraa Alaa Eldin. Why applying deep reinforcement learning in healthcare is hard. <https://medium.com/@baraa.alaa.eldin/why-applying-deep-reinforcement-learning-in-healthcare-is-hard-ffc6e05ab7ca>, 2023. Accessed: 2025-07-28.

Peter Auer and Ronald Ortner. UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem. *Periodica Mathematica Hungarica*, 61(1-2):55–65, 2010.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed bandit problem. *SIAM journal on computing*, 32(1):48–77, 2002.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax Regret Bounds for Reinforcement Learning. In *International conference on machine learning*, pp. 263–272. PMLR, 2017.

Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least squares policy iteration with provable performance guarantees. In *Proc. International Conference on Machine Learning (ICML)*, pp. 511–520. PMLR, 2021.

Yu Bai and Chi Jin. Provable Self-Play Algorithms for Competitive Reinforcement Learning. In *International conference on machine learning*, pp. 551–560. PMLR, 2020.

Jose Blanchet, Miao Lu, Tong Zhang, and Han Zhong. Double Pessimism is Provably Efficient for Distributionally Robust Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage. *Advances in Neural Information Processing Systems*, 36:66845–66859, 2023.

Alexander Bukharin, Yan Li, Yue Yu, Qingru Zhang, Zhehui Chen, Simiao Zuo, Chao Zhang, Songan Zhang, and Tuo Zhao. Robust multi-agent reinforcement learning via adversarial regularization: Theoretical foundation and stable algorithms. In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, volume 36, pp. 68121–68133, 2023.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent reinforcement learning. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 38(2):156–172, 2008.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco Re, and Sergio Spanò. Multi-agent reinforcement learning: A review of challenges and applications. *Applied Sciences*, 11(11):4948, 2021.

Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the Generalization Ability of On-Line Learning Algorithms. *Advances in neural information processing systems*, 14, 2001.

Zixiang Chen, Dongruo Zhou, and Quanquan Gu. Almost optimal algorithms for two-player zero-sum linear mixture markov games. In Sanjoy Dasgupta and Nika Haghtalab (eds.), *Proceedings of The 33rd International Conference on Algorithmic Learning Theory*, volume 167 of *Proceedings of Machine Learning Research*, pp. 227–261. PMLR, 29 Mar–01 Apr 2022. URL <https://proceedings.mlr.press/v167/chen22d.html>.

Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards Minimax Optimality of Model-based Robust Reinforcement Learning. *arXiv preprint arXiv:2302.05372*, 2023.

Qiwen Cui, Kaiqing Zhang, and Simon Du. Breaking the curse of multiagents in a large state space: RL in markov games with independent linear function approximation. In *The Thirty Sixth Annual Conference on Learning Theory*, pp. 2651–2652. PMLR, 2023.

Constantinos Daskalakis. On the complexity of approximating a nash equilibrium. *ACM Transactions on Algorithms (TALG)*, 9(3):1–35, 2013.

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of computing a nash equilibrium. *Communications of the ACM*, 52(2):89–97, 2009.

594 Ambra Demontis, Maura Pintor, Luca Demetrio, Kathrin Grosse, Hsiao-Ying Lin, Chengfang Fang,
 595 Battista Biggio, and Fabio Roli. A survey on reinforcement learning security with application to
 596 autonomous driving, 2022. URL <https://arxiv.org/abs/2212.06123>.

597 Xiaotie Deng, Ningyuan Li, David Mguni, Jun Wang, and Yaodong Yang. On the complexity of
 598 computing markov perfect equilibrium in general-sum stochastic games. *National Science Review*,
 599 10(1):nwac256, 2023.

600 Jing Dong, Jingwei Li, Baoxiang Wang, and Jingzhao Zhang. Online policy optimization for robust
 601 mdp. *arXiv preprint arXiv:2209.13841*, 2022.

602 Devdatt P Dubhashi and Alessandro Panconesi. *Concentration of Measure for the Analysis of
 603 Randomized Algorithms*. Cambridge University Press, 2009.

604 Songtao Feng, Ming Yin, Yu-Xiang Wang, Jing Yang, and Yingbin Liang. Improving sample
 605 efficiency of model-free algorithms for zero-sum markov games. *arXiv preprint arXiv:2308.08858*,
 606 2023.

607 Arlington M Fink. Equilibrium in a stochastic n -person game. *Journal of science of the hiroshima
 608 university, series ai (mathematics)*, 28(1):89–93, 1964.

609 Drew Fudenberg and Jean Tirole. *Game theory*. MIT press, 1991.

610 Debamita Ghosh, George K. Atia, and Yue Wang. Provably near-optimal distributionally robust
 611 reinforcement learning in online settings, 2025. URL <https://arxiv.org/abs/2508.03768>.

612 Amy Greenwald, Keith Hall, Roberto Serrano, et al. Correlated q-learning. In *ICML*, volume 3, pp.
 613 242–249, 2003.

614 Songyang Han, Sanbao Su, Sihong He, Shuo Han, Haizhao Yang, Shaofeng Zou, and Fei Miao.
 615 What is the solution for state-adversarial multi-agent reinforcement learning? *Transactions on
 616 Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=HyqSwNhM3x>.

617 Thomas Dueholm Hansen, Peter Bro Miltersen, and Uri Zwick. Strategy iteration is strongly
 618 polynomial for 2-player turn-based stochastic games with a constant discount factor. *Journal of
 619 the ACM (JACM)*, 60(1):1–16, 2013.

620 Sihong He, Songyang Han, Sanbao Su, Shuo Han, Shaofeng Zou, and Fei Miao. Robust multi-agent
 621 reinforcement learning with state uncertainty, 2023. URL <https://arxiv.org/abs/2307.16212>.

622 Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games. *Journal of
 623 machine learning research*, 4(Nov):1039–1069, 2003.

624 Min Hua, Dong Chen, Xinda Qi, Kun Jiang, Zemin Eitan Liu, Quan Zhou, and Hongming
 625 Xu. Multi-agent reinforcement learning for connected and automated vehicles control: Recent
 626 advancements and future prospects, 2024. URL <https://arxiv.org/abs/2312.11084>.

627 Garud N Iyengar. Robust Dynamic Programming. *Mathematics of Operations Research*, 30(2):
 628 257–280, 2005.

629 Yuchen Jiao and Gen Li. Minimax-optimal multi-agent robust reinforcement learning. *arXiv preprint
 630 arXiv:2412.19873*, 2024.

631 Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?
 632 In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, pp. 4868–4878, 2018.

633 Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning—a simple, efficient, decentralized
 634 algorithm for multiagent rl. *arXiv preprint arXiv:2110.14555*, 2021.

635 Yujia Jin, Vidya Muthukumar, and Aaron Sidford. The complexity of infinite-horizon general-sum
 636 stochastic games. *arXiv preprint arXiv:2204.04186*, 2022.

648 Erim Kardeş, Fernando Ordóñez, and Randolph W Hall. Discounted robust stochastic games and an
 649 application to queueing control. *Operations research*, 59(2):365–382, 2011.
 650

651 Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of
 652 model-based offline reinforcement learning. *The Annals of Statistics*, 52(1):233–260, 2024a.
 653

654 Na Li, Yuchen Jiao, Hangguan Shan, and Shefeng Yan. Provable memory efficient self-play algorithm
 655 for model-free reinforcement learning. In *The Twelfth International Conference on Learning
 656 Representations*, 2024b.
 657

658 Na Li, Zewu Zheng, Wei Ni, Hangguan Shan, Wenjie Zhang, and Xinyu Li. Sample efficient robust
 659 offline self-play for model-based reinforcement learning. Manuscript, OpenReview preprint, 2025.
 660 URL <https://openreview.net/forum?id=3lXZjsir0e>.
 661

662 Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
 663 reinforcement learning via minimax deep deterministic policy gradient. In *Proc. Conference on
 664 Artificial Intelligence (AAAI)*, volume 33, pp. 4213–4220, 2019.
 665

666 Yan Li, Guanghui Lan, and Tuo Zhao. First-order policy optimization for robust markov decision
 667 process. *arXiv preprint arXiv:2209.10579*, 2022.
 668

669 Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, and Zhengyuan Zhou. Single-trajectory
 670 distributionally robust reinforcement learning. *arXiv preprint arXiv:2301.11721*, 2023.
 671

672 Jieyu Lin, Kristina Dzeparoska, Sai Qian Zhang, Alberto Leon-Garcia, and Nicolas Papernot. On
 673 the robustness of cooperative multi-agent reinforcement learning, 2020. URL <https://arxiv.org/abs/2003.03722>.
 674

675 Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
 676 *Machine learning proceedings 1994*, pp. 157–163. Elsevier, 1994.
 677

678 Michael L Littman and Csaba Szepesvári. A generalized reinforcement-learning model: Convergence
 679 and applications. In *ICML*, volume 96, pp. 310–318, 1996.
 680

681 Michael L Littman et al. Friend-or-foe q-learning in general-sum games. In *ICML*, volume 1, pp.
 682 322–328, 2001.
 683

684 Guangyi Liu, Suzan Iloglu, Michael Caldara, Joseph W Durham, and Michael M. Zavlanos.
 685 Distributionally robust multi-agent reinforcement learning for dynamic chute mapping. In *Proc.
 686 International Conference on Machine Learning (ICML)*, 2025.
 687

688 Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp analysis of model-based reinforcement
 689 learning with self-play. In *Proc. International Conference on Machine Learning (ICML)*, pp.
 7001–7010. PMLR, 2021.
 690

691 Zhishuai Liu and Pan Xu. Minimax Optimal and Computationally Efficient Algorithms for
 692 Distributionally Robust Offline Reinforcement Learning. *Advances in Neural Information
 693 Processing Systems*, 37:86602–86654, 2024.
 694

695 Zhishuai Liu, Weixin Wang, and Pan Xu. Upper and lower bounds for distributionally robust
 696 off-dynamics reinforcement learning. *arXiv preprint arXiv:2409.20521*, 2024.
 697

698 Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
 699 Zhou. Distributionally robust Q-learning. In *Proc. International Conference on Machine Learning
 700 (ICML)*, pp. 13623–13643. PMLR, 2022.
 701

702 Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic
 703 for mixed cooperative-competitive environments. In *Proc. Advances in Neural Information
 704 Processing Systems (NIPS)*, pp. 6379–6390, 2017.
 705

706 Miao Lu, Han Zhong, Tong Zhang, and Jose Blanchet. Distributionally robust reinforcement
 707 learning with interactive data collection: Fundamental hardness and near-optimal algorithm. *The
 708 Thirty-eighth Annual Conference on Neural Information Processing Systemss*, 2024.

702 Ming Yu Lu, Zachary Shahn, Daby Sow, Finale Doshi-Velez, and Li-wei H Lehman. Is deep
 703 reinforcement learning ready for practical applications in healthcare? A sensitivity analysis of
 704 duel-DDQN for hemodynamic management in sepsis patients. In *AMIA annual symposium*
 705 *proceedings*, volume 2020, pp. 773, 2021.

706 Shaocong Ma, Ziyi Chen, Shaofeng Zou, and Yi Zhou. Decentralized robust v-learning for solving
 707 markov games with model uncertainty. *Journal of Machine Learning Research*, 24(371):1–40,
 708 2023.

710 Xiaoteng Ma, Zhipeng Liang, Jose Blanchet, Mingwen Liu, Li Xia, Jiheng Zhang, Qianchuan
 711 Zhao, and Zhengyuan Zhou. Distributionally Robust Offline Reinforcement Learning with Linear
 712 Function Approximation. *arXiv preprint arXiv:2209.06620*, 2022.

713 Weichao Mao and Tamer Başar. Provably efficient reinforcement learning in decentralized
 714 general-sum markov games. *Dynamic Games and Applications*, 13(1):165–186, 2023.

716 Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent reinforcement
 717 learners in cooperative markov games: a survey regarding coordination problems. *The Knowledge
 718 Engineering Review*, 27(1):1–31, 2012.

720 Andreas Maurer and Massimiliano Pontil. Empirical Bernstein Bounds and Sample Variance
 721 Penalization. *arXiv preprint arXiv:0907.3740*, 2009.

722 Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. UCB Momentum
 723 Q-learning: Correcting the bias without forgetting. In *International Conference on Machine
 724 Learning*, pp. 7609–7618. PMLR, 2021.

725 Arnab Nilim and Laurent El Ghaoui. Robust Control of Markov Decision Processes with Uncertain
 726 Transition Matrices. *Operations Research*, 53(5):780–798, 2005.

728 Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
 729 learning. *Applied Intelligence*, 53(11):13677–13722, 2023.

731 Sindhu Padakandla, Prabuchandran KJ, and Shalabh Bhatnagar. Reinforcement learning algorithm
 732 for non-stationary environments. *Applied Intelligence*, 50(11):3590–3606, 2020.

733 Kishan Panaganti and Dileep Kalathil. Sample Complexity of Robust Reinforcement Learning with
 734 a Generative Model. In *International Conference on Artificial Intelligence and Statistics*, pp.
 735 9582–9602. PMLR, 2022.

737 Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforcement
 738 learning using offline data. *arXiv preprint arXiv:2208.05129*, 2022.

739 Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Albrecht. Dealing with
 740 non-stationarity in multi-agent deep reinforcement learning. *arXiv preprint arXiv:1906.04737*,
 741 2019.

743 Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
 744 robotic control with dynamics randomization. In *2018 IEEE international conference on robotics
 745 and automation (ICRA)*, pp. 3803–3810. IEEE, 2018.

746 Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
 747 robust neural network policies using model ensembles. *arXiv preprint arXiv:1610.01283*, 2016.

749 Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, and Ilija Bogunovic.
 750 Distributionally robust model-based reinforcement learning with large state spaces, 2023. URL
 751 <https://arxiv.org/abs/2309.02236>.

752 Shai Shalev-Shwartz et al. Safe, multi-agent, reinforcement learning for autonomous driving. *arXiv
 753 preprint arXiv:1610.03295*, 2016.

755 Lloyd S Shapley. Stochastic games. *Proceedings of the national academy of sciences*, 39(10):
 1095–1100, 1953.

756 Laixi Shi and Yuejie Chi. Distributionally Robust Model-Based Offline Reinforcement Learning with
 757 Near-Optimal Sample Complexity, December 2022. URL <http://arxiv.org/abs/2208.05767> [cs, stat].
 758

760 Laixi Shi and Yuejie Chi. Distributionally Robust Model-Based Offline Reinforcement Learning with
 761 Near-Optimal Sample Complexity. *Journal of Machine Learning Research*, 25(200):1–91, 2024.

762 Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The Curious Price
 763 of Distributional Robustness in Reinforcement Learning with a Generative Model. *Advances in
 764 Neural Information Processing Systems*, 36:79903–79917, 2023.

765 Laixi Shi, Jingchu Gai, Eric Mazumdar, Yuejie Chi, and Adam Wierman. Breaking the curse of
 766 multiagency in robust multi-agent reinforcement learning. *arXiv preprint arXiv:2409.20067*,
 767 2024a.

769 Laixi Shi, Eric Mazumdar, Yuejie Chi, and Adam Wierman. Sample-Efficient Robust
 770 Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty. *arXiv preprint
 771 arXiv:2404.18909*, 2024b.

772 Yoav Shoham and Kevin Leyton-Brown. *Multiagent systems: Algorithmic, game-theoretic, and
 773 logical foundations*. Cambridge University Press, 2008.

774

775 Nian Si, Fan Zhang, Zhengyuan Zhou, and Jose Blanchet. Distributionally robust policy evaluation
 776 and learning in offline contextual bandits. In *Proc. International Conference on Machine Learning
 777 (ICML)*, pp. 8884–8894. PMLR, 2020.

778 David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre, George Driessche,
 779 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
 780 Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
 781 Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
 782 deep neural networks and tree search. *Nature*, 529:484–489, 01 2016. doi: 10.1038/nature16961.

783

784 Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum markov games with a large
 785 number of players sample-efficiently? *arXiv preprint arXiv:2110.04184*, 2021.

786 Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and Alexandre Bayen.
 787 Robust reinforcement learning using adversarial populations. *arXiv preprint arXiv:2008.01825*,
 788 2020.

789

790 Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
 791 Chung, David Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
 792 Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg,
 793 Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden,
 794 Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai
 795 Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
 796 Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
 797 Silver. Grandmaster level in starcraft ii using multi-agent reinforcement learning. *Nature*, 575:350
 – 354, 2019. URL <https://api.semanticscholar.org/CorpusID:204972004>.

798

799 He Wang, Laixi Shi, and Yuejie Chi. Sample complexity of offline distributionally robust linear
 800 markov decision processes. *arXiv preprint arXiv:2403.12946*, 2024a.

801

802 Qiuhan Wang, Chin Pang Ho, and Marek Petrik. Policy gradient in robust mdps with global
 803 convergence guarantee. In *Proc. International Conference on Machine Learning (ICML)*, pp.
 35763–35797. PMLR, 2023a.

804

805 Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A Finite Sample Complexity Bound
 806 for Distributionally Robust Q-learning. In *International Conference on Artificial Intelligence and
 807 Statistics*, pp. 3370–3398. PMLR, 2023b.

808

809 Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. Sample Complexity of
 Variance-Reduced Distributionally Robust Q-Learning. *Journal of Machine Learning Research*,
 25(341):1–77, 2024b.

810 Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. On the foundation of distributionally
 811 robust reinforcement learning, 2024c. URL <https://arxiv.org/abs/2311.09018>.

812

813 Yudan Wang, Yue Wang, Yi Zhou, Alvaro Velasquez, and Shaofeng Zou. Data-driven robust
 814 multi-agent reinforcement learning. In *2022 IEEE 32nd International Workshop on Machine
 815 Learning for Signal Processing (MLSP)*, pp. 1–6. IEEE, 2022.

816 Yudan Wang, Shaofeng Zou, and Yue Wang. Model-free robust reinforcement learning with sample
 817 complexity analysis. In *Proc. International Conference on Uncertainty in Artificial Intelligence
 818 (UAI)*, 2024d.

819 Yue Wang and Shaofeng Zou. Online Robust Reinforcement Learning with Model Uncertainty.
 820 *Advances in Neural Information Processing Systems*, 34:7193–7206, 2021.

821

822 Yue Wang, Alvaro Velasquez, George K Atia, Ashley Prater-Bennette, and Shaofeng Zou. Model-free
 823 robust average-reward reinforcement learning. In *Proc. International Conference on Machine
 824 Learning (ICML)*, pp. 36431–36469. PMLR, 2023c.

825 Yue Wang, Zhongchang Sun, and Shaofeng Zou. A Unified Principle of Pessimism for Offline
 826 Reinforcement Learning under Model Mismatch. *Advances in Neural Information Processing
 827 Systems*, 37:9281–9328, 2024e.

828 Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov Decision Processes.
 829 *Mathematics of Operations Research*, 38(1):153–183, 2013a.

830

831 Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov decision processes.
 832 *Mathematics of Operations Research*, 38(1):153–183, 2013b.

833

834 Annie Wong, Thomas Bäck, Anna V Kononova, and Aske Plaat. Deep multiagent reinforcement
 835 learning: Challenges and directions. *Artificial Intelligence Review*, 56(6):5023–5056, 2023.

836 Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. Learning zero-sum
 837 simultaneous-move markov games using function approximation and correlated equilibrium.
 838 In *Proc. Annual Conference on Learning Theory (CoLT)*, pp. 3674–3682. PMLR, 2020.

839 Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved Sample Complexity Bounds for
 840 Distributionally Robust Reinforcement Learning. In *International Conference on Artificial
 841 Intelligence and Statistics*, pp. 9728–9754. PMLR, 2023a.

842

843 Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for
 844 distributionally robust reinforcement learning. In *International Conference on Artificial Intelligence
 845 and Statistics*, pp. 9728–9754. PMLR, 2023b.

846 Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward Theoretical Understandings of Robust
 847 Markov Decision Processes: Sample Complexity and Asymptotics. *The Annals of Statistics*, 50(6):
 848 3223–3248, 2022.

849

850 Wenhao Yang, Han Wang, Tadashi Kozuno, Scott M Jordan, and Zhihua Zhang. Robust markov
 851 decision processes without model estimation. *arXiv preprint arXiv:2302.01248*, 2023.

852

853 Andrea Zanette and Emma Brunskill. Tighter Problem-Dependent Regret Bounds in Reinforcement
 854 Learning without Domain Knowledge using Value Function Bounds. In *International Conference
 855 on Machine Learning*, pp. 7304–7312. PMLR, 2019.

856

857 Chi Zhang, Zain Ulabedeen Farhat, George K. Atia, and Yue Wang. Model-free offline reinforcement
 858 learning with enhanced robustness. In *Proc. International Conference on Learning Representations
 859 (ICLR)*, 2025.

860

861 Kaiqing Zhang, Tao Sun, Yunzhe Tao, Sahika Genc, Sunil Mallya, and Tamer Başar. Robust
 862 multi-agent reinforcement learning with model uncertainty. In *Proc. Advances in Neural
 863 Information Processing Systems (NeurIPS)*, volume 33, 2020.

864

865 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 866 overview of theories and algorithms. *Handbook of reinforcement learning and control*, pp. 321–384,
 867 2021a.

864 Runyu Zhang, Yang Hu, and Na Li. Soft Robust MDPs and Risk-Sensitive MDPs: Equivalence,
 865 Policy Gradient, and Sample Complexity. *arXiv preprint arXiv:2306.11626*, 2023.

866

867 Zihan Zhang, Xiangyang Ji, and Simon Du. Is Reinforcement Learning More Difficult Than Bandits?
 868 A Near-optimal Algorithm Escaping the Curse of Horizon. In *Conference on Learning Theory*, pp.
 869 4528–4531. PMLR, 2021b.

870

871 Zihan Zhang, Yuxin Chen, Jason D Lee, and Simon S Du. Settling the sample complexity of online
 872 reinforcement learning. In *Proc. Annual Conference on Learning Theory (CoLT)*, pp. 5213–5219.
 873 PMLR, 2024.

874

875 Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep
 876 reinforcement learning for robotics: a survey. In *2020 IEEE symposium series on computational
 877 intelligence (SSCI)*, pp. 737–744. IEEE, 2020.

878

879 Zhengqing Zhou, Qinxun Bai, Zhengyuan Zhou, Linhai Qiu, Jose Blanchet, and Peter Glynn.
 880 Finite-sample regret bound for distributionally robust offline tabular reinforcement learning. In
 881 *Proc. International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 3331–3339.
 882 PMLR, 2021a.

883

884 Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter Glynn.
 885 Finite-Sample Regret Bound for Distributionally Robust Offline Tabular Reinforcement Learning.
 886 In *International Conference on Artificial Intelligence and Statistics*, pp. 3331–3339. PMLR, 2021b.

887

888 Ziyuan Zhou, Guanjun Liu, and Mengchu Zhou. A robust mean-field actor-critic reinforcement
 889 learning against adversarial perturbations on agent states. *IEEE Transactions on Neural Networks
 890 and Learning Systems*, 35(10):14370–14381, October 2024. ISSN 2162-2388. doi: 10.1109/tnnls.
 891 2023.3278715. URL <http://dx.doi.org/10.1109/TNNLS.2023.3278715>.

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 A USE OF LARGE LANGUAGE MODELS
919920 We used ChatGPT only as a general-purpose assistant for language editing and typesetting. Its role
921 was limited to (i) improving grammar, style, and readability, and (ii) LaTeX support—adjusting
922 algorithm placement, tidying BibTeX entries and citation styles, and resolving compile issues (e.g.,
923 Type-3 font warnings and package conflicts). All ideas, derivations, and final claims were conceived,
924 checked, and validated by the authors, who bear full responsibility for the paper’s content.
925926 B RELATED WORKS
927928 In this section we discuss other related works.
929930 **Single-Agent Robust RL.** Robust RL for single-agent settings has been extensively studied
931 across a wide range of formulations. In particular, a substantial body of work has examined the
932 generative-model setting (Clavier et al., 2023; Liu et al., 2022; Panaganti & Kalathil, 2022; Ramesh
933 et al., 2023; Shi et al., 2023; Wang et al., 2023b; 2024c;b; Xu et al., 2023a; Yang et al., 2022; 2023),
934 where the agent is assumed to have access to a simulator. These studies develop distributionally robust
935 RL algorithms under various uncertainty sets, including TV, KL, χ^2 , and Wasserstein divergences.
936 Another, and arguably more challenging, line of research focuses on the offline setting (Blanchet
937 et al., 2023; Ma et al., 2022; Panaganti et al., 2022; Shi & Chi, 2024; Zhang et al., 2023; Liu &
938 Xu, 2024; Wang et al., 2024e; Blanchet et al., 2023; Wang et al., 2024a). In this setting, the agent
939 must learn exclusively from a fixed offline dataset, without the ability to collect additional online
940 samples. Finally, we consider the online setting (Badrinath & Kalathil, 2021; Dong et al., 2022; Li
941 et al., 2022; Liang et al., 2023; Wang & Zou, 2021), where the agent learns exclusively through direct
942 interaction with the environment. Prior work spans model-based, model-free, and policy-gradient
943 approaches, with some methods, such as the policy optimization algorithm of (Dong et al., 2022),
944 achieving sublinear regret guarantees.
945946 **Robust MARL.** Besides the distributionally robust Markov games we considered in our paper, there
947 are also other works investigate robustness in MARL for cooperative tasks, where all agents share
948 a unified objective. (Bukharin et al., 2023) enhance robustness through adversarial regularization,
949 perturbing the environment to encourage Lipschitz-continuous policies. (Lin et al., 2020) explore
950 adversarial attacks on MARL agents as a means of improving resilience, while (Li et al., 2019) extend
951 this approach to continuous action spaces by modifying the MADDPG algorithm (Lowe et al., 2017)
952 to focus on worst-case actions—a narrower interpretation of worst-case optimization in robust RL.
953 (Wang et al., 2022) studied robust MARL with network agents.
954955 Another line of research focuses on the robustness in MARL under observation uncertainty, under the
956 formulation of partially observable MDPs. The framework of observation-robust games is proposed
957 in (He et al., 2023; Han et al., 2024). Observation-robust cooperative MARL is studied in (Zhou
958 et al., 2024).
959960 **Non-Robust Markov Games.** Markov games (MGs), or stochastic games, introduced by (Shapley,
961 1953), form the standard foundation for multi-agent reinforcement learning (MARL), particularly in
962 equilibrium learning. Comprehensive surveys such as (Busoniu et al., 2008; Oroojlooy & Hajinezhad,
963 2023; Zhang et al., 2021a) offer thorough coverage of the field’s evolution. Early work in MARL
964 focused on asymptotic convergence guarantees (Littman et al., 2001; Littman & Szepesvári, 1996),
965 whereas recent research emphasizes finite-sample analyses to establish non-asymptotic guarantees,
966 especially for learning Nash equilibria (NE)—a central solution concept. The existence of NE
967 in general-sum MGs was shown by (Fink, 1964), and the algorithmic foundation was laid by the
968 seminal work of (Littman, 1994). Classical algorithms such as Nash-Q (Hu & Wellman, 2003),
969 FF-Q (Littman et al., 2001), and correlated-Q learning (Greenwald et al., 2003) were proposed to
970 compute NE and its variants. However, computing NE in general-sum multi-player settings remains
971 PPAD-complete (Daskalakis, 2013), and no polynomial-time algorithms exist for this case (Jin et al.,
972 2022; Deng et al., 2023). In contrast, the two-player zero-sum setting admits tractable solutions, with
973 the first polynomial-time algorithm developed by (Hansen et al., 2013). To address the computational
974 intractability in general-sum MGs, attention has shifted to weaker notions like CE and CCE, with
975 polynomial-time algorithms such as V-learning (Jin et al., 2021; Mao & Başar, 2023; Song et al., 2021)
976 and Nash value iteration (Liu et al., 2021) enabling efficient computation. Furthermore, significant
977 progress in finite-sample analysis—spanning both model-based and model-free algorithms—has
978

been achieved in the two-player zero-sum setting, as evidenced by (Bai & Jin, 2020; Xie et al., 2020; Cui et al., 2023; Chen et al., 2022; Liu et al., 2021; Feng et al., 2023; Li et al., 2024b), advancing the theoretical understanding of equilibrium learning in standard MARL without robustness considerations.

C DRMG WITH f -DIVERGENCE UNCERTAINTY SET

We review the formulation of DRMG with f -divergence uncertainty sets. This framework operates under the $\mathcal{S} \times \mathcal{A}$ -rectangularity assumption, where the nominal transition probability P^* and the agent-specific radius ρ_i for $i \in \mathcal{M}$ define the robust problem as per Definition 1.

Lemma 7 (Strong duality for f -divergence). *Let $\mathcal{P}_f^{\rho_i}(s, a)$ be an f -divergence uncertainty set as defined in Definition 1. For any value function $V_i : \mathcal{S} \rightarrow \mathbb{R}_+$ and a nominal transition kernel $P^* : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$, the worst-case expected value, $\sigma_{\mathcal{P}_f^{\rho_i}(s, a)}[V_i] := \inf_{P \in \mathcal{P}_f^{\rho_i}(s, a)} [\mathbb{P}V_i](s, a)$, admits a dual representation given by:*

$$\sigma_{\mathcal{P}_{i,h,f}^{\rho_i}(s, a)}[V] = \sup_{\lambda \geq 0, \eta \in \mathbb{R}} \left\{ -\lambda \sum_{s \in \mathcal{S}} P^*(s) f^* \left(\frac{\eta - V(s)}{\lambda} \right) - \lambda \rho_i + \eta \right\},$$

where f^* is the convex conjugate of f .

The detailed proof is given in Lemma B.1 of (Yang et al., 2022).

Corollary 8 (Dual representation for TV and KL-divergence). *Under the assumption of $\mathcal{S} \times \mathcal{A}$ -rectangularity, the dual representation from Lemma 7 simplifies to the following for two specific cases of f -divergence. For any value function $V : \mathcal{S} \rightarrow [0, H]$ and a nominal distribution P_h^* over the next states:*

TV-Divergence. *For an uncertainty set defined by TV-divergence, where $f(t) = \frac{1}{2}|t - 1|$, the robust expectation $\sigma_{\mathcal{P}_{i,h,TV}^{\rho_i}(s, a)}[V_i]$ is expressed as:*

$$\begin{aligned} \sigma_{\mathcal{P}_{i,h,TV}^{\rho_i}(s, a)}[V_i] &= \sup_{\eta \in [0, H]} \left\{ -\mathbb{E}_{P_h^*(\cdot | s, a)} \left[\max(0, \eta - V_i) \right] \right. \\ &\quad \left. - \frac{\rho}{2} \max(0, \eta - \min_{s' \in \mathcal{S}} V_i(s')) + \eta \right\}. \end{aligned} \quad (11)$$

KL-Divergence. *For an uncertainty set defined by KL-divergence, with $f(t) = t \log(t)$, the robust expectation $\sigma_{\mathcal{P}_{i,h,KL}^{\rho_i}(s, a)}[V_i]$ is expressed as:*

$$\sigma_{\mathcal{P}_{i,h,KL}^{\rho_i}(s, a)}[V_i] = \sup_{\eta \in [\underline{\eta}, H/\rho_i]} \left\{ -\eta \log \left(\mathbb{E}_{P_h^*(\cdot | s, a)} \left[\exp \left\{ -\frac{V_i}{\eta} \right\} \right] \right) - \eta \rho_i \right\}. \quad (12)$$

ROBUST BELLMAN EQUATIONS.

Analogous to standard MGs, the following proposition provides the robust Bellman equation for DRMGs. In particular, the robust value functions $V_{i,h}^{\pi, \rho_i}(s)$ associated with any joint policy π for all $(i, h, s) \in \mathcal{M} \times [H] \times \mathcal{S}$ obeys the following proposition given below:

Proposition 9 (Robust Bellman Equation). *Under the $\mathcal{S} \times \mathcal{A}$ -rectangularity assumption, for any nominal transition kernel P^* and joint policy π , the robust Bellman equation holds for any (i, h, s, a) :*

$$Q_{i,h}^{\pi, \rho_i}(s, a) = r_{i,h}(s, a) + \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, a)} \left[V_{i,h+1}^{\pi, \rho_i} \right] \quad (13)$$

$$V_{i,h}^{\pi, \rho_i}(s) = \mathbb{E}_{a \sim \pi_h(\cdot | s)} \left[Q_{i,h}^{\pi, \rho_i}(s, a) \right] \quad (14)$$

The detailed proof of Proposition 9 for finite-horizon RMDP is given in (Blanchet et al., 2023, Proposition 2.3). We emphasize that the robust Bellman equation in 14 is fundamentally grounded in the agent-wise (s, a) -rectangularity condition imposed on the uncertainty set. This condition decouples the dependencies of uncertainty across agents, state-action pairs, and time steps, thereby enabling the recursive structure of the Bellman equation.

1026 D NUMERICAL EXPERIMENTS

1028 In this section, we develop numerical experiments to validate our theoretical results. We highlight that
 1029 numerical experiment for Markov games can be significantly challenging due to, e.g., the equilibrium
 1030 identification challenge and computational barrier (Shoham & Leyton-Brown, 2008), hence we use
 1031 some small-scale experiments to validate our results.

1032 D.1 FULLY COOPERATIVE DRMG

1033 As the first step in numerical experiment, we design a 2-agent, 2-step fully cooperative DRMG (with
 1034 identical rewards for both players), to illustrate the separation between our robust learning algorithm
 1035 and the non-robust ones in standard Markov games.

1036 The game is formally defined by the following components:

- 1037 • **Agents (\mathcal{M}):** The set of agents is $\mathcal{M} = \{1, 2\}$.
- 1038 • **Horizon (H):** The game has a finite horizon of $H = 2$.
- 1039 • **State Space (\mathcal{S}):** The state space is $\mathcal{S} = \{s_0, s_H, s_M, s_T\}$. The game always starts in state
 1040 s_0 at $h = 1$. The states s_H (High), s_M (Medium), and s_T (Trap) are the potential states for
 1041 $h = 2$, and the episode terminates after this step.
- 1042 • **Action Space (\mathcal{A}):** Each agent has two actions, $\mathcal{A}_i = \{0, 1\}$ for $i \in \mathcal{M}$. The joint action
 1043 space is $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$, with joint actions $a = (a_1, a_2) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$.

1044 In our game, agents receive no reward at the first step: $r_{i,1}(s_0, a) = 0$ for all i, a . At step $h = 2$, the
 1045 reward $r_{i,2}(s, a)$ for both agents is determined by the current state $s \in \{s_H, s_M, s_T\}$ and the joint
 1046 action a . The rewards are defined as:

- 1047 • **At s_H (High):** This is the high-reward state, where $r_{i,2}(s_H, a) = 1$ for all i, a .
- 1048 • **At s_M (Medium):** This is a medium-reward state, where $r_{i,2}(s_M, a) = 0.6$ for all i, a .
- 1049 • **At s_T (Trap):** This is the low-reward, trap state, where $r_{i,2}(s_T, a) = 0$ for all i, a .

1050 We then set the nominal transition kernel from s_0 at $h = 1$, $P_1^*(\cdot | s_0, a)$. The probabilities are detailed
 1051 as follows:

1052 Table 2: Nominal transition probabilities $P_1^*(\cdot | s_0, a)$ from the start state.

1053 Joint Action a	$P_1^*(s_H s_0, a)$	$P_1^*(s_M s_0, a)$	$P_1^*(s_T s_0, a)$	Description
1054 $a = (1, 1)$	0.90	0.00	0.10	Risky (high reward, trap support)
1055 $a = (0, 0)$	0.60	0.40	0.00	Safe (no trap support)
1056 $a = (1, 0)$	0.50	0.25	0.25	Mediocre
1057 $a = (0, 1)$	0.50	0.25	0.25	Mediocre

1058 It can be seen that, under the nominal kernel, the risky action is preferred as it has higher probability
 1059 to transit to s_H . However, when there are model mismatch between the training and deploying
 1060 environment, and under the risky action, the probability of transiting to the Trap state s_T becomes
 1061 higher, then the non-robust equilibrium becomes sub-optimal. On the other hand, our robust
 1062 learning considers the worst-case, so it prefers to take the safe action. We will numerically show that our robust
 1063 learning algorithm will learn a more robust policy that performs better under model uncertainties or
 1064 the sim-to-real gap.

1065 We aim to numerically verify two of our claims: (1). Our MORNAVI algorithm converges to the
 1066 robust equilibria; And (2). The robust equilibria learned are more robust against model uncertainty
 1067 compared to non-robust ones.

1068 Specifically, we construct the uncertainty set as a KL-divergence ball centered at P_h^* as in Equation (2),
 1069 which $\rho_i = \rho$. We then implement our algorithm (Algorithm 1) together with the non-robust Nash
 1070 value iteration (Liu et al., 2021) as the baseline. Due to the hardness of computing Nash equilibria
 1071 (which is PPAD-hard in the worst-case (Deng et al., 2023)), we compute the CCE for the games.

We develop two experiments as follows. Firstly, we run both algorithms (we set $\rho = 0.25$ in our algorithm) for 10 times, and plot the averaged robust value function of Player 1 against the total number of samples. We also plot the standard deviation to show statistical errors. Secondly, we test the learned equilibria from both algorithm under different uncertainty radii ρ . For different ρ , we compute the robust value function of Player 1 (since both players have identical performance) under the KL-ball, to showcase the robustness of our algorithm. The experiment results are shown in Figure 1.

Figure 1: f -MORNAVI v.s. Multi-Nash-VI under KL-DivergenceFigure 2: f -MORNAVI v.s. Multi-Nash-VI under TV-Divergence

As the results shown, our algorithm converges to the robust equilibrium, validating the convergence of our theoretical results and convergence guarantees. Moreover, our robust equilibrium shows an enhanced robustness when model mismatch exists. Specifically, when $\rho \approx 0$ and there is no model mismatch, then the non-robust algorithm outperforms ours (as we are conservative and robust while non-robust is optimization for the nominal kernel); However, when the uncertainty radius increasing and model mismatch is introduced, performance of the non-robust equilibrium decreases significantly, whereas ours shows a more stable and robust performance. Our results hence validate our theoretical results and claims.

Similarly, we develop experiments with TV-based uncertainty set, and plot results in Figure 2. As results shown, our algorithm converges to a robust equilibrium, which is more stable and robust against model uncertainties. Our results hence align with and validate our theoretical findings.

D.2 GENERAL-SUM DRMG

We then slightly modify the fully cooperative DRMG considered, transferring it to a general-sum DRMG, to further validate our theoretical results.

1134 We set the nominal kernel as follows. At step 1, the nominal transition $P_1^*(\cdot | s_0, a)$ is
 1135

$$1136 \quad P_1^*(\cdot | s_0, a) = \begin{cases} 0.82 \delta_{s_H} + 0.18 \delta_{s_T}, & a = (1, 1) \text{ (risky),} \\ 1137 \quad 0.60 \delta_{s_H} + 0.40 \delta_{s_M}, & a = (0, 0) \text{ (safe),} \\ 1138 \quad 0.48 \delta_{s_H} + 0.22 \delta_{s_M} + 0.30 \delta_{s_T}, & a \in \{(1, 0), (0, 1)\} \text{ (off-diag).} \end{cases}$$

1140 At step 2 the kernel is absorbing: $P_2^*(s' | s, a) = \mathbf{1}\{s' = s\}$ for $s \in \{s_H, s_M, s_T\}$.
 1141

1142 The rewards are settled as follows. At the terminal step (step 2), each terminal state induces a 2×2
 1143 matrix game; let $R^{(1)}(s), R^{(2)}(s) \in \mathbb{R}^{2 \times 2}$ denote the row/column players' payoffs. We set
 1144

$$1145 \quad \text{High: } R^{(1)}(s_H) = \begin{bmatrix} 0.55 & 0.90 \\ 1.00 & 1.20 \end{bmatrix}, \quad R^{(2)}(s_H) = \begin{bmatrix} 0.70 & 0.85 \\ 0.90 & 1.00 \end{bmatrix},$$

$$1148 \quad \text{Medium: } R^{(1)}(s_M) = \begin{bmatrix} 0.45 & 0.35 \\ 0.35 & 0.30 \end{bmatrix}, \quad R^{(2)}(s_M) = \begin{bmatrix} 0.65 & 0.55 \\ 0.50 & 0.45 \end{bmatrix},$$

$$1151 \quad \text{Trap: } R^{(1)}(s_T) = \mathbf{0}, \quad R^{(2)}(s_T) = \mathbf{0}.$$

1153 Both players then have different rewards and the game becomes a general-sum DRMG.
 1154

1155 Similarly, we implement our algorithms with non-robust baseline under both KL and TV uncertainty
 1156 sets. We plot the performance of both players (as they are different). Our observations from the
 1157 experiment results remain the same. In Figure 3a and Figure 4a, our robust algorithm converges
 1158 to a robust equilibrium (sample) efficiently. And in Figure 3b and Figure 4b, the robust equilibria
 1159 learned by our algorithms maintain a more robust and stable performance under model mismatches,
 1160 showcasing the enhanced robustness of our methods in MARL settings.
 1161

1162 (a) Performance of KL-MORNAVI vs. Episodes
 1163

1164 (b) KL-MORNAVI vs. Uncertainty Level (ρ)
 1165

1166 Figure 3: f -MORNAVI v.s. Multi-Nash-VI under KL-Divergence
 1167

1176 (a) Performance of TV-MORNAVI vs. Episodes
 1177

1178 (b) TV-MORNAVI vs. Uncertainty Radius (ρ)
 1179

1180 Figure 4: f -MORNAVI v.s. Multi-Nash-VI under TV-Divergence
 1181

1188 E HARDNESS OF MULTI-AGENT ONLINE LEARNING
11891190 E.1 HARDNESS WITH SUPPORT SHIFT
11911192 **Example 10** (The “Initial Shock” Game). Consider a class of N -agent DRMGs, $\{M_{\mathbf{a}^*}\}_{\mathbf{a}^* \in \mathcal{A}}$,
1193 parameterized by a “secret escape route” $\mathbf{a}^* \in \mathcal{A}$.1194 • **Action Spaces:** $A_i = M$ for each agent. The joint action space has size $|\mathcal{A}| = \prod_{i \in [N]} A_i = M^N$.
11951196 • **States, Horizon, Rewards:** $\mathcal{S} = \{s_{good}, s_{bad}\}$, horizon H , initial state $s_1 = s_{good}$, and
1197 rewards are defined as
1198

1200
$$r_i(s, \mathbf{a}) = \begin{cases} 1, & \text{if } s = s_{good} \text{ or if } (s = s_{bad} \text{ and } \mathbf{a} = \mathbf{a}^*) \\ 0, & \text{if } s = s_{bad} \text{ and } \mathbf{a} \neq \mathbf{a}^* \end{cases}.$$

1201

1202 • **Dynamics:** The system dynamics create the trap.
12031204 – From s_{good} : Nominally, the system stays in s_{good} . An adversary can force a transition
1205 to s_{bad} with probability ρ .
12061207 – From s_{bad} : This is the trap. The only way to escape is to play the secret joint action:
1208

1209
$$\text{Next State} = \begin{cases} s_{good}, & \text{if } \mathbf{a} = \mathbf{a}^* \\ s_{bad}, & \text{if } \mathbf{a} \neq \mathbf{a}^* \end{cases}.$$

1210

1211 • **Uncertainty Set:** The uncertainty is non-zero only at the first step.
12121213 – At $h = 1$ and $s_1 = s_{good}$: The uncertainty set is a TV-ball with radius ρ .
12141215 – For all $h > 1$ or $s \neq s_{good}$: There is no uncertainty ($\rho = 0$). The transition is the
nominal one.
12161217 **Theorem 11.** For the “Initial Shock” DRMG, any decentralized online learning algorithm suffers
the following best-response regret lower bound:
1218

1219
$$\inf_{\mathcal{ALG}} \sup_{\mathbf{a}^* \in \mathcal{A}} \mathbb{E}[\text{Regret}_i(K)] \geq \Omega \left(\rho K \cdot \min \left\{ H, \prod_{i \in [N]} A_i \right\} \right).$$

1220

1221 *Proof.* **Step 1: Decomposing the Per-Episode Regret.** The best-response regret for Agent 1 in
1222 an episode is $\text{Regret}_1^k = V_{1,1}^{\dagger, \pi_{-i}, \rho} - V_{1,1}^{\pi, \rho}$. We expand this using the robust Bellman equation at
1223 $s_1 = s_{good}$, where uncertainty exists.
1224

1225
$$\begin{aligned} \text{Regret}_1^k &= \left(1 + (1 - \rho) V_{1,2}^{\dagger, \pi_{-i}, \rho}(s_{good}) + \rho V_{1,2}^{\dagger, \pi_{-i}, \rho}(s_{bad}) \right) \\ &\quad - \left(1 + (1 - \rho) V_{1,2}^{\pi, \rho}(s_{good}) + \rho V_{1,2}^{\pi, \rho}(s_{bad}) \right) \\ &= (1 - \rho) \left(V_{1,2}^{\dagger, \pi_{-i}, \rho}(s_{good}) - V_{1,2}^{\pi, \rho}(s_{good}) \right) + \rho \left(V_{1,2}^{\dagger, \pi_{-i}, \rho}(s_{bad}) - V_{1,2}^{\pi, \rho}(s_{bad}) \right). \end{aligned}$$

1226

1227 Since there is no uncertainty for $h > 1$, the transition from s_{good} at $h = 2$ is deterministically to
1228 s_{good} at $h = 3$. Thus, $V_{1,2}(s_{good})$ is a constant independent of the policy in the trap state, which
1229 means $V_{1,2}^{\dagger, \pi_{-i}, \rho_i}(s_{good}) = V_{1,2}^{\pi}(s_{good})$. The first term is exactly zero, and thus we have that
1230

1231
$$\text{Regret}_1^k = \rho \left(V_{1,2}^{\dagger, \pi_{-i}, \rho}(s_{bad}) - V_{1,2}^{\pi, \rho}(s_{bad}) \right) = \rho \cdot \Delta V_2^{\rho}(s_{bad}). \quad (15)$$

1232

1233 **Step 2: Formalizing the Value Gap $\Delta V_2^{\rho}(s_{bad})$.** The value gap is the expected difference in total
1234 future rewards. This difference is precisely the expected number of steps wasted in the trap. Note
1235 that the value of state s_{bad} at step h under a policy π' is the expected sum of future rewards. Let
1236 $\tau = \tau(\pi')$ be the random variable for the number of steps to escape (i.e., play \mathbf{a}^*), starting from
1237 step h . Let $C = H - h + 1$ be the number of steps remaining in the episode, then the total reward
1238

collected from $h = 2$ is $V_{1,2}^{\pi',\rho}(s_{bad}) = \mathbb{E}[\mathbb{I}[\tau \leq C] \cdot (C - \tau + 2)]$ as it will always receive $r = 1$ when at s_{good} .

Moreover, note that the total number of available rewards is C , and since $C = \min(\tau - 1, C) + \mathbb{I}[\tau \leq C](C - \tau + 1)$, the value can therefore be expressed as $V_{1,2}^{\pi',\rho}(s_{bad}) = C - \mathbb{E}[\min(\tau - 1, C)]$.

Therefore, the value gap is the difference in the expected number of wasted steps:

$$\begin{aligned}\Delta V_2^\rho(s_{bad}) &= (C - \mathbb{E}[\min(\tau^* - 1, C)]) - (C - \mathbb{E}[\min(\tau - 1, C)]) \\ &= \mathbb{E}[\min(\tau - 1, C)] - \mathbb{E}[\min(\tau^* - 1, C)].\end{aligned}$$

where τ^* is the escape probability of π^* . Since the best-response policy π_1^* plays a_1^* deterministically, so its escape time τ^* depends only on the other agents' policies, π_{-1} . The algorithm's escape time τ depends on its full policy π .

Step 3: Lower Bounding the Value Gap. The best response for Agent 1 is to play a_1^* , so τ^* does not involve any search for Agent 1. In contrast,

However, the algorithm does not know a_1^* and must search. We are interested in the worst-case regret over the choice of a^* . The expected wasted steps for the algorithm is $\mathbb{E}[\min(\tau - 1, C)]$. Let $p_1 = \Pr_{\pi_1}(a_1 = a_1^*)$ and $p_{-1} = \Pr_{\pi_{-1}}(a_{-1} = a_{-1}^*)$. The algorithm's one-step escape probability is $p_1 \cdot p_{-1}$. Its expected escape time is $\mathbb{E}[\tau] = 1/(p_1 \cdot p_{-1})$. The expected wasted steps is lower-bounded by:

$$\mathbb{E}[\min(\tau - 1, C)] \geq \Omega(\min(\mathbb{E}[\tau - 1], C)) = \Omega(\min(1/(p_1 \cdot p_{-1}), H - 1)),$$

where the inequality is due to Lemma 12.

In the worst case over the unknown a^* , the probabilities p_1 and p_{-1} are minimized:

$$\inf_{a_1^*} p_1 \leq 1/A_1 \quad \text{and} \quad \inf_{a_{-1}^*} p_{-1} \leq 1/\left(\prod_{i=2}^N A_i\right).$$

The best-response policy suffers much less waste. Thus, the value gap $\Delta V_2^\rho(s_{bad})$ is dominated by the algorithm's large number of wasted steps.

$$\sup_{\mathbf{a}^*} \Delta V_2^\rho(s_{bad}) \geq \Omega\left(\min\left\{1/\left((1/A_1) \cdot (1/\left(\prod_{i=2}^N A_i\right))\right), H\right\}\right) = \Omega\left(\min\left\{\prod_{i=1}^N A_i, H\right\}\right).$$

Step 4: Finalizing the Bound. Substituting this back into the per-episode regret expression from Step 1:

$$\sup_{\mathbf{a}^*} \mathbb{E}[\text{Regret}_1^k] \geq \rho \cdot \Omega\left(\min\left\{\prod_{i=1}^N A_i, H\right\}\right).$$

This per-episode regret is incurred because the information bottleneck prevents the algorithm from learning a^* . Summing over K episodes gives the final total regret bound:

$$\inf_{\mathcal{ALG}} \sup_{\mathbf{a}^*} \mathbb{E}[\text{Regret}_1(K)] = \sum_{k=1}^K \sup_{\mathbf{a}^*} \mathbb{E}[\text{Regret}_1^k] \geq \Omega\left(\rho K \cdot \min\left\{\prod_{i=1}^N A_i, H\right\}\right).$$

This completes the proof. \square

Lemma 12. Let τ be the random variable for the escape time from the trap state, and let $C = H - 1$ be the number of steps remaining in the episode. The true expected number of wasted steps, $\mathbb{E}[\min(\tau - 1, C)]$, has the following asymptotic lower bound:

$$\mathbb{E}[\min(\tau - 1, C)] \geq \Omega(\min(\mathbb{E}[\tau - 1], C)).$$

Proof. Note that τ follows a Geometric distribution $\tau \sim \text{Geo}(p)$ and have the probability mass function $P(\tau = k) = (1 - p)^{k-1}p$ for $k \in \{1, 2, 3, \dots\}$. The random variable $\tau - 1$ represents the number of failures before the first success. Its expectation is $\mathbb{E}[\tau - 1] = \frac{1-p}{p}$.

We first derive an expression for $\mathbb{E}[\min(\tau - 1, C)]$. We use the tail sum formula for the expectation of a non-negative, integer-valued random variable X , which states $\mathbb{E}[X] = \sum_{k=0}^{\infty} P(X > k)$.

Let $X = \min(\tau - 1, C)$. The event $\{X > k\}$ is equivalent to the event $\{\tau - 1 > k \text{ and } C > k\}$.

1296 • If $k \geq C$, then $P(X > k) = 0$.
 1297 • If $k < C$, then $P(X > k) = P(\tau - 1 > k)$.

1299
 1300 The event $\{\tau - 1 > k\}$ means the first $k + 1$ trials resulted in failure, so its probability is $P(\tau >$
 1301 $k + 1) = (1 - p)^{k+1}$.

1302 The expectation is therefore the sum over the non-zero probabilities:

$$\begin{aligned} 1304 \quad \mathbb{E}[\min(\tau - 1, C)] &= \sum_{k=0}^{\infty} P(\min(\tau - 1, C) > k) \\ 1305 \\ 1306 \quad &= \sum_{k=0}^{C-1} P(\tau - 1 > k) = \sum_{k=0}^{C-1} (1 - p)^{k+1}. \\ 1307 \\ 1308 \\ 1309 \end{aligned}$$

1310 Letting $q = 1 - p$, this is a finite geometric series:

$$\sum_{j=1}^C q^j = q \frac{1 - q^C}{1 - q} = \frac{q(1 - q^C)}{p}.$$

1311 Substituting $q = 1 - p$ back, we express the expectation in terms of $\mathbb{E}[\tau - 1]$:

$$\mathbb{E}[\min(\tau - 1, C)] = \frac{1 - p}{p} (1 - (1 - p)^C) = \mathbb{E}[\tau - 1] (1 - (1 - p)^C).$$

1312 Let $\mu = \mathbb{E}[\tau - 1] = \frac{1-p}{p}$. We want to show that there exists a universal constant $k > 0$ such that:

$$\mu(1 - (1 - p)^C) \geq k \cdot \min(\mu, C).$$

1313 We proceed with a case analysis based on the relationship between μ and C .

1314 **Case 1:** $\mu \leq C$: In this case, $\min(\mu, C) = \mu$. We need to show that $\mu(1 - (1 - p)^C) \geq k \cdot \mu$, which
 1315 simplifies to proving that $1 - (1 - p)^C \geq k$.

1316 The condition $\mu \leq C$ implies a lower bound on p :

$$\frac{1 - p}{p} \leq C \implies 1 - p \leq Cp \implies 1 \leq (C + 1)p \implies p \geq \frac{1}{C + 1}.$$

1317 Using the standard inequality $1 - x \leq e^{-x}$, we have $(1 - p)^C \leq e^{-pC}$. Thus,

$$1 - (1 - p)^C \geq 1 - e^{-pC}.$$

1318 Since $p \geq \frac{1}{C+1}$, we have $pC \geq \frac{C}{C+1}$. As the function $f(x) = 1 - e^{-x}$ is increasing for $x > 0$,

$$1 - e^{-pC} \geq 1 - e^{-C/(C+1)}.$$

1319 The function $g(C) = \frac{C}{C+1}$ is increasing for $C \geq 1$, with a minimum value of $g(1) = 1/2$. Therefore,
 1320 for any integer $C \geq 1$,

$$1 - (1 - p)^C \geq 1 - e^{-1/2}.$$

1321 Thus, the inequality holds in this case with the constant $k_1 = 1 - e^{-1/2} \approx 0.393$.

1322 **Case 2:** $\mu > C$: In this case, $\min(\mu, C) = C$. We need to show that $\mu(1 - (1 - p)^C) \geq kC$.

1323 The condition $\mu > C$ implies an upper bound on p :

$$\frac{1 - p}{p} > C \implies 1 - p > Cp \implies 1 > (C + 1)p \implies p < \frac{1}{C + 1}.$$

1324 From our calculation of the expectation, we have a sum of C positive, decreasing terms:

$$\mathbb{E}[\min(\tau - 1, C)] = \sum_{k=0}^{C-1} (1 - p)^{k+1}.$$

1350 This sum is greater than C times its smallest term, which is $(1 - p)^C$:
 1351

$$\mathbb{E}[\min(\tau - 1, C)] > C(1 - p)^C.$$

1353 From the condition $p < \frac{1}{C+1}$, it follows that $1 - p > 1 - \frac{1}{C+1} = \frac{C}{C+1}$. Therefore,
 1354

$$\mathbb{E}[\min(\tau - 1, C)] > C \left(\frac{C}{C+1} \right)^C = C \left(1 - \frac{1}{C+1} \right)^C.$$

1355 The sequence $a_C = \left(1 - \frac{1}{C+1} \right)^C$ is decreasing for $C \geq 1$, and its limit as $C \rightarrow \infty$ is $1/e$. Hence,
 1356 for all $C \geq 1$, the sequence is bounded below by its limit:
 1357

$$\left(1 - \frac{1}{C+1} \right)^C \geq \lim_{n \rightarrow \infty} \left(1 - \frac{1}{n+1} \right)^n = \frac{1}{e}.$$

1363 This gives the lower bound:
 1364

$$\mathbb{E}[\min(\tau - 1, C)] > C \cdot \frac{1}{e}.$$

1366 So, the inequality holds in this case with the constant $k_2 = 1/e \approx 0.368$. By combining the two cases,
 1367 the inequality is shown to hold for a universal constant $k = \min(k_1, k_2) = \min(1 - e^{-1/2}, 1/e) =$
 1368 $1/e$.
 1369

1370 Therefore, for all $p \in (0, 1)$ and integers $C \geq 1$, we have established that:
 1371

$$\mathbb{E}[\min(\tau - 1, C)] \geq \frac{1}{e} \min(\mathbb{E}[\tau - 1], C) = \Omega(\min(\mathbb{E}[\tau - 1], C)),$$

1373 which hence completes the proof. \square
 1374

1375 E.2 HARDNESS WITHOUT SUPPORT SHIFT

1377 **Example 13** (The ‘‘Robust Corrupted Bandit’’ Game). Consider a class of N -agent DRMGs,
 1378 $\{M_\theta\}_{\theta \in \mathcal{A}}$, where each game is parameterized by a secret ‘‘best’’ joint action $\theta \in \mathcal{A}$.
 1379

- 1380 • **States and Horizon:** A single state, s , and horizon $H = 1$. This reduces the problem to a
 1381 one-shot game, equivalent to a multi-armed bandit setting where each episode corresponds
 1382 to a single step or arm pull.
- 1383 • **Action Spaces:** The joint action space \mathcal{A} is the set of arms, with size $|\mathcal{A}| = \prod_{i=1}^N A_i$.
 1384
- 1385 • **Reward Function** ($R \in \{0, 1\}$): The rewards are stochastic. Let $\epsilon \in (0, 1/2)$ be a small
 1386 constant. The nominal model M_θ defines the following Bernoulli reward distributions for
 1387 any agent i :

$$\mathbb{E}[R_i(s, \mathbf{a}) | M_\theta] = \begin{cases} 1/2 + \epsilon, & \text{if } \mathbf{a} = \theta \\ 1/2, & \text{if } \mathbf{a} \neq \theta. \end{cases}$$

- 1388 • **KL-Divergence Uncertainty Set:** The true reward distribution for an action \mathbf{a} , denoted
 1389 $\tilde{P}(\cdot | \mathbf{a})$, can be any distribution that is close to the nominal one $P^*(\cdot | \mathbf{a})$:
 1390

$$\mathcal{P}_{i,h,KL}^{\rho_i}(\cdot, \mathbf{a}) = \left\{ \tilde{P} : \text{KL}(\tilde{P}(\cdot | \mathbf{a}) \| P_{M_\theta}(\cdot | \mathbf{a})) \leq \rho_i, \forall \mathbf{a} \in \mathcal{A} \right\}.$$

1395 This uncertainty set does not have a support shift.
 1396

1397 The learning problem is to identify the best arm θ by observing noisy rewards that are actively
 1398 corrupted by an adversary.

1399 **Theorem 1** (Lower Bound for Robust Learning without Support Shift). For the ‘‘Robust Corrupted
 1400 Bandit’’ game, any learning algorithm suffers the following cumulative regret lower bound over K
 1401 episodes (steps):
 1402

$$\inf_{\mathcal{ALG}} \sup_{\theta \in \mathcal{A}} \mathbb{E}[\text{Regret}_i(K)] \geq \Omega \left(\sqrt{\prod_{i=1}^N A_i K} \right).$$

1404 *Proof.* The proof proceeds by a formal reduction to the classic multi-armed bandit (MAB) problem.
 1405

1406 Let $\mathcal{M}_\rho = \{M_{\theta, \rho}\}_{\theta \in \mathcal{A}}$ denote the class of robust game instances from our example, with uncertainty
 1407 radius $\rho > 0$. Let $\mathcal{M}_0 = \{M_{\theta, 0}\}_{\theta \in \mathcal{A}}$ be the corresponding class of non-robust instances, where the
 1408 uncertainty radius is zero and the rewards are always drawn from the nominal distributions.

1409 Note that since the horizon $H = 1$, the robust problem reduces to a non-robust one, and thus the
 1410 worst-case regret over the robust class \mathcal{M}_ρ must be at least as high as the worst-case regret over the
 1411 non-robust class \mathcal{M}_0 :

$$1412 \mathbb{E}[\text{Regret}(K; M_{\theta, \rho})] \geq \mathbb{E}[\text{Regret}(K; M_{\theta, 0})].$$

1413 And thus

$$1414 \inf_{\mathcal{ALG}} \sup_{\theta \in \mathcal{A}} \mathbb{E}[\text{Regret}(K; M_{\theta, \rho})] \geq \inf_{\mathcal{ALG}} \sup_{\theta \in \mathcal{A}} \mathbb{E}[\text{Regret}(K; M_{\theta, 0})]. \quad (16)$$

1415 Therefore, we can establish a lower bound for the robust problem by proving one for the simpler
 1416 non-robust case.

1417 The non-robust problem instance, \mathcal{M}_0 , is a classic stochastic multi-armed bandit problem with
 1418 $M = |\mathcal{A}|$ arms. A foundational result in this area provides a strong lower bound on regret.

1419 Note that following standard lemma:

1420 **Lemma 14.** (Auer et al., 2002) For any integer $M \geq 2$ and $K > M$, and for any bandit algorithm,
 1421 there exists a multi-armed bandit problem instance with M arms whose reward distributions are
 1422 supported on $[0, 1]$, such that the expected cumulative regret after K steps is lower-bounded by:

$$1423 \mathbb{E}[\text{Regret}(K)] \geq \Omega(\sqrt{MK}).$$

1424 We apply the lemma to our non-robust problem instance \mathcal{M}_0 .

- 1425 • The number of arms, M , is the size of the joint action space, $|\mathcal{A}|$.
- 1426 • The number of steps is K .
- 1427 • The reward distributions (Bernoulli) are supported on $[0, 1]$.

1428 The conditions of the lemma are met. Therefore, for the class of problems \mathcal{M}_0 , the worst-case regret
 1429 is lower-bounded:

$$1430 \inf_{\mathcal{ALG}} \sup_{\theta \in \mathcal{A}} \mathbb{E}[\text{Regret}(K; M_{\theta, 0})] \geq \Omega\left(\sqrt{\prod_{i=1}^N A_i K}\right). \quad (17)$$

1431 Combining the regret dominance principle from eq. 16 with the specific lower bound from eq. 17, we
 1432 arrive at the final result for our robust problem:

$$1433 \inf_{\mathcal{ALG}} \sup_{\theta \in \mathcal{A}} \mathbb{E}[\text{Regret}_i(K; M_{\theta, \rho})] \geq \Omega\left(\sqrt{\prod_{i=1}^N A_i K}\right). \quad (18)$$

1434 This completes the formal proof by reduction. □

1435 F PROOF OF REGRET BOUND OF TV-MORNAVI

1436 In this section, we prove our regret bound for TV-DRMG. Before presenting all the proofs, we first
 1437 denote π^\dagger as the joint robust best responses over the agents, and is given by

$$1438 \pi^\dagger = \pi_1^{\dagger, \rho_1}(\pi_{-1}) \times \cdots \times \pi_m^{\dagger, \rho_m}(\pi_{-m}). \quad (19)$$

1439 We will use the notation of π^\dagger later on our proof-lines. In addition, we leverage Assumption 3, which
 1440 generalizes to the case where the minimal value vanishes, i.e., $\min_{s \in \mathcal{S}} V(s) = 0$, to address the
 1441 support shift or extrapolation challenge arising in interactive data collection, as discussed in Remark

1458 B.3 of (Lu et al., 2024). Consequently, this allows us to eliminate the $\min_{s \in \mathcal{S}} V(s)$ term in the dual
 1459 formulation of the TV-DRMG optimization problem, as shown in 11.

1460 We now recall the bonus term used in TV-MORNAVI for agent i in episode k at step h , as follows:

$$\begin{aligned} 1462 \beta_{i,h}^k(s, \mathbf{a}) &= \sqrt{\frac{c_1 \iota \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right]}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{2\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} [\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i}]}{H} \\ 1463 &\quad + \frac{c_2 H^2 S \iota}{\sqrt{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{1}{\sqrt{K}}, \end{aligned} \quad (20)$$

1464 where $\iota = \log \left(S^2 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta \right)$ and c_1, c_2 are absolute constants.

1465 We begin by defining the high-probability event \mathcal{E}_{TV} , stated in the next lemma. Our proof outline is
 1466 inspired by (Lu et al., 2024) and (Ghosh et al., 2025).

1467 **Lemma 15** (Uniform Concentration Bound of event \mathcal{E}_{TV}). *Let \mathcal{E}_{TV} be the event in which, for all
 1468 $(s, \mathbf{a}, s', h, k) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [H] \times [K]$, and for all η in a $1/(S\sqrt{K})$ -cover of $[0, H]$, and is defined
 1469 as*

$$\begin{aligned} 1470 \mathcal{E}_{\text{TV}} := & \left\{ \left| \left[\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} - \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \right] \left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \right| \leq \sqrt{\frac{c_1 \iota \text{Var}_{\widehat{P}_h^k} \left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+}{N_h^k(s, \mathbf{a}) \vee 1}} \right. \\ 1471 & + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}, \\ 1472 & \left. \left| \widehat{P}_h^k(s' | s, \mathbf{a}) - P_h^*(s' | s, \mathbf{a}) \right| \leq \sqrt{\frac{c_1 \min \left\{ P_h^*(s' | s, \mathbf{a}), \widehat{P}_h^k(s' | s, \mathbf{a}) \right\} \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \right. \\ 1473 & + \frac{c_2 \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}, \\ 1474 & \left. \forall (s, \mathbf{a}, s', h, k) \in \mathcal{M} \times \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [H] \times [K], \forall \eta \in \mathcal{N}_{1/(S\sqrt{K})}([0, H]) \right\}, \quad (21) \end{aligned}$$

1475 where $\iota = \log \left(S^3 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta \right)$, $c_1, c_2 > 0$ are two absolute constants, $\mathcal{N}_{1/(S\sqrt{K})}([0, H])$
 1476 denotes an $1/S\sqrt{K}$ -cover of the interval $[0, H]$.

1477 Then, this event \mathcal{E}_{TV} occurs with high probability, i.e., $\Pr(\mathcal{E}_{\text{TV}}) \geq 1 - \delta$.

1478 *Proof.* This proof builds upon standard techniques by applying classical concentration inequalities
 1479 and a union bound. To simplify our analysis, we first consider a fixed state-action-time tuple (s, \mathbf{a}, h)
 1480 within a given episode k . We can then construct an equivalent stochastic process:

- 1481 (i) Before the agents' interaction, the environment draws a sequence of next states
 1482 $\{s^{(1)}, s^{(2)}, \dots, s^{(k-1)}\}$ independently from the nominal distribution $P_h^*(\cdot|s, \mathbf{a})$, where
 1483 $s^{(i)} \in \mathcal{S}$ represents the state sampled in episode i .
- 1484 (ii) When the agents visit the (s, \mathbf{a}) tuple at time step h for the i -th time, the environment causes
 1485 a transition to the pre-sampled next state $s^{(i)}$.

1486 The randomness of this constructed process is identical to that of our original, interactive learning
 1487 environment. Consequently, the probability of any event is the same in both contexts. This allows us
 1488 to prove the required concentration inequalities within this more tractable, simplified setting.

1489 Leveraging this fact, we directly apply Lemma 40, which presents a variant of Bernstein's inequality
 1490 and its empirical counterpart from (Maurer & Pontil, 2009). To establish a uniform bound, we apply
 1491 a union bound across all tuples $(h, s, \mathbf{a}, s', k, \eta) \in [H] \times \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [K] \times \mathcal{N}_{1/(S\sqrt{K})}([0, H])$.

1492 The size of this ϵ -cover, $\mathcal{N}_{1/(S\sqrt{K})}([0, H])$, is on the order of $\mathcal{O}(SH\sqrt{K})$. \square

1512 F.1 PROOF OF THEOREM 4 (TV-DRMG SETTING)
15131514 *Proof.* By leveraging Lemma 20, we can establish an upper bound on the regret by considering the
1515 difference between the optimistic and pessimistic value functions:
1516

1517
$$\text{Regret}_{\text{NASH}}(K) = \sum_{k=1}^K \max_{i \in \mathcal{M}} \left(V_{i,1}^{\dagger, \pi_{-i}^k, \rho_i} - V_{i,1}^{\pi^k, \rho_i} \right) (s_1^k) \leq \sum_{k=1}^K \max_{i \in \mathcal{M}} \left(\bar{V}_{i,1}^{k, \rho_i} - \underline{V}_{i,1}^{k, \rho_i} \right) (s_1^k). \quad (22)$$

1518

1519 For the TV-divergence uncertainty set, we begin by analyzing the difference between the upper and
1520 lower Q-values. Given our definitions for \bar{Q}_h^k , $\underline{Q}_{i,h}^{k, \rho_i}$, $\bar{V}_{i,h}^{k, \rho_i}$, and $\underline{V}_{i,h}^{k, \rho_i}$ (from eq. 5-8), along with
1521 the bonus term $\beta_{i,h}^k(s, \mathbf{a})$ defined in eq. 20, we can establish a bound on this difference for any
1522 $(h, k) \in [H] \times [K]$ and $(s, \mathbf{a}) \in \mathcal{S} \times \mathcal{A}$:
1523

1524
$$\bar{Q}_h^k(s, \mathbf{a}) - \underline{Q}_h^k(s, \mathbf{a}) \leq \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k, \rho_i} \right] + 2\beta_{i,h}^k(s, \mathbf{a}). \quad (23)$$

1525

1526 We introduce two key terms, A and B , to simplify this expression:
1527

1528
$$\begin{aligned} A &:= \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] \\ &\quad + \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k, \rho_i} \right]. \end{aligned} \quad (24)$$

1529

1530
$$B := \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k, \rho_i} \right]. \quad (25)$$

1531

1532 By substituting these definitions into eq. 23, we obtain a new bound:
1533

1534
$$\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq A + B + 2\beta_{i,h}^k(s, \mathbf{a}). \quad (26)$$

1535

1536 We then proceed to bound each of these terms. A concentration bound argument tailored for TV robust
1537 expectations in Lemma 18 shows that $A \leq 2\beta_{i,h}^k(s, \mathbf{a})$. For term B , we use the dual representation
1538 of $\sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})}[V]$ from eq. 11 and Assumption 3 to first establish that $B \leq \sup_{\eta \in [0, H]} \{ \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} [\eta -$
1539 $\bar{V}_{i,h+1}^{k, \rho_i}]_+ - \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} [\eta - \underline{V}_{i,h+1}^{k, \rho_i}]_+ \}$. Since $\bar{V}_{i,h+1}^{k, \rho_i} \geq \underline{V}_{i,h+1}^{k, \rho_i}$ (by Lemma 20), we can simplify this
1540 further to $B \leq \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} [\bar{V}_{i,h+1}^{k, \rho_i} - \underline{V}_{i,h+1}^{k, \rho_i}]$.
15411542 By substituting the bounds for A and B back into eq. 26, we arrive at the following inequality:
1543

1544
$$\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} [\bar{V}_{i,h+1}^{k, \rho_i} - \underline{V}_{i,h+1}^{k, \rho_i}] + 4\beta_{i,h}^k(s, \mathbf{a}). \quad (27)$$

1545

1546 Using Lemma 19 to upper bound the bonus term, and rearranging the terms, we obtain:
1547

1548
$$\begin{aligned} \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) &\leq \left(1 + \frac{20}{H} \right) \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} [\bar{V}_{i,h+1}^{k, \rho_i} - \underline{V}_{i,h+1}^{k, \rho_i}] \\ &\quad + 4 \sqrt{\frac{c_1 \ell \text{Var}_{P_h^*(\cdot|s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right]}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ &\quad + \frac{4c_2 H^2 S \ell}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \sqrt{\frac{4}{K}}, \end{aligned} \quad (28)$$

1549

1550 where $c_1, c_2 > 0$ are absolute constants. From the definitions in eq. 8, the difference in V-functions
1551 is given by:
1552

1553
$$\bar{V}_{i,h}^{k, \rho_i}(s) - \underline{V}_{i,h}^{k, \rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right]. \quad (29)$$

1554

Now, let's define a new recursive value function $\tilde{V}_h^{k, \rho_{\min}}$ and a corresponding Q-function $\tilde{Q}_h^{k, \rho_{\min}}$ with $\tilde{V}_{H+1}^{k, \rho_{\min}} = 0$, where $\rho_{\min} = \min_{i \in \mathcal{M}} \rho_i$:

$$\begin{aligned} \tilde{Q}_h^{k, \rho_{\min}}(s, \mathbf{a}) &= \left(1 + \frac{20}{H}\right) \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\tilde{V}_{h+1}^{k, \rho_{\min}} \right] + 4 \sqrt{\frac{c_1 \ell \text{Var}_{P_h^*(\cdot|s, \mathbf{a})} \left[V_{h+1}^{\pi^k, \rho_{\min}} \right]}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ &\quad + \frac{4c_2 H^2 S \ell}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \sqrt{\frac{4}{K}}, \end{aligned} \quad (30)$$

$$\tilde{V}_h^{k, \rho_{\min}}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\tilde{Q}_h^{k, \rho_{\min}}(s, \mathbf{a}) \right]. \quad (31)$$

It is a well-known property of robust value functions under TV-divergence that they become more conservative as the uncertainty radius ρ_i decreases (e.g., (Iyengar, 2005; Nilim & El Ghaoui, 2005)). Given that $\rho_{\min} \leq \rho_i$ for all agents $i \in \mathcal{M}$, it follows that for every next state $s' \in \mathcal{S}$:

$$V_{i, h+1}^{\pi^k, \rho_i}(s') \leq V_{h+1}^{\pi^k, \rho_{\min}}(s') \quad \forall i \in \mathcal{M} \text{ and } s \in \mathcal{S}.$$

We can inductively prove that for any $(i, h, s, \mathbf{a}) \in \mathcal{M} \times [H] \times \mathcal{S} \times \mathcal{A}$:

$$\max_{i \in \mathcal{M}} \left(\overline{Q}_{i, h}^{k, \rho_i}(s, \mathbf{a}) - \underline{Q}_{i, h}^{k, \rho_i}(s, \mathbf{a}) \right) \leq \tilde{Q}_h^{k, \rho_{\min}}(s, a), \quad (32)$$

$$\max_{i \in \mathcal{M}} \left(\overline{V}_{i, h}^{k, \rho_i}(s) - \underline{V}_{i, h}^{k, \rho_i}(s) \right) \leq \tilde{V}_h^{k, \rho_{\min}}(s). \quad (33)$$

Therefore, we only need to upper bound the sum $\sum_{k=1}^K \tilde{V}_1^{k, \rho_{\min}}(s_1^k)$. For simplicity, we define the following notations for the differences at any $(h, k) \in [H] \times [K]$:

$$\Delta_h^k := \tilde{V}_h^{k, \rho_{\min}}(s_h^k), \quad (34)$$

$$\zeta_h^k := \Delta_h^k - \tilde{Q}_h^{k, \rho_{\min}}(s_h^k, \mathbf{a}_h^k), \quad (35)$$

$$\xi_h^k := \mathbb{E}_{P_h^*(\cdot|s_h^k, \mathbf{a}_h^k)} \left[\tilde{V}_{h+1}^{k, \rho_{\min}} \right] - \Delta_{h+1}^k. \quad (36)$$

We can confirm that $\{\zeta_h^k\}_{(h, k)}$ and $\{\xi_h^k\}_{(h, k)}$ are martingale difference sequences with respect to their respective filtrations. By substituting eq. 30 into eq. 35, we get:

$$\begin{aligned} \Delta_h^k &= \zeta_h^k + \tilde{Q}_h^{k, \rho_{\min}}(s_h^k, \mathbf{a}_h^k) \\ &\leq \zeta_h^k + \left(1 + \frac{20}{H}\right) \mathbb{E}_{P_h^*(\cdot|s_h^k, \mathbf{a}_h^k)} \left[\tilde{V}_{h+1}^{k, \rho_{\min}} \right] + 4 \sqrt{\frac{c_1 \ell \text{Var}_{P_h^*(\cdot|s_h^k, \mathbf{a}_h^k)} \left[V_{h+1}^{\pi^k, \rho_{\min}} \right]}{\{N_h^k(s_h^k, \mathbf{a}_h^k) \vee 1\}}} \\ &\quad + \frac{4c_2 H^2 S \ell}{\{N_h^k(s_h^k, \mathbf{a}_h^k) \vee 1\}} + \sqrt{\frac{4}{K}} \\ &= \zeta_h^k + \left(1 + \frac{20}{H}\right) \xi_h^k + \left(1 + \frac{20}{H}\right) \Delta_{h+1}^k + 4 \sqrt{\frac{c_1 \ell \text{Var}_{P_h^*(\cdot|s, \mathbf{a})} \left[V_{h+1}^{\pi^k, \rho_{\min}} \right]}{\{N_h^k(s_h^k, \mathbf{a}_h^k) \vee 1\}}} \\ &\quad + \frac{4c_2 H^2 S \ell}{\{N_h^k(s_h^k, \mathbf{a}_h^k) \vee 1\}} + \sqrt{\frac{4}{K}}. \end{aligned} \quad (37)$$

By recursively applying eq. 37 and noting that $\left(1 + \frac{20}{H}\right)^h \leq \left(1 + \frac{20}{H}\right)^H \leq c$ for some constant $c \geq 0$, we can upper bound the right-hand side of eq. 22 as:

$$\begin{aligned} \text{Regret}_{\text{NASH}}(K) &\leq \sum_{k=1}^K \Delta_1^k \leq c \sum_{k=1}^K \sum_{h=1}^H \left\{ (\zeta_h^k + \xi_h^k) \right. \\ &\quad \left. + \left(4 \sqrt{\frac{c_1 \ell \text{Var}_{P_h^*(\cdot|s, \mathbf{a})} \left[V_{h+1}^{\pi^k, \rho_{\min}} \right]}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{4c_2 H^2 S \ell}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \right) \right. \\ &\quad \left. + \sqrt{\frac{4}{K}} \right\}. \end{aligned} \quad (38)$$

1620 The first term, a sum of martingale differences, is bounded using the Azuma-Hoeffding inequality
 1621 from Lemma 39, yielding:
 1622

$$1623 \sum_{k=1}^K \sum_{h=1}^H (\zeta_h^k + \xi_h^k) \leq c_1 \min \left\{ \frac{1}{\rho_{\min}}, H \right\} \sqrt{HK\iota}, \quad (39)$$

1626 where $c_1 > 0$ is an absolute constant. For the second term, we apply the Cauchy-Schwarz inequality
 1627 to the summation of the variance terms:
 1628

$$1629 \sum_{k=1}^K \sum_{h=1}^H \sqrt{\frac{\text{Var}_{P_h^*}(\cdot|s_h^k, \mathbf{a}_h^k) [V_{h+1}^{\pi^k, \rho_{\min}}]}{N_h^k(s_h^k, \mathbf{a}_h^k) \vee 1}} \leq \sqrt{\left(\sum_{k=1}^K \sum_{h=1}^H \text{Var}_{P_h^*}(\cdot|s_h^k, \mathbf{a}_h^k) [V_{h+1}^{\pi^k, \rho_{\min}}] \right)} \\ 1630 \sqrt{\left(\sum_{k=1}^K \sum_{h=1}^H \frac{1}{N_h^k(s_h^k, \mathbf{a}_h^k) \vee 1} \right)}. \quad (40)$$

1636 The second factor on the right-hand side is bounded by $c_2 HS(\prod_{i=1}^m A_i)\iota$, as shown in (Liu et al.,
 1637 2021, Theorem 3), while the first factor is bounded using the Law of Total Variation and standard
 1638 martingale concentration arguments (from (Jin et al., 2018) and (Lu et al., 2024)):
 1639

$$1640 \sum_{k=1}^K \sum_{h=1}^H \text{Var}_{P_h^*}(\cdot|s_h^k, \mathbf{a}_h^k) [V_{h+1}^{\pi^k, \rho_{\min}}] \leq c_3 \cdot \left(\min \left\{ \frac{1}{\rho_{\min}}, H \right\} HK + \min \left\{ \frac{1}{\rho_{\min}}, H \right\}^3 H\iota \right). \quad (41)$$

1643 By combining these bounds and substituting them into eq. 40, we can obtain a final bound for the
 1644 second term. The third term, $\sum_{k=1}^K \sum_{h=1}^H \sqrt{\frac{4}{K}}$, is straightforwardly bounded by $c_5 \sqrt{H^2 K}$. By
 1645 combining the bounds for all three terms, we arrive at the final regret bound for $\text{Regret}_{\text{Nash}}(K)$:
 1646

$$1647 \text{Regret}_{\text{NASH}}(K) = \mathcal{O} \left(\sqrt{\min \left\{ \frac{1}{\rho_{\min}}, H \right\} H^2 SK \left(\prod_{i \in \mathcal{M}} A_i \right) \iota'} \right), \quad (42)$$

1650 where $\iota' = \log^2 \left(\frac{SHK \prod_{i \in \mathcal{M}} A_i}{\delta} \right)$. This completes the proof of Theorem 4. \square
 1651

1652 **Remark 16.** The methodology for bounding the regret for Correlated Equilibrium (CE) and Coarse
 1653 Correlated Equilibrium (CCE) settings mirrors the approach outlined here for the Nash equilibrium
 1654 in the TV-DRMG context. The proofs leverage Lemma 21 and Lemma 22, respectively.
 1655

1656 F.2 KEY LEMMAS FOR TV-DRMG

1658 **Lemma 17** (Gap between maximum and minimum (Lu et al., 2024)). Consider any RMG $\mathcal{MG}_{\text{rob}} =$
 1659 $\{\mathcal{S}, \mathcal{A}, H, \{\mathcal{P}_{\text{TV}}^{\rho_i}(P^*)\}_{i=1}^m, r\}$. The robust value function $V_{i,h}^{\pi, \rho_i}$ for all $i \in \mathcal{M}$ and $h \in [H]$ associated
 1660 with any joint policy π satisfies
 1661

$$1662 \forall (i, h) \in \mathcal{M} \times [H] : \max_{s \in \mathcal{S}} V_{i,h}^{\pi, \rho_i}(s) - \min_{s \in \mathcal{S}} V_{i,h}^{\pi, \rho_i}(s) \leq \nu_H^{\rho_i},$$

1664 where $\nu_H^{\rho_i} := \min \left\{ \frac{1}{\rho_i}, H - h + 1 \right\} \leq \min \left\{ \frac{1}{\rho_i}, H \right\}$.
 1665

1666 *Proof.* Refer to the proof-lines of Lemma 3 in (Shi et al., 2024b). \square
 1667

1668 **Lemma 18** (Bound of optimistic and pessimistic value estimators with bonus for TV-DRMG). Under
 1669 the typical event \mathcal{E}_{TV} defined in eq. 21 and by setting the bonus $\beta_{i,h}^k$ as in eq. 20, it holds that
 1670

$$1671 \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] \\ 1672 + \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{k, \rho_i} \right] \leq 2\beta_{i,h}^k(s, \mathbf{a}).$$

1674
1675

Proof. Let's denote the term to be bounded as A .

1676
1677
1678
1679

$$A := \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] \\ + \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right]. \quad (43)$$

1680
1681
1682

Under the high-probability event \mathcal{E}_{TV} (as defined in eq. 21), we can apply the concentration inequality from Lemma 24 to upper bound A as follows:

1683
1684
1685
1686
1687
1688

$$A \leq 2 \sqrt{\frac{c_1 \text{Var}_{\widehat{\mathcal{P}}_h^k} \left(V_{i,h+1}^{\dagger, \pi^k, \rho_i} \right) \iota}{N_h^k(s, \mathbf{a}) \vee 1}} + \frac{2 \mathbb{E}_{\widehat{\mathcal{P}}_h^k(\cdot | s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} \\ + \frac{2c'_2 H^2 S \iota}{N_h^k(s, \mathbf{a}) \vee 1} + \frac{2}{\sqrt{K}}. \quad (44)$$

1689
1690
1691

where $\iota = \log(S^2(\prod_{i=1}^m A_i)H^2K^{3/2}/\delta)$ and $c_1, c'_2 > 0$ are absolute constants. By applying the result from Lemma 26 to the variance term in eq. 44, we obtain the required bound presented in the lemma statement. This concludes the proof. \square

1692
1693
1694

Lemma 19 (Bound of the bonus term for TV-DRMG). *Under the typical event \mathcal{E}_{TV} , the bonus term defined in 20 is bounded by*

1695
1696
1697
1698
1699
1700
1701

$$\beta_{i,h}^k(s, \mathbf{a}) \leq \sqrt{\frac{c_1 \iota \text{Var}_{P_h^*(\cdot | s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right]}{N_h^k(s, \mathbf{a}) \vee 1}} + \frac{5 \mathbb{E}_{P_h^*(\cdot | s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} \\ + \frac{c_2 H^2 S \iota}{N_h^k(s, \mathbf{a}) \vee 1} + \sqrt{\frac{1}{K}}.$$

1702
1703

where $\iota = \log(S^3(\prod_{i=1}^m A_i)H^2K^{3/2}/\delta)$ and $c_1, c_2 > 0$ are constants.

1704
1705
1706
1707

Proof. The proof-lines are similar to (Lu et al., 2024, Lemma E.4) or (Ghosh et al., 2025, Lemma K.3). Recall the bonus term defined in eq. 20. We need to bound the first and second term of eq. 20. We first bound the second term of $\beta_{i,h}^k(s, \mathbf{a})$ by using Lemma 25, and we get

1708
1709
1710
1711
1712
1713

$$\frac{2 \mathbb{E}_{\widehat{\mathcal{P}}_h^k(\cdot | s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} \leq \left(\frac{2}{H} + \frac{2}{H^2} \right) \mathbb{E}_{P_h^*(\cdot | s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right] + \frac{c'_2 H S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \\ \leq \frac{4 \mathbb{E}_{P_h^*(\cdot | s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} + \frac{c'_2 H S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}, \quad (45)$$

1714
1715
1716

where the second inequality is from $H \geq 1$. We now bound the first term (variance term) of eq. 20 by using Lemma 27, which gives

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726

$$\sqrt{\frac{c_1 \iota \text{Var}_{\widehat{\mathcal{P}}_h^k(\cdot | s, \mathbf{a})} \left[\frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right]}{N_h^k(s, \mathbf{a}) \vee 1}} \leq \sqrt{\frac{c'_1 \iota \text{Var}_{P_h^*(\cdot | s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right]}{N_h^k(s, \mathbf{a}) \vee 1}} \\ + \frac{\mathbb{E}_{P_h^*(\cdot | s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} \\ + \frac{c_3 H^2 S \iota}{N_h^k(s, \mathbf{a}) \vee 1}. \quad (46)$$

1727

where $c_3 > 0$ is an absolutely constant. Thus by combining eq. 45 and eq. 46 with the choice of bonus term in eq. 20, we can conclude the proof of Lemma 19. \square

1728 NE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
 1729 TV-DRMG.
 1730

1731 Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
 1732 V-value and robust Q-value functions fro NE version.

1733 **Lemma 20** (Optimistic and pessimistic estimation of the robust values for TV-DRMG for NE version).
 1734 *By setting the bonus term $\beta_{i,h}^k$ as in eq. 20, with probability $1 - \delta$, for any (s, \mathbf{a}, h, i) and $k \in [K]$, it
 1735 holds that*

$$1737 Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}), \quad (47)$$

$$1740 V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s) \leq \bar{V}_{i,h}^{k, \rho_i}(s), \quad \underline{V}_{i,h}^{k, \rho_i}(s) \leq V_{i,h}^{\pi^k, \rho_i}(s). \quad (48)$$

1744 *Proof.* The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
 1745 We will run a proof for each inequality outlined in Lemma 20.

- 1749 • **Ineq. 1:** To prove $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})$.
- 1752 • **Ineq. 2:** To prove $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})$.

1755 We know that, at step $h = H + 1$, $\bar{V}_{i,H+1}^{k, \rho_i}(s) = V_{i,H+1}^{\dagger, \pi_{-i}^k, \rho_i}(s) = 0$. Now, we assume that both eq. 47
 1756 and eq. 48 hold at the $(h + 1)$ -th step.

- 1760 • **Proof of Ineq. 1:** We first consider robust Q at the h -th step. Then, by Proposition 9 (Robust
 1761 Bellman Equation) and eq. 5, we have that

$$1763 \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) = \min \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right. \\ 1764 \quad \left. + \beta_{i,h}^k(s, \mathbf{a}) \nu_H^{\rho_i} - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right\} \\ 1766 \geq \min \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right. \\ 1769 \quad \left. + \beta_{i,h}^k(s, \mathbf{a}) \nu_H^{\rho_i} \right\}, \quad (49)$$

1773 where the second inequality follows from the induction of $V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \leq \bar{V}_{i,h+1}^{k, \rho_i}$ at the $h + 1$ -th
 1774 step and the fact that $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i} \leq \nu_H^{\rho_i}$ by Lemma 17. By Lemma 23, we get

$$1778 \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \leq \sqrt{\frac{c_1 \text{Var}_{\widehat{\mathcal{P}}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ 1780 \quad + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}. \quad (50)$$

Now by further applying Lemma 26 to the variance term in the above inequality, we can obtain that

$$\begin{aligned}
& \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \\
& \leq \sqrt{\frac{c_1 \left(\text{Var}_{\widehat{P}_h^k(\cdot|s,a)} \left[\left(\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right] + 4H \mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right] \right) \iota}{\{N_h^k(s,a) \vee 1\}}} \\
& + \frac{c_2 H \iota}{\{N_h^k(s,a) \vee 1\}} + \frac{1}{\sqrt{K}} \\
& \stackrel{(i)}{\leq} \sqrt{\frac{c_1 \iota \text{Var}_{\widehat{P}_h^k(\cdot|s,a)} \left[\left(\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right]}{\{N_h^k(s,a) \vee 1\}}} + \sqrt{\frac{4H c_1 \iota \mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{\{N_h^k(s,a) \vee 1\}}} \\
& + \frac{c_2 H \iota}{\{N_h^k(s,a) \vee 1\}} + \frac{1}{\sqrt{K}} \\
& \stackrel{(ii)}{\leq} \sqrt{\frac{c_1 \iota \text{Var}_{\widehat{P}_h^k(\cdot|s,a)} \left[\left(\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right]}{\{N_h^k(s,a) \vee 1\}}} + \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} \\
& + \frac{H^2 c'_2 \iota}{\{N_h^k(s,a) \vee 1\}} + \frac{1}{\sqrt{K}}, \tag{51}
\end{aligned}$$

where the inequality (i) is due to $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$, and the last inequality (ii) is from $\sqrt{ab} \leq a+b$ where $c'_2 > 0$ is an absolute constant. Therefore, combining eqns. 49, 50, 51, and the choice of bonus in 20, we can conclude that $\overline{Q}_{i,h}^{k,\rho_i}(s,a) - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s,a) \geq 0$.

- **Proof of Ineq. 2:** By Proposition 9 (Robust Bellman Equation) and eq. 6, we have that

$$\begin{aligned}
& Q_{i,h}^{k,\rho_i}(s,a) - Q_{i,h}^{\pi^k, \rho_i}(s,a) = \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right. \\
& \quad \left. - \beta_{i,h}^k(s,a), 0 - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s,a) \right\}, \\
& \leq \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right. \\
& \quad \left. - \beta_{i,h}^k(s,a), 0 \right\}, \tag{52}
\end{aligned}$$

where the second inequality follows from the induction of $V_{i,h+1}^{\pi^k, \rho_i} \geq V_{i,h+1}^{k,\rho_i}$ at the $h+1$ -th step and the fact that $Q_{i,h}^{\pi^k, \rho_i} \geq 0$. By Lemma 23, we can confirm that

$$\begin{aligned}
& \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s,a) \vee 1\}}} \\
& + \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} \\
& + \frac{c'_2 H^2 S \iota}{\{N_h^k(s,a) \vee 1\}} + \frac{1}{\sqrt{K}}. \tag{53}
\end{aligned}$$

1836 Now by further applying Lemma 26 to the variance term in the above inequality, with an
 1837 argument similar to eq. 50 we can obtain that
 1838

$$\begin{aligned}
 1839 \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\
 1840 &+ \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} - V_{i,h+1}^{k, \rho_i} \right]}{H} \\
 1841 &+ \frac{c_2'' H^2 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}. \quad (54)
 \end{aligned}$$

1842 where $c_2'' > 0$ is an absolute constant. Therefore, combining eqns. 52, 53, 54, and the choice
 1843 of bonus in 20, $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \leq 0$.
 1844

1845 Therefore, by eq. 51 and eq. 54, we have proved that at step h , it holds that
 1846

$$Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}). \quad (55)$$

1847 We now assume that eq. 47 hold for h -th step. Then, by the definition of robust value function as
 1848 given by robust Bellman equation (Proposition 9), and eq. 8, and NASH Equilibrium, we get
 1849

$$\bar{V}_{i,h}^{k, \rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right] = \max_{\pi'_i} \mathbb{E}_{\mathbf{a} \sim \pi'_i \times \pi_{-i}^k(\cdot|s)} \left[\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right]. \quad (56)$$

1850 By the definition of $V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s)$ in eq. 3, we get
 1851

$$V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s) = \max_{\pi'_i} \mathbb{E}_{\mathbf{a} \sim \pi'_i \times \pi_{-i}^k(\cdot|s)} \left[Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right]. \quad (57)$$

1852 Since by induction, for any (s, \mathbf{a}) , $\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \geq Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a})$. As a result, we also have
 1853 $\bar{V}_{i,h}^{k, \rho_i}(s) \geq V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s)$, which is eq. 48 for h -th step. Similarly, we can show that
 1854

$$\begin{aligned}
 1855 \bar{V}_{i,h}^{k, \rho_i}(s) &= \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right], \\
 1856 &\stackrel{(i)}{\leq} \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \right], \\
 1857 &\stackrel{(ii)}{=} V_{i,h}^{\pi^k, \rho_i}(s), \quad (58)
 \end{aligned}$$

1858 where (i) is due to the fact that $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})$ and (ii) is by definition of $V_{i,h}^{\pi^k, \rho_i}(s)$ as
 1859 given by Bellman equation in Proposition 9. \square
 1860

1861 CCE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
 1862 TV-DRMG.
 1863

1864 Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
 1865 V-value and robust Q-value functions for CCE version.
 1866

1867 **Lemma 21** (Optimistic and pessimistic estimation of the robust values for TV-DRMG for CCE
 1868 version). *By setting the bonus term $\beta_{i,h}^k$ as in eq. 20, with probability $1 - \delta$, for any (s, \mathbf{a}, h, i) and
 1869 $k \in [K]$, it holds that*

$$\max_{\phi \in \Phi_i} Q_{i,h}^{\phi \otimes \pi^k, \rho_i}(s, \mathbf{a}) \leq \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}), \quad (59)$$

$$\max_{\phi \in \Phi_i} V_{i,h}^{\phi \otimes \pi^k, \rho_i}(s) \leq \bar{V}_{i,h}^{k, \rho_i}(s), \quad \underline{V}_{i,h}^{k, \rho_i}(s) \leq V_{i,h}^{\pi^k, \rho_i}(s). \quad (60)$$

1890 *Proof.* The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
1891 We will run a proof for each inequality outlined in Lemma 21.
1892

1893 • **Ineq. 1:** To prove $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})$.
1894

1895 • **Ineq. 2:** To prove $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a})$.
1896

1897 We know that, at step $h = H + 1$, $\bar{V}_{i,H+1}^{k, \rho_i}(s) = V_{i,H+1}^{\dagger, \pi_{-i}^k, \rho_i}(s) = 0$. Now, we assume that both eq. 59
1898 and eq. 60 hold at the $(h + 1)$ -th step.
1899

1900 • **Proof of Ineq. 1:** We first consider robust Q at the h -th step. Then, by Proposition 9 (Robust
1901 Bellman Equation) and eq. 5, we have that
1902

$$\begin{aligned} \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) &= \min \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right. \\ &\quad \left. + \beta_{i,h}^k(s, \mathbf{a}), \nu_H^{\rho_i} - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right\}, \\ &\geq \min \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right. \\ &\quad \left. + \beta_{i,h}^k(s, \mathbf{a}), 0 \right\}, \end{aligned} \quad (61)$$

1903 where the second inequality follows from the induction of $V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \leq \bar{V}_{i,h+1}^{k, \rho_i}$ at the $h + 1$ -th
1904 step and the fact that $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i} \leq \nu_H^{\rho_i}$ by Lemma 17. By Lemma 23, we get
1905

$$\begin{aligned} \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ &\quad + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}. \end{aligned} \quad (62)$$

1906 Now by further applying Lemma 26 to the variance term in the above inequality, we can
1907 obtain that
1908

$$\begin{aligned} \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] &\leq \sqrt{\frac{c_1 \left(\text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k, \rho_i} + V_{i,h+1}^{k, \rho_i}}{2} \right) \right] + 4H \mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} - V_{i,h+1}^{k, \rho_i} \right] \right) \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ &\quad + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}} \\ &\stackrel{(i)}{\leq} \sqrt{\frac{c_1 \iota \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k, \rho_i} + V_{i,h+1}^{k, \rho_i}}{2} \right) \right]}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \sqrt{\frac{4H c_1 \iota \mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} - V_{i,h+1}^{k, \rho_i} \right]}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ &\quad + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}} \\ &\stackrel{(ii)}{\leq} \sqrt{\frac{c_1 \iota \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k, \rho_i} + V_{i,h+1}^{k, \rho_i}}{2} \right) \right]}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} - V_{i,h+1}^{k, \rho_i} \right]}{H} \\ &\quad + \frac{H^2 c_2' \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}, \end{aligned} \quad (63)$$

where the inequality (i) is due to $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$, and the last inequality (ii) is from $\sqrt{ab} \leq a+b$ where $c'_2 > 0$ is an absolute constant. Therefore, combining eqns. 61, 62, 63, and the choice of bonus in 20, we can conclude that $\overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \geq 0$.

- **Proof of Ineq. 2:** By Proposition 9 (Robust Bellman Equation) and eq. 6, we have that

$$\begin{aligned}
Q_{i,h}^{k,\rho_i}(s, \mathbf{a}) - Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) &= \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}}(s, \mathbf{a}) \left[V_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}}(s, \mathbf{a}) \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right. \\
&\quad \left. - \beta_{i,h}^k(s, \mathbf{a}), 0 - Q_{i,h}^{\dagger, \pi^k, \rho_i}(s, \mathbf{a}) \right\}, \\
&\leq \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}}(s, \mathbf{a}) \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}}(s, \mathbf{a}) \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right. \\
&\quad \left. - \beta_{i,h}^k(s, \mathbf{a}), 0 \right\}, \tag{64}
\end{aligned}$$

where the second inequality follows from the induction of $V_{i,h+1}^{\pi^k, \rho_i} \geq \underline{V}_{i,h+1}^{k, \rho_i}$ at the $h+1$ -th step and the fact that $Q_{i,h}^{\pi^k, \rho_i} \geq 0$. By Lemma 23, we can confirm that

$$\begin{aligned} \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,\mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,\mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ &+ \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s,\mathbf{a})} \left[\overline{V}_{i,h+1}^{k, \rho_i} - \underline{V}_{i,h+1}^{k, \rho_i} \right]}{H} \\ &+ \frac{c_2' H^2 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}. \end{aligned} \quad (65)$$

Now by further applying Lemma 26 to the variance term in the above inequality, with an argument similar to eq. 62 we can obtain that

$$\begin{aligned}
\sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,\mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,\mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\
&+ \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\overline{V}_{i,h+1}^{k, \rho_i} - \underline{V}_{i,h+1}^{k, \rho_i} \right]}{H} \\
&+ \frac{c_2'' H^2 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}. \tag{66}
\end{aligned}$$

where $c_2'' > 0$ is an absolute constant. Therefore, combining eqns. 64, 65, 66, and the choice of bonus in 20, $Q_{i,h}^{k,\rho_i}(s, \mathbf{a}) - Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \leq 0$.

Therefore, by eq. 63 and eq. 66, we have proved that at step h , it holds that

$$Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}). \quad (67)$$

We now assume that eq. 59 hold for h -th step. Then, by the definition of robust value function as given by robust Bellman equation (Proposition 9), eq. 8, and CCE Equilibrium, we get

$$\overline{V}_{i,h}^{k,\rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \right] \geq \max_{\pi'_i} \mathbb{E}_{\mathbf{a} \sim \pi'_i \times \pi^{k_i}(\cdot|s)} \left[\overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \right], \quad (68)$$

By the definition of $V_i^{\dagger, \pi_{-i}^k, \rho_i}(s)$ in eq. 3, we get

$$V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s) = \max_{\pi'} \mathbb{E}_{\mathbf{a} \sim \pi'_i \times \pi_{-i}^k(\cdot|s)} \left[Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right]. \quad (69)$$

1998 Since by induction, for any (s, \mathbf{a}) , $\overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \geq Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a})$. As a result, we also have
 1999 $\overline{V}_{i,h}^{k,\rho_i}(s) \geq V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s)$, which is eq. 60 for h -th step. Similarly, we can show that
 2000

$$\begin{aligned} 2001 \underline{V}_{i,h}^{k,\rho_i}(s) &= \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \right], \\ 2002 &\stackrel{(i)}{\leq} \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \right], \\ 2003 &\stackrel{(ii)}{=} V_{i,h}^{\pi^k, \rho_i}(s), \end{aligned} \quad (70)$$

2007 where (i) is due to the fact that $\underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})$ and (ii) is by definition of $V_{i,h}^{\pi^k, \rho_i}(s)$ as
 2008 given by Bellman equation in Proposition 9. \square
 2009

2010 CE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
 2011 TV-DRMG.
 2012

2013 Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
 2014 V-value and robust Q-value functions for CE version.

2015 **Lemma 22** (Optimistic and pessimistic estimation of the robust values for TV-DRMG for CE version).
 2016 By setting the bonus term $\beta_{i,h}^k$ as in eq. 20, with probability $1 - \delta$, for any (s, \mathbf{a}, h, i) and $k \in [K]$, it
 2017 holds that

$$2018 Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}), \quad (71)$$

$$2019 V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s) \leq \overline{V}_{i,h}^{k,\rho_i}(s), \quad \underline{V}_{i,h}^{k,\rho_i}(s) \leq V_{i,h}^{\pi^k, \rho_i}(s). \quad (72)$$

2022 *Proof.* The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
 2023 We will run a proof for each inequality outlined in Lemma 22.

2025 • **Ineq. 1:** To prove $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a})$.

2027 • **Ineq. 2:** To prove $\underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})$.

2029 We know that, at step $h = H + 1$, $\overline{V}_{i,H+1}^{k,\rho_i}(s) = V_{i,H+1}^{\dagger, \pi_{-i}^k, \rho_i}(s) = 0$. Now, we assume that both eq. 71
 2030 and eq. 72 hold at the $(h + 1)$ -th step.

2033 • **Proof of Ineq. 1:** We first consider robust Q at the h -th step. Then, by Proposition 9 (Robust
 2034 Bellman Equation) and eq. 5, we have that

$$\begin{aligned} 2035 \overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) &= \min \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^k(s, \mathbf{a})} \left[\overline{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right. \\ 2036 &\quad \left. + \beta_{i,h}^k(s, \mathbf{a}), \nu_H^{\rho_i} - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right\}, \\ 2037 &\geq \min \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^k(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right. \\ 2038 &\quad \left. + \beta_{i,h}^k(s, \mathbf{a}), 0 \right\}. \end{aligned} \quad (73)$$

2044 where the second inequality follows from the induction of $V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \leq \overline{V}_{i,h+1}^{k,\rho_i}$ at the $h + 1$ -th
 2045 step and the fact that $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i} \leq \nu_H^{\rho_i}$ by Lemma 17. By Lemma 23, we get
 2046

$$\begin{aligned} 2048 \sigma_{\widehat{\mathcal{P}}_{i,h}^k(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{\mathcal{P}}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ 2049 &\quad + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}. \end{aligned} \quad (74)$$

2052 Now by further applying Lemma 26 to the variance term in the above inequality, we can
 2053 obtain that
 2054

$$\begin{aligned}
 & \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \\
 & \leq \sqrt{\frac{c_1 \left(\text{Var}_{\widehat{P}_h^k(\cdot|s,a)} \left[\left(\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right] + 4H \mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right] \right) \iota}{\{N_h^k(s,a) \vee 1\}}} \\
 & + \frac{c_2 H \iota}{\{N_h^k(s,a) \vee 1\}} + \frac{1}{\sqrt{K}} \\
 & \stackrel{(i)}{\leq} \sqrt{\frac{c_1 \iota \text{Var}_{\widehat{P}_h^k(\cdot|s,a)} \left[\left(\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right]}{\{N_h^k(s,a) \vee 1\}}} + \sqrt{\frac{4H c_1 \iota \mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{\{N_h^k(s,a) \vee 1\}}} \\
 & + \frac{c_2 H \iota}{\{N_h^k(s,a) \vee 1\}} + \frac{1}{\sqrt{K}} \\
 & \stackrel{(ii)}{\leq} \sqrt{\frac{c_1 \iota \text{Var}_{\widehat{P}_h^k(\cdot|s,a)} \left[\left(\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right]}{\{N_h^k(s,a) \vee 1\}}} + \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} \\
 & + \frac{H^2 c'_2 \iota}{\{N_h^k(s,a) \vee 1\}} + \frac{1}{\sqrt{K}}, \tag{75}
 \end{aligned}$$

2077 where the inequality (i) is due to $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$, and the last inequality (ii) is from
 2078 $\sqrt{ab} \leq a+b$ where $c'_2 > 0$ is an absolute constant. Therefore, combining eqns. 73, 74, 75,
 2079 and the choice of bonus in 20, we can conclude that $\overline{Q}_{i,h}^{k,\rho_i}(s,a) - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s,a) \geq 0$.
 2080

2081 • **Proof of Ineq. 2:** By Proposition 9 (Robust Bellman Equation) and eq. 6, we have that
 2082

$$\begin{aligned}
 Q_{i,h}^{k,\rho_i}(s,a) - Q_{i,h}^{\pi^k, \rho_i}(s,a) &= \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right. \\
 &\quad \left. - \beta_{i,h}^k(s,a), 0 - Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s,a) \right\}, \\
 &\leq \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right. \\
 &\quad \left. - \beta_{i,h}^k(s,a), 0 \right\}, \tag{76}
 \end{aligned}$$

2094 where the second inequality follows from the induction of $V_{i,h+1}^{\pi^k, \rho_i} \geq \underline{V}_{i,h+1}^{k,\rho_i}$ at the $h+1$ -th
 2095 step and the fact that $Q_{i,h}^{\pi^k, \rho_i} \geq 0$. By Lemma 23, we can confirm that
 2096

$$\begin{aligned}
 \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s,a) \vee 1\}}} \\
 &+ \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} \\
 &+ \frac{c'_2 H^2 S \iota}{\{N_h^k(s,a) \vee 1\}} + \frac{1}{\sqrt{K}}. \tag{77}
 \end{aligned}$$

Now by further applying Lemma 26 to the variance term in the above inequality, with an argument similar to eq. 74 we can obtain that

$$\begin{aligned} \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{\mathcal{P}}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} \\ &+ \frac{\mathbb{E}_{\widehat{\mathcal{P}}_h^k(\cdot|s, \mathbf{a})} \left[\overline{V}_{i,h+1}^{k, \rho_i} - \underline{V}_{i,h+1}^{k, \rho_i} \right]}{H} \\ &+ \frac{c_2'' H^2 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}, \end{aligned} \quad (78)$$

where $c_2'' > 0$ is an absolute constant. Therefore, combining eqns. 76, 77, 78, and the choice of bonus in 20, $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \leq 0$.

Therefore, by eq. 75 and eq. 78, we have proved that at step h , it holds that

$$Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}). \quad (79)$$

We now assume that eq. 71 hold for h -th step. Then, by the definition of robust value function as given by robust Bellman equation (Proposition 9), eq. 8, and CE Equilibrium, we get

$$\overline{V}_{i,h}^{k, \rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right] = \max_{\phi \in \Phi_i} \mathbb{E}_{\mathbf{a} \sim \phi \diamond \pi^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right]. \quad (80)$$

By the definition of $\max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i}(s)$ in eq. 3, we get

$$\max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i}(s) = \max_{\phi \in \Phi_i} \mathbb{E}_{\mathbf{a} \sim \phi \diamond \pi^k(\cdot|s)} \left[\max_{\phi'} Q_{i,h}^{\phi' \diamond \pi^k, \rho_i}(s, \mathbf{a}) \right]. \quad (81)$$

Since by induction, for any (s, \mathbf{a}) , $\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \geq \max_{\phi \in \Phi_i} Q_{i,h}^{\phi \diamond \pi^k, \rho_i}(s, \mathbf{a})$. As a result, we also have

$\overline{V}_{i,h}^{k, \rho_i}(s) \geq \max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i}(s)$, which is eq. 162 for h -th step. Similarly, we can show that

$$\begin{aligned} \underline{V}_{i,h}^{k, \rho_i}(s) &= \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right], \\ &\stackrel{(i)}{\leq} \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \right], \\ &\stackrel{(ii)}{=} V_{i,h}^{\pi^k, \rho_i}(s), \end{aligned} \quad (82)$$

where (i) is due to the fact that $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})$ and (ii) is by definition of $V_{i,h}^{\pi^k, \rho_i}(s)$ as given by Bellman equation in Proposition 9. \square

F.3 AUXILIARY LEMMAS FOR TV-DRMG

Lemma 23 (Bernstein bound for TV-DRMG and the robust value functions of π^k and π^\dagger). *Under event \mathcal{E}_{TV} in eq. 21 and definition of π^\dagger as given in eq. 19, we assume that for any EQUILIBRIUM $\in \{NASH, CE, CCE\}$ the optimism and pessimism inequalities holds at $(h+1, k)$, where these inequalities can correspond to any of the following cases of EQUILIBRIUM:*

- **NE:** Lemma 20 using eq. 47 and eq. 48,
- **CCE:** Lemma 21 using eq. 59 and eq. 60,
- **CE:** Lemma 22 using eq. 71 and eq. 72,

2160 Then, it holds that
 2161

$$\begin{aligned}
 & \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\pi^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\pi^k, \rho_i}] \right| \\
 & \leq \begin{cases} \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}, & \text{if } \pi^k = \pi^\dagger \\ \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s,\mathbf{a})} \left[\overline{V}_{i,h+1}^{\pi^k, \rho_i} - V_{i,h+1}^{\pi^k, \rho_i} \right]}{H} + \frac{c'_2 H^2 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}, & \text{otherwise,} \end{cases} \\
 & \text{where } \iota = \log \left(\frac{S^2 (\prod_{i=1}^m A_i) H^2 K^{3/2}}{\delta} \right) \text{ and } c_1, c'_2 > 0 \text{ are absolute constants.}
 \end{aligned}$$

2170
 2171 *Proof.* By our definition of the operator $\sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\pi^k, \rho_i}]$ in eq. 11, we can arrive at,
 2172

$$\begin{aligned}
 & \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\pi^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\pi^k, \rho_i}] \right| \leq \sup_{\eta \in [0, H]} \left| \left\{ \mathbb{E}_{\widehat{P}_h^k(\cdot|s,\mathbf{a})} [(\eta - V_{i,h+1}^{\pi^k, \rho_i})_+] \right. \right. \\
 & \quad \left. \left. - \mathbb{E}_{P_h^*(\cdot|s,\mathbf{a})} [(\eta - V_{i,h+1}^{\pi^k, \rho_i})_+] \right\} \right| \\
 & = \text{Term (i)} + \text{Term (ii)}. \tag{83}
 \end{aligned}$$

2183 where we denote
 2184

$$\begin{aligned}
 \text{Term (i)} &:= \sup_{\eta \in [0, H]} \left| \left\{ \mathbb{E}_{\widehat{P}_h^k(\cdot|s,\mathbf{a})} [(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i})_+] \right. \right. \\
 & \quad \left. \left. - \mathbb{E}_{P_h^*(\cdot|s,\mathbf{a})} [(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i})_+] \right\} \right| \tag{84}
 \end{aligned}$$

$$\begin{aligned}
 \text{Term (ii)} &:= \sup_{\eta \in [0, H]} \left| \left\{ \mathbb{E}_{\widehat{P}_h^k(\cdot|s,\mathbf{a})} \left[\left(\eta - V_{i,h+1}^{\pi^k, \rho_i} \right)_+ - \left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \right] \right. \right. \\
 & \quad \left. \left. - \mathbb{E}_{P_h^*(\cdot|s,\mathbf{a})} \left[\left(\eta - V_{i,h+1}^{\pi^k, \rho_i} \right)_+ - \left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \right] \right\} \right|. \tag{85}
 \end{aligned}$$

2200 We deal with Term (i) and Term (ii) respectively.

2201 **Bound for Term (i):** Term (i) is referred to Bernstein bound for Bernstein bound for TV-DRMG
 2202 and the robust value function of the robust best response $\pi_i^{\dagger, \rho_i}(\pi_{-i})$. More specifically, we find
 2203 the Bernstein bound on the gap $\left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] \right|$. Therefore, by the
 2204 definition of the operator $\sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}]$ in eq. 11), we can arrive at,
 2205

$$\begin{aligned}
 & \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,\mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] \right| \\
 & \leq \sup_{\eta \in [0, H]} \left| \left\{ \mathbb{E}_{\widehat{P}_h^k(\cdot|s,\mathbf{a})} \left[\left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \right] - \mathbb{E}_{P_h^*(\cdot|s,\mathbf{a})} \left[\left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \right] \right\} \right| \\
 & = \text{Term (i)}. \tag{86}
 \end{aligned}$$

2214 By now according to the first inequality of event \mathcal{E} in eq. 21, we can bound eq. 86 as
2215

$$\begin{aligned} \text{Term (i)} &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \\ &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}, \end{aligned} \quad (87)$$

2223 for any $\eta \in \mathcal{N}_{1/(S\sqrt{K})}([0, H])$. Here the second inequality is because $\text{Var}[(a - X)_+] \leq \text{Var}[X]$.
2224 Therefore, by applying the covering argument in eq. 87, for any $\eta \in [0, H]$, it holds that
2225

$$\text{Term (i)} \leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{c_2 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{1}{\sqrt{K}}. \quad (88)$$

2229 **Bound for Term (ii):** For Term (ii), we apply the second inequality of event \mathcal{E} in eq. 21, and we
2230 obtain that
2231

$$\begin{aligned} \text{Term (ii)} &\leq \sup_{\eta \in [0, H]} \left\{ \sum_{s' \in \mathcal{S}} \left(\sqrt{\frac{c_1 \min \{P_h^*(s' | s, \mathbf{a}), P_h^k(s' | s, \mathbf{a})\} \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{c_2 \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \right) \right. \\ &\quad \times \left. \left| \left(\eta - V_{i,h+1}^{\pi^k, \rho_i} \right)_+ - \left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \right| \right\}. \end{aligned} \quad (89)$$

2238 Now by assuming that eq. 48 holds at $(h+1, k)$, we can upper bound the absolute value above by
2239

$$\begin{aligned} \left| \left(\eta - V_{i,h+1}^{\pi^k, \rho_i} \right)_+ - \left(\eta - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \right| &\stackrel{(i)}{\leq} \left| V_{i,h+1}^{\pi^k, \rho_i} - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right| \\ &\stackrel{(ii)}{\leq} \overline{V}_{i,h+1}^{k, \rho_i}(s') - \underline{V}_{i,h+1}^{k, \rho_i}(s'), \end{aligned} \quad (90)$$

2244 where the first inequality (i) is due to the 1-Lipschitz continuity of $\psi_\eta(x) = (\eta - x)_+$, and the second
2245 inequality (ii) is due to eq. 48. Thus combining eq. 89 and eq. 90, we get
2246

$$\begin{aligned} \text{Term (ii)} &\leq \sum_{s' \in \mathcal{S}} \left(\sqrt{\frac{c_1 \widehat{P}_h^k(s' | s, \mathbf{a}) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{c_2 \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \right) \cdot \left(\overline{V}_{i,h+1}^{k, \rho_i}(s') - \underline{V}_{i,h+1}^{k, \rho_i}(s') \right) \\ &\stackrel{(i)}{\leq} \sum_{s' \in \mathcal{S}} \left(\frac{\widehat{P}_h^k(s' | s, \mathbf{a})}{H} + \frac{c_1 H \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + \frac{c_2 \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \right) \\ &\quad \cdot \left(\overline{V}_{i,h+1}^{k, \rho_i}(s') - \underline{V}_{i,h+1}^{k, \rho_i}(s') \right) \\ &\stackrel{(ii)}{\leq} \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot | s, \mathbf{a})} \left[\overline{V}_{i,h+1}^{k, \rho_i} - \underline{V}_{i,h+1}^{k, \rho_i} \right]}{H} + \frac{c'_2 H^2 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}, \end{aligned} \quad (91)$$

2258 where $c'_2 > 0$ is an absolute constant. The first inequality (i) is by $\sqrt{ab} \leq a + b$ and the second
2259 inequality (ii) is due to $\overline{V}_{i,h+1}^{k, \rho_i}, \underline{V}_{i,h+1}^{k, \rho_i} \in [0, H]$. Finally, by combining eq. 88 and eq. 91 and
2260 applying in eq. 83, we get the required bound as
2261

$$\begin{aligned} \text{Term (ii)} &\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)_+ \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot | s, \mathbf{a})} \left[\overline{V}_{i,h+1}^{k, \rho_i} - \underline{V}_{i,h+1}^{k, \rho_i} \right]}{H} + \frac{c'_2 H^2 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \\ &\quad + \frac{1}{\sqrt{K}}. \end{aligned} \quad (92)$$

2262 This concludes the proof of Lemma 23. □
2263

2268
 2269 **Lemma 24** (Bernstein bound for TV-DRMG and optimistic and pessimistic robust value estimators).
 2270 *Under event \mathcal{E}_{TV} in eq. 21 and definition of π^\dagger as given in eq. 19, we assume that for any*
 2271 *EQUILIBRIUM $\in \{NASH, CE, CCE\}$ the optimism and pessimism inequalities holds at $(h + 1, k)$,*
 2272 *where these inequalities can correspond to any of the following cases of EQUILIBRIUM:*

2273 • **NE:** Lemma 20 using eq. 47 and eq. 48,
 2274 • **CCE:** Lemma 21 using eq. 59 and eq. 60,
 2275 • **CE:** Lemma 22 using eq. 71 and eq. 72,

2276 *Then, it holds that*

2277
 2278
 2279
 2280
$$\max \left\{ \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] \right|, \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right] \right| \right\}$$

 2281
 2282
 2283
$$\leq \sqrt{\frac{c_1 \text{Var}_{\widehat{P}_h^k} \left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right) \cdot \iota}{\{N_h^k(s, a) \vee 1\}}} + \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]}{H} + \frac{c'_2 H^2 S \iota}{\{N_h^k(s, a) \vee 1\}} + \frac{1}{\sqrt{K}},$$

 2284
 2285
 2286
 2287 where $\iota = \log \left(\frac{S^2 (\prod_{i=1}^m A_i) H^2 K^{3/2}}{\delta} \right)$ and $c_1, c'_2 > 0$ are absolute constants.

2287 *Proof.* This follows from the same proof as Lemma 23 and is thus omitted. \square

2288
 2289
 2290 **Lemma 25** (Non-robust Concentration for TV-DRMG). *Under event \mathcal{E}_{TV} in eq. 21 and definition*
 2291 *of π^\dagger as given in eq. 19, we assume that for any EQUILIBRIUM $\in \{NASH, CE, CCE\}$ the optimism*
 2292 *and pessimism inequalities holds at $(h + 1, k)$, where these inequalities can correspond to any of the*
 2293 *following cases of EQUILIBRIUM:*

2294 • **NE:** Lemma 20 using eq. 47 and eq. 48,
 2295 • **CCE:** Lemma 21 using eq. 59 and eq. 60,
 2296 • **CE:** Lemma 22 using eq. 71 and eq. 72,

2297 *Then, it holds that*

2298
 2299
 2300
 2301
$$\left| \mathbb{E}_{P_h^*(\cdot|s,a)} [\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i}] - \mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} [\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i}] \right| \leq \frac{\mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} [\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i}]}{H} + \frac{c'_2 H^2 S \iota}{\{N_h^k(s, a) \vee 1\}},$$

 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3

2322 Then, it holds that
 2323

$$2325 \left| \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right] - \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right| \leq 4H \mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\bar{V}_{h+1}^{k,\rho_i} - \underline{V}_{h+1}^{k,\rho_i} \right].$$

2328 *Proof.* Our proof closely follows the lines of Lemma 22 in (Liu et al., 2021) and Lemma E.11 in (Lu
 2329 et al., 2024), with detailed elaboration on each step for clarity. The left hand side of the inequality in
 2330 Lemma 26 can be upper bounded by the following

$$2331 \left| \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right] - \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right| \\ 2332 \leq \left| \mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right)^2 \right] - \mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right)^2 \right] \right| \\ 2333 + \left| \left(\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right] \right)^2 - \left(\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right)^2 \right|. \quad (93)$$

2342 By applying eq. 48 and the facts that $\bar{V}_{i,h+1}^{k,\rho_i}$ and $\underline{V}_{i,h+1}^{k,\rho_i}$, $\bar{V}_{i,h+1}^{k,\rho_i}$, $\underline{V}_{i,h+1}^{k,\rho_i}$, $V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}$ $\in [0, H]$, we
 2343 can further upper bound eq. 93 as
 2344

$$2345 \left| \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right] - \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right| \\ 2346 \leq 4H \mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left| \frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} - V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right| \right] \leq 4H \mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right]. \quad (94)$$

2351 This concludes the proof of Lemma 26. \square
 2352

2353 **Lemma 27** (Variance analysis for any robust joint policy π^k for TV-DRMG). *Under event \mathcal{E}_{TV} in eq. 21 and definition of π^\dagger as given in eq. 19, we assume that for any EQUILIBRIUM $\in \{\text{NASH}, \text{CE}, \text{CCE}\}$ the optimism and pessimism inequalities holds at $(h+1, k)$, where these
 2354 inequalities can correspond to any of the following cases of EQUILIBRIUM:*
 2355

- **NE:** Lemma 20 using eq. 47 and eq. 48,
- **CCE:** Lemma 21 using eq. 59 and eq. 60,
- **CE:** Lemma 22 using eq. 71 and eq. 72,

2362 Then, then the following inequality holds,

$$2363 \left| \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right] - \text{Var}_{P_h^*(\cdot|s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right| \\ 2364 \leq 4H \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\bar{V}_{h+1}^{k,\rho_i} - \underline{V}_{h+1}^{k,\rho_i} \right] + \frac{c_2' H^4 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} + 1.$$

2369 *Proof.* We follow the proof-lines of Lemma 23 in (Liu et al., 2021) and Lemma E.12 of (Lu et al.,
 2370 2024). We present a detailed derivation as follows. We first relate the variance on \widehat{P}_h^k to the variance
 2371 on P_h^* . Specifically, we have
 2372

$$2373 \left| \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\left(\frac{\bar{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right] - \text{Var}_{P_h^*(\cdot|s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right| \leq \text{Term (i)} + \text{Term (ii)}, \quad (95)$$

2376 where we denote

2377 $\text{Term (i)} := \left| \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right] - \text{Var}_{P_h^*(\cdot|s, \mathbf{a})} \left[\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right] \right|. \quad (96)$

2380 $\text{Term (ii)} := \left| \text{Var}_{P_h^*(\cdot|s, \mathbf{a})} \left[\left(\frac{\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i}}{2} \right) \right] - \text{Var}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right|. \quad (97)$

2383 We will now bound Term (i) and Term (ii) respectively.

2385 • **Term (i):** By applying the fact $(\overline{V}_{i,h+1}^{k,\rho_i} + \underline{V}_{i,h+1}^{k,\rho_i})/2 \in [0, H]$ in the variance terms on
2386 Term (i), we can upper bound Term (i) as
2387

2388 $\text{Term (i)} \leq H^2 \sum_{s' \in \mathcal{S}} \left| P_h^*(s'|s, \mathbf{a}) - \widehat{P}_h^k(s'|s, \mathbf{a}) \right| \quad (98)$

2389 $\stackrel{(i)}{\leq} H^2 \sum_{s' \in \mathcal{S}} \left(\sqrt{\frac{c_1 \widehat{P}_h^k(s'|s, \mathbf{a}) \cdot \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{c_2 \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \right)$

2390 $\stackrel{(ii)}{\leq} H^2 \left(\sqrt{\frac{c_1 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}}} + \frac{c_2 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}} \right)$

2391 $\stackrel{(iii)}{\leq} 1 + \frac{c'_2 H^4 S \iota}{\{N_h^k(s, \mathbf{a}) \vee 1\}},$

2392

2393 where the inequality (i) is by the second inequality in event \mathcal{E} in eq. 21, the inequality (ii) is
2394 by Cauchy- Schwartz inequality and the probability distribution sums up to 1, and the last
2395 inequality (iii) is from the fact $\sqrt{ab} \leq a + b$.

2396 • **Term (ii):** By using the proof-lines of Lemma 26 and assuming that the optimism and
2397 pessimism inequality eq. 48 holds for $(h+1, k)$, we can bound Term (ii) as
2398

2400 $\text{Term (ii)} \leq 4H \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\overline{V}_{h+1}^{k,\rho_i} - \underline{V}_{h+1}^{k,\rho_i} \right]. \quad (99)$

2401 Applying eq. 98 and eq. 99, we get the required bound in Lemma 27. \square

G PROOF OF REGRET BOUND OF KL-MORNAVI

2412 Similar to (Ghosh et al., 2025), we consider the following definitions:

2413 $\widehat{P}_{\min,h}^k(s, \mathbf{a}) := \min_{s' \in \mathcal{S}} \left\{ \widehat{P}_h^k(s'|s, \mathbf{a}) : \widehat{P}_h^k(s'|s, \mathbf{a}) > 0 \right\}, \quad (100)$

2415 $P_{\min,h}^*(s, \mathbf{a}) := \min_{s' \in \mathcal{S}} \left\{ P_h^*(s'|s, \mathbf{a}) : P_h^*(s'|s, \mathbf{a}) > 0 \right\}, \quad (101)$

2417 $P_{\min}^* := \min_{(h,s) \in [H] \times \mathcal{S}} P_{\min,h}^*(s, \pi_h^*(s)), \quad (102)$

2419 where the following inequality is satisfied: $P_h^*(s'|s, \mathbf{a}) \geq P_{\min,h}^*(s, \pi_h^*(s)) \geq P_{\min}^*$.

2420 We now recall the bonus term of KL-MORNAVI for agent i in episode k at step h , as follows:

2423 $\beta_{i,h}^k(s, \mathbf{a}) = \frac{2c_f H}{\sigma_i} \sqrt{\frac{\iota}{(N_h^k(s, \mathbf{a}) \vee 1) \widehat{P}_{\min,h}^k(s, \mathbf{a})}} + \sqrt{\frac{1}{K}}, \quad (103)$

2426 where $\widehat{P}_{\min,h}^k(s, \mathbf{a}) = \min_{s' \in \mathcal{S}} \{ \widehat{P}_h^k(s'|s, \mathbf{a}) : \widehat{P}_h^k(s'|s, \mathbf{a}) > 0 \}$, $\iota = \log \left(S^2 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta \right)$,
2427 and c_f is an absolute constant.

2428 Before proceeding to all key lemmas, we introduce the high-probability “typical” event \mathcal{E}_{KL} in the
2429 lemma below. The proof strategy follows (Lu et al., 2024) and (Ghosh et al., 2025).

2430 **Lemma 28** (Uniform Concentration Bound of event \mathcal{E}_{KL}). *Let \mathcal{E}_{KL} be the event in which, for all*
 2431 *$(s, \mathbf{a}, s', h, k) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [H] \times [K]$, and for all η in a $\frac{1}{\rho_{\min} S \sqrt{K}}$ -cover of $[0, H/\rho_{\min}]$, and is*
 2432 *defined as*

$$\begin{aligned}
 2434 \quad \mathcal{E}_{KL} = & \left\{ \left| \log \left(\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{V_{h+1}}{\eta} \right\} \right] \right) - \log \left(\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{V_{h+1}}{\eta} \right\} \right] \right) \right| \right. \\
 2435 \quad & \leq c_1 \sqrt{\frac{\iota}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}}, \\
 2436 \quad & \left. \forall (h, s, \mathbf{a}, s', k) \in [H] \times \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [K], \forall \eta \in \mathcal{N}_{\frac{1}{\rho_{\min} S \sqrt{K}}} \left(\left[0, \frac{H}{\rho_{\min}} \right] \right) \right\}, \quad (104)
 \end{aligned}$$

2440 where $\widehat{P}_{\min, h}^k(s, \mathbf{a})$ is defined in eq. 100, $\iota = \log \left(S^3 \left(\prod_{i=1}^m A_i \right) H^2 K^{3/2} / \delta \right)$, $c_1 > 0$ is an absolute
 2441 constant and $\eta \in \mathcal{N}_{\frac{1}{\rho_{\min} S \sqrt{K}}}([0, H/\rho_{\min}])$, where $\rho_{\min} = \min_{i \in \mathcal{M}} \rho_i$ and $\mathcal{N}_{\frac{1}{\rho_{\min} S \sqrt{K}}}([0, H/\rho_{\min}])$
 2442 denotes an $1/(\rho_{\min} S \sqrt{K})$ -cover of the interval $[0, H/\rho_{\min}]$.

2443 Then, this event \mathcal{E}_{KL} occurs with high probability, i.e., $\Pr(\mathcal{E}_{KL}) \geq 1 - \delta$.

2444 *Proof.* The proof follows standard techniques: we apply classical concentration inequalities followed
 2445 by a union bound. Consider a fixed tuple (s, \mathbf{a}, h) for a fixed episode k . Now we consider
 2446 the following equivalent random process: (i) before the agents starts, the environment samples
 2447 $\{s^{(1)}, s^{(2)}, \dots, s^{(k-1)}\}$ independently from $P_h^*(\cdot|s, \mathbf{a})$, where $s^{(i)} \in \mathcal{S}$ denotes the state sampled at
 2448 episode i ; (ii) during the interaction between the agents and the environment, the i -th time the state
 2449 and joint actions (s, \mathbf{a}) tuple is visited at step h , the environment will make the agents transit to the
 2450 next state $s^{(i)}$. Note that the randomness induced by this interaction procedure is exactly the same
 2451 as the original one, which means the probability of any event in this context is the same as in the
 2452 original problem. Therefore, it suffices to prove the target concentration inequality in this context.

2453 Based on the above fact, we directly apply (Wang et al., 2024e, Lemma 16). To extend the bound
 2454 uniformly, we apply a union bound over all tuples $(h, s, \mathbf{a}, s', k, \eta) \in [H] \times \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [K] \times$
 2455 $\mathcal{N}_{1/(\rho_{\min} S \sqrt{K})}([0, H/\rho_{\min}])$. Note that the η -cover for each agent i lies in the interval $[0, H/\rho_i] \leq$
 2456 $[0, H/\rho_{\min}]$ for all $i \in \mathcal{M}$, and this cover contains a valid $\frac{1}{\rho_i S \sqrt{K}}$ -cover for each agent-specific
 2457 interval $\left[0, \frac{H}{\rho_i} \right]$. Therefore, we define the common η -cover as $\eta \in \mathcal{N}_{\frac{1}{\rho_{\min} S \sqrt{K}}} \left(\left[0, \frac{H}{\rho_{\min}} \right] \right)$, where
 2458 $\mathcal{N}_{\frac{1}{\rho_{\min} S \sqrt{K}}} \left(\left[0, \frac{H}{\rho_{\min}} \right] \right)$ denotes a $\frac{1}{\rho_{\min} S \sqrt{K}}$ -cover of the interval $\left[0, \frac{H}{\rho_{\min}} \right]$. \square

2459 PROOF OF THEOREM 5 (KL-DRMG SETTING)

2460 *Proof.* With Lemma 32, we can establish an upper bound on the regret by considering the difference
 2461 between our optimistic and pessimistic value functions:

$$\text{Regret}_{\text{NASH}}(K) = \sum_{k=1}^K \max_{i \in \mathcal{M}} (V_{i,1}^{\dagger, \pi_{-i}^k, \rho_i} - V_{i,1}^{\pi^k, \rho_i})(s_1^k) \leq \sum_{k=1}^K \max_{i \in \mathcal{M}} (\bar{V}_{i,1}^{k, \rho_i} - \underline{V}_{i,1}^{k, \rho_i})(s_1^k). \quad (105)$$

2462 For the KL-divergence uncertainty set, we will refer to the bonus term as $\beta_{i,h}^k(s, \mathbf{a})$, as given in eq.
 2463 103. Our first step is to establish a bound on the difference between the upper and lower Q-values.
 2464 Given our definitions for $\bar{Q}_{i,h}^{k, \rho_i}$, $\underline{Q}_{i,h}^{k, \rho_i}$, $\bar{V}_{i,h}^{k, \rho_i}$, $\underline{V}_{i,h}^{k, \rho_i}$, and the bonus term $\beta_{i,h}^{k, \rho_i}(s, \mathbf{a})$ as defined in eq.
 2465 5 through eq. 103, for any $(i, h, k, s, \mathbf{a}) \in \mathcal{M} \times [H] \times [K] \times \mathcal{S} \times \mathcal{A}$, we have

$$\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq \sigma_{\widehat{P}_{i,h}^k(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\widehat{P}_{i,h}^k(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k, \rho_i} \right] + 2\beta_{i,h}^{k, \rho_i}(s, \mathbf{a}). \quad (106)$$

We define the following terms, A and B , to simplify our analysis:

$$\begin{aligned} A &:= \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] \\ &\quad + \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right]. \end{aligned} \quad (107)$$

$$B := \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right]. \quad (108)$$

By applying eq. 107 and eq. 108 to eq. 106, we obtain:

$$\bar{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \leq A + B + 2\beta_{i,h}^{k,\rho_i}(s, \mathbf{a}). \quad (109)$$

We can upper bound term A using a concentration argument tailored for KL robust expectations from Lemma 30, which shows that

$$A \leq 2\beta_{i,h}^{k,\rho_i}(s, \mathbf{a}). \quad (110)$$

For term B , we use the definition of $\mathbb{E}_{\mathcal{P}_h^{\rho}(s, \mathbf{a})}[V]$ from eq. 12 to establish the following bound:

$$\begin{aligned} B &= \sup_{\eta \in \left[0, \frac{H}{\rho_i}\right]} \left\{ -\eta \log \left(\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\bar{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right] \right) - \eta \rho_i \right\} \\ &\quad - \sup_{\eta \in \left[0, \frac{H}{\rho_i}\right]} \left\{ -\eta \log \left(\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\underline{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right] \right) - \eta \rho_i \right\} \\ &\leq \sup_{\eta \in [0, H/\rho_i]} \eta \left\{ \log \left(\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\underline{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right] \right) \right. \\ &\quad \left. - \log \left(\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\bar{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right] \right) \right\} \\ &= \sup_{\eta \in [0, H/\rho_i]} \eta \log \left(\frac{\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\underline{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right]}{\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\bar{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right]} \right) \\ &= \sup_{\eta \in [0, H/\rho_i]} \eta \log \left(1 + \frac{\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\underline{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} - \exp \left\{ -\frac{\bar{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right]}{\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\bar{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right]} \right) \\ &\stackrel{(a)}{\leq} \sup_{\eta \in [0, H/\rho_i]} \eta \frac{\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\underline{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} - \exp \left\{ -\frac{\bar{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right]}{\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\bar{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right]} \\ &\stackrel{(b)}{\leq} \sup_{\eta \in [\underline{\eta}, H/\rho_i]} \eta \exp \left\{ \frac{H}{\underline{\eta}} \right\} \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{\underline{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} - \exp \left\{ -\frac{\bar{V}_{i,h+1}^{k,\rho_i}}{\eta} \right\} \right] \\ &\stackrel{(c)}{\leq} \exp \left\{ \frac{H}{\underline{\eta}} \right\} \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right], \end{aligned} \quad (111)$$

where inequality (a) uses the fact that $\log(1 + x) \leq x$, inequality (b) holds because $0 \leq \bar{V}_{i,h+1}^{k,\rho_i} \leq H$ and $\eta \in [\underline{\eta}, H/\rho_i]$, and inequality (c) is due to the $\frac{1}{\eta}$ -Lipschitz continuity of $\phi_{\eta}(x) = \exp \left\{ -\frac{x}{\eta} \right\}$ for $x \geq 0$, as well as $\underline{V}_{i,h+1}^{k,\rho_i} \leq \bar{V}_{i,h+1}^{k,\rho_i}$.

By applying the bounds for A and B to eq. 109, we get

$$\bar{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \leq \exp \left\{ \frac{H}{\underline{\eta}} \right\} \mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right] + 4\beta_{i,h}^{k,\rho_i}(s, \mathbf{a}). \quad (112)$$

2538
2539

Using Lemma 31 to upper bound the bonus term, and rearranging the terms, we further obtain:

2540
2541
2542
2543
2544

$$\begin{aligned} \overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) &\leq \exp\left\{\frac{H}{\underline{\eta}}\right\} \mathbb{E}_{P_h^*(s, \mathbf{a})} \left[\overline{V}_{i,h+1}^{k,\rho_i} - \underline{V}_{i,h+1}^{k,\rho_i} \right] \\ &\quad + \frac{4c_1 H}{\rho_{\min}} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} + \sqrt{\frac{4}{K}}, \end{aligned} \quad (113)$$

2545 where $c_1 > 0$ is an absolute constant. From the definitions in eq. 8, the difference in V-functions is
2546 given by:2547
2548
2549

$$\overline{V}_{i,h}^{k,\rho_i}(s) - \underline{V}_{i,h}^{k,\rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) - \underline{Q}_{i,h}^{k,\rho_i}(s, \mathbf{a}) \right]. \quad (114)$$

2550 We now define a new recursive value function $\tilde{V}_h^{k,\rho_{\min}}$ and a corresponding Q-function $\tilde{Q}_h^{k,\rho_{\min}}$ with
2551 $\tilde{V}_{H+1}^{k,\rho_{\min}} = 0$, where $\rho_{\min} = \min_{i \in \mathcal{M}} \rho_i$:2552
2553
2554
2555

$$\tilde{Q}_h^{k,\rho_{\min}}(s, \mathbf{a}) = \exp\left\{\frac{H}{\underline{\eta}}\right\} \mathbb{E}_{P_h^*(s, \mathbf{a})} \left[\tilde{V}_{h+1}^{k,\rho_{\min}} \right] + \frac{4c_1 H}{\rho_{\min}} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} + \sqrt{\frac{4}{K}}. \quad (115)$$

2556
2557

$$\tilde{V}_h^{k,\rho_{\min}}(s) = \mathbb{E}_{\mathbf{a} \sim \pi_h^k(\cdot|s)} \left[\tilde{Q}_h^{k,\rho_{\min}}(s, \mathbf{a}) \right]. \quad (116)$$

2558
2559By an inductive proof, we can show that for any $(i, h, s, \mathbf{a}) \in \mathcal{M} \times [H] \times \mathcal{S} \times \mathcal{A}$, the following
bounds hold:2560
2561

$$\max_{i \in \mathcal{M}} (\overline{Q}_{i,h}^{k,\rho_i} - \underline{Q}_{i,h}^{k,\rho_i})(s, \mathbf{a}) \leq \tilde{Q}_h^{k,\rho_{\min}}(s, \mathbf{a}), \quad (117)$$

2562
2563

$$\max_{i \in \mathcal{M}} (\overline{V}_{i,h}^{k,\rho_i} - \underline{V}_{i,h}^{k,\rho_i})(s) \leq \tilde{V}_h^{k,\rho_{\min}}(s). \quad (118)$$

2564
2565
2566Therefore, our analysis can focus on bounding the sum $\sum_{k=1}^K \tilde{V}_1^{k,\rho_{\min}}(s_1^k)$. For simplicity, we
introduce the following notations for the differences at any $(h, k) \in [H] \times [K]$:2567
2568
2569

$$\Delta_h^k := \tilde{V}_h^{k,\rho_{\min}}(s_h^k), \quad (119)$$

$$\zeta_h^k := \Delta_h^k - \tilde{Q}_h^{k,\rho_{\min}}(s_h^k, \mathbf{a}_h^k), \quad (120)$$

2570
2571
2572
2573

$$\xi_h^k := \mathbb{E}_{P_h^*(\cdot|s_h^k, \mathbf{a}_h^k)} [\tilde{V}_{h+1}^{k,\rho_{\min}}] - \Delta_{h+1}^k. \quad (121)$$

We can confirm that $\{\zeta_h^k\}_{(h,k)}$ and $\{\xi_h^k\}_{(h,k)}$ are martingale difference sequences with respect to their
respective filtrations. By substituting eq. 115 into eq. 120, we obtain the recursive relationship:2574
2575

$$\begin{aligned} \Delta_{i,h}^k &= \zeta_{i,h}^k + \tilde{Q}_h^{k,\rho_{\min}}(s_h^k, \mathbf{a}_h^k) \\ &\leq \zeta_{i,h}^k + \exp\left\{\frac{H}{\underline{\eta}}\right\} \mathbb{E}_{P_h^*(s, \mathbf{a})} \left[\tilde{V}_{h+1}^{k,\rho_{\min}} \right] + \frac{4c_1 H}{\rho_{\min}} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} + \sqrt{\frac{4}{K}} \\ &= \zeta_{i,h}^k + \exp\left\{\frac{H}{\underline{\eta}}\right\} \xi_{i,h}^k + \exp\left\{\frac{H}{\underline{\eta}}\right\} \Delta_{i,h+1}^k + \frac{4c_1 H}{\rho_{\min}} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} \\ &\quad + \sqrt{\frac{4}{K}}. \end{aligned} \quad (122)$$

2584
2585
2586
2587
2588
2589
2590
2591By recursively applying eq. 122 and noting that $1 \leq \left(\exp\left\{\frac{H}{\underline{\eta}}\right\}\right)^h \leq \left(\exp\left\{\frac{H}{\underline{\eta}}\right\}\right)^H := d_H$, we
can upper bound the right hand side of eq. 105 as:2592
2593
2594
2595
2596
2597
2598
2599

$$\begin{aligned} \text{Regret}_{\text{NASH}}(K) &\leq \sum_{k=1}^K \Delta_1^k \leq c' d_H \sum_{k=1}^K \sum_{h=1}^H \left\{ (\zeta_h^k + \xi_h^k) \right. \\ &\quad \left. + \left(\frac{4c_1 H}{\rho_{\min}} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} + \sqrt{\frac{4}{K}} \right) \right\}. \end{aligned} \quad (123)$$

2592 Next, we bound each of these two main terms. The first term, a sum of martingale differences, is
 2593 bounded using the Azuma-Hoeffding inequality from Lemma 39, yielding:
 2594

$$2595 \sum_{k=1}^K \sum_{h=1}^H (\zeta_{i,h}^k + \xi_{i,h}^k) \leq c'_1 \sqrt{H^3 K L}, \quad (124)$$

2596 where $c'_1 > 0$ is an absolute constant. For the second term, we apply the proof lines of (Liu et al.,
 2597 2021, Theorem 3) to bound the sum of the inverse counts:
 2598

$$2600 \sum_{k=1}^K \sum_{h=1}^H \sqrt{\frac{1}{\{N_h^k(s_h^k, \mathbf{a}_h^k) \vee 1\}}} \leq c'_2 \left(\sqrt{H^2 K S \prod_{i \in \mathcal{M}} A_i} + H S \prod_{i \in \mathcal{M}} A_i \right). \quad (125)$$

2601 By applying eq. 125 to the second term of eq. 123, we get the following:
 2602

$$2603 \sum_{k=1}^K \sum_{h=1}^H \left(\frac{4c_1 H}{\rho_{\min}} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} + \sqrt{\frac{4}{K}} \right) \leq c'_2 \left(\sqrt{\frac{H^4 K S (\prod_{i \in \mathcal{M}} A_i) \iota^2}{\rho_{\min}^2 P_{\min}^*}} \right. \\ 2604 \left. + \frac{H^2 S (\prod_{i \in \mathcal{M}} A_i) \iota}{\rho_{\min} \sqrt{P_{\min}^*}} + \sqrt{H^2 K} \right). \quad (126)$$

2605 By combining the bounds for both terms in eq. 123, we can upper bound the final regret as follows:
 2606

$$2607 \text{Regret}_{\text{NASH}}(K) \leq c' d_H \left(\sqrt{\frac{H^4 K S (\prod_{i \in \mathcal{M}} A_i) \iota^2}{\rho_{\min}^2 P_{\min}^*}} \right) \\ 2608 = \mathcal{O} \left(\sqrt{\frac{H^4 \exp(2H^2) K S (\prod_{i \in \mathcal{M}} A_i) (\iota')^3}{\rho_{\min}^2 P_{\min}^*}} \right). \quad (127)$$

2609 This completes the proof of Theorem 5. \square
 2610

2611 **Remark 29.** The proof techniques for bounding $\text{Regret}_{\text{CCE}}(K)$ and $\text{Regret}_{\text{CE}}(K)$ follow the same
 2612 lines of proof for $\text{Regret}_{\text{NASH}}(K)$, leveraging Lemma 33 and Lemma 34, respectively, in the context
 2613 of KL-DRMG.
 2614

2615 G.1 KEY LEMMAS FOR KL-DRMG

2616 **Lemma 30** (Concentration Bound for Robust Value Estimators in KL-DRMG). Let \mathcal{E}_{KL} be the
 2617 typical event and let the bonus term $\beta_{i,h}^k$ be set defined in eq. 103. Then, the following inequality
 2618 holds:
 2619

$$2620 \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] + \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\underline{V}_{i,h+1}^{k, \rho_i} \right] \\ 2621 \leq \frac{2c_1 H}{\rho_{\min}} \sqrt{\frac{\iota}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}} + \sqrt{\frac{2}{K}}, \quad (128)$$

2622 where $\iota = \log(S^3 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta)$, and $c_1 > 0$ is an absolute constant.
 2623

2624 *Proof.* We begin by defining the term that we need to bound. Let's denote this term by A :
 2625

$$2626 A := \sigma_{\widehat{\mathcal{P}}_h^{\rho}(s, \mathbf{a})} \left[\bar{V}_{h+1}^k \right] - \sigma_{\mathcal{P}_h^{\rho}(s, \mathbf{a})} \left[\bar{V}_{h+1}^k \right] + \sigma_{\mathcal{P}_h^{\rho}(s, \mathbf{a})} \left[\underline{V}_{h+1}^k \right] - \sigma_{\widehat{\mathcal{P}}_h^{\rho}(s, \mathbf{a})} \left[\underline{V}_{h+1}^k \right]. \quad (129)$$

2627 Under the high-probability event \mathcal{E}_{KL} , we can directly apply the concentration inequality given in
 2628 Lemma 37. This allows us to upper bound A as follows:
 2629

$$2630 A \leq \frac{2c_1 H}{\rho_{\min}} \sqrt{\frac{\iota}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}} + \sqrt{\frac{2}{K}}, \quad (130)$$

2631 where $c_1 > 0$ is an absolute constant and $\iota = \log(S^3 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta)$. This bound is exactly
 2632 the bonus term multiplied by a constant. Therefore, based on our choice of $\beta_{i,h}^k(s, \mathbf{a})$ as defined in
 2633 eq. 103, the inequality in eq. 128 holds. This completes the proof of Lemma 30. \square
 2634

2646 **Lemma 31** (Bound of the bonus term for KL-DRMG). *Let \mathcal{E}_{KL} be the typical event, the bonus term
2647 $\beta_{i,h}^k$ in eq. 103 is bounded by*

$$2649 \quad \beta_{i,h}^k(s, \mathbf{a}) \leq \frac{c_1 H}{\rho_{\min}} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} + \sqrt{\frac{1}{K}}, \quad (131)$$

2652 where $\iota = \log(S^3 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta)$, and $c_1 > 0$ is an absolute constant.

2654 *Proof.* The proof-lines are similar to (Ghosh et al., 2025, Lemma K.7). We recall the choice of $\beta_{i,h}^k$
2655 as given in eq. 103, i.e.

$$2657 \quad \beta_{i,h}^k(s, \mathbf{a}) = \frac{2c_f H}{\rho_i} \sqrt{\frac{\iota}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min,h}^k(s, \mathbf{a})}} + \sqrt{\frac{1}{K}}, \quad (132)$$

2659 where $\iota = \log(S^3 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta)$, $\widehat{P}_{\min,h}^k(s, \mathbf{a})$ is defined in eq. 100, and $c_f > 0$ is an
2660 absolute constant.

2662 By Lemma 38 and the union bound, it holds that with probability at least $1 - \delta$ that for all $(h, s, \mathbf{a}) \in$
2663 $[H] \times \mathcal{S} \times \mathcal{A}$, we get

$$2665 \quad \forall s' \in \mathcal{S} : \quad P_h^*(s' | s, \mathbf{a}) \geq \frac{\widehat{P}_h^k(s' | s, \mathbf{a})}{e^2} \geq \frac{P_h^*(s' | s, \mathbf{a})}{8e^2\iota}. \quad (133)$$

2667 To characterize the relation between $P_{\min,h}^*(s, \mathbf{a})$ and $\widehat{P}_{\min,h}^k(s, \mathbf{a})$ for any $(h, s, \mathbf{a}) \in [H] \times \mathcal{S} \times \mathcal{A}$,
2668 we suppose—without loss of generality—that $P_{\min,h}^*(s, \mathbf{a}) = P_h^*(s_1 | s, \mathbf{a})$ and $\widehat{P}_{\min,h}^k(s, \mathbf{a}) =$
2669 $\widehat{P}_h^k(s_2 | s, \mathbf{a})$ for some $s_1, s_2 \in \mathcal{S}$. Then, it follows that

$$2671 \quad \begin{aligned} P_{\min,h}^*(s, \mathbf{a}) &= P_h^*(s_1 | s, \mathbf{a}) \\ 2672 &\stackrel{(i)}{\geq} \frac{\widehat{P}_h^k(s_1 | s, \mathbf{a})}{e^2} \geq \frac{\widehat{P}_{\min,h}^k(s, \mathbf{a})}{e^2} \\ 2673 &= \frac{\widehat{P}_h^k(s_2 | s, \mathbf{a})}{e^2} \stackrel{(ii)}{\geq} \frac{P_h^*(s_2 | s, \mathbf{a})}{8e^2\iota} \\ 2674 &\geq \frac{P_{\min,h}^*(s, \mathbf{a})}{8e^2\iota} \stackrel{(iii)}{\geq} \frac{P_{\min}^*}{8e^2\iota}. \end{aligned} \quad (134)$$

2680 where the inequalities (i) and (ii) follow from eq. 133, and inequality (iii) follows by eq. 102.

2681 By applying eq. 134 in eq. 132, we get

$$2683 \quad \beta_{i,h}^k(s, \mathbf{a}) \leq \frac{2c_f H}{\rho_i} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} + \sqrt{\frac{1}{K}} \leq \frac{c_1 H}{\rho_{\min}} \sqrt{\frac{\iota^2}{\{N_h^k(s, \mathbf{a}) \vee 1\} P_{\min}^*}} \\ 2684 \quad + \sqrt{\frac{1}{K}}. \quad (135)$$

2688 This concludes the proof of Lemma 31. \square

2690 **NE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
2691 KL-DRMG.**

2692 Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
2693 V-value and robust Q-value functions fro NE version.

2695 **Lemma 32** (Optimistic and pessimistic estimation of the robust values for KL-DRMG for NE
2696 Version). *Under the event \mathcal{E}_{KL} and by setting the bonus term $\beta_{i,h}^k$ as in eq. 103, it holds that*

$$2697 \quad Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a}), \quad (136)$$

$$2699 \quad V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s) \leq \overline{V}_{i,h}^{k, \rho_i}(s), \quad \underline{V}_{i,h}^{k, \rho_i}(s) \leq V_{i,h}^{\pi_{-i}^k, \rho_i}(s). \quad (137)$$

2700 *Proof.* The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
 2701 We will run a proof for each inequality outlined in Lemma 32
 2702

2703

- 2704 • **Ineq. 1:** To prove $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})$.
- 2705
- 2706 • **Ineq. 2:** To prove $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a})$.
- 2707

2708 Assume that both eq. 136 and eq. 137 hold at the $(h+1)$ -th step.

2709

- 2710 • **Proof of Ineq. 1:** We first consider robust Q at the h -th step. Then, by Proposition 9 (Robust
 2711 Bellman Equation) and eq. 5, we have that

2712

$$\begin{aligned} 2713 Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) - \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) &= \max \left\{ \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\overline{V}_{i,h+1}^{k, \rho_i} \right] \right. \\ 2714 &\quad \left. - \beta_{i,h}^k(s, \mathbf{a}), Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) - H \right\}, \\ 2715 &\leq \max \left\{ \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right. \\ 2716 &\quad \left. - \beta_{i,h}^k(s, \mathbf{a}), 0 \right\}, \end{aligned} \quad (138)$$

2717 where the second inequality follows from the induction of $V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \leq \overline{V}_{i,h+1}^{k, \rho_i}$ at the $h+1$ -th
 2718 step and the fact that $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i} \leq H$. By Lemma 35 and by the definition of $\widehat{P}_{\min, h}^k(s, \mathbf{a})$
 2719 as given in eq. 100, we have that

2720

$$\begin{aligned} 2721 \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] &\leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}} \\ 2722 &\quad + \sqrt{\frac{1}{K}}. \end{aligned} \quad (139)$$

2723 By the choice of $\beta_{i,h}^k$ in eq. 103 and eq. 139 and applying in eq. 138, we conclude that

2724

$$Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}). \quad (140)$$

2725 • **Proof of Ineq. 2:** By using Proposition 9 (Robust Bellman Equation) and eq. 6, we have
 2726 that

2727

$$\begin{aligned} 2728 Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) - Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a}) &= \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi_{-i}^k, \rho_i} \right] - \beta_{i,h}^k(s, \mathbf{a}), \right. \\ 2729 &\quad \left. 0 - Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right\} \end{aligned} \quad (141)$$

2730

$$\begin{aligned} 2731 &\leq \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi_{-i}^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi_{-i}^k, \rho_i} \right] - \beta_{i,h}^k(s, \mathbf{a}), \right. \\ 2732 &\quad \left. 0 \right\}, \end{aligned} \quad (142)$$

2754 where the second inequality follows from the induction of $\underline{V}_{i,h+1}^{k,\rho_i} \leq V_{i,h+1}^{\pi^k,\rho_i}$ at the $(h+1)$ -th
 2755 step and the fact that $Q_{i,h}^{\pi^k,\rho_i} \geq 0$. By Lemma 36, we get
 2756

$$\begin{aligned} 2758 \quad \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k,\rho_i} \right] &\leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min,h}^k(s, \mathbf{a})}} \\ 2760 &\quad + \sqrt{\frac{1}{K}}. \end{aligned} \quad (143)$$

2763 By the choice of $\beta_{i,h}^k$ in eq. 103 and eq. 143 and applying in eq. 142, we conclude that
 2764

$$Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}). \quad (144)$$

2767 Therefore, by eq. 140 and eq. 144, we have proved that at step h , it holds that

$$Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}). \quad (145)$$

2771 We now assume that eq. 136 hold for h -th step. Then, by the definition of robust value function as
 2772 given by robust Bellman equation (Proposition 9), eq. 8, and NASH Equilibrium, we get
 2773

$$\overline{V}_{i,h}^{k, \rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right] = \max_{\pi'_i} \mathbb{E}_{\mathbf{a} \sim \pi'_i \times \pi_{-i}^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right]. \quad (146)$$

2776 By the definition of $V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s)$ in eq. 3, we get
 2777

$$V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s) = \max_{\pi'_i} \mathbb{E}_{\mathbf{a} \sim \pi'_i \times \pi_{-i}^k(\cdot|s)} \left[Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right]. \quad (147)$$

2781 Sine by induction, for any (s, \mathbf{a}) , $\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \geq Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a})$. As a result, we also have $\overline{V}_{i,h}^{k, \rho_i}(s) \geq$
 2782 $V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s)$, which is eq. 137 for h -th step. Similarly, we can show that
 2783

$$\begin{aligned} 2785 \quad \underline{V}_{i,h}^{k, \rho_i}(s) &= \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right], \\ 2786 &\stackrel{(i)}{\leq} \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \right], \\ 2788 &\stackrel{(ii)}{=} V_{i,h}^{\pi^k, \rho_i}(s), \end{aligned} \quad (148)$$

2791 where (i) is due to the fact that $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})$ and (ii) is by definition of $V_{i,h}^{\pi^k, \rho_i}(s)$ as
 2792 given by Bellman equation in Proposition 9. \square
 2793

2794 CCE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
 2795 KL-DRMG.
 2796

2797 Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
 2798 V-value and robust Q-value functions fro CCE version.

2799 **Lemma 33** (Optimistic and pessimistic estimation of the robust values for KL-DRMG for CCE
 2800 Version). *Under the event \mathcal{E}_{KL} and by setting the bonus term $\beta_{i,h}^k$ as in eq. 103, it holds that*
 2801

$$Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}), \quad (149)$$

$$V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s) \leq \overline{V}_{i,h}^{k, \rho_i}(s), \quad \underline{V}_{i,h}^{k, \rho_i}(s) \leq V_{i,h}^{\pi^k, \rho_i}(s). \quad (150)$$

2806 *Proof.* The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
 2807 We will run a proof for each inequality outlined in Lemma 33

2808 • **Ineq. 1:** To prove $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})$.

2810 • **Ineq. 2:** To prove $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})$.

2813 Assume that both eq. 149 and eq. 150 hold at the $(h+1)$ -th step.

2814 • **Proof of Ineq. 1:** We first consider robust Q at the h -th step. Then, by Proposition 9 (Robust
2815 Bellman Equation) and eq. 5, we have that

$$\begin{aligned} 2817 \quad Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) - \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) &= \max \left\{ \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\overline{V}_{i,h+1}^{k, \rho_i} \right] \right. \\ 2818 &\quad \left. - \beta_{i,h}^k(s, \mathbf{a}), Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) - H \right\}, \\ 2819 &\leq \max \left\{ \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] \right. \\ 2820 &\quad \left. - \beta_{i,h}^k(s, \mathbf{a}), 0 \right\}, \end{aligned} \quad (151)$$

2821 where the second inequality follows from the induction of $V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \leq \overline{V}_{i,h+1}^{k, \rho_i}$ at the $h+1$ -th
2822 step and the fact that $Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i} \leq H$. By Lemma 35 and by the definition of $\widehat{P}_{\min, h}^k(s, \mathbf{a})$
2823 as given in eq. 100, we have that

$$\begin{aligned} 2832 \quad \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i} \right] &\leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}} \\ 2833 &\quad + \sqrt{\frac{1}{K}}. \end{aligned} \quad (152)$$

2837 By the choice of $\beta_{i,h}^k$ in eq. 103 and eq. 152 and applying in eq. 151, we conclude that

$$Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}). \quad (153)$$

2841 • **Proof of Ineq. 2:** By using Proposition 9 (Robust Bellman Equation) and eq. 6, we have
2842 that

$$\begin{aligned} 2843 \quad Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) - Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) &= \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right. \\ 2844 &\quad \left. - \beta_{i,h}^k(s, \mathbf{a}), 0 - Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \right\} \\ 2845 &\leq \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \right. \\ 2846 &\quad \left. - \beta_{i,h}^k(s, \mathbf{a}), 0 \right\}, \end{aligned} \quad (154)$$

2847 where the second inequality follows from the induction of $\underline{V}_{i,h+1}^{k, \rho_i} \leq V_{i,h+1}^{\pi^k, \rho_i}$ at the $(h+1)$ -th
2848 step and the fact that $Q_{i,h}^{\pi^k, \rho_i} \geq 0$. By Lemma 36, we get

$$\begin{aligned} 2849 \quad \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] &\leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}} \\ 2850 &\quad + \sqrt{\frac{1}{K}}. \end{aligned} \quad (155)$$

2862 By the choice of $\beta_{i,h}^k$ in eq. 103 and eq. 155 and applying in eq. 154, we conclude that
2863

$$2864 Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}). \quad (156)$$

2866 Therefore, by eq. 153 and eq. 156, we have proved that at step h , it holds that
2867

$$2868 Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a}). \quad (157)$$

2870 We now assume that eq. 149 hold for h -th step. Then, by the definition of robust value function as
2871 given by robust Bellman equation (Proposition 9), eq. 8, and CCE Equilibrium, we get
2872

$$2873 \overline{V}_{i,h}^{k, \rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right] \geq \max_{\pi'_i} \mathbb{E}_{\mathbf{a} \sim \pi'_i \times \pi_{-i}^k(\cdot|s)} \left[\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right]. \quad (158)$$

2875 By the definition of $V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s)$ in eq. 3, we get
2876

$$2878 V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s) = \max_{\pi'_i} \mathbb{E}_{\mathbf{a} \sim \pi'_i \times \pi_{-i}^k(\cdot|s)} \left[Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right]. \quad (159)$$

2880 Sine by induction, for any (s, \mathbf{a}) , $\overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \geq Q_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s, \mathbf{a})$. As a result, we also have $\overline{V}_{i,h}^{k, \rho_i}(s) \geq$
2882 $V_{i,h}^{\dagger, \pi_{-i}^k, \rho_i}(s)$, which is eq. 150 for h -th step. Similarly, we can show that
2883

$$2884 \underline{V}_{i,h}^{k, \rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) \right],$$

$$2886 \stackrel{(i)}{\leq} \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} \left[Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a}) \right],$$

$$2888 \stackrel{(ii)}{=} V_{i,h}^{\pi_{-i}^k, \rho_i}(s), \quad (160)$$

2890 where (i) is due to the fact that $Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a})$ and (ii) is by definition of $V_{i,h}^{\pi_{-i}^k, \rho_i}(s)$ as
2891 given by Bellman equation in Proposition 9. \square
2892

2893 CE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
2894 KL-DRMG.

2895 Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
2896 V-value and robust Q-value functions fro CE version.

2897 **Lemma 34** (Optimistic and pessimistic estimation of the robust values for KL-DRMG for CE version).
2898 By setting the bonus term $\beta_{i,h}^k$ as in eq. 103, with probability $1 - \delta$, for any (s, \mathbf{a}, h, i) and $k \in [K]$,
2899 it holds that
2900

$$2902 \max_{\phi \in \Phi_i} Q_{i,h}^{\phi \otimes \pi^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a}), \quad (161)$$

$$2904 \max_{\phi \in \Phi_i} V_{i,h}^{\phi \otimes \pi^k, \rho_i}(s) \leq \overline{V}_{i,h}^{k, \rho_i}(s), \quad \underline{V}_{i,h}^{k, \rho_i}(s) \leq V_{i,h}^{\pi_{-i}^k, \rho_i}(s). \quad (162)$$

2907 *Proof.* The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
2908 We will run a proof for each inequality outlined in Lemma 34
2909

2910 • **Ineq. 1:** To prove $\max_{\phi \in \Phi_i} Q_{i,h}^{\phi \otimes \pi^k, \rho_i}(s, \mathbf{a}) \leq \overline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})$.
2911

2913 • **Ineq. 2:** To prove $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi_{-i}^k, \rho_i}(s, \mathbf{a})$.
2914

2915 Assume that both eq. 161 and eq. 162 hold at the $(h + 1)$ -th step.

2916
 2917 • **Proof of Ineq. 1:** We first consider robust Q at the h -th step. Then, by Proposition 9 (Robust
 2918 Bellman Equation) and eq. 5, we have that

$$\begin{aligned}
 2919 \max_{\phi \in \Phi_i} Q_{i,h}^{\phi \diamond \pi^k, \rho_i}(s, \mathbf{a}) - \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \\
 2920 = \max \left\{ \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \beta_{i,h}^k(s, \mathbf{a}), \right. \\
 2921 \max_{\phi \in \Phi_i} Q_{i,h}^{\phi \diamond \pi^k, \rho_i}(s, \mathbf{a}) - H \left. \right\} \\
 2922 \leq \max \left\{ \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i} \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i} \right] - \beta_{i,h}^k(s, \mathbf{a}), \right. \\
 2923 0 \left. \right\}, \tag{163}
 \end{aligned}$$

2933 where the second inequality follows from the induction of $\max_{\phi \in \Phi_i} V_{i,h+1}^{\phi \diamond \pi^k, \rho_i}(s) \leq \bar{V}_{i,h+1}^{k, \rho_i}(s)$
 2934 at the $h+1$ -th step and the fact that $\max_{\phi \in \Phi_i} Q_{i,h}^{\phi \diamond \pi^k, \rho_i}(s, \mathbf{a}) \leq H$. By Lemma 35 and by the
 2935 definition of $\widehat{P}_{\min, h}^k(s, \mathbf{a})$ as given in eq. 100, we have that

$$\begin{aligned}
 2939 \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i}(s) \right] - \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i}(s) \right] \\
 2940 \leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}} + \sqrt{\frac{1}{K}}. \tag{164}
 \end{aligned}$$

2944 By the choice of $\beta_{i,h}^k$ in eq. 103 and eq. 164 and applying in eq. 163, we conclude that

$$\max_{\phi \in \Phi_i} Q_{i,h}^{\phi \diamond \pi^k, \rho_i}(s, \mathbf{a}) \leq \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}). \tag{165}$$

2949 • **Proof of Ineq. 2:** By using Proposition 9 (Robust Bellman Equation) and eq. 6, we have
 2950 that

$$\begin{aligned}
 2952 Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) - Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \\
 2953 = \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \beta_{i,h}^k(s, \mathbf{a}), 0 - Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}) \right\}, \\
 2955 \leq \max \left\{ \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] - \beta_{i,h}^k(s, \mathbf{a}), 0 \right\}, \tag{166}
 \end{aligned}$$

2958 where the second inequality follows from the induction of $\bar{V}_{i,h+1}^{k, \rho_i} \leq V_{i,h+1}^{\pi^k, \rho_i}$ at the $(h+1)$ -th
 2959 step and the fact that $Q_{i,h}^{\pi^k, \rho_i} \geq 0$. By Lemma 36, we get

$$\begin{aligned}
 2962 \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[\bar{V}_{i,h+1}^{k, \rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} \left[V_{i,h+1}^{\pi^k, \rho_i} \right] \leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}} \\
 2963 + \sqrt{\frac{1}{K}}. \tag{167}
 \end{aligned}$$

2967 By the choice of $\beta_{i,h}^k$ in eq. 103 and eq. 167 and applying in eq. 166, we conclude that

$$Q_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}). \tag{168}$$

2970 Therefore, by eq. 165 and eq. 168, we have proved that at step h , it holds that
 2971
 2972
$$\max_{\phi \in \Phi_i} Q_{i,h}^{\phi \diamond \pi^k, \rho_i}(s, \mathbf{a}) \leq \bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}), \quad \underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a}). \quad (169)$$

 2973

2974 We now assume that eq. 161 hold for h -th step. Then, by the definition of robust value function as
 2975 given by robust Bellman equation (Proposition 9), eq. 8, and CE Equilibrium, we get

$$2976 \bar{V}_{i,h}^{k, \rho_i}(s) = \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} [\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})] = \max_{\phi \in \Phi_i} \mathbb{E}_{\mathbf{a} \sim \phi \diamond \pi^k(\cdot|s)} [\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})]. \quad (170)$$

2978 By the definition of $\max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i}(s)$ in eq. 3, we get
 2979

$$2980 \max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i}(s) = \max_{\phi \in \Phi_i} \mathbb{E}_{\mathbf{a} \sim \phi \diamond \pi^k(\cdot|s)} \left[\max_{\phi'} Q_{i,h}^{\phi' \diamond \pi^k, \rho_i}(s, \mathbf{a}) \right]. \quad (171)$$

2983 Since by induction, for any (s, \mathbf{a}) , $\bar{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \geq \max_{\phi \in \Phi_i} Q_{i,h}^{\phi \diamond \pi^k, \rho_i}(s, \mathbf{a})$. As a result, we also have
 2984 $\bar{V}_{i,h}^{k, \rho_i}(s) \geq \max_{\phi \in \Phi_i} V_{i,h}^{\phi \diamond \pi^k, \rho_i}(s)$, which is eq. 162 for h -th step. Similarly, we can show that
 2985

$$2987 \begin{aligned} \underline{V}_{i,h}^{k, \rho_i}(s) &= \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} [\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a})], \\ 2988 &\stackrel{(i)}{\leq} \mathbb{E}_{\mathbf{a} \sim \pi^k(\cdot|s)} [Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})], \\ 2989 &\stackrel{(ii)}{=} V_{i,h}^{\pi^k, \rho_i}(s), \end{aligned} \quad (172)$$

2992 where (i) is due to the fact that $\underline{Q}_{i,h}^{k, \rho_i}(s, \mathbf{a}) \leq Q_{i,h}^{\pi^k, \rho_i}(s, \mathbf{a})$ and (ii) is by definition of $V_{i,h}^{\pi^k, \rho_i}(s)$ as
 2993 given by Bellman equation in Proposition 9. \square
 2994

2996 G.2 AUXILIARY LEMMAS FOR KL-DRMG

2997 **Lemma 35** (Concentration of Value Function in KL-DRMG). *Under the typical event \mathcal{E}_{KL} as defined
 2998 in eq. 104, the following concentration bound holds with probability at least $1 - \delta$:*

$$3000 \left| \sigma_{\widehat{\mathcal{P}}_h^{\rho_i}(s, \mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] - \sigma_{\mathcal{P}_h^{\rho_i}(s, \mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] \right| \leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}} + \frac{1}{\sqrt{K}},$$

3003 where $\iota = \log \left(S^3 \left(\prod_{i=1}^m A_i \right) H^2 K^{3/2} / \delta \right)$ and c_1 is an absolute constant.
 3004

3005 *Proof.* This proof establishes a concentration bound for the difference between the empirical and
 3006 true robust value functions. We use the definition of the KL-divergence operator $\sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}]$
 3007 from eq. 12 and the empirical minimum probability $\widehat{P}_{\min, h}^k(s, \mathbf{a})$ from eq. 100 to express this
 3008 difference as a supremum:
 3009

$$3010 \begin{aligned} &\left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] \right| \\ 3011 &\leq \sup_{\eta \in [\eta, H/\rho_i]} \eta \left| \log \left(\mathbb{E}_{\widehat{P}_h^k(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}}{\eta} \right\} \right] \right) \right. \\ 3012 &\quad \left. - \log \left(\mathbb{E}_{P_h^*(\cdot|s, \mathbf{a})} \left[\exp \left\{ -\frac{V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}}{\eta} \right\} \right] \right) \right|. \end{aligned} \quad (173)$$

3019 Under the high-probability event \mathcal{E}_{KL} (defined in eq. 104), we apply a known concentration inequality
 3020 from (Wang et al., 2024e, Lemma 16) to bound this expression:
 3021

$$3022 \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s, \mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s, \mathbf{a})} [V_{i,h+1}^{\dagger, \pi_{-i}^k, \rho_i}] \right| \leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s, \mathbf{a}) \vee 1\} \widehat{P}_{\min, h}^k(s, \mathbf{a})}}, \quad (174)$$

This bound holds for any η within a fine-grained cover of the interval $[0, H/\rho_{\min}]$. By applying a standard covering argument, we extend this bound to hold for all $\eta \in [0, H/\rho_{\min}]$, thereby concluding the proof of Lemma 35. \square

Lemma 36 (Bound for DRMG-KL and the robust value function of π^k). *Under event \mathcal{E}_{KL} in eq. 104 and for any EQUILIBRIUM $\in \{NASH, CE, CCE\}$, we assume that the optimism and pessimism inequalities hold at $(h+1, k)$, where these inequalities can correspond to any of the following cases of EQUILIBRIUM:*

- **NE:** Lemma 32 using eq. 136 and eq. 137,
- **CCE:** Lemma 33 using eq. 149 and eq. 150,
- **CE:** Lemma 34 using eq. 161 and eq. 162.

Then the following bound holds:

$$\left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} [V_{i,h+1}^{\pi^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} [V_{i,h+1}^{\pi^k, \rho_i}] \right| \leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s,a) \vee 1\} \widehat{P}_{\min,h}^k(s,a)}} + \frac{1}{\sqrt{K}},$$

where $\iota = \log(S^3 (\prod_{i=1}^m A_i) H^2 K^{3/2} / \delta)$, and c_1 is an absolute constant.

Proof. This proof establishes a concentration bound for the difference between the empirical and true robust value functions under the KL-divergence. By using the definition of the robust operator $\sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} [V_{i,h+1}^{\pi^k, \rho_i}]$ from eq. 12 and the empirical minimum probability $\widehat{P}_{\min,h}^k(s,a)$ from eq. 100, we can bound the absolute difference as follows:

$$\begin{aligned} & \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} [V_{i,h+1}^{\pi^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} [V_{i,h+1}^{\pi^k, \rho_i}] \right| \\ & \leq \sup_{\eta \in [\underline{\eta}, H/\rho_i]} \eta \left| \log \left(\mathbb{E}_{\widehat{P}_h^k(\cdot|s,a)} \left[\exp \left\{ - \frac{V_{i,h+1}^{\pi^k, \rho_i}}{\eta} \right\} \right] \right) \right. \\ & \quad \left. - \log \left(\mathbb{E}_{P_h^*(\cdot|s,a)} \left[\exp \left\{ - \frac{V_{i,h+1}^{\pi^k, \rho_i}}{\eta} \right\} \right] \right) \right|. \end{aligned} \quad (175)$$

Under the high-probability event \mathcal{E}_{KL} (defined in eq. 104), and by applying a known concentration inequality from (Wang et al., 2024e, Lemma 17), we can establish a uniform bound on this difference:

$$\left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} [V_{i,h+1}^{\pi^k, \rho_i}] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} [V_{i,h+1}^{\pi^k, \rho_i}] \right| \leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s,a) \vee 1\} \widehat{P}_{\min,h}^k(s,a)}}. \quad (176)$$

This inequality holds for any η in a fine-grained cover of the interval $[0, H/\rho_{\min}]$. We conclude the proof of Lemma 36 by using a standard covering argument to extend the bound to all $\eta \in [0, H/\rho_{\min}]$. \square

Lemma 37 (Bounds for RMG-KL and optimistic and pessimistic robust value estimators). *Under event \mathcal{E}_{KL} in eq. 104 and for any EQUILIBRIUM $\in \{NASH, CE, CCE\}$, we assume that the optimism and pessimism inequalities hold at $(h+1, k)$, where these inequalities can correspond to any of the following cases of EQUILIBRIUM:*

- **NE:** Lemma 32 using eq. 136 and eq. 137,
- **CCE:** Lemma 33 using eq. 149 and eq. 150,
- **CE:** Lemma 34 using eq. 161 and eq. 162.

3078 Then the following bound holds:
 3079

$$3080 \max \left\{ \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[\bar{V}_{i,h+1}^{k,\rho_i} \right] \right|, \left| \sigma_{\widehat{\mathcal{P}}_{i,h}^{\rho_i}(s,a)} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right] - \sigma_{\mathcal{P}_{i,h}^{\rho_i}(s,a)} \left[\underline{V}_{i,h+1}^{k,\rho_i} \right] \right| \right\} \\ 3081 \leq \frac{c_1 H}{\rho_i} \sqrt{\frac{L}{\{N_h^k(s,a) \vee 1\} \widehat{P}_{\min,h}^k(s,a)}} + \sqrt{\frac{1}{K}}, \\ 3082$$

3083 where $\iota = \log \left(S^3 \left(\prod_{i=1}^m A_i \right) H^2 K^{3/2} / \delta \right)$ and c_1 is an absolute constant.
 3084

3085 *Proof.* We follow the same proof lines as Lemma 36, and thereby we omit it. \square
 3086

3087 **Lemma 38** (Bound on Binomial random variable). Suppose $X \sim \text{Binomial}(n, p)$, where $n \geq 1$ and
 3088 $p \in [0, 1]$. For any $\delta \in (0, 1)$, we have
 3089

$$3090 X \geq \frac{np}{8 \log \left(\frac{1}{\delta} \right)}, \quad \text{if } np \geq 8 \log \left(\frac{1}{\delta} \right), \quad (177)$$

$$3091 X \leq \begin{cases} e^2 np, & \text{if } np \geq \log \left(\frac{1}{\delta} \right), \\ 2e^2 \log \left(\frac{1}{\delta} \right), & \text{if } np \leq 2 \log \left(\frac{1}{\delta} \right), \end{cases} \quad (178)$$

3092 hold with probability at least $1 - 4\delta$.
 3093

3094 *Proof.* Refer to (Shi et al., 2023, Lemma 8) for details. \square
 3095

3096 H OTHER TECHNICAL LEMMAS

3097 Here, we present some auxiliary lemmas which are useful in the proof.
 3098

3099 **Lemma 39** (Azuma Hoeffding's Inequality). Let $\{Z_t\}_{t \in \mathbb{Z}_+}$ be a martingale with respect to the
 3100 filtration $\{\mathcal{F}_t\}_{t \in \mathbb{Z}_+}$. Assume that there are predictable processes $\{A_t\}_{t \in \mathbb{Z}_+}$ and $\{B_t\}_{t \in \mathbb{Z}_+}$ with
 3101 respect to $\{\mathcal{F}_t\}_{t \in \mathbb{Z}_+}$, i.e., for all t , A_t and B_t are \mathcal{F}_{t-1} -measurable, and constants $0 < c_1, c_2, \dots <$
 3102 $+\infty$ such that $A_t \leq Z_t - Z_{t-1} \leq B_t$ and $B_t - A_t \leq c_t$ almost surely. Then, for all $\beta > 0$
 3103

$$3104 \mathbb{P} \left(|Z_t - Z_0| \geq \beta \right) \leq \exp \left\{ - \frac{2\beta^2}{\sum_{i \leq t} c_i^2} \right\}. \quad (179)$$

3105 *Proof.* Refer to the proof of Theorem 5.1 of (Dubhashi & Panconesi, 2009). \square
 3106

3107 **Lemma 40** (Self-bounding variance inequality (Maurer & Pontil, 2009, Theorem 10)). Let
 3108 X_1, \dots, X_T be independent and identically distributed random variables with finite variance, that is,
 3109 $\text{Var}(X_1) < \infty$. Assume that $X_t \in [0, M]$ for every t with $M > 0$, and let
 3110

$$3111 S_T^2 = \frac{1}{T} \sum_{t=1}^T X_t^2 - \left(\frac{1}{T} \sum_{t=1}^T X_t \right)^2. \\ 3112$$

3113 Then, for any $\varepsilon > 0$, we have
 3114

$$3115 \mathbb{P} \left(\left| S_T - \sqrt{\text{Var}(X_1)} \right| \geq \varepsilon \right) \leq 2 \exp \left(- \frac{T\varepsilon^2}{2M^2} \right).$$

3116 *Proof.* Refer to the proof of Lemma 7 of (Panaganti & Kalathil, 2022). \square
 3117