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ABSTRACT

Well-trained multi-agent systems can fail when deployed in real-world
environments due to model mismatches between the training and deployment
environments, caused by environment uncertainties including noise or adversarial
attacks. Distributionally Robust Markov Games (DRMGs) enhance system
resilience by optimizing for worst-case performance over a defined set of
environmental uncertainties. However, current methods are limited by their
dependence on simulators or large offline datasets, which are often unavailable.
This paper pioneers the study of online learning in DRMGs, where agents learn
directly from environmental interactions without prior data. We introduce the
Multiplayer Optimistic Robust Nash Value Iteration (MORNAVI) algorithm and
provide the first provable guarantees for this setting. Our theoretical analysis
demonstrates that the algorithm achieves low regret and efficiently finds the optimal
robust policy for uncertainty sets measured by Total Variation divergence and
Kullback-Leibler divergence. These results establish a new, practical path toward
developing truly robust multi-agent systems.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL), along with its stochastic game-based mathematical
formulation (Shapley, |1953; [Littmanl [1994), has emerged as a cornerstone paradigm for intelligent
multi-agent systems capable of complex, coordinated behavior. It provides the theoretical and
algorithmic foundation for enabling multiple agents to learn, adapt, and make sequential decisions
in shared, dynamic environments. Its practical impacts span from strategic gaming, where MARL
agents have achieved superhuman mastery (Silver et al., 20165 [Vinyals et al., 2019); autonomous
transportation, where it is used to coordinate fleets of vehicles to navigate complex traffic scenarios
(Shalev-Shwartz et al.| 2016; Hua et al.l 2024); and distributed robotics, where teams of robots learn
to execute tasks (Lowe et al., [2017; Matignon et al., 2012).

Despite the remarkable progress in MARL, a fundamental and pervasive challenge severely restricts its
reliable deployment in practice: the Sim-fo-Real gap (Zhao et al., 2020} Peng et al., | 2018)). A standard
pipeline of RL involves training extensively within a high-fidelity simulator and then deploying in
practice. However, any simulator inevitably fails to capture the full richness and complexity of the
real world, omitting subtle physical effects, unpredictable sensor noise, unmodeled system dynamics,
or latent environmental factors (Padakandla et al., 2020; Rajeswaran et al.,[2016). Consequently, a
policy that appears optimal within the simulation can be brittle and perform poorly—or even fail
catastrophically—when deployed into the noisy, unpredictable environment.

This vulnerability to model mismatch is magnified exponentially in the multi-agent context: this
uncertainty is amplified through a cascading feedback loop of agent interactions. A minor, unmodeled
perturbation that affects one agent can cause it to deviate from its expected behavior. This deviation
alters the environment for its peers, who in turn must adapt their policies. Their adaptations further
change the dynamics for all other agents, including the one first affected. This can trigger a chain of
unpredictable responses, destabilizing the collective strategy and leading to a highly non-stationary
learning environment far more volatile than that caused by strategic adaptation alone (Papoudakis
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et al.| 2019;|Canese et al.| |2021; Wong et al.| 2023)). The entire multi-agent system becomes fragile,
as the intricate inter-agent dependencies act as amplifiers for even the smallest model inaccuracies.

To enable MARL against such uncertainty, the framework of Distributionally Robust Markov Games
(DRMGs) offers a principled and powerful solution (Zhang et al., 2020; [Kardes et al.} 2011). DRMG
approach embraces a principle of pessimism. It defines an uncertainty set of plausible environment
models centered around the nominal one, and the goal is to maximize the worst-case expected returns
across the entire uncertainty set. This robust optimization strategy yields two profound benefits.
First, it provides a formal performance guarantee: if the true environment lies within the uncertainty
set, the policy’s performance is guaranteed to be no worse than the optimized worst-case value.
Second, it acts as a powerful regularizer, forcing agents to discover more generalizable policies that
are inherently less sensitive to perturbations, thereby enhancing generalization even to environments
outside the set (Vinitsky et al., 2020; |Abdullah et al., 2019} [Liu et al.| 2025).

However, despite its theoretical appeal, the current body of research on DRMGs is built upon
assumptions that create a critical disconnect from the realities of many high-stakes applications.
The prevailing algorithmic frameworks fall into two main categories: those that assume access to
a generative model (Shi et al.| [2024b} Jiao & Li, |2024), which is tantamount to having a perfect,
queryable oracle or simulator, and those designed for the offline setting (L1 et al., [2025; |Blanchet
et al., [2023)), which presuppose the existence of a large, static, and sufficiently comprehensive dataset
collected beforehand. These assumptions are untenable in precisely the domains where robustness is
most crucial. Consider applications in autonomous systems (Demontis et al., 2022) or personalized
healthcare (Alaa Eldinl 2023} |Lu et al.| 2021)). In these settings, creating a high-fidelity simulator is
often impossible, and pre-collecting a dataset that covers all critical scenarios is infeasible. Agents
have no choice but to learn online, through direct, sequential interaction with the complex and
unknown real world. In this online paradigm, data is not a free commodity to be sampled at will;
it is earned through experience, where every action has a real cost and naive exploration can lead
to severe or irreversible outcomes. This necessitates a new class of algorithms that can navigate the
exploration-exploitation tradeoff under the additional burden of worst-case environmental uncertainty.

We aim for robustness that survives contact with reality: agents must cope with misspecification
while learning purely from experience. Without simulators or sizable offline datasets, existing
approaches struggle to bridge theory and practice. This shortfall clarifies the gap we address and
motivates our central question of our work: How to design a provably effective online algorithms
for distributionally robust Markov games?

In this paper, we answer the above question by designing a model-based online algorithm for DRMGs
and providing corresponding theoretical guarantees. Our contributions are summarized as follows.

Hardness in Online DRMGs: We first revealed the inherent hardness of online learning in DRMGs.
Specifically, we first showed that the online learning can suffer from the support shifting issue, where
the support of the worst-case kernel is not fully covered by the support of the nominal environment,
by constructing a hard instance that achieve an Q(K min{H, [], Ai})—regret for any algorithm.
Moreover, we use another example to show that even without the support shifting issue, the regret can
still have a minimax lower bound of Q(\/K []; A;). Here, K is the number of iteration episodes, H
is the DRMG horizon, and [ [, A; is the size of the joint action space. These results directly imply the
hardness of online learning, comparing to other well-posed learning schemes, including generative
model (Shi et al., [2024a; Jiao & Li,[2024)) or offline learning (L1 et al., |[2025)).

A Framework for Online Robust MARL: We introduce f-MORNAVI, a novel model-based
meta-algorithm designed specifically for online learning in DRMGs. Our framework pioneers a dual
approach that synergizes the pessimism required for robust optimization with the optimism essential
for provably efficient online exploration. At its core, f-MORNAVI learns the nominal environment
model from online interactions and then incorporates a carefully constructed, data-driven bonus
term, 3. This bonus term is uniquely tailored to the geometry of the chosen uncertainty set, guiding
exploration while guaranteeing that the learned policy is robust to worst-case model perturbations.
We further present two concrete instantiations of our framework for uncertainty sets defined by Total
Variation (TV) distance and Kullback-Leibler (KL) divergence.

Near-Optimal Regret Bounds for Online DRMGs: We establish the first known theoretical
guarantees for online learning in general-sum DRMGs by providing rigorous, high-probability regret
bounds for our algorithms. The regret measures the performance gap between our algorithm and
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an optimal robust policy, thus formally characterizing the sample complexity needed to solve the
DRMG. We futher prove that our algorithms converge to an e-optimal robust policy with high sample
efficiency (see Corollary[6). Our results are significant as they are the first to demonstrate that finding
a robust equilibrium in a general-sum DRMG is achievable in a sample-efficient manner through
online interaction, without requiring a simulator or a pre-collected dataset.

2 PROBLEM FORMULATION

2.1 DISTRIBUTIONALLY ROBUST MARKOV GAMES

A Distributionally Robust Markov Game (DRMG) can be specified as MG, =
{M,8, A H {P;}icm,r}, where M = {1,...,m} is the set of m agents, S = {1,2,...,5}
denotes the finite state space, A denotes the joint action space for all agents as A = A; X --- X Ay,
where A; = {1,2,..., A;} being the action space of agent i, H denotes the horizon length. We
consider non-stationary DRMGs, i.e., r is the reward function: r = {r; s }1<i<m,1<n<m With
rin + S X A — [0,1]. Specifically, for any (i,h,s,a) € M x [H] x S x A, r; 5(s,a) is the
immediate (deterministic) reward received by the i-th agent in state s when the joint action profile
is a. Agents in a DRMG maintain their own uncertainty sets of transition kernels P;, to capture
the potential environment uncertainties in their perspective. At each step, the environment transits
following an arbitrary kernel from the uncertainty set.

Drawing inspiration from the rectangularity condition in robust single-agent RL (Iyengar, 2005}
Wiesemann et al., [2013a; [Zhou et al., 2021b; |Shi et al., 2023)), and following standard DRMG studies
(Shi et al.l 2024bza; Zhang et al.,2020), we consider the agent-wise (s, a)-rectangular uncertainty
set, due to its computational tractabilityﬂ Namely, for each agent 7, the DRMG specify an uncertainty
set P;, which is independently defined over all horizons, states, and joint actions:

P = & PLi, ;(s,a), (1)

(h,s,a)e[H]xSx.A

where ® denotes the Cartesian product. At step h, if all agents take a joint action ay, at the state sy,
the transition kernel can be chosen arbitrarily from the prescribed uncertainty set P/, ;(sn,an). We

consider the uncertainty set P/}, (s, a) centered on a nominal kernel P*:

Definition 1 (f-Divergence Uncertainty Set). The f-divergence uncertainty set is defined as:
Pl s(s.2) = {Pu € AWS) : F(Pu PiCls,a)) < i} @

where the f-divergence is f(Py, Pr(-|s,a)) = > f (%) Pr(s']s, a).
s'E€S h ’

The f-divergence uncertainty sets with different f have been extensively studied in distributionally
robust RL (Clavier et al.| 2023} [Shi et al.,[2023; [Panaganti et al., 2022; |Yang et al.,|2022; Wang et al.|
2024e};[Zhang et al., [2025)). In this work, we focus on TV and KL-divergence.

Robust Value Functions. For a DRMG, each agent aims to maximize its own worst-case
performance over all possible transition kernels in its own (possibly different) prescribed uncertainty
set. The strategy of agent i taking actions is captured by a policy m; = {m; 5 : S = A(A;)}HL,.
Since the immediate rewards and transition kernels are determined by the joint actions, the
worst-case performance of the ¢-th agent over its own uncertainty set P; is determined by a
joint policy 7 = {m, : S — A(A)}L,, which we refer to as the robust value function

i : »Pi .. . . . Pi A
V7,7 and the robust Q-function Q7 *, for an initial state s and initial action a: Q] /" (s,a) =

infpep E; 5 [Zf_h rit(se,ar) | sp=s,a, = a] ,and V" (s) = doam(@ls)Qiy (s, ).

where the expectation is taken over the randomness of the joint policy 7 and the kernel P.

"Robust MDPs without rectangular assumption can be NP-hard to solve (Wiesemann et al.,[2013b).
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Solutions to DRMGs. Due to different objectives among players, the goal of a DRMG is to achieve
some notions of equilibrium (Fudenberg & Tirole, |1991)). For any given joint policy 7, m_; is the
marginal policies of all agents excluding the i-th agent. The agent 7’s best response policy to m_;,

7T;r Pi(m_;), is the policy that maximizes its own robust value function, at the give step h and state s:
ThPi(r_;) £ arg MAaX A (A,) VZ_(Z”" Xm):#i (5). The corresponding robust value function is

Ty —i,pi IXT_i,pi
Vo () & max VETTU(s). 3)

The goal of a DRMG is to compute an equilibrium policy (Fudenberg & Tirole} |1991])), such that
each agent’s policy is the best response to the others, so that no single agent can improve its robust
value by deviating while the rest remain fixed. Standard notions of equilibria include robust Nash
Equilibrium (NE), robust Coarse Correlated Equilibrium (CCE), and robust Correlated Equilibrium
(CE) (their exist are shown in (Blanchet et al., | 2023)), defined as follows:

Robust e-NE. A product policy 7 € A(A;) X -+ x A(A,,) is a robust-¢ NE if for any s € S:
gapye (7, ) 2 maxicq { V7 (5) = V() } < .

Robust NE ensures that, the agent i’s policy induced by the NE is a best response policy
to the remaining agents’ joint policy (up to €), thus no agent can improve its worst-case
performance—evaluated over its own uncertainty set P;,—by unilaterally deviating from the NE.
Robust e-CCE. A (possibly correlated) joint policy m € A(A) is a robust-¢ CCE if for any s € S:
gapccg (T, 8) £ max;ec g {Vif’i’pi(s) - VP (s)} < . Robust CCE relaxes the notion of NE
by allowing for potentially correlated policies, while still ensuring that no agent has an incentive to
unilaterally deviate from it.

Robust ¢-CE. A joint policy @ € A(A) is a robust-e CE if for any s € &:
gapcg(m, 8) £ max;e {max¢eq>i VTP (s) — Vflp(s)} < e. Here, a strategy modification
¢ = {¢n,s}(h,s)e(m)xs for player i is a set of [H] x S functions from A; to itself. Let ®; denote the
set of all possible strategy modifications for player . Given a joint policy 7, applying a modification

¢ yields a new joint policy ¢ ¢ m, which matches 7 everywhere except that at each state s and timestep
h, player i’s action a; is replaced by ¢y, 5(a;).

Online Learning in DRMGs. We consider online learning in DRMGs, aiming to compute equilibria
{NASH, CCE, CE} via interaction with the nominal environment P* over K € N episodes. Each
episode starts from s¥, proceeds with a policy 7% chosen from experience, and ends with an update
for the next round. We use robust regret as our performance metric, which compares the learned
outcome to the target equilibrium in the presence of model error.

Definition 2 (Robust Regret). Let 7% be the execution policy in the k" episode. After a
total of K episodes, the corresponding robust regret is defined as Regret yasn cce,cey (K) =

K
2kt 8aP{NASH,CCE,CE} (k, sh).

Notably, if an algorithm has a sub-linear regret, it achieves a robust equilibrium as K — oc.

3  OPTIMISTIC ROBUST NASH VALUE ITERATION

We then present Multiplayer Optimistic Robust Nash Value Iteration for f-Divergence Uncertainty
Set (f-MORNAVI), a meta-algorithm for episodic, finite-horizon DRMGs with interactive data
collection. f-MORNAVI handles general f-divergences, with emphasis on KL and TV.

3.1 ALGORITHM DESIGN

Our algorithm has the following three stages.

Stage 1: Nominal Transition Estimation (Line 4). At the start of each episode k € [K], we

maintain an estimate of the nominal kernel P* using the historical data D = {(s},a}, s, )} ',

T=
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Algorithm 1: f-MORNAVI

1: Input: Uncertainty level p; > 0 for all i € M.
2: Initialize: Dataset D = ()
3: forepisode k =1,..., K do
Compute the transition kernel estimator P/f(s, a, s') as given in eq.

4
5. Set Vit () = V52 () = 0 foralli € M.
6.
7

forsteph =H,...,1do
Forall (s,a) € S x Aand i € M, update @f,’,fi(s,a) [eq. and Qf’f’(s, a) [eq. El]

7kpi k,pi
8: Forall s € S, update 7}: (-] s) by eq. [7, update V" (s) and Vi () by eq.
9: end for
10: Receive initial State s¥ € S
11: forsteph=1,...,H do
12: Take action a) ~ (- | sf’), observe reward 7 (s}, af}) and next state s} _ ;.
13: end for
14: SetD=DU{(s},af, sk, )L,
15: end for

16: Output: Return policy 7 = {7*} K .

collected from past interactions with the training environment. Specifically, f-MORNAVTI updates
the empirical transition kernel for each tuple (h, s,a,s’) € [H] x S x A x S as follows:

Njy(s,a,8")
Nj(s,a)

1

PF(s|s,a) = (if NF(s,a) > 0), and Pf(s'|s,a)

where NF(s,a,s’) and Nf(s,a), are calculated on the current dataset D by Nf(s,a,s’) =

k-1
1{(s},a},s7,1) = (s,a,¢)}, and Nf(s,a) = > Nf(s,a,s’). Note that we adopt a

T=1 s'eS

model-based approach that estimates transition kernels. Although this leads to higher memory

consumption, model-free DRMGs are inherently challenging due to the non-linearity of worst-case

expectation w.r.t. nominal kernels, which makes model-free estimators biased or sample-inefficient

(Liu et al.} 2022; |Wang et al., 2023c; 2024d; |[Zhang et al., [2025)).

Stage 2: Optimistic Robust Planning (Lines 5-9). The f-MORNAVI constructs the episode policy
7% via optimistic robust planning based on the empirical model Pk This involves estimating an
upper bound on the robust value function, following the principle of Upper-Confidence-Bound (UCB)
methods, which are well-established in online vanilla RL (Auer & Ortner, [2010; |Azar et al., 2017
Zanette & Brunskill, |2019; [Zhang et al., 2021b; Ménard et al., 2021} |[Zhang et al.| 2024)), and this

optimism encourages exploration of less-visited state—action pairs.

To this end, f-MORNAVI maintains a bonus term at each episode k, capturing the gap between

the robust value function under P* and that under the true model. This bonus is added to the robust
Bellman estimate to ensure its optimism. Specifically, for each (h,s,a) € [H] x S x A, we set

—k,pi . —k,p;

Q“f (s,a) =min {T,’JL(S, a)+ TBr (s,a) [V“fﬂ] + Bﬁhj(s, a), H} 5)
i — k,pi

Qf;f (s,a) =max {ri,h(s, a)+ TBLi (s,a) [Z“fﬂ] - @k,h,f(& a), 0}, (6)

here, op[V] = inf pep Ep[V] is the support function of V' over the uncertainty set P, and can be
calculated through its dual representation (see Lemma; P 7 is the uncertainty set centered at Pk

from eq. 73527]0(3,21) = {Ph e A(S): f(Ph,ﬁ}]f(~‘$,a)) < pi}.

Each of these estimates in eq. [5]and eq. [] are based on estimated robust Bellman operators (see
Appendixfor details) and a bonus term ﬁf h)f(s, a) > 0. The bonus term is constructed (we will

discuss the construction later) to ensure the estimation becomes a confidence interval of the true

robust value function, i.e., Q;’;:’i’pi (s,a) € [thp (s,a), @f}f? (s,a)], with high probability.
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EQUILIBRIUM subroutine (Line 8). Given robust ()-function estimates Qf’}f’i(s,a) and
@i’fi(s,a) for i € M at step h, the sub-routine EQUILIBRIUM € {NASH,CCE,CE} finds a

corresponding equilibrium 7% (-|s) for the matrix-form game with pay-off matrices {@f[; (s,) biem:
T (-]s) EQUILIBRIUM({@i}fi(s, ~)} (7
Note that finding a NE can be PPAD-hard (Daskalakis et al., |2009)), but computing CE or CCE

remains tractable in polynomial time (Liu et al.| 2021)). We follow standard MG studies, assuming
EQUILIBRIUM can be executed, and mainly focus on sample complexity and statistic efficiency.

z‘eM)'

We then update the estimation of VhT TP ag
T7kPi Ak.pi Nz i
Vif: (S) = IEa,~7r"”'(~|s) |:Qz,hp (Saa):| and Kﬁ}f (8) = anﬂ'k(-|s) [Qi}i) (s,a)] . (3

Note that while the lower estimate in eq. [6]does not influence policy execution directly, it plays a
crucial role in constructing valid exploration bonuses and ensuring strong theoretical guarantees. By
leveraging both upper and lower bounds, the algorithm performs optimistic robust planning, enabling
structured, uncertainty-aware exploration that balances exploration, exploitation, and robustness.

Stage 3: Execution of Policy and Data Collection (Lines 10-16). After evaluating the policy
{mF}H_| for episode k, the learner takes action based on 7 and observes the reward 7, (sf, af) and
next state s’,j 1> which get appended to the historical dataset collected till episode & — 1.

4 HARDNESS OF ONLINE LEARNING

In this section, we aim to discuss the inherent hardness of online learning in DRMGs from two
aspects: (1) When there is the support shift issue, no MARL algorithm can obtain a sub-linear regret
on a certainty DRMG; (2) Even if there is no support shift issue, there exists a DRMG such that
any online algorithm suffers from the curse of multi-agency. This is a separation between DRMGs
with interactive data collection and generative model/offline data, and also between DRMGs with
non-robust MGs, showing the inherent challenges of online DRMGs.

4.1 HARDNESS WITH SUPPORT SHIFT

Support shift (Lu et al.,2024) refers to the case that the support of the worst-case transition kernel is
not covered by the support of the nominal kernel. It can happen when, for instance, the uncertainty
set is defined through TV. It will result in a challenge that, for those states that is not covered by the
nominal kernel, there is no data available, so that the agent can never learn the optimal robust policy
efficiently. Specifically, we derive the following result to illustrate the hardness.

Theorem 1. There exists a TV-DRMG, such that any online learning algorithm satisfies that:

jréfg;E[RegretNASH(K)] > Q(pK -min{H, lg/[ AZ})

Our construction is deferred to Example[I0]in Appendix. This regret bound is linear in the number of
episodes K, creating a combinatorial explosion that makes the problem information-theoretically
intractable. Moreover, our result shows that when the game horizon H is large enough, the minimax
lower bound depends on the joint action space, showing the hardness of online learning compared to
generative models and offline settings.

4.2 HARDNESS WITHOUT SUPPORT SHIFT

We then illustrate the hardness of online DRMGs when there is no support shift. Note that when the
uncertainty set is defined through, e.g., KL divergence, the worst-case support will be covered by the
nominal one, so there will not be any support shift. However, we construct another example to show
that, even without the support shift, the online learning can still be challenging and inefficient.
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Theorem 2 (Lower Bound for Robust Learning without Support Shift). There exists a DRMG, such
that any learning algorithm suffers the following cumulative regret lower bound over K episodes:

inf E[R K)]>Q K A;).
fl&g [Regretyagy(K)] > (/ Zg/l z)

This result illustrates that, even without any support shift, some hard instance can require at least
Q (w /K], Ai) regret. Our result hence suggests that the dependence on the joint action space
may be inevitable in online DRMGs, which suffer from the curse of multi-agency. Specifically, in
DRMGs, agents need to solve the robust optimization (i.e., estimate the support function op(+)),
which requires knowledge of the whole transition kernels to find the worst-case from the uncertainty
set. Thus the agents have to explore the whole model, introducing an inevitable dependence on
[, A;. In non-robust MGs, however, agents can estimate the single nominal performance merely
from samples instead of model estimations, thus the multi-agency curse can be broken.

5 THEORETICAL GUARANTEES

5.1 REGRET BOUND FOR TOTAL VARIATION

As discussed in Section[d] no efficient algorithm can be expected due to the support shifting issue. We
hence adopt a standard fail-state assumption (Lu et al., 2024} Liu et al.,|2024)) to ensure the worst-case
kernel support will be covered by the nominal one, bypassing the issue.

Assumption 3 (Failure States). For any agent i, there exists an (agent-specified) set of failure states
St C S, such thatri(s,a) = 0, and P (s']s,a) = 0, Va € A,Vs € S},Vs' ¢ St

This assumption is only needed for TV case. Assumption [3]is a standard assumption in single-agent
robust RL studies (Panaganti et al.| 2022} Lu et al.,|2024), and we adapt it to multi-agent cases.

We then present our threotical guarantees.
Theorem 4 (Upper bound of TV-MORNAVI). Denote pumin := min;ep pi. For any 6 € (0,1),

vRipi R

i + e, Brpcrn [THL VIR
Nf(s,a)V1 \/N,’;f(s,a)vl H

\/—%, where 1 = log (S’Q(Hﬁ1 Ai)HQKS/Q/é) and ¢y, co are absolute constants. Then under
Assumption |3| for EQUILIBRIUM being one of {NASH, CE, CCE}, with probability at least 1 —
0, the regret of our TV-MORNAVI algorithm can be bounded as: Regret{NASHLCE?CE}(K) =

O (o a1 1258 (T 1))

cll,Varlg (

}’f -|s,a) 2E

we set ﬁﬁhj(s, a) as

5.2 REGRET BOUND FOR KL-DIVERGENCE

We then study the regret bound of KL-divergence set. As discussed, KL set is free from supporting
issue hence no additional assumption is required. Our regret bound result is as follows.

Theorem 5. For any §, set thf(s,a) in KL-DRMG as 2CPf'H\/(Nk( : 1L)ﬁk ) +
Y ‘ w (S P n(s,a
\/ 7. where ﬁr’;in,h(&a) = gleig{ﬁ}’f(sﬂs,a) : ﬁ,ff(s’|s,a) > 0}, ¢ =

log (SQ(H;’;1 Ai)H2K3/2/5), and cy is an absolute constant. Then for EQUILIBRIUM
being one of {NASH,CE,CCE}, with probability at least 1 — ¢, it holds that

. 1
Regretyash.ccecey(K) = O (\/H4 exp(2H2)KS( [Licm Ai) (Pﬁlinpr’;in) ) , here,
Pr. = MiN(s a5 h):P,(s'|s,a)>0 (5[, @) is the smallest positive entry of the nominal kernel.

We note that exp(H) term is inherently from the duality form of the distributionally robust
optimization with KL-ball (see equation [I2)). It is standard in existing robust RL studies under
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KL settings, and can be directly replaced by (PX; )~ (see, e.g., (Panaganti & Kalathil, 2022

min

Blanchet et al.l 2023} [Ghosh et al', [2023}; [Si et al., 2020; [Xu et al.| 2023b; [Zhou et al.|[2021a)). It

reflects the inherent hardness of the KL-based robust RL, and are inevitable in sample complexity.

In practice, for moderate horizons, PJ;, > 0, and non-vanishing o, these worst-case factors remain

controlled and do not pose serious issues.

We then briefly discuss the construction of 5 under the two cases. Recall that in our meta—algorithm
f-MORNAVI, for each agent 7, episode k and step h, we maintain an optimistic and a pessimistic
robust Q—estimate Q1. , (s, a), Q7. (s,a), defined via the empirical robust Bellman operators as

in eqs and shifted by an exploration bonus ﬂf,h,f(s, a) > 0. Weuse op[V] :=infpep Ep[V]
for the support function over the uncertainty set. The purpose of the bonus is to make these estimates
form a tight, uniform high—probability confidence interval around the true robust ()—values, i.e.

Z:;—iapi (s,a) € [sz"i’h(s,a), QZfi,h(s,a)} for all (¢, h, k, s,a). 9)

TV—-uncertainty. For TV-balls we use the dual representation of the robust Bellman operator in
equation Under Assumption 3 (failure states) it holds that mins V'(s) = 0, and the deviation
between the true and empirical robust operators at (h, s, a) then decomposes as

Ep; (1s.0) Vil = B .0y Vil

gyl V] = 0o 2 V1] < el

To simultaneously control the estimation error for all (i, h, k, s, a) and all value functions of the
formV =V, . and V', , . |, we utilize the standard e-net (Shi & Chi, 2022; |Li et al., [2024a)
of the interval [0, H/pmin], and construct a Bernstein—type concentration inequality for empirical
expectations of the random functions V,, as

(~|s,a)(U) L n H2\/§
k
Ny (s,a) V1 NF(s,a) Vv 1

Ep; (1s.0)[U] = Epp o U] (10)

. . Vil VL, i
for all U with [|U||oc < H. In our algorithm we set U = —LtHo—ktlil fand AV = VZ}MH —
v 41, Which allows us to relate the variance under P* and P* and to control the gap E[AV] that
appears in the robustness amplification term. Combining equation [I0] with these comparisons yields

TPLL (P (-ls,a) [Vkpﬁ,hﬂ] T OpLi, (PE(-]s,a)) [Vkpfi,hﬂ]‘

Varﬁ,f(-|s,a) [%(Vkp,;,thl +K2fi,h+1)] L N H?VS,

1
~ + EAk~Sa AV.
N}’f(s,a)\/l N,’f(s,a)\/l H Ph(|,)[ ]

This motivates choosing the TV—bonus as

TP i
% B ClLVﬁrﬁ,ﬁ(.\s,a) [%(Vk,i,h-&-l + Kﬁ,i,hﬂﬂ 2 coH?V/ St
ﬁi,h,f(s’ a) - Nk( yv1 +H EP;LC('IS,U,) [AV] +
h\5 @ NE(s,a) V1

With this choice, Lemma [20]shows that equation [0]holds under TV—uncertainty.

KL-uncertainty. For KL-balls we again appeal to the dual formulation equation [I2} Thus the robust
Bellman operator becomes a log—moment generating function of V. The key difficulty is that we now
need to control the deviation between the true and empirical log—MGFs,

1
X log E};’I:("S)a)[ exp(—)\V)]

uniformly over all (i, k, k, s, a) and the random value functions V' = V% 41 generated by the

algorithm. We utilize the Hoeffding’s inequality to derive a self-normalized concentration inequality
for empirical MGFs:

’log]Ep* (V] —logEp, [6_’\‘/” S \/ L

b

1
Y log Ep’:(_‘sya)[exp(—)\V)] +

(N}]f(s’a) v 1) Pr;in,h(&a) .

1

Nie
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Multiplying both sides by H/p; (since A < p;/H) and using the boundedness || V|| < H to control
higher—order terms in the MGF expansion, we obtain the local deviation

min,h

H L
et ricinanlV] = o apcrnan V] S \/(Nk(s VD) Py (s:0)°

Since only the support of P* matters, and we only observe empirical transitions, we replace

Pin i (s, a) by its empirical counterpart Pmln (s, a), at the cost of an extra factor that is absorbed
into the constants (cf. Lemma[3T). This leads to the KL-bonus
H L 1
BE, +(s,a) = 2c;p— + 4/ —=.
mg(5:0) = 261 (Nf(s,a) V1) Pk (s.a) K

5.3 SAMPLE COMPLEXITY

As a direct corollary, we derive the sample complexity to learn an e-equilibrium. Using a standard
online-to-batch conversion (Cesa-Bianchi et al.,|2001), we have the following results.

Corollary 6 (Sample Complexity). With probability at least 1 —0, and under the settings of Theoremd]
and Theorem[3] the number of samples required to find an e-approximate equilibrium is bounded as:
O (e 2 min {p;iln,H} HSS(HZ.GMA-)) for TV-DRMG
O(e2H exp(2H)S ([T g Ai) (P2 Pin) ' )s for KL-DRMG

pmm min

KH =

Our results hence implies that, despite the inherent hardness of online learning in DRMGs, our
algorithm is able to learn an equilibrium with efficient sample complexity. As we shall discussed in
the next section, our complexity bounds are near-optimal (expect the term [ ], As).

6 COMPARISON WITH PRIOR WORKS AND DISCUSSION

We then compare our results with prior works (the detailed Comparisons are shown in Table[T).

Table 1: Comparison with prior results. C /p are coverage coefficients for offline learning.

ile gt(t)lgfhf; Uncertainty Set Sample Complexity
Generative ~
| (Shi et al| 2024b) v O (¢ HS([Tiepq Ai) min {ppin, H})
Generatlve . s
| (iao & Li} 2024) Contamination Oe ZHgs(ZieM Aj) min {pmln7 })
Generative . =
| (Shietal,|2024a) TV (fictitious) & (6 4HGS(ZiGM A;) min {pmm’ }>
Offline KL O (e 2pmCo H* exp(H) S*([T;e pq Ai))
(Blanchet et al., [2023) TV (’)( —20r HAS2([, " >>
u i€ 7
Offline A .
| (Lietal}p025) v O (e ?CyH*S(X, Ag) min {f(H, p), H})
Online A .
(Ma et al}, 2023) KL O(e 2 H%S(max;{A;})?) (with an oracle)
Online v O (€ H*S (e A min {pphy, H})
(Qur worl) KL O (2t (Pin)HP exp2H2)S ([Tie s A1)
Generative ~
Lower bound TV Q (6—2H3S(maxieM A;) min {p;iln, H})
| (Shi et al., |2024b)

A substantial body of research on DRMGs has focused on two primary settings: (i) generative model
setting, where the agents can freely sample from all state-action pairs (Shi et al., [2024ab; J1a0
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& Lil, [2024); (ii) offline setting, which relies on a comprehensive, pre-collected dataset (Blanchet
et al., 2023 L1 et al., [2025). As we discuss in Section both of these avoid exploration and are
therefore easier than the online regime we consider. Despite this added difficulty, our algorithm
attains complexities comparable to those reported for the generative and offline settings.

For both uncertainty sets, our results match or improve upon previous results and the minimax lower
bound in all parameters except for the action-product term, [ [, A;, under the generative model setting.
In the offline setting, if the dataset is generated uniformly, the convergence coefficients C* /p from

(Li et al.,[2025; |Blanchet et al., [2023) introduce an additional HZ A; term into the sample complexity.
Consequently, our results also match or surpass the offline complexity in all parameter dependence.
This raises an important open question: Can any DRMG learning algorithm overcome the curse
of multi-agency and eliminate the dependence on [ [, A; under general settings?

While some works (Shi et al.| 20244} Jiao & Lil[2024; L1 et al., 2025; Ma et al., [2023) have achieved
independence from [ [, A;, it remains unclear whether these improvements are applicable to general
DRMGs. Specifically, the results in (Shi et al., | 2024a) and (Jiao & Li,[2024) are developed for special
uncertainty sets with desirable properties. For instance, the fictitious TV uncertainty set in (Shi et al.|
2024a) allows the global transition kernel to be estimated from a single agent’s local information;
And robust RL under contamination models is known to be equivalent to a non-robust problem with a
specific discount factor (Wang et al.,2023a). And the improvement in the offline setting is attributed
to the benefits of the coverage coefficient.

The only online method (which also breaks the curse of multi-agency) is presented in (Ma et al.,[2023).
However, their algorithm relies on additional assumptions about uncertainty sets and a powerful oracle.
This oracle is required to provide an e-accurate estimation of the worst-case performance, op, [V]
(see Theorem 12 of (Ma et al.,|2023))), without any need for exploration. A central challenge in the
analysis of robust learning algorithms is precisely quantifying this estimation error, as demonstrated
in works like (Shi et al., [2023; Xu et al.,[2023a; [Panaganti & Kalathil, [2022; [Liu & Xu, [2024)). By
assuming the existence of such an oracle, they bypass this core challenge, which significantly reduces

their sample complexity. Moreover, their results need additional assumptions on the radius p. For
Phin
H

instance, it is assumed that p < , whereas ours do not require any of them.

Therefore, the complexity reduction in these works is in fact a blessing of their specific uncertainty
set structures, the properties of offline coverage coefficients, or the use of an impractical oracle. As
our lower bound derived in Section[d} we argue that the dependence on the joint action space may be
inevitable in DRMGs. In the robust settings, agents need to estimate the entire nominal kernel so that
they can learn the worst-case from the uncertainty set through distributionally robust optimization,
which requires samples from all joint actions to estimate the whole transition kernel; Whereas in
non-robust case, there is only one transition kernel and agents can use samples to directly estimate
the performance under it, instead of estimating the whole transition model. We leave the exploration
of this direction, including whether practical relaxations and techniques can avoid it, for future work.

7 CONCLUSION

In this paper, we introduced the Multiplayer Optimistic Robust Nash Value Iteration (MORNAVI)
algorithm, pioneering the study of online learning in DRMGs. Our work provides the first provable
guarantees for this challenging setting, demonstrating that MORNAVTI achieves low regret and
efficiently identifies optimal robust policies for TV-divergence and KL-divergence uncertainty sets.
This research establishes a practical path toward developing truly robust multi-agent systems that
learn directly from environmental interactions. Despite the inherent hardness of online DRMGs, our
algorithm achieves complexity results comparable to generative model and offline settings. This work
also highlights a critical open question: whether online DRMG learning algorithms can overcome the
curse of multi-agency and eliminate the dependence on the joint action space size. Future work will
explore this fundamental challenge to advance the scalability of robust MARL.
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A USE OF LARGE LANGUAGE MODELS

We used ChatGPT only as a general-purpose assistant for language editing and typesetting. Its role
was limited to (i) improving grammar, style, and readability, and (ii) LaTeX support—adjusting
algorithm placement, tidying BibTEX entries and citation styles, and resolving compile issues (e.g.,
Type-3 font warnings and package conflicts). All ideas, derivations, and final claims were conceived,
checked, and validated by the authors, who bear full responsibility for the paper’s content.

B RELATED WORKS

In this section we discuss other related works.

Single-Agent Robust RL. Robust RL for single-agent settings has been extensively studied
across a wide range of formulations. In particular, a substantial body of work has examined the
generative-model setting (Clavier et al.| 2023} [Liu et al.} 2022} |[Panaganti & Kalathil, 2022; Ramesh
et al.,|2023;Shi et al., [2023} [Wang et al., [2023b; 2024cfb; [ Xu et al.,2023a; Yang et al., [2022}2023),
where the agent is assumed to have access to a simulator. These studies develop distributionally robust
RL algorithms under various uncertainty sets, including TV, KL, XQ, and Wasserstein divergences.
Another, and arguably more challenging, line of research focuses on the offline setting (Blanchet
et al., 2023} Ma et al.| [2022; [Panaganti et al., |2022; |Shi & Chil [2024; [Zhang et al., 2023} [Liu &
Xul, 2024; Wang et al., [2024¢} [Blanchet et al., [2023]; [Wang et al.| [2024a). In this setting, the agent
must learn exclusively from a fixed offline dataset, without the ability to collect additional online
samples. Finally, we consider the online setting (Badrinath & Kalathil| |2021; Dong et al.| [2022; L1
et al.,|2022; Liang et al.}[2023;|Wang & Zou, 2021), where the agent learns exclusively through direct
interaction with the environment. Prior work spans model-based, model-free, and policy-gradient
approaches, with some methods, such as the policy optimization algorithm of (Dong et al.,|2022),
achieving sublinear regret guarantees.

Robust MARL. Besides the distributionally robust Markov games we considered in our paper, there
are also other works investigate robustness in MARL for cooperative tasks, where all agents share
a unified objective. (Bukharin et al.l|2023) enhance robustness through adversarial regularization,
perturbing the environment to encourage Lipschitz-continuous policies. (Lin et al., [2020) explore
adversarial attacks on MARL agents as a means of improving resilience, while (Li et al.,|2019)) extend
this approach to continuous action spaces by modifying the MADDPG algorithm (Lowe et al., [2017)
to focus on worst-case actions—a narrower interpretation of worst-case optimization in robust RL.
(Wang et al.| 2022) studied robust MARL with network agents.

Another line of research focuses on the robustness in MARL under observation uncertainty, under the
formulation of partially observable MDPs. The framework of observation-robust games is proposed
in (He et al.l 2023} |Han et al.| [2024). Observation-robust cooperative MARL is studied in (Zhou
et al., [2024).

Non-Robust Markov Games. Markov games (MGs), or stochastic games, introduced by (Shapley,
1953)), form the standard foundation for multi-agent reinforcement learning (MARL), particularly in
equilibrium learning. Comprehensive surveys such as (Busoniu et al.} 2008}, |Oroojlooy & Hajinezhad,
2023} |Zhang et al.,[2021a)) offer thorough coverage of the field’s evolution. Early work in MARL
focused on asymptotic convergence guarantees (Littman et al., 2001} [Littman & Szepesvari, [1996)),
whereas recent research emphasizes finite-sample analyses to establish non-asymptotic guarantees,
especially for learning Nash equilibria (NE)—a central solution concept. The existence of NE
in general-sum MGs was shown by (Fink} [1964), and the algorithmic foundation was laid by the
seminal work of (Littman, [1994). Classical algorithms such as Nash-Q (Hu & Wellman, 2003)),
FF-Q (Littman et al., 2001}, and correlated-Q learning (Greenwald et al.| 2003 were proposed to
compute NE and its variants. However, computing NE in general-sum multi-player settings remains
PPAD-complete (Daskalakis}, 2013)), and no polynomial-time algorithms exist for this case (Jin et al.|
2022} Deng et al., 2023). In contrast, the two-player zero-sum setting admits tractable solutions, with
the first polynomial-time algorithm developed by (Hansen et al., |2013)). To address the computational
intractability in general-sum MGs, attention has shifted to weaker notions like CE and CCE, with
polynomial-time algorithms such as V-learning (Jin et al., 2021;Mao & Basar,[2023}|Song et al.,[2021)
and Nash value iteration (Liu et al.,[2021) enabling efficient computation. Furthermore, significant
progress in finite-sample analysis—spanning both model-based and model-free algorithms—has

18



Under review as a conference paper at ICLR 2026

been achieved in the two-player zero-sum setting, as evidenced by (Bai & Jinl 2020; [Xie et al.,
2020; |Cut et al.l 2023} |Chen et al., [2022; |Liu et al., 2021} [Feng et al.l 2023} [Li et al., 2024b),
advancing the theoretical understanding of equilibrium learning in standard MARL without robustness
considerations.

C DRMG WITH f-DIVERGENCE UNCERTAINTY SET

We review the formulation of DRMG with f-divergence uncertainty sets. This framework operates
under the S x A-rectangularity assumption, where the nominal transition probability P* and the
agent-specific radius p; for i € M define the robust problem as per Definition|[T}

Lemma 7 (Strong duality for f-divergence). Let P}’ (s, a) be an f-divergence uncertainty set as
defined in Definition [I| For any value function V; : S — R and a nominal transition kernel
P*: 8§ x A — A(S), the worst-case expected value, TpLi (s,a) Vi] = infpep;i (s.a) [PVi] (s, @),

admits a dual representation given by:

IPLi 1(s.a) [Vl= sup { - ’\ZP*(S)JC* (77—)\V(s)> = Api +77},

A>0,n€R seS

where [* is the convex conjugate of f.

The detailed proof is given in Lemma B.1 of (Yang et al., 2022).

Corollary 8 (Dual representation for TV and KL-divergence). Under the assumption of S %
A-rectangularity, the dual representation from Lemma[7] simplifies to the following for two specific
cases of f-divergence. For any value function V : S — [0, H] and a nominal distribution P} over
the next states:

TV-Divergence. For an uncertainty set defined by TV-divergence, where f(t) = %‘t — 1|, the robust
expectation opei (, o[Vi] is expressed as:
7525 petomlV] = 50§ By [0, - 10)
Py (s:2) nelo. H] i (ls,a)
—gmax(O,n—gleigV}(s’))—i—n}. (11)

KL-Divergence. For an uncertainty set defined by KL-divergence, with f(t) = tlog(t), the robust

expectation opei (s a) [Vi] is expressed as:

Vi
TPt e s Vil = ne{;g}l;/pi] { —nlog <EP;(-|s,a) [exp{ - n}]) - nm} (12)

ROBUST BELLMAN EQUATIONS.

Analogous to standard MGs, the following proposition provides the robust Bellman equation for
DRMG:s. In particular, the robust value functions Vf};p ‘(s) associated with any joint policy 7 for all

(i,h,s) € M x [H] x S obeys the following proposition given below:

Proposition 9 (Robust Bellman Equation). Under the S x A-rectangularity assumption, for any
nominal transition kernel P* and joint policy T, the robust Bellman equation holds for any (i, h, s, a):

QI (5,0) =rin(5,@) + Tpri () [Vij;ﬁil] (13)
Vifrﬂpl(s) =Eqm,(]9) {er,hpz(s, a)} (14)

The detailed proof of Proposition E] for finite-horizon RMDP is given in (Blanchet et al. 2023|
Proposition 2.3). We emphasize that the robust Bellman equation in|14{is fundamentally grounded
in the agent-wise (s, a)-rectangularity condition imposed on the uncertainty set. This condition
decouples the dependencies of uncertainty across agents, state-action pairs, and time steps, thereby
enabling the recursive structure of the Bellman equation.
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D NUMERICAL EXPERIMENTS

In this section, we develop numerical experiments to validate our theoretical results. We highlight that
numerical experiment for Markov games can be significantly challenging due to, e.g., the equilibrium
identification challenge and computational barrier (Shoham & Leyton-Brownl 2008)), hence we use
some small-scale experiments to validate our results.

D.1 FuLLY COOPERATIVE DRMG

As the first step in numerical experiment, we design a 2-agent, 2-step fully cooperative DRMG (with
identical rewards for both players), to illustrate the separation between our robust learning algorithm
and the non-robust ones in standard Markov games.

The game is formally defined by the following components:

o Agents (M): The set of agents is M = {1, 2}.
* Horizon (H): The game has a finite horizon of H = 2.

* State Space (S): The state space is S = {so, Su, Sar, s7}. The game always starts in state
sp at h = 1. The states sy (High), sj; (Medium), and s (Trap) are the potential states for
h = 2, and the episode terminates after this step.

* Action Space (A): Each agent has two actions, A; = {0, 1} for i € M. The joint action
space is A = A; x As, with joint actions a = (a1, a2) € {(0,0),(0,1),(1,0), (1,1)}.

In our game, agents receive no reward at the first step: r; 1(so, a) = 0 for all 4, a. At step h = 2, the
reward 7; 2(s, a) for both agents is determined by the current state s € {sy, sar, 7} and the joint
action a. The rewards are defined as:

* At sy (High): This is the high-reward state, where 7; 2(sz, a) = 1 for all 4, a.
* At s;; (Medium): This is a medium-reward state, where r; 2 (sar, a) = 0.6 for all 4, a.

* At sy (Trap): This is the low-reward, trap state, where r; o(s7, a) = 0 for all ¢, a.

We then set the nominal transition kernel from s at h = 1, P} (|so, a). The probabilities are detailed
as follows:

Table 2: Nominal transition probabilities Py (-|so, @) from the start state.

Joint Actiona Py (smlso,a) Py(sml|so,a) Py(sr|so,a) Description

a=(1,1) 0.90 0.00 0.10 Risky (high reward, trap support)
a=(0,0) 0.60 0.40 0.00 Safe (no trap support)

a=(1,0) 0.50 0.25 0.25 Mediocre

a=(0,1) 0.50 0.25 0.25 Mediocre

It can be seen that, under the nominal kernel, the risky action is preferred as it has higher probability
to transit to sy. However, when there are model mismatch between the training and deploying
environment, and under the risky action, the probability of transiting to the Trap state s becomes
higher, then the non-robust equilibrium becomes sub-optimal. On the other hand, our robust learning
considers the worst-case, so it prefers to take the safe action. We will numerically show that our robust
learning algorithm will learn a more robust policy that performs better under model uncertainties or
the sim-to-real gap.

We aim to numerically verify two of our claims: (1). Our MORNAVT algorithm converges to the
robust equilibria; And (2). The robust equilibria learned are more robust against model uncertainty
compared to non-robust ones.

Specifically, we construct the uncertainty set as a KL-divergence ball centered at P} as in Equation @),
which p; = p. We then implement our algorithm (AlgorithmT)) together with the non-robust Nash
value iteration as the baseline. Due to the hardness of computing Nash equilibria
(which is PPAD-hard in the worst-case 2023))), we compute the CCE for the games.
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We develop two experiments as follows. Firstly, we run both algorithms (we set p = 0.25 in our
algorithm) for 10 times, and plot the averaged robust value function of Player 1 against the total
number of samples. We also plot the standard deviation to show statistical errors. Secondly, we
test the learned equilibria from both algorithm under different uncertainty radii p. For different p,
we compute the robust value function of Player 1 (since both players have identical performance)
under the KL-ball, to showcase the robustness of our algorithm. The experiment results are shown in

Figure[T]
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Figure 1: f-MORNAVI v.s. Multi-Nash-VI under KL-Divergence
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Figure 2: f-MORNAVI v.s. Multi-Nash-VI under TV-Divergence

As the results shown, our algorithm converges to the robust equilibrium, validating the convergence
of our theoretical results and convergence guarantees. Moreover, our robust equilibrium shows an
enhanced robustness when model mismatch exists. Specifically, when p ~ 0 and there is no model
mismatch, then the non-robust algorithm outperforms ours (as we are conservative and robust while
non-robust is optimization for the nominal kernel); However, when the uncertainty radius increasing
and model mismatch is introduced, performance of the non-robust equilibrium decreases significantly,
whereas ours shows a more stable and robust performance. Our results hence validate our theoretical
results and claims.

Similarly, we develop experiments with TV-based uncertainty set, and plot results in Figure[2] As
results shown, our algorithm converges to a robust equilibrium, which is more stable and robust
against model uncertainties. Our results hence align with and validate our theoretical findings.

D.2 GENERAL-SUM DRMG

We then slightly modify the fully cooperative DRMG considered, transferring it to a general-sum
DRMG, to further validate our theoretical results.
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We set the nominal kernel as follows. At step 1, the nominal transition Py (- | s, a) is

0.824,,, + 0.186,,, a=(1,1) (risky),
P} (| s0,a) = { 0.600,, +0.404,,, , a = (0,0) (safe),
0.486,,, 4+ 0.226,,, +0.306,,, a € {(1,0),(0,1)} (off-diag).

At step 2 the kernel is absorbing: Py (s’ | s,a) = 1{s’ = s} for s € {sm, su, ST}

The rewards are settled as follows. At the terminal step (step 2), each terminal state induces a 2x2
matrix game; let R(!) (s), R(Q)(s) € R?*2 denote the row/column players’ payoffs. We set

_ 0.55 0.90 0.70 0.85
High: RO (sr) = [1.00 1.20] o BYGn) = {0.90 1.00} ’
0.45 0.35 0.65 0.55
Medium: R(l)(S]u) = |: :| )

(2 _
0.35 0.30] o BT s) [0.50 0.45
Trap: R (sp) =0, R®(s7) = 0.

Both players then have different rewards and the game becomes a general-sum DRMG.

Similarly, we implement our algorithms with non-robust baseline under both KL and TV uncertainty
sets. We plot the performance of both players (as they are different). Our observations from the
experiment results remain the same. In Figure [3a]and Figure fa] our robust algorithm converges
to a robust equilibrium (sample) efficiently. And in Figure [3b]and Figure f#b] the robust equilibria
learned by our algorithms maintain a more robust and stable performance under model mismatches,
showcasing the enhanced robustness of our methods in MARL settings.
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Figure 3: f-MORNAVI v.s. Multi-Nash-VI under KL-Divergence
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Figure 4: f-MORNAVI v.s. Multi-Nash-VI under TV-Divergence
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E HARDNESS OF MULTI-AGENT ONLINE LEARNING

E.1 HARDNESS WITH SUPPORT SHIFT

Example 10 (The “Initial Shock” Game). Consider a class of N-agent DRMGs, {Mg+}arca,
parameterized by a “secret escape route” a* € A.

* Action Spaces: A; = M for each agent. The joint action space has size |A| = Hie[ N] A =
MN.

* States, Horizon, Rewards: S = {S400d; Sbad }, horizon H, initial state s1 = Sgo04, and
rewards are defined as

1, ifs = Sgood Or if (S = Spaqg and a = a™)
ri(s,a) = X N .
0, ifs=spqanda # a
e Dynamics: The system dynamics create the trap.

— From sgooq: Nominally, the system stays in sgo04. An adversary can force a transition
10 Spaq With probability p.

— From Spaq- This is the trap. The only way to escape is to play the secret joint action:

Sgood ifa= a*
Sbad l:fa' # a*

* Uncertainty Set: The uncertainty is non-zero only at the first step.

Next State = {

— At h = 1and s\ = S400q: The uncertainty set is a TV-ball with radius p.
— Forall h > 1o0r s # sgo0q: There is no uncertainty (p = 0). The transition is the
nominal one.

Theorem 11. For the “Initial Shock” DRMG, any decentralized online learning algorithm suffers
the following best-response regret lower bound:

inf sup E[Regret,(K)] > Q | pK -mind A, T A
jnf, sup ElRegret;(K)] > Q | pK - min el_[JIV]

Proof. Step 1: Decomposing the Per-Episode Regret. The best-response regret for Agent 1 in

an episode is Regret} = nyf’“” — V'}”. We expand this using the robust Bellman equation at
81 = S4o00d> Where uncertainty exists.

Regret! = (1 +(1- p)VlT”;’i’p(sgood) + leJE’Qﬂ’i’p(sbad)>
— (L+ (1 = p)VVS (sg00a) + PVI' (bad))
= (1= 0) (VI3 (sg000) = Vi (s900)) + p (Vi3 (Sb0) = VY5 (s1aa) )

Since there is no uncertainty for A > 1, the transition from sg4,04 at b = 2 is deterministically to
Sgood at h = 3. Thus, V1 2(S4004) is a constant independent of the policy in the trap state, which
—isPi (

means Vﬂ’; Sgood) = Vi"a(8g00d)- The first term is exactly zero, and thus we have that

Regret} = p (VJ’Q’““"(sbad) - foé”(szm)) = p - AVY (Spaa)- (15)

Step 2: Formalizing the Value Gap AV (sp,4). The value gap is the expected difference in total
future rewards. This difference is precisely the expected number of steps wasted in the trap. Note
that the value of state sp.q at step & under a policy 7’ is the expected sum of future rewards. Let
7 = 7(n’) be the random variable for the number of steps to escape (i.e., play a*), starting from
step h. Let C' = H — h + 1 be the number of steps remaining in the episode, then the total reward
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collected from h = 2 is Vf;”’(sbad) = E[l[r < C]- (C — 7+ 2)] as it will always receive r = 1
when at 54404

Moreover, note that the total number of available rewards is C, and since C' = min(7 — 1, C) +I[7 <
C](C — 7 + 1), the value can therefore be expressed as V"5 (spaa) = C — E[min(r — 1, O)].

Therefore, the value gap is the difference in the expected number of wasted steps:
AV (spag) = (C — E[min(r* — 1,C)]) — (C — E[min(r — 1,C))])
= E[min(7 — 1,C)] — E[min(r* — 1, C)].

where 7* is the escape probability of 7*. Since the best-response policy 7] plays a] deterministically,
so its escape time 7* depends only on the other agents’ policies, w_1. The algorithm’s escape time 7
depends on its full policy 7.

Step 3: Lower Bounding the Value Gap. The best response for Agent 1 is to play aj, so 7* does
not involve any search for Agent 1. In contrast,

However, the algorithm does not know aj and must search. We are interested in the worst-case
regret over the choice of a*. The expected wasted steps for the algorithm is E[min(7 — 1, C')]. Let
p1 = Prg (a1 = a}) andp_y = Pr,_,(a_1 = a* ). The algorithm’s one-step escape probability is
p1-p—1. Its expected escape time is E[7] = 1/(p1-p—1). The expected wasted steps is lower-bounded
by:

E[min(r — 1,C)] > Q(min(E[r — 1],C)) = Q(min(1/(p1 - p—1), H — 1)),
where the inequality is due to Lemma[I2]

In the worst case over the unknown a*, the probabilities p; and p_; are minimized:
N
infp; <1/A; and infp_; < 1/<HAZ)
o 1 i=2

The best-response policy suffers much less waste. Thus, the value gap AV (Spqaq) is dominated by
the algorithm’s large number of wasted steps.

sup AVY (shad) > 0 (min {1/((1//11) : (1/(i_1]_V[2Ai>),H}> o) <min {ﬁAH}) .

Step 4: Finalizing the Bound. Substituting this back into the per-episode regret expression from

Step 1:
N
sup E[Regret}] > p - Q (min {H A;, H}) :
a i=1
This per-episode regret is incurred because the information bottleneck prevents the algorithm from
learning a*. Summing over K episodes gives the final total regret bound:

K N
fl&fg S;l*p E[Regret, (K)] = kz::l S;l*p E[Regret}] > Q (pK - min {21:[1 A;, H}) .
This completes the proof. O
Lemma 12. Let 7 be the random variable for the escape time from the trap state, and let C' =

H — 1 be the number of steps remaining in the episode. The true expected number of wasted steps,
E[min(r — 1, )], has the following asymptotic lower bound:

E[min(r — 1,C)] > Q(min(E[r — 1],C)).

Proof. Note that T follows a Geometric distribution 7 ~ Geo(p) and have the probability mass
function P(7 = k) = (1 — p)*~!pfork € {1,2,3,...}. The random variable 7 — 1 represents the

number of failures before the first success. Its expectation is E[7 — 1] = 1_71’.

We first derive an expression for E[min(r — 1, C)]. We use the tail sum formula for the expectation
of a non-negative, integer-valued random variable X, which states E[X] = >~ 7  P(X > k).

Let X = min(7 — 1, C). The event { X > k} is equivalent to the event {r — 1 > k and C' > k}.
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e If k > C, then P(X > k) = 0.
o Ifk < C,then P(X > k)= P(r—1>k).

The event {7 — 1 > k} means the first k£ + 1 trials resulted in failure, so its probability is P(r >
k+1)=(1—p)kti

The expectation is therefore the sum over the non-zero probabilities:

E[min(r — 1,C)] = ZP(min(T —-1,C) > k)

k=0
Cc-1
—ZPT—1>k => (1-p*t.
k=0

Letting ¢ = 1 — p, this is a finite geometric series:

C

J :qlch _a(1-49)
2 1- '
Jj=1

q p

Substituting ¢ = 1 — p back, we express the expectation in terms of E[7 — 1]:
1—
E[min(r — 1,C)] = Tp(l ~(1=-p))=E[F-11-(1-p)°).

Letp=E[r—1] = 1%’7. We want to show that there exists a universal constant & > 0 such that:

p(l—(1=p)) > k-min(g,C).
We proceed with a case analysis based on the relationship between p and C.

Case 1: 1 < C: In this case, mm (u, CC) = u We need to show that ;(1 — (1 —p)¢) > k - i, which
simplifies to proving that 1 —
The condition p < C' implies a lower bound on p:
1-— 1
—<C=>1— <Cp = 1< (C+1)p =
5 p<Cp (C+1p P2 5T

Using the standard inequality 1 — 2 < e~%, we have (1 — p)¢ < e7PC. Thus,

1—(1—p)021—e—f’0.

Since p > Clﬂ, we have pC > > &7 As the function f(z) =1 — e 7 is increasing for z > 0,
1 _ epr 2 1 _ 670/(0*‘1’1).
The function g(C) = CLH is increasing for C' > 1, with a minimum value of g(1) = 1/2. Therefore,

for any integer C' > 1,
1-(1-p)°>1-eV2

Thus, the inequality holds in this case with the constant k; = 1 — e~ 1/2 ~ 0.393.
Case 2: i« > C': In this case, min(y, C') = C. We need to show that u(1 — (1 — p)¢) > kC.
The condition p > C implies an upper bound on p:

1—
Tp>(} = 1-p>Cp = 1>(C+1)p = p<

C+1
From our calculation of the expectation, we have a sum of C positive, decreasing terms:

Cc—-1

Efmin(r —1,0)] = » (1 -p)**".
k=0
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This sum is greater than C' times its smallest term, which is (1 — p)©:

E[min(r — 1,C)] > C(1 — p)°.

1 _ _C
C+1 = C+1°

E[min(r — 1,C)] > C ((331)0 _C (1 - C1+1>C

From the condition p < &7, it follows that 1 —p > 1 — Therefore,

c
The sequence ac = (1 — ﬁ) is decreasing for C' > 1, and its limit as C' — oo is 1/e. Hence,
for all C' > 1, the sequence is bounded below by its limit:

C n
17; > lim (1-— 1 :1.
C+1 n—o0 n+1 e

This gives the lower bound:

E[min(t — 1,C)] > C - %.

So, the inequality holds in this case with the constant k5 = 1/e ~ 0.368. By combining the two cases,

the inequality is shown to hold for a universal constant k& = min(ky, ko) = min(1 — e~ /2,1/e) =
1/e.

Therefore, for all p € (0, 1) and integers C' > 1, we have established that:
1
E[min(r — 1,C)] > — min(E[r — 1], C) = Q(min(E[r — 1], C)),
e

which hence completes the proof. O

E.2 HARDNESS WITHOUT SUPPORT SHIFT

Example 13 (The “Robust Corrupted Bandit” Game). Consider a class of N-agent DRMGs,
{Mp}oca, where each game is parameterized by a secret “best” joint action 0 € A.

* States and Horizon: A single state, s, and horizon H = 1. This reduces the problem to a
one-shot game, equivalent to a multi-armed bandit setting where each episode corresponds
to a single step or arm pull.

* Action Spaces: The joint action space A is the set of arms, with size | A| = vazl A,

* Reward Function (R € {0,1}): The rewards are stochastic. Let € € (0,1/2) be a small
constant. The nominal model My defines the following Bernoulli reward distributions for
any agent i:

1/2+¢, ifa=0

1/2, ifa #6.

* KL-Divergence Uncertainty Set: The true reward distribution for an action a, denoted
P(:|a), can be any distribution that is close to the nominal one P*(-|a):

E[Ri(s, )| My] = {

Pl i (@) = { P KL(P(|a) | Pay, (-a)) < pi,Va € A}
This uncertainty set does not have a support shift.

The learning problem is to identify the best arm 6 by observing noisy rewards that are actively
corrupted by an adversary.

Theorem 1 (Lower Bound for Robust Learning without Support Shift). For the “Robust Corrupted
Bandit” game, any learning algorithm suffers the following cumulative regret lower bound over K
episodes (steps):

: A S
j%fg sup E[Regret, (K)] > Q

N
feA }:[1 Ak
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Proof. The proof proceeds by a formal reduction to the classic multi-armed bandit (MAB) problem.

Let M, = {Mpy, ,}oc.4 denote the class of robust game instances from our example, with uncertainty
radius p > 0. Let My = {Mp 0 }9c.4 be the corresponding class of non-robust instances, where the
uncertainty radius is zero and the rewards are always drawn from the nominal distributions.

Note that since the horizon H = 1, the robust problem reduces to a non-robust one, and thus the
worst-case regret over the robust class M, must be at least as high as the worst-case regret over the
non-robust class M:

E[Regret(K; My ,)] > E[Regret(K; My o).

And thus
i ; > i ; :
}lllllfg SEEE[Regret(K,Mgm)] > }lI[lzfg SEEE[Regret(K,M97O)} (16)

Therefore, we can establish a lower bound for the robust problem by proving one for the simpler
non-robust case.

The non-robust problem instance, My, is a classic stochastic multi-armed bandit problem with
M = | A] arms. A foundational result in this area provides a strong lower bound on regret.

Note that following standard lemma:

Lemma 14. (Auer et al.||2002) For any integer M > 2 and K > M, and for any bandit algorithm,
there exists a multi-armed bandit problem instance with M arms whose reward distributions are
supported on [0, 1], such that the expected cumulative regret after K steps is lower-bounded by:

E[Regret(K)] > QVMK).
We apply the lemma to our non-robust problem instance M.

* The number of arms, M, is the size of the joint action space, |.A|.
* The number of steps is K.

* The reward distributions (Bernoulli) are supported on [0, 1].

The conditions of the lemma are met. Therefore, for the class of problems M, the worst-case regret
is lower-bounded:

inf sup E[Regret(K; My )] > Q
il sup [Regret( 0.0)] >

H AK . (17)

=1

Combining the regret dominance principle from eq. (16| with the specific lower bound from eq. we
arrive at the final result for our robust problem:

inf sup E[Regret, (K; M, >0
Jnf; sup E[Regret, (K Mo, )] =

HAiK . (18)

i=1

This completes the formal proof by reduction.

F PROOF OF REGRET BOUND OF TV-MORNAVI

In this section, we prove our regret bound for TV-DRMG. Before presenting all the proofs, we first
denote 7t as the joint robust best responses over the agents, and is gven by

at = 7PP () x - x b (). (19)

We will use the notation of 7t later on our proof-lines. In addition, we leverage Assumption which
generalizes to the case where the minimal value vanishes, i.e., minges V(s) = 0, to address the
support shift or extrapolation challenge arising in interactive data collection, as discussed in Remark
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B.3 of (Lu et al., 2024)). Consequently, this allows us to eliminate the minges V' (s) term in the dual
formulation of the TV-DRMG optimization problem, as shown in

We now recall the bonus term used in TV-MORNAVI for agent ¢ in episode k at step h, as follows:

I7k.Pq k.p;
Ve Ly
c LV&I"\ i,h+1 " i h+4+1 R —k:,pi k,p:
1 PE(-]s,a) |:< 2 QEPA-,(,‘&a) Vi,h—i—l _Ki,hjkl
+

k

i,h(sva) = .

{N}f(s,a) v 1} H
coH?2S, L L
(Nf(s,a)v1} VE

(20)

where ¢ = log (SQ(H:L Ai)H2K3/2/5) and ¢y, 3 are absolute constants.

We begin by defining the high-probability event vy, stated in the next lemma. Our proof outline is
inspired by (Lu et al.,|2024)) and (Ghosh et al., 2025).

Lemma 15 (Uniform Concentration Bound of event Ety). Let Epy be the event in which, for all
(s,a,8" h,k) € S x Ax S x [H] x [K], and for all n in a 1/(Sv'K)-cover of [0, H], and is defined

as
57\/ ::{

|PEGs' | 5,2) = Pils' | s.2)| <

1,78 i
gy (= V5"
NF(s,a) V1

IN

PE(|s,a) — =Py Clsa) |\ T Viata .

coHu
{NF(s,a) V1)

c1 min{P,’:(s’ | s,a),f’,’f(s’ | s,a)} L
{Nh(s,a) v 1}

T Cal
{Ny(s,a) v1}

V(s,a,s' h,k) € M xS x Ax S x [H] x [K],Vn GNl/(S\/?)([O,H])}, 21

where 1 = log <S3 T1-, Ai)H2K3/2/6>, c1, ¢z > 0 are two absolute constants, Nl/(sﬁ)([o, H])
denotes an 1/S~\/K -cover of the interval [0, H].
Then, this event Ery occurs with high probability, i.e., Pr(Ery) > 1 — 4.

Proof. This proof builds upon standard techniques by applying classical concentration inequalities
and a union bound. To simplify our analysis, we first consider a fixed state-action-time tuple (s, a, h)
within a given episode k. We can then construct an equivalent stochastic process:

(i) Before the agents’ interaction, the environment draws a sequence of next states
{sW s ... s+ =D independently from the nominal distribution P;(-|s,a), where
s()) € S represents the state sampled in episode 7.

(ii) When the agents visit the (s, a) tuple at time step & for the i-th time, the environment causes
a transition to the pre-sampled next state s(*).

The randomness of this constructed process is identical to that of our original, interactive learning
environment. Consequently, the probability of any event is the same in both contexts. This allows us
to prove the required concentration inequalities within this more tractable, simplified setting.

Leveraging this fact, we directly apply Lemma @0 which presents a variant of Bernstein’s inequality
and its empirical counterpart from (Maurer & Pontil, |2009). To establish a uniform bound, we apply
a union bound across all tuples (h,s,a,s",k,n) € [H] x S x Ax S x [K] x N} g7 ([0, H]).

The size of this e-cover, N} , ./ ([0, H]), is on the order of O(SHVK). O
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F.1 PROOF OF THEOREME| (TV-DRMG SETTING)

Proof. By leveraging Lemma[20] we can establish an upper bound on the regret by considering the
difference between the optimistic and pessimistic value functions:

K

K

k. pi koo —k,pi )

Regretyasu(K) = Y max (V777 = Ve ) (o) < 3 ma (Vi = V) sh). @2)
st ieM Pt ieM

For the TV-divergence uncertainty set, we begin by analyzing the difference between the upper and
lower Q-values. Given our definitions for @Z, Qf}f’, Vﬁ V', and Kf,’,f ¢ (from eq. , along with

the bonus term ,Bf (s, a) defined in eq. we can establish a bound on this difference for any

)

(h,k) € [H] x |[K] and (s,a) € S x A:

—k —k.,pi o
Qhls.a) = @h(sa) <o Vi) —opm ) [Vi] +280s0). @)

We introduce two key terms, A and B, to simplify this expression:

—k,pi 7kpi
k, i k-, i
+ IPLi (s,) [Zi,[;-i-l] - Uﬂ’(sja) [Zi,lf-i-l] . (24)
=k,pi k,pi
B ::O—Pzih(&a) |:V’l,h+1:| — JPZ%(S,a) |:K7,,hp+1:| . (25)

By substituting these definitions into eq. 23] we obtain a new bound:
7k7 i .
Qin (s,a) — QM (s,a) < A+ B+ 28/ ,(s,a). (26)

We then proceed to bound each of these terms. A concentration bound argument tailored for TV robust
expectations in Lemma|18|shows that A < 23, (s,a). For term B, we use the dual representation

of Tpri (s,a) [V] from eq. |1 1|and Assumptionto first establish that B < sup,.c(o g {Epys (-1s,a)[1 —

Vifj_l]Jr —Eps(1s,a)n— Ki)f;1]+}. Since Vﬁfil > Zﬁ’}ﬁl (by Lemma, we can simplify this

~k,pi k,pi
further to B < Eps (5.0 Vi1 — Vinial

By substituting the bounds for A and B back into eq. 26 we arrive at the following inequality:
~k.pi 5 w7k, pi k,p;
Qi (s:2) = Q17" (5,8) < Epr (o) Vi — Vil + 4874 (s,a). 27)

Using Lemma|[T9]to upper bound the bonus term, and rearranging the terms, we obtain:

—k,pi ; 20 ~k,pi k,pi
@it (o)~ Qg () < (145 Bryim ViR — VAL

clLVarp;(,b)a) [Vi,hjrpl}
{NF(s,a) Vv 1}

deo H?2SL 4
_deflfor )2 28
TG avy VR (28)

where c1, co > 0 are absolute constants. From the definitions in eq. @ the difference in V-functions
is given by:

+4

—k,pi A —k,pi .
VL7 (6) = VA () = Bars 1 [ Q11 (520 — @17 (50 29)
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> : ian 17K Pmin : ian )k Pmin
Now, let’s define a new recursive value function V"™ and a corresponding Q-function Q;”

with V;}frl“i“ = 0, where ppin = Ig% Pi
K2

~ . 20 clLVarp*Hs,a) [V}Llpm‘“]
K, pmin pmm h
,a)=(14+— |E “(.|s [ } 4
Q) (s,a) ( + ) Pr(lsa) |V + q 5(57:&) VEY!

462HQSL \/Z
L derts [T 30
{Ni(s,a)vi} VK .
i;—hk,pmm (8) = anﬂ,k(_|5) [@ﬁ’/’mi“(&a)] . (31

It is a well-known property of robust value functions under TV-divergence that they become more
conservative as the uncertainty radius p; decreases (e.g., (Iyengar, [2005; Nilim & EI Ghaoui, |2005)).
Given that p,,;, < p; for all agents i € M, it follows that for every next state s’ € S:

VI Pi(s) S Vi (') Vie Mands € S.

i,h+1
We can inductively prove that for any (i, h, s,a) € M x [H] x S x A:
—k.pi k,pi Ak, Pmin
max (Q1 (s,2) — Qi (s.2) ) < Qi (s,0), (32)
mas (Vi7" (s) = Vi (5)) < Vo (s). (33)

Therefore, we only need to upper bound the sum Zle 17{“ Pmin (gk) For simplicity, we define the
following notations for the differences at any (h, k) € [H] x [K]:

Af = VP (), (34)
G = A = Q" (sh,ah), (35)
&h = Epyisp.ap Vasi™] = Al (36)

We can confirm that {C}'} (5 ) and {£'} (5 %) are martingale difference sequences with respect to their
respective filtrations. By substituting eq. [30]into eq. 35 we get:

k,pmin
Ak*Ch‘i»Q ” (fmaf)

20 c1eVarp. gk aky {V p}
<G+ (1+= )Ep. ,[V,mm} 4 o
<dh (1o mcnan [ - 0 e
40 HQSL 4
+ k i k + \/7
{Nh (Shaah) V 1} K
T8, pmin
20 20 c1Varpy ([s.a) {Vmip }
:<k+<1+>€k+(1+>M +4
h H )" H h+1 {N}f(s’fb,a’ﬁ) v 1}
4CQHQSL \/Z
™ T4/ = .
{Nﬁ(sﬁ,aﬁ) \% 1} K

h H
By recursively applying eq. [37| and noting that (1 + %) < (1 + %) < c for some constant
¢ > 0, we can upper bound the right-hand side of eq. 22]as:

Regretyasy (K) < ZAk < CZ Z { (Cr + &)

k=1h=1

78, Pmin
s clLVarp;(.|5,a) [Vh+1p } n dco H?SL
{Nk(s,a) Vv 1} {Nk(s,a)Vv1}

4
+ K} (38)
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The first term, a sum of martingale differences, is bounded using the Azuma-Hoeffding inequality
from Lemma[39] yielding:

K H
>3k 46 < camin

k=1h=1

,H} HKu, (39)

min

where ¢; > 0 is an absolute constant. For the second term, we apply the Cauchy—Schwarz inequality
to the summation of the variance terms:

T8, prmin
Varp*(,‘sk-, a;cl) |:Vh+1 :|

K H
h h? 7"'kapmin .
e = (Z X e e

1h=1

K H 1
(ZZ]\W> (40)

S a
k=1 h=1 h>™h

The second factor on the right-hand side is bounded by coHS(TT", Ai)e, as shown in (Liu et al.,
2021, Theorem 3), while the first factor is bounded using the Law of Total Variation and standard
martingale concentration arguments (from (Jin et al., [2018)) and (Lu et al., [2024)):

K H . 1 3
D0 Varpy(rapa Vi) < e (min{ pmin’H} HL). (1)

k=1h=1
By combining these bounds and substituting them into eq. 40} we can obtain a final bound for the
second term. The third term, Zle Zthl \/ 7+ is straightforwardly bounded by csvV H2K. By

combining the bounds for all three terms, we arrive at the final regret bound for Regrety,¢, (K):

Regretyasy (K) = O <\/min { ; 1_ ,H}H?SK( 11 Ai)u), (42)

ieM

,H}HKerin{

Pmin

where ¢/ = log? (m) This completes the proof of Theorem O

Remark 16. The methodology for bounding the regret for Correlated Equilibrium (CE) and Coarse
Correlated Equilibrium (CCE) settings mirrors the approach outlined here for the Nash equilibrium
in the TV-DRMG context. The proofs leverage Lemma |2 l|and Lemma respectively.

F.2 KEY LEMMAS FOR TV-DRMG

Lemma 17 (Gap between maximum and minimum (Lu et al.} [2024))). Consider any RMG MG, =
{S, A, H APry(P*) Yy, 7} The robust value function V;';™* for all i € M and h € [H] associated
with any joint policy T satisfies

. T, 04 P4 < YPi
V(i,h) € M x [H] : meag(V’ (s) — Hggvh (s) < v,

where vt} = min{i,Hchrl} < min{i,H}.

Proof. Refer to the proof-lines of Lemma 3 in (Shi et al.| 2024b)). O

Lemma 18 (Bound of optimistic and pessimistic value estimators with bonus for TV-DRMG). Under
the typical event Ery defined in eq. and by setting the bonus @k p as in eq. W it holds that

—k,pi

L
Pm (s,a) |:Vi,h+1:| - O-Pf,ih(sva) [Vi,/L+1:|

i,h

k.p; k,pi k
+ Upf,ih(S’a) |:Z@}f+1:| - ,PpLh(S l].) |:Z7, }i)+1:| S Qﬁi,h(sy a)
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Proof. Let’s denote the term to be bounded as A.

7k7pi k.pi
A= v Pl (s.a ){Vi,h+1} ~ 0P (s,a) [Vi,hqtl}

k, i k1 7
+ UP"I (s,a) |:Ki,ilzo+1:| - U@(s’a) |:Ki,hp+1:| : 43)

Under the high-probability event Etv (as defined in eq. [21), we can apply the concentration inequality
from Lemma [24]to upper bound A as follows:

.78 i k,pi E,pi
c1 Varpy (Vi,thl ) b 2Ep( ) [Vi,h+1 \ }f+1}
Nf(s,a) V1 H
2chH2S 1 2

+ NF(s,a) V1 +\/7E' @9

where ¢« = log (S?([]~, A;)H?K?3/?/§) and ¢1, ¢, > 0 are absolute constants. By applying the
result from Lemma[26]to the variance term in eq. 44} we obtain the required bound presented in the
lemma statement. This concludes the proof. [

A<L2

Lemma 19 (Bound of the bonus term for TV-DRMG). Under the typical event Epvy, the bonus term
defined in[20]is bounded by

"k, p; T7k.pi k,pi
01LVarphf(.|s,a) {‘/;ﬁfl] 5EP;(<|s,a) |:Vi,h+1 - Kz‘,ifﬂ]
+
NkF(s,a) V1 H

n coH?S . Jr\/z
Nk(s,a) V1 K-

where 1 = log(S3([T/%, A;)H?K?/?/5) and ¢y, c2 > 0 are constants.

@kh(s a) <

Proof. The proof-lines are similar to (Lu et al., 2024, Lemma E.4) or (Ghosh et al.| 2025, Lemma
K.3). Recall the bonus term defined in eq. 20} We need to bound the first and second term of eq. 20]
We first bound the second term of 51 5 (s,a) by using Lemma L and we get

—k,pi k,pi
2Epk(|s a) Viner =V h+1} < 2 L2 \E [Vk»m _ ke }_,_ cpH St
i < H H2 Py (-|s,a) i,h+1 " 2 h+1 {N,’f(s, a) Vi 1}
E,p k.ps
_ 4EP}f(-|s,a) [Vz ht1 — VY f[:+1] chHSL 45)
= 7] {Nf(s,a) v 1}’

where the second inequality is from H > 1. We now bound the first term (variance term) of eq.
by using Lemma [27] which gives

":;1+v fi ,
cievar sy, L —Lh / 7k p;
1 PE(:|s,a) CILVaI‘P’:(,‘&a) ‘/i,h+1

<
Nk(s,a)Vv1 - Nk(s,a) V1
—k,pi k,pi
Ep; (1.2 {Vi,h+1 - Ki,;fﬂ] (46)
- H

csH2SL
Nk(s,a)v1’

where ¢ > 0 is an absolutely constant. Thus by combining eq. 45| and eq. F6] with the choice of
bonus term in eq. we can conclude the proof of Lemma O
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NE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
TV-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions fro NE version.

Lemma 20 (Optimistic and pessimistic estimation of the robust values for TV-DRMG for NE version).
By setting the bonus term Bf”h as in eq. |20 with probability 1 — §, for any (s, a, h,i) and k € [K], it
holds that

1,78 pi —k,p; i . ps
Qin " (s,0) < Qi (s,a), QU (s,a) < QT (s,a), (47)

* s — i .
VTP (5) S VR (s), VRE (s) S VTP (s). (48)

Proof. The proof-lines are similar to (Ghosh et al., [2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma 20}
. Ty‘ﬂ'li,;»/)i —k,pi
* Ineq. 1: To prove Q, (s,a) <Q;} (s,a).

¢ Ineq. 2: To prove Qf}f (s,a) < Q;Z’pi(s, a).

koo, 2F
We know that, at step h = H + 1, Vi}{mﬂ (s) = V:H_ﬁp (s) = 0. Now, we assume that both eq.
and eq. [48]hold at the (h + 1)-th step.

* Proof of Ineq. 1: We first consider robust @ at the h-th step. Then, by Proposition[9] (Robust
Bellman Equation) and eq. [5] we have that

—k,pi .75 i . —k,pi t,7% o
Qin (s,a) - Qi (s,@) = min {Uﬂ(&a) |:Vz',h+1] — OpLi(s,a) [Vi,hﬂ

i Tv ]:17 %
+sz,h(saa)7ylfjl _Qi,;: g (S,Cl)}

. Tvﬂ"iiapi Tvﬂ"iwpi
> min {0-7;37;1(5»“) {Vi,hﬂ ] ~ IPLi (s.a) |:Vi,h+1 ]
+ B (s,2), 0, (49)

ki _ ki
where the second inequality follows from the induction of ViT,ﬁ‘l”p' <V, " 1 atthe h+1-th

Koo
step and the fact that Q;’;’“pl < vfj by Lemmal|l7| By Lemma we get

V N VTJ"E,;,Pi

o {Vf,wz,pi]o B {Vf,wg,pi] <& arP{f( it ) '

Pl (s,a) i,ht1 Pin(s,a) | Vihtl - {N}]LC(S, a) \% 1}
coHu 1

_ 4 —. 50
+{N,’f(s,a)\/1}+\/f 0
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Now by further applying Lemma [26]to the variance term in the above inequality, we can
obtain that

1,75 0 1,78 o
TH (5.a) I:Vi,h+1 —0pri (s,a) | Vit

Vip 4V, yhe k.
“ (Varﬁ;’f(‘laa) [(W):| +4H}Elgff(~|s,a) Vi)h+1 Vi }i)+1} ‘
<
< {Nf(s,a)Vv1}
C2—HL+ 1
{N’“(s a)v1l} VK

VPV —k.pi k
) clLV&rﬁ;’f(-\s,a) KM)] 4HCILEﬁ,§(.\s,a) {Vi,,h;l \ ftﬂ})

—~
~

< +
- {Nk(s,a)Vv1} {NFk(s,a)Vv1}
coHe 1
o
{Ny(s,a)v1} VK
'ILC’:L +KL 3 7k’pi k7 i
iy | C1VaTBr (| 0 [<M>} Epr(jsa) [Vihsr = V5 154-1}
<
= (NF(s,a) v 1] * H
H?cly 1

TN a) v VR b

where the inequality (i) is due to va + b < \/a + /b, and the last inequality (ii) is from

Vab < a + b where ¢, > 0 is an absolute constant. Therefore, combmmg eqns. n . .

and the choice of bonus mM we can conclude that Q; ’,fl (s,a) — Qj’h’“p’ (s,a) > 0.

* Proof of Ineq. 2: By Proposition [9] (Robust Bellman Equation) and eq. [6| we have that

k, i sPi k7 7 kv 3
Qﬁ}f (87 a) - Qz hp (S a) max {Jﬂ(s,a) |:Ki,}f+1] - J'Pzih(s,a) |:V'i77"h+P1:|

— BFu(s,a),0 — Q”” pl(aa)},

™ p; 7 pi
< max {0—7;{2(37&) |:Vvi,h+p1] - O—Pffh(s,a) |:V;,h+p1]
— Bfa(s,2),0}, (52)
where the second inequality follows from the 1nduct10n of V h Vk }f |1 atthe b + 1-th

step and the fact that Q7 h’p ¢ >0.By Lemma we can conﬁrm that

1,78 i
gy ()

_ Vﬂ' ,Pi:| _ ; |:V7T ;Pz} <
7o V] = ortie V] S\ —mrav g
=k, pi k,pi
Eﬁ}’f(.|s’a) [Vi,h+1 Vz }f+l)i|
H
chbH?SL 1

_— 4+ —. 53
+{]\Uf(&a)\/l}+\/E &)
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Now by further applying Lemma [26] to the variance term in the above inequality, with an
argument similar to eq. [50|we can obtain that

1,78 i

k k
0= vr ’pl} — Opi [V_W ,Pz} <
leh(s,a) [ i,h+1 Pﬁh(s,a) ihtl | = {N}]f(s,a) v 1}
hri k,pi
N Epe(1s,a) [Vi,h+1 _Ki,if+1):|
H
cyH?St 1

TNV T ve oY

where ¢/ > 0 is an absolute constint. Therefore, combining eqns. and the choice
of bonus in Qf}f(s, a) - Q7" (s,a) <0,

Therefore, by eq. [51]and eq. [54] we have proved that at step h, it holds that

ke —k,p; ; 7. p;
QU (5,0) QUK (5,a), QU (5,a) QT (s,a). (55)

We now assume that eq. 47| hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition[9), and eq. [8] and NASH Equilibrium, we get

7k.pi =kpi =k:pi
Vi,if (S) = anﬂk(<|s) |:Qz,}f (s,a)} = rr;a{“XEaNWQXTr’ii(~|s) |:Qz,hp (s,a)} . (56)

i

ko
By the definition of ViTl’f’“p’ (s) in eq. [3} we get

77T’ii7 i TJ"E,” i
VviTh : (S) = mz}XEaNﬂ'gXWEi(-b) |:Qi,h 8 (Saa):| . (57)

. . . —k.pi P
Since by induction, for any (s,a), Qif; (s,a) > ng Pi(s,a). As a result, we also have

Vf’ Vi(s) > V:h ~P (s), which is eq. for h-th step. Similarly, we can show that

Kf‘:’i)q (S) = Ea~7‘rk(-|s) [Qi’}f’ (S7a):| )
(’i) ﬂ,k .
< Egrort()s) [Qi,h’p’(s’a)} ’
) Vzr:,m (), (58)

where (i) is due to the fact that Q" (s,a) < QT," (s, a) and (ii) is by definition of V7, ** (s) as
given by Bellman equation in Proposition[9] O

CCE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
TV-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions for CCE version.

Lemma 21 (Optimistic and pessimistic estimation of the robust values for TV-DRMG for CCE
version). By setting the bonus term ,Bﬁh asineq. with probability 1 — §, for any (s,a, h,i) and
k € [K], it holds that

k pi —k,pi i ko
;,%%’?inﬂ Pi(s,a) <Q;) (s,a), thp (s,a) < thp (s,a), (59)
k pi =k, pi . k.
max VTP (s) S V7 (s), Vg (s) < V7 (s). (60)
cd,; ’ ’ s s
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Proof. The proof-lines are similar to (Ghosh et al.| [2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma

. 78 o —k.pi
* Ineq. 1: To prove @, , (s,a) <Q;} (s,a).
* Ineq. 2: To prove Qf’f (s,a) < QZ;””(S, a).
—kps S
We know that, at step h = H + 1, Vf,’flﬁrl(s) = VJ}J:I’p (s) = 0. Now, we assume that both eq.
and eq. [60]hold at the (h + 1)-th step.

* Proof of Ineq. 1: We first consider robust () at the h-th step. Then, by Proposition[9] (Robust
Bellman Equation) and eq. [5} we have that

—k.pi ki . —k,pi Tk pi
Qi,h (57 CL) — Qi,h K (S, CL) = min {0'7;5 (s, |:Vi,h+1:| — O',pzih(&a) |:‘/i’h+1l :l

) ; 7" 00
Tl (s,a), g — QU <s,a>},

. T,75 pi 1,75 i
> min {Jﬁ(s@) |:V;‘7h+1 ] ~ 0Pl (s,a) {Vi,h+1 ]
+ Bl(s,2), 0}, (61)

sPi

L —k
where the second inequality follows from the induction of Vz‘]:ﬁi]“p <V, hiatthe h+1-th

17

ko
step and the fact that Qj_”;’“m < v}j by Lemma(l7| By Lemma we get

¢y Var s (VTJ"EwPi) »
< Ph i,h+1
- {Ni(s,a) v 1}
coHu 1

Mieavy TvE @

Now by further applying Lemma [26]to the variance term in the above inequality, we can
obtain that

Tk i Tt pi
Tpri (s,a) {Vi,h-&-l ~IPLi (s.a) Vihi1

+

Ty‘fflippi]

o — VTv""Ei»Pi
Pf,ih(sxa) i,h+1 (s,a) i,h+1

— 0'7)P7’,

ih

V?SjrlJrKf;fjrl s7k.pi k,pi
c1 (Varﬁ;f(.|s,a) K 2 +AHE B (5,0 Vz‘,h+1*£i,h+1} L
<

- {Nf(s,a) v 1}
n coHe n L
{Nk(s,a)v1} VK
k.pi

—
@ | VB s KWH AHertEpr (|, q) [Vi,h+1 *Kf,’;fil] >
: Vi) v 1] ¥ V) V)

{Nfi(s,a) vV} VE

Vf”’i +vapi —k,pi k,pi
(Z) ClLVaI‘ﬁf(_‘s’a) [(w)} . ]Eﬁf(.‘s,a) Vz',h+1 *Zi,ifﬂ}
= {NF(s,a)V 1} H
N H?cy n 1
{NF(s,a)v1} VK

(63)
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where the inequality (i) is due to v/a + b < v/a + /b, and the last inequality (ii) is from
Vab < a + b where ¢ > 0 is an absolute constant. Therefore, combmmg eqns. . . .

and the choice of bonus 1na we can conclude that Q; ’,fb (s,a) — Qj Z‘“pl( a)>0.

* Proof of Ineq. 2: By Proposition 0] (Robust Bellman Equation) and eq. [f] we have that
5y P 7Tka i k,pi T, P8
QN (s,a) — QT (s, 0) = max{ 05 oy (V] — 0P o) Vi

—BF.(s,2),0 — QT ”“‘"(s,a)},

k k
. TP | . TP
< max {Upfih(s,a) [Vz}hﬂ} TPLi (s.a) [Vi,h+1}

—ﬁf)h(&a), 0}7 (64)

where the second mequahty follows from the induction of V”hff > Vf w1 atthe h 4 1-th

step and the fact that Q P > 0. By Lemma/|23| we can confirm that

TJTLM)@'
c1Varﬁ},f (‘/;-JLJr1 L

TP | . ™ P4
e V0]~ mtiiem Vi) S\ R
=k, pi k,pi
. Eﬁ}’;(-p,a) [Vi,thl _Kz','ifﬂ)}
H
chH?St 1

f sV TvE @

Now by further applying Lemma[26]to the variance term in the above inequality, with an
argument similar to eq. [62] we can obtain that

75 pi
c1Var13: (Vi’hJrl L

_ Wk»/?i} _ ) |: ﬂ-kapi:|
7585wy (V] = opti o V] < {NF(s,a) v 1}
hopi k.pi
n E}'us,a) [Vi,hﬂ A ffﬂ)}
H
cyH?St 1
—_— . 66
N (s, a)\/1}+\/K (00)

where ¢4 > 0 is an absolute constant. Therefore, combining eqns. [6 | and the choice
k.p; \Pi
of bonus i 1n Qi,’f (s,a) — QMP (s,a) <0.

Therefore, by eq. [63]and eq. [66] we have proved that at step h, it holds that

ko —k,pi ; 7% pi
Qin " (s,0) Qiy (s,@), QP (s,0) < QT (s,a). (67)

We now assume that eq. 59| hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition[9), eq. [8] and CCE Equilibrium, we get

=k,pi —=k.pi =k.pi
Vin' () =Equrk(s) [Quf (Sya)] 2 max B rerk (1s) [Quf (57a):| ; (68)
By the definition of VT’ Sop (s) in eq. [3} we get

k. o
V:}; kP (S) _ mE}XEan;Xﬂ’ii('L‘}) |:Q1L:h_“p (373):| . (69)

i
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. . . *k?, i ) I:"“ i
Since by induction, for any (s,a), Q“’; (s,a) > Qj,’: /(s,a). As a result, we also have

Vf”,fl (s) > V:h ~P (s), which is eq. for h-th step. Similarly, we can show that

Kifl (8) = anﬂ-k(.|5) [Qﬁf‘ (&a)} s

gEaNﬂk(.\s) [QZ;pi(S»a)} ’

(@) (%0

= V5" (s), (70)
where (i) is due to the fact that Qf}fl (s,a) < QZZ”” (s,a) and (ii) is by definition of Vf:p (s) as
given by Bellman equation in Proposition [9] O

CE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
TV-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions for CE version.

Lemma 22 (Optimistic and pessimistic estimation of the robust values for TV-DRMG for CE version).
By setting the bonus term Bﬁh as in eq. with probability 1 — §, for any (s,a, h,i) and k € [K], it
holds that

T,ﬂ'lii, i —k,pi ; ﬂ_k’ s
Qz‘,h : (87 a) < szi) (s,a), Qif (S,G) < Qz’,hp (Sv a) ’ (71)
ko —k,pi ) 7* 0.
VI () S VIR (s), VI () S V7 (s). (72)

Proof. The proof-lines are similar to (Ghosh et al.| [2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma[22]

¢ Ineq. 1: To prove Q;’;’“p" (s,a) < Qi’hpl(s, a).

e Ineq. 2: To prove Qf,f (s,a) < Q?Z’p"’(s, a).

—kops o
We know that, at step h = H + 1, Vﬁ’g;l(s) = V;}{;i’p (s) = 0. Now, we assume that both eq.
and eq. [72]hold at the (h + 1)-th step.

* Proof of Ineq. 1: We first consider robust () at the h-th step. Then, by Proposition[9] (Robust
Bellman Equation) and eq. [5] we have that

—k,pi 78 i . k. pi .78 50
Qi,h (s,a) — Qz‘,h (s,a) = min {07;5 (s, [Vi,hﬂ] - O.Pfjh(s,a) [Vi,h+1 }
k Pi Taﬂ']i,iypi
+6i,h(8’a)’y - Qi,h (s,a) )
> min {O’

L .75 pi _ _ .75 i
PP (s,a) | ikl OPi (s,a) | Viht1

+ B (s, a), 0}- (73)

k
. . . . TP 7R
where the second inequality follows from the induction of thj_ 1 < Vi ,f 41 atthe h+1-th

Tvﬂ-}ii 3P

step and the fact that @, < vf} by Lemma By Lemma , we get

V N VTJ"E,;,Pi

o {Vf,wz,pi]o B {Vf,wg,pi] <& arP{f( it ) '

Pl (s,a) i,ht1 Pin(s,a) | Vihtl - {N}]LC(S, a) \% 1}
coHu 1

__edt L (74
+{N,’f(s,a)\/1}+\/f 79
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Now by further applying Lemma [26]to the variance term in the above inequality, we can
obtain that

1,75 0 1,78 o
TH (5.a) I:Vi,h+1 —0pri (s,a) | Vit

Vip 4V, yhe k.
“ (Varﬁ;’f(‘laa) [(W):| +4H}Elgff(~|s,a) Vi)h+1 Vi }i)+1} ‘
<
< {Nf(s,a)Vv1}
C2—HL+ 1
{N’“(s a)v1l} VK

VPV —k.pi k
) clLV&rﬁ;’f(-\s,a) KM)] 4HCILEﬁ,§(.\s,a) {Vi,,h;l \ ftﬂ})

—~
~

< +
- {Nk(s,a)Vv1} {NFk(s,a)Vv1}
coHe 1
o
{Ny(s,a)v1} VK
'ILC’:L +KL 3 7k’pi k7 i
iy | C1VaTBr (| 0 [<M>} Epr(jsa) [Vihsr = V5 154-1}
<
= (NF(s,a) v 1] * H
H?cly 1

TN a) v VR 7

where the inequality (i) is due to va + b < \/a + /b, and the last inequality (11) 1s from

vab < a + b where ¢, > 0 is an absolute constant. Therefore, combining eqns. 7 4 7
2 g q

and the choice of bonus mM we can conclude that Q; ’,fl (s,a) — Qj’h’“p’ (s,a) > 0.

* Proof of Ineq. 2: By Proposition [9] (Robust Bellman Equation) and eq. [6| we have that

k, i sPi k7 7 kv 3
Qﬁ}f (87 a) - Qz hp (S a) max {Jﬂ(s,a) |:Ki,}f+1] - J'Pzih(s,a) |:V'i77"h+P1:|

— BFu(s,a),0 — Q”” pl(aa)},

™ p; 7 pi
= max {U@@,a) Vints| = omr o [Vin i
— Ba(s.2), 0}, (76)
where the second inequality follows from the 1nduct10n of V h Vk }f |1 atthe b + 1-th

step and the fact that Q7 h’p ¢ >0.By Lemma we can conﬁrm that

1,78 i
gy ()

— vr ,Pi:| _ . |:V7r ;Pz} <
U’/’Z;y(s,a) [ bht1 Upf,h(S,a) i,h+1| = {N}]j(&a) V 1}
7k k,p
+ Eﬁ;’f(“’a) [Vi’h+1 v h+1)}
H
chH?S: 1

_— 4+ —. 77
+{N,’f(s,a)\/1}+\/f 77
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Now by further applying Lemma [26] to the variance term in the above inequality, with an
argument similar to eq. [74] we can obtain that

75 pi

— Wk»ﬂii| _ ) |: ‘n'k,pqv:|
07’22(3’“) [Vi,h+1 TPpri (s.a) Vinii| < {N,]f(s,a) VAN
7k Epi
n ]Eﬁ;f(‘lxa) [Vi,h+1 _Ki,if+1):|
H
H?S, 1
b — (78
{Nh (Sa a) \ 1} \/E

where ¢ > 0 is an absolute constint. Therefore, combining eqns. and the choice
of bonus in Qk’[b”"(s, a) - Q7" (s,a) <0.

Therefore, by eq. [75|and eq. [78] we have proved that at step h, it holds that

1', )ii, i fk, i i lc7 i
Qi,;: p (s,a) < Q“f (s,a), Qﬁ’}f (s,a) < thp (s,a). (79)

We now assume that eq. [71|hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition[9), eq. 8] and CE Equilibrium, we get

—k,p; —k,p; —k,ps
V“f (5) = Eqrnk(s) {Qi’f (s,a)} = max Eq gork(.|s) {Q“ﬁ) (s,a)} . (80)

PED;

By the definition of max Vﬁfﬁk’pi (s)in eq. [3} we get
€d; 7

ko 'omk .
max VIR (s) = max B~ gort(|s) [H;f}x@?i;f“ i (s,a)} : @1)

. . . —k,pi k pi
Since by induction, for any (s,a), Q; 1" (s,a) > max Q?Zﬂ #i(s,a). As a result, we also have
’ €®; 7

V? Vi(s) > mex Ve P (s), which is eq. [162|for h-th step. Similarly, we can show that
’ €®; 7

VL (5) = Banni(i @7 (s.0)]

(0 o
< E[LNﬂk("S) [Qiﬁml (s,a)} )

VL), (82)

where (i) is due to the fact that Qf}’: (s,a) < QZZ””" (s,a) and (ii) is by definition of Vf:” (s) as
given by Bellman equation in Proposition[9] O

F.3 AUXILIARY LEMMAS FOR TV-DRMG

Lemma 23 (Bernstein bound for TV-DRMG and the robust value functions of 7% and #T).
Under event Ery in eq. and definition of ©' as given in eq. we assume that for any
EQUILIBRIUM € {NASH, CE, CCE} the optimism and pessimism inequalities holds at (h + 1, k),
where these inequalities can correspond to any of the following cases of EQUILIBRIUM:

* NE: Lemma 20 using eq. [#7)and eq.
* CCE: Lemma[21|using eq. 59 and eq. |60
* CE: Lemma[22)using eq. [71|and eq.[72)
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Then, it holds that

k k
—_ TSP . T, pi
T57 () Vi d1] = 020 (s [Vin i
[ L
ciVarse (V. , . ° "
e + el + L if = ot
< {N; (s,a)v1} {N}(s,a)vi} " VK’
= T,W’iiypi ks kp,
c1Var}3;lf (Vi,hﬂ )'L IE}S}I::(.‘S‘B) {Viyhilfzi,hil)] &, H2 S, N . " .
{N}; (s,2)V1} H (NfGaviy T v Otherwise,

SQ m A; H2K3/2
where ¢ = log ( (L 3 ) > and ¢y, ¢y > 0 are absolute constants.

k ; . .
Proof. By our definition of the operator opr: (; 4) (V5,3 ] in eq. |11} we can arrive at,

7 pi . pi 7 pi
’07;1?’3(573) [Vi,h+p1] - U'Pzih(s,a) [Vi,h+p1] < nESEL(l)]?H] ‘{Eﬁ}f(.&a) [(77 - Vi,hfl )4
7 pi
—Epy (fs.a) [(0 = Vi) +] }‘
= Term (i) + Term (ii). (83)

where we denote

k. pi
Term (i) := sup {Eﬁ’““sa) [(n - Vv:;l-‘;ll : )+}
n€l0,H] R AT
Tsﬂ-)ii’ﬂi
—Epgs.a) (1= Vipa )+ (84)
T A 7* i 7% 10
erm (ii) := sup Eﬁk(-|s,a) n— Vi,h-&-l] —(n— Vi7h+1 ]
ne0,H]) h + +

7Tk7 I3 Tv‘“’lii-, i
—Ep; (o) [(n - Vi,thp1]>+ - (n Vit ])J }| (85)

We deal with Term (i) and Term (ii) respectively.

Bound for Term (i): Term (i) is referred to Bernstein bound for Bernstein bound for TV-DRMG
and the robust value function of the robust best response 7T;r Pi(r_;). More specifically, we find

k
1"7771"/71'

the Bernstein bound on the gap O—P/;i(s,a) Viht

koo
|- Tpri (s.a) [VLTh:’lp] . Therefore, by the

ko
definition of the operator opr: (, 4) [Vj,’lif’p’] ineq. , we can arrive at,

- Tfﬂ"iiqui ) Tvﬂ'}iwpi
th(sya)[ i,h+1 ]_O-'F'Z"h(s,a)[ i,h+1 ]

1,78 1 pi oo
{Eﬁf(.s,a) [(n - ‘/i,h.ﬂl }>+ - IEP,:(»|s,a) [(77 - Vi,h—i—l ])+‘| }|

= Term (i). (86)

g

< sup
n€l0,H]
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By now according to the first inequality of event £ in eq. 21| we can bound eq. [86as

.78 i
. C1Varﬁ;1c (77 —Vini )+ b coHL
. < .
erm (1) < \ {(NF(s,a) v 1} {N)i(s.a) v 1}
T,k 0
clVarls: (Vi’hJrl ) L coHL
g k i , (87)
{N}(s,a) Vv 1} {NVy(s,2) vV 1}

for any n € Nl/(sﬁ)([o, H]). Here the second inequality is because Var[(a — X)4] < Var[X].
Therefore, by applying the covering argument in eq. for any 7 € [0, H], it holds that

V R VTiﬂ-lijspi
cavarpr \ Vipt1 L coHL 1
{NF(s,a)V1} {NF(s,a)V1} VK

Bound for Term (ii): For Term (ii), we apply the second inequality of event £ in eq. and we
obtain that

Term (ii) < sup Z \/01 min {P’:(s’ | s,a),P’]:(s’ | s,a)} L N ol
= TIE[O,H] s'eS {N,’Z(S,a)\/l} {N}If(sga)\/l}

ok i Tsﬂ'lii, i
(71 - ‘/;,hirp1]>+ - <77 —Vihi : ]> } (89)
+

Now by assuming that eq. 48|holds at (h + 1, k), we can upper bound the absolute value above by

k, i Tﬂfli,ppi
(77 - Viirhf1])+ - <77 - Vi,h+1 ])
Jr

(1) _k,p, v
< Vina(sh) = Vipi (s, (90)

where the first inequality (i) is due to the 1-Lipschitz continuity of ¢/, () = (7 — x), and the second
inequality (ii) is due to eq. 48] Thus combining eq. [§9]and eq. 0] we get

. Clﬁilf(s/ | s,a) ¢ Cal A R o ke (o >
Term (i1) < Z (\/ {N,{f(s,a) V1) + {N}’f(s,a) y 1}> (Vi,h+1(3) Ki,h+1(8)

s'eS
%’) Z ]3,5(3’ | s,a) n kclHL S Cal
= H {Nji(s,a)Vv1} {Nj(s,a)V1}

—k,p; i
.(vi,,i;l(s') —vf,;+1<s’>)

Term (i) <

(88)

X

(@)

k. T k. Pi
™ 4P _ EELEY 22
Vit = Vind

k.pi k,pi
(i) Eﬁ}f(.bﬁ) [Vi,thl _Ki,lerl} chH?S1
< , 91
= H {NF(s,a) Vv 1}

where ¢}, > 0 is an absolute constant. The first inequality (i) is by Vab < a + b and the second

inequality (ii) is due to Vf”fil,zf,’,fjrl € [0, H]. Finally, by combining eq. and eq. and
applying in eq. we get the required bound as

V. VTy‘ﬂ"ii,Pi E Vk,m Vk,p,;
. cvarpr ( Vingt "L Pr(|s,a) |V iht1l T bt chH?S!
Term (ii) < = ' =
{N;i(s,a)V 1} H {Nj(s,a) Vv 1}

1

+ —. 92

— 92)

This concludes the proof of Lemma O
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Lemma 24 (Bernstein bound for TV-DRMG and optimistic and pessimistic robust value estimators).
Under event Ery in eq. and definition of ©! as given in eq. we assume that for any
EQUILIBRIUM € {NASH, CE, CCE} the optimism and pessimism inequalities holds at (h + 1, k),
where these inequalities can correspond to any of the following cases of EQUILIBRIUM:

* NE: Lemma[2Q\using eq. [#7and eq.

* CCE: Lemma[21|using eq. 59 and eq. [60)

* CE: Lemma[22)using eq. [71]and eq.
Then, it holds that

max {

AV VTaﬂJiiypi E Vk,l’i Vk:,pi
_ civarpe \ Vi pg L N PE(|s,a) |V iht1 — Vi hg N chH?S, N 1
- {NF(s,a)V 1} H {NF(s,a)v1} VK’

_ k,pi - ) k,ps
UPZih(s,a) [—i,h+1] Upﬁgl(S,a) [Kz',hﬂ}

b

TP fvadld
057 i — Opri 1
e Vo] = omti 0 (V]

}

S2([T™, A;)H2K?3/?
where 1 = log ( (L2, 3 ) and ¢y, ¢ > 0 are absolute constants.

Proof. This follows from the same proof as Lemma [23]and is thus omitted. O

Lemma 25 (Non-robust Concentration for TV-DRMG). Under event Eyy in eq. @ and definition
of 't as given in eq. we assume that for any EQUILIBRIUM € {NASH, CE, CCE} the optimism
and pessimism inequalities holds at (h + 1, k), where these inequalities can correspond to any of the
following cases of EQUILIBRIUM:

* NE: Lemma 20 using eq. #7)and eq.
* CCE: Lemma[21|using eq. 59 and eq. [60)
* CE: Lemma[22)using eq. [71|and eq.[72)

Then, it holds that

k,pi k,pi
EAk V. . Ve P4
k,pi k.p; —k,pi k,pi P (-ls,a) i,h+1 7 X4 h+1
‘EP,:(-\s,a) [Vi,thl - Ki,h+1] - ]Eﬁ;;(.|5,a) [Vi,h+1 - Ki,h+1] < I7i
chH?S!

{Ni(s,a) V1)

217, A H2K3/?
where ¢ = log (S (I, . ) ) and ¢ > 0 are absolute constants.

Proof. Assuming that eq. holds for (h + 1, k), we apply the second inequality of event £ in eq.
[T]to get the required bound Lemma 23] O

Lemma 26 (Variance analysis for 7' for TV-DRMG). Under the definition of ©' as given in
eq. we assume that for any EQUILIBRIUM € {NASH, CE, CCE} the optimism and pessimism
inequalities holds at (h+ 1, k), where these inequalities can correspond to any of the following cases
of EQUILIBRIUM:

* NE: Lemma 20 using eq. #7)and eq.
* CCE: Lemma[Z1|using eq. 59 and eq. [60)
* CE: Lemma[22)using eq. [71|and eq.[72)
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Then, it holds that

7k k,pi
< 4HE§5(_|57a) [Vh+1 -Vl

Fk.p; k,p; k
Vi hjrlJrXi hjrl Taﬂ'_iaﬂi
Varﬁ;fus,a) { 2 - Varﬁ;;(.|s,a) Vine

Proof. Our proof closely follows the lines of Lemma 22 in (Liu et al.,|2021) and Lemma E.11 in (Lu
et al.,[2024), with detailed elaboration on each step for clarity. The left hand side of the inequality in
Lemma [26|can be upper bounded by the following

k.pi k.p;
Vit V5 }Iz)fi-l .78
Vargeisay || =5 || 7 VaBECIs.a) {Vi,hﬂ ]
V{“Pi + V]-C’pi . 9
< |E- i,h+1 T Y ht1 E-~ V’rm,i,pi
Pl(-|s,a) 9 — TPE(|s,a) iht1
2
k.pi k,pi 2
Vintr + Vi ki
+ Eﬁ;’f('ls,a) 9 - (Eﬁ,’j(-|5,a) [Vi,h-u }) . 93)

. k.pi i Trk.pi ; 7
By applying eq. and the facts that V; | and Kf”hp_j_l, Vi7£+1,Zf7f;1, Vi]:hj_l e [0, H], we
can further upper bound eq. 03] as

7k.pi k,p;
Viher Vi £, 0
Va‘rls}fﬂs,a) 2 - Varﬁf’(ﬂs,a) |:‘/i,h+1 :l
Vimia Vi frt i TR k.pi
<4H Eﬁ;’f(~|s,a) [ M — V;,h+1 <4H Eﬁ}’f({s}a) |:V7l,h+1 - Ki,ff—i—l . 94)
This concludes the proof of Lemma[26] O

Lemma 27 (Variance analysis for any robust joint policy 7% for TV-DRMG). Under event Ery
in eq. and definition of ' as given in eq. we assume that for any EQUILIBRIUM €
{NASH, CE, CCE} the optimism and pessimism inequalities holds at (h + 1,k), where these
inequalities can correspond to any of the following cases of EQUILIBRIUM:

* NE: Lemma 20\ using eq. [#7)and eq.

* CCE: Lemmal[Z1|using eq. 59 and eq. [60)|

* CE: Lemma[22|using eq. [71|and eq. [72)
Then, then the following inequality holds,
7k7pi k,pi
Vi + V000

wk.pi
5 — Varpy(jsa) V1]

Varpe . js,a)
—k,pi k. p: C/2H4SL

<4HEp«(., {V —ViP 4+ 1.

- Py (]s,a) h+1 — Xh+1 {N}’f(s,a)\/l}

Proof. We follow the proof-lines of Lemma 23 in (Liu et al.,[2021) and Lemma E.12 of (Lu et al.,

2024). We present a detailed derivation as follows. We first relate the variance on ﬁ}’f to the variance
on Py. Specifically, we have

— Varp: ([s.) {V{fﬁ] < Term (i) + Term (i),  (95)

(3

*kﬁﬁi k},pi
Vint1 T Vot

Varpe is,a) 5
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where we denote

Tkapi k.pi k,p;
Term (i) := ‘Varﬁ;;(.s,a) [VHP;VW} —Varp: (s {M] ‘ (96)
) Vi + Vi, ",
Term (ii) := |Varp: (|s,a) fﬂ - Varﬁ,’f('ls,a) [Vzhff} ) 97)

We will now bound Term (i) and Term (ii) respectively.

* Term (i): By applying the fact (VZ ha1 T Vf’,f;l) /2 € [0, H] in the variance terms on
Term (i), we can upper bound Term (i) as

Term (i) < H? Z ‘P,;‘(s’|s,a) - ﬁf(s’\s,a)‘
s'eS

clPk (s'|s,a)-t Col
H2
%( Nisavl  (Nsavl)
(i) 1St c2St
< H?
= ( {Ng(s,a)v1}+{N,§(s,a)v1}>
D) /4
Dy c,H*S, ’

{Nf(s,a) v 1}

where the inequality (i) is by the second inequality in event £ in eq. 21} the inequality (ii) is
by Cauchy- Schwartz inequality and the probability distribution sums up to 1, and the last
inequality (iii) is from the fact vab < a + b.

(98)

* Term (ii): By using the proof-lines of Lemma [26| and assuming that the optimism and
pessimism inequality eq. holds for (h + 1, k), we can bound Term (ii) as
Term (if) < 4HE p: (15 0) [V’;f; _ zﬁf;} . (99)

Applying eq. 08 and eq. [99] we get the required bound in Lemma[27] O

G PROOF OF REGRET BOUND OF KL-MORNAVI

Similar to (Ghosh et al.| 2025)), we consider the following definitions:

Phinn(s,a) = min { Pi(s'|s,a) : P(']s,a) > 0}, (100)
Plinn(s: @) := min {Pi(s']s,a) : Pi(s']s,a) > 0}, (101)
Pro= i P* , 5 (5)), 102

min (h7s)II€1[IIIL11]><S mln,h(s ’/Th(s)) ( )

where the following inequality is satisfied: Pj;(s'|s,a) > Py, 5 (s, 77 (s)) > Py

min-*

We now recall the bonus term of KL-MORNAVI for agent ¢ in episode k at step h, as follows:

) QCfH L 1
Bin(s,a) = = +4/ =, (103)
a(s:0) gi (Nf(s,a) Vv 1)Pml][1 w(s,a) K
where P, 1 (s,a) = rpeig{ﬁ,’;(sqs,a) . PE(s/|s,a) > 0}, 1 = log (s?(ﬂ;’; A H2K3/? /5),

and cy is an absolute constant.

Before proceeding to all key lemmas, we introduce the high-probability “typical” event £y in the
lemma below. The proof strategy follows (Lu et al.,|2024)) and (Ghosh et al., 2025).
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Lemma 28 (Uniform Concentration Bound of event ;). Let Ex; be the event in which, for all
(s,a,8',h, k) € S x Ax S x [H] x |[K], and for all nin a m—cover of [0, H/ pmin), and is
defined as

Vi Vi
= {5 )] o o 5]

\/{Nksa )V 1} mlnh( )

V(h,s,a,s' k)€ [H x Sx Ax S x[K|,YyneN_1 ({O,

Pmin

5

H
]) }, (104)
Pmin
where P*

min, (5, @) is defined in eq. L =log (5’3(]_[7 1 A»)H2K3/2/6) c1 > 0 is an absolute
constant and n € N_1 m([O,H/pmin]), where pmin = rg}\r/lt pi and N m([O,H/pmin])

Pmin Pmin

denotes an 1/(pmin SV K )-cover of the interval [0, H / pmin].
Then, this event Exy. occurs with high probability, i.e., Pr(Ex.) > 1 — 4.

Proof. The proof follows standard techniques: we apply classical concentration inequalities followed
by a union bound. Consider a fixed tuple (s,a,h) for a fixed episode k. Now we consider
the following equivalent random process: (i) before the agents starts, the environment samples
{sM 52 sk~ independently from P} (-|s,a), where s() € S denotes the state sampled at
episode ¢; (ii) during the interaction between the agents and the environment, the i-th time the state
and joint actions (s, a) tuple is visited at step h, the environment will make the agents transit to the
next state s(*). Note that the randomness induced by this interaction procedure is exactly the same
as the original one, which means the probability of any event in this context is the same as in the
original problem. Therefore, it suffices to prove the target concentration inequality in this context.

Based on the above fact, we directly apply (Wang et al.| 2024e, Lemma 16). To extend the bound
uniformly, we apply a union bound over all tuples (h,s,a,s’,k,n) € [H] x S x Ax S x [K] x
N o) (05 H/ pmin]) - Note that the 7j-cover for each agent i lies in the interval [0, H/p;] <

[0, H/pmin] for all ¢ € M, and this cover contains a valid Py Slx/?-cover for each agent-specific

interval [0, f } Therefore, we define the common n-cover as n € N. = ([O pH D , where
K Pmin S min

O

_H [ i H
N__ ({0, pminD denotes a oSV Cover of the interval [0, ;

PminSVE i

PROOF OF THEOREM 3] (KL-DRMG SETTING)

Proof. With Lemma[32] we can establish an upper bound on the regret by considering the difference
between our optimistic and pessimistic value functions:

K K
77,,7 i 7'l'k7 4 T7FPi yPi
Regretyasn (K) = > max(V,i™" = VI #)(sh) < 3" max(Viy" = Vi) (sh).  (105)
k=1

€M
k=1

For the KL-divergence uncertainty set, we will refer to the bonus term as B{f (s, @), as given in eq.
[T03] Our first step is to establish a bound on the difference between the upper and lower Q-values.
Given our definitions for @;, f;l, Qk o Vf’,f’ ) Zf’}f‘, and the bonus term 3"}/ k-Pi (s, a) as defined in eq.
[5|through eq. [103] for any (i, h, k,s,a) € M x [H] x [K] x § x A, we have

—k,pi Nk k.pi _ k,p; k,pi
Qin (s,a) Qiﬁh(s,a) <o 77 (s.0) [Vi,thl} Pplh(s a) [Kl hﬂ} +28;7 (s,a).  (106)
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We define the following terms, A and B, to simplify our analysis:

—k,pi k,pi
k,pi k,pi
+ UPZ’i}L(s,a) |:Kz If+1i| - Uﬂ(s,a) |:Ki,if+1:| : (107)

*k,ﬂi ]i}7 i
B = O'PPL (S a) |:Vi,h+1:| - O'P;’Lh(s’a) |:Ki75+1:| . (108)
By applying eq. [I07]and eq. [T08]to eq. [I06} we obtain:
Qi (s,0) = Q' (s,@) < A+ B+ 26" (s,a). (109)

We can upper bound term A using a concentration argument tailored for KL robust expectations from
Lemma [30} which shows that

A <285 (s,a). (110)
For term B, we use the definition of Epe s ) [V] from eq. [12[to establish the following bound:

k.pi

Vi
B = sup { —nlog (EP}st,a) [GXP{ - h“}]) - npz}
ne[o.2] !
k \Pi
—  sup { —nlog (EP* (1s,a) {eXp{ Yihia H) - 77)01‘}
veo.]
7p’L
< e of i (oo { - 52

776[07H/Pz]

km

— log (Ep*( 15.0) {GXP{ Virs H) }
VvEei
EP*(SG)[GXP{ Lh+1
= sup nlog —;
nel0,H/pi]

EP*(qa)[eXp{ 1h+1

k.o ko
Ep;(1s.a) {eXP{ - Vnh“} - exp{ - V"WH
log (1
I < ' E Vit )
P}t("S’a) eXp - T

v e

@ Er; (1s.a) [exp{ - ,’;*} —exp { Veilha H

sup
n€l0,H/p;

< sup 7 =
n€l0,H/pi] EP,:(~\s,a) [exp{ Vi, h+1 }]
k 2Pi k \Pi
(b) H Z z
< sup nexp {}Ep;w,a) [eXp { as } exp { kil H
n€ln,H/pi n n
© H —k,p; .
< exp {n}EP}:(s,a) [Vi,;;—i-l - Ki}ﬁ-l} , (111)

where inequality (a) uses the fact that log(1 + =) < z, inequality (b) holds because 0 < Vf’i)* 1< H
and 7) € [, H/p;], and inequality (c) is due to the %-LiPSChitZ continuity of ¢, (z) = exp { - %}
for z > 0, as well as Vk’,f‘+1 < Vf;fll

By applying the bounds for A and B to eq. [I09] we get

7k:7 i H fk‘, i 0
QL o)~ Qi (s.0) < e { T By [Pk~ VAL #4807 ). (1)
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Using Lemma 31| to upper bound the bonus term, and rearranging the terms, we further obtain:

7]@’ i H ika i P
@i (s = Qb (o) < exp { S4By [vi AN

401H [ 4 (l 13)
pmln {Nk S a \/ 1} min 7

where ¢; > 0 is an absolute constant. From the definitions in eq. [8] the difference in V-functions is
given by:

—k,pi i —=k,pi pi
Vin (8) = VP (s) = Bark (o) [Qi,é’ (s,2) = Q77 (s, a)] : (114)
We now define a new recursive value function ‘7}? Pmin and a corresponding Q-function @Z’p ™ with
Vk i — = 0, wh min = i i -
foas where p min p
. H 4c H
k;pmin — — \Eps |:Vk Pmm 1 —. 1]5
Wls @) eXp{ n} Fiea) [Tt ] S (NE s a v1} . \/K (11>
Vi (s) = B (o) | @1 (5,2)| (116)

By an inductive proof, we can show that for any (¢, h, s,a) € M x [H] x S x A, the following
bounds hold:

fk, i 0 ~ N
max(@y ;" — Q1) (s,a) < Q" (s, a), (117)
k,pi k,pi 17%;Pmin
Ere%(v = Vi) (s) S VPmin(s). (118)

Therefore, our analysis can focus on bounding the sum Zszl Vlk’p min (s%) . For simplicity, we
introduce the following notations for the differences at any (h, k) € [H] x [K]:

Af = Y emn gk, (119)

CF = AF — Qprmin(sh,af), (120)
k? min

& = Ep ot by Vi) — Ab 11 (121

We can confirm that {C}'} (5 ) and {£}} (5 %) are martingale difference sequences with respect to their
respective filtrations. By substituting eq. into eq. [I20] we obtain the recursive relationship:

ALy = CFy + QpPmn (), af)

H 4C H
. k m.n 1
<k, +exp{n}EP,:<s,a> L R \/{Nk (s.a) V)P \r

H 4C H
k k !
Gin +exp{ " }gz’h—kexp{ } ih+1 T Dinin \/{N (s,a) V1}Pr,

4

7

n (122)

h H
By recursively applying eq. and noting that 1 < (exp {% }) < (exp {% }) = dpy, we
can upper bound the right hand side of eq. m as: - -

Regretyagy (K Z AY < ddy Z Z { (Cr + &)

k=1h=1
41 H 2 \/I
+ (pmm \/{Nk(s A VTP + K) } (123)
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Next, we bound each of these two main terms. The first term, a sum of martingale differences, is
bounded using the Azuma-Hoeffding inequality from Lemma/[39] yielding:

K H
SN (G + &8 < AVHPKL, (124)

k=1h=1

where ¢} > 0 is an absolute constant. For the second term, we apply the proof lines of (Liu et al.,
2021, Theorem 3) to bound the sum of the inverse counts:

[H2K S A, +HS A; (125)
k=1 h= 1\/{Nk Sh’ah)\/l} ( zg/( ng )

By applying eq. [I25]to the second term of eq. [[23] we get the following:

401H , H4KS(H1€M Ai)L2
>y <al
Pmin {Nk 5 (1 \/ 1} min pmlnPr:nn

k=
H2S(Iliep Ai)e
+ d +VH?2K (126)
pmin\/PI;m

By combining the bounds for both terms in eq. [123] we can upper bound the final regret as follows:

H*KS . A
Regretyasy(K) < c'du (\/ gnze*M ) >

Pmint ‘min

o (\/H4 eXp(QHQ)ZKS( [Ticm Ai) (L/)3> _ (127)

*
pIIll n- min

This completes the proof of Theorem 3] O

Remark 29. The proof techniques for bounding Regretccg (K) and Regretcg (K) follow the same
lines of proof for Regretyasn (K), leveraging Lemma and Lemma respectively, in the context
of KL-DRMG.

G.1 KEY LEMMAS FOR KL-DRMG

Lemma 30 (Concentration Bound for Robust Value Estimators in KL-DRMG). Let Ei, be the
typical event and let the bonus term Bf, 5, be set defined in eq. Then, the following inequality
holds:

fk,pi sz k i k; 0
775w [V oiee1] = Oty (Vi | + 0ty ey (it ] = 077 oy (VA1)
2c1H 2
<= g +4/ = (128)
pmin \[ {NF(s,a) vV 1}PE, (s, a) K

where v = log (S3 ([T, A;) H2K®/?/§), and ¢, > 0 is an absolute constant.

Proof. We begin by defining the term that we need to bound. Let’s denote this term by A:

—k —k k k

Under the high-probability event £ 1, we can directly apply the concentration inequality given in
Lemma 37} This allows us to upper bound A as follows:

_ 20l e (130)
Pmin \[ {N}(s,a v1} Ph (s, ) K’

where ¢; > 0 is an absolute constant and ¢ = log (S® (T]/~, 4;) H>K?3/%/5). This bound is exactly
the bonus term multiplied by a constant. Therefore, based on our choice of @k 1 (8, @) as defined in
eq. [T03] the inequality in eq. [I28|holds. This completes the proof of Lemma [
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Lemma 31 (Bound of the bonus term for KL-DRMG). Let Ex 1, be the typical event, the bonus term
,Bf;h in eq. is bounded by

k ClH
1/ 131
51 " pmm\/{N S a \/1} min ( )

where v = log (S3 ([T, A;) H2K®/?/§), and ¢, > 0 is an absolute constant.

Proof. The proof-lines are similar to (Ghosh et al., 2025, Lemma K.7). We recall the choice of b’f h
as given in eq. [103] i.e.

k 20fH L \/T 132
ﬁzh(s CL) \/{Nksa,)\/l} mlnh(s7a})+ Ka ( )

where © = log (S* ([Ti2, Ai) H2K?®/?/5), Pk, (s, a) is defined in eq. , and ¢y > 0 is an
absolute constant.

By Lernma and the union bound, it holds that with probability at least 1 — ¢ that for all (h, s,a) €
[H] x S x A, we get

Pi(s' | s,a) _ Pi(s'| s,a)

vs'eS: Pr(s > 133
s € h(s ‘ 570’) - 62 - 8€2L ( )
To characterize the relation between P, ; (s, a) and Pmln n(s,a) forany (h,s,a) € [H] xS x A,
we suppose—without loss of generality—that Py, ;. (s,a) = Pj(s1 | s,a) and Pmln n(s,a) =
13,75(52 | 5,a) for some s, s, € S. Then, it follows that
minh(8:@) = Pp(s1 ] s,a)
® ﬁ;f(tﬁ | s,a) ]Srlflin (s, a)
> > :
- e? - e?
_ PF(sy | s,a) (1>1) Pr(s2 ] s,a)
B e2 - 8e2t
PI’:liIl (111) Py,
n(5,0) @ F, 134
8e2y 8e?s”

where the inequalities (i) and (ii) follow from eq. [I33] and inequality (iii) follows by eq.
By applying eq. [I34]in eq. [I32] we get

k 2cpH 01H
% h(57 (1) < k k
’ Pi {N (S CL \/ 1}Pr¥11n pmm {N 5, CL \/ 1} min

+ ?. (135)

This concludes the proof of Lemma[31] O

NE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
KL-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions fro NE version.

Lemma 32 (Optimistic and pessimistic estimation of the robust values for KL-DRMG for NE
Version). Under the event Ex 1, and by setting the bonus term Bﬁ p s in eq. m it holds that

T,ﬂ'lii7 i —k,pi ; ﬂ_k’ s
Qz‘,h : (87 a) < szi) (S, a’) ’ Qif (37 a) < Qz’,hp (87 a) ’ (136)
i,h

71-7“,71 Pi . o;
VT () S VIR (), VR (s) S VP (s). (137)
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Proof. The proof-lines are similar to (Ghosh et al.| [2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma[32]

. .78 i —k.pi
* Ineq. 1: To prove Q,, (s,a) <Q;} (s,a).

* Ineq. 2: To prove Qf’f (s,a) < QZ;””(S, a).

Assume that both eq. [[36]and eq. [[37]hold at the (h + 1)-th step.

* Proof of Ineq. 1: We first consider robust () at the h-th step. Then, by Proposition[J] (Robust
Bellman Equation) and eq. [5} we have that

7k7pi
(s,a) {V@W}

k Taﬂli,i,m
_/Bi,h(saa')a Qi,h (S,Cl) -H )

ki k.pi e
QL (1.0 = QI () = e { ey ) VI | =,

ih

tmk o 7% pi
< max{gpff’h(s,a) [Vz‘,h+1 } " PP (s,a) [Vi,h+1 }
—ﬁﬁh(s,a),o}, (138)

7 pi —k,pi
where the second inequality follows from the induction of VZTh +’1”p' <Vr 1 atthe h+1-th

17

k
Tv"rpri

step and the fact that Q,’, < H. By Lemmaand by the definition of ﬁr’fnn, n(s,a)
as given in eq. [T00} we have that

|:VT77rki7pi:| |: T,wk,i,p,i:| aH L
T pPi s.a i — 0”‘7 i < _
Piblsa) | Tohit Pl (s,a) | BhH pi \| {Nf(s,a) vV 1}PE, (s, a)
e (139)
&
By the choice of sz,h in eq. and eq. and applying in eq. , we conclude that
k . . .
QI (s,a) < Qrt' (s, a). (140)

* Proof of Ineq. 2: By using Proposition[9] (Robust Bellman Equation) and eq. [6} we have
that

k,p; k pi k,pi k pi k
Qb (s,@) — Q1" (s,a) = m{o; o ] = ot o) [V ] = BEn(s, @),

0-— QZ;’pi(s,a)} (141)

m™,pi 7™, p; k
< max{aﬁp\i (5.) [Vz‘,h—&-l ~OpLi(s.a) Vindi| — Bin(s,a),

ih

0}, (142)
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where the second 1nequahty follows from the 1nduct10n of V' h 1 < V’Th +p 1 atthe (h+1)-th
step and the fact that Qi’ h’p > 0. By Lemma we get

k. ClH L
o ‘/;Tr ,sz| — Opi ca |:‘/;7T ,101 <
ch(s,a) |: h+1 Pi,h( ,a) isht1 {N;; S a \/ 1} mlnh( )
1
—. 143
W x (143)

By the choice of ﬁf’ 5 in eq. and eq. and applying in eq. [142] we conclude that
k . _ .
QI (s,a) < QL (s,a). (144)
Therefore, by eq. [[40]and eq. [[44] we have proved that at step h, it holds that

T77T]iq;7 i —k,pi c 0; 7-rk i
Qip " (s,@) Qi (s,@), QY (s,0) < QT (s.a). (145)

We now assume that eq. [[36]hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition[J), eq. 8] and NASH Equilibrium, we get

—k.pi —k,pi —k,pi
V’i,;b) (S) = ]Ea~7rk(~|s) {Qi,}f (Sva)} = H;B}XEG,NW;XWEI.HS) {Qi,}i) (Sva)} . (146)

ko
By the definition of VJ,’?’“”’ (s) in eq. [3} we get

™

Tyﬂ‘lii, i i,
‘/vi,h P (3) = ma,X]EaNﬂ';XﬂJii('ls) |:th (3 a):| . (147)

Sine by induction, for any (s, a), @Q; ’p’( a) > Q, h’“p?(s a). Asaresult, we also have V; ’f;’ (s) >

ViThﬂ‘“pl (s), which is eq. for h-th step. Similarly, we can show that

VL (5) = Banni(i @7 (5.0)]

(@) ok
< anﬂk('\s) [Q@hﬁl (373):| ’

D ymor (s), (148)

where (i) is due to the fact that thp (s,a) < thp (s,a) and (ii) is by definition of Vi”;;’pi (s) as
given by Bellman equation in Proposition [9] O

CCE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
KL-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions fro CCE version.

Lemma 33 (Optimistic and pessimistic estimation of the robust values for KL.-DRMG for CCE
Version). Under the event Ex 1, and by setting the bonus term BF, as in eq. m it holds that

i,h
Qf,w’ii,m —k,p; k.ps 7 pi
i,h (S’ a‘) < Qi,h (S? Cl.) ) Qi,h (57 a’) < Qi’h (57 a) ) (149)
Tvﬂ"iivl)i 7k pi k,pi ﬂk,pi
Vi,h (s) < Vi,h (s), Ki,h (s) < Vi,h (s). (150)

Proof. The proof-lines are similar to (Ghosh et al.,|2025)) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma [33]
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. .78 —k.pi
* Ineq. 1: To prove @, , (s,a) <Q;} (s,a).
* Ineq. 2: To prove Qf,’l’ (s,a) < QZZ"”(S, a).
Assume that both eq. [T49]and eq. [I50]hold at the (h + 1)-th step.

* Proof of Ineq. 1: We first consider robust () at the h-th step. Then, by Proposition[9] (Robust
Bellman Equation) and eq. [5} we have that

T8 i =k,pi .1 pi —k,pi
QL (5,0) ~ QY (s ) = { gy oy [V | = [P0
k ok i
- Bi,h(sv a), inh (87 a) - H )
T,ﬂ)ii,pi Tﬂflippz‘
< max{ap;th(s,a) {Vi,h-q—l } =57 (s0) |:Vi,h+1 }
— Bin(s, a), 0}, (151)

where the second 1nequa11ty follows from the induction of VTh +’1”p1 < Vﬁ ’,fjrl at the h+1-th

step and the fact that Qi ' miopi < H.By Lemmaand by the definition of Pr’;m n(s,a)
as given in eq. [T00] we have that

Jfﬁ”)iz"Pi:| |: T,ﬂ'lii,ﬂz‘:| aH L
0. pq V. — 0= ‘/z <
P (s,a) |: i,h+1 731 L (s,a) ,h+1 {Nk(s a) v 1} i h(s’ a)

1
—=. 152
tWx (152)

By the choice of ﬁz 5 in eq. and eq. and applying in eq. , we conclude that
tm®pi —k,pi
Qi (s.a) Qi (s,0). (153)

* Proof of Ineq. 2: By using Proposition 9] (Robust Bellman Equation) and eq. [6} we have
that

k,p; N k,pi " pi
71-7,2) (s,a) _Qih (s,a) = max{app7h( a) [Kz h+1] ~ 0Pl (s,a) [V;,h+1]
k ™ p;
- 5i,h(87 a)v 0— Qi,h (57 a)
< max{ o Vﬂk’pi — Opri Vﬂk’pi
Pplh(s a) i,h+1 Pl (s,a) i,h+1

- Bf,h(s,a)ﬁ}, (154)

where the second 1nequahty follows from the induction of Vf }ff;-1 <V h_f 1 atthe (h+1)-th

step and the fact that Q” ?¢ > (. By Lemma , we get

K
TP

ClH L
— V. :| _ s [Vﬂ' 7P1
pL lh(sva) |: i,h+1 O'P;h(b,a) Ghtl] = {Nk \/ 1} min h( )

+ (155)

1
=
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By the choice of ﬁ;f 5 1N eq. and eq. and applying in eq. [154} we conclude that
ki —k,pi
Q;h r (s,a) < Ql,f (s,a). (156)
Therefore, by eq. [[53]and eq. [[56] we have proved that at step b, it holds that

.75 i —k,pi ; ™, p;
ch g (S,CL) S Ql,}f (Saa)a Qf’hpl (S,CL) S Qi7hp (Sva’) . (157)

We now assume that eq. [[49]hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition[9), eq. [8] and CCE Equilibrium, we get

Vi (5) = Earsls) [Qin (5:8)] 2 maxBq oo (g (@ (ss2)] . (159)
oo Tvﬂ'}iwpi .
By the definition of V; (s) in eq. [3} we get

. pi .78 i
‘/’i’h —i (S) = H;Z}XEGNWZXWZHS) |:Qi’h1 (S’a>:| . (159)

—kop, ko ko,
Sine by induction, for any (s, a), Qifi (s,a) > Q;’;”’p” (s,a). Asaresult, we also have Vf,f (s) >

ko -
VJ;LW’“M (s), which is eq. for h-th step. Similarly, we can show that

VP (s) = Equnr(s) [Qﬁf”’(&a)} ;
%)ank(,‘s) [QZZ’“(S,a)} :

LV (), (160)
where (i) is due to the fact that Qf}f’ (s,a) < QZZ"” (s,a) and (ii) is by definition of VZW}:Pz (s) as
given by Bellman equation in Proposition[9] O

CE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
KL-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions fro CE version.

Lemma 34 (Optimistic and pessimistic estimation of the robust values for KL-DRMG for CE version).
By setting the bonus term ﬁﬁh as in eq. with probability 1 — 0, for any (s,a, h,i) and k € [K],
it holds that

Py fk, i . k i
%;Q?f P(s.a) S Qi (s,a), QY (s,a) < Q7" (s,a), (161)
k pi kP i k pi
max VT (s) S Vi (s), Vit (s) S Vi " (s). (162)

Proof. The proof-lines are similar to (Ghosh et al.| [2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma[34]

¢ Ineq. 1: To prove mex fork’pi (s,a) < @f:l(& a).
€®; v ’
i 7Tk; i
¢ Ineq. 2: To prove Qfli” (s,a) < Q7" (s, a).
Assume that both eq. [L61]and eq. [162]hold at the (h + 1)-th step.
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* Proof of Ineq. 1: We first consider robust () at the h-th step. Then, by Proposition[J] (Robust
Bellman Equation) and eq. [5} we have that

dom®,p; Akopi
max QU5 (5,0) ~ T (5. )

— por® p; - k,pi k
= max {O"Pzih(s’a) [;%%%V ] — Upplh( [Vi,hﬂ} — Bi’h(s,a),

max Q‘i’wr Pi(s,a) — H}

PED;

k
< ’ '¢<>7" Pi |
= max {O—Pf,h(sva‘) [2:%%35 V%h JP:"h(s a) ¢€q>

0}, (163)

—k,pi
where the second inequality follows from the induction of géax V¢°L’p ‘(s) <V, v 11 (8)

V(bw ’pl} - Zkh(s a),

at the h + 1-th step and the fact that gl%x szw #i(s,a) < H. By Lemma and by the
ST

definition of Pmlrl ,(s,a) as given in eq. , we have that

v )

max
'L h(s a) |:¢€q>7 &

ClH L 1
—. 164
\/{N’“sa )V 1} rmnh( )Jr K (e

By the choice of ﬁﬁ 5 1N eq. and eq. [164|and applying in eq. , we conclude that

pty e [ VI )] -

gor pi < QM . 165
dI}é%XQ (57 a’) = Qz,h (53 Cl,) ( )

* Proof of Ineq. 2: By using Proposition[9] (Robust Bellman Equation) and eq. [6] we have
that

i ﬂ'k7 i
Qifl(sa a) - QL}LP (Sa a)
k,pi 7, pi k T, pi
=max g 0gm o (VIR = opr [V |~ Bi(s.0), 0= Q" (s.0) ¢
7", pi 7" ,pi k
< max O—@(&a) [‘/i,h+1:| - Jpzﬁl(s,a) [‘/;,h+1] - i,h(saa)a 0¢, (166)

where the second inequality follows from the induction of Vf i< thjr”f at the (h+1)-th
step and the fact that QZ;”) ‘> 0. By Lemma we get

k
TP

ClH L
pi V; L ] — Opri(s.a {Vf ’pl —=
Ipr h(s,a)[ ihtl Pin(s:@) | Fihtl {N[:(s,a) V1}PE, (s, a)

1

—. 167
t'Wx (167)
By the choice of /81 5 in eq. and eq. and applying in eq. , we conclude that
v 7*
Qii(s,a) < Q7" (s.a). (168)
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Therefore, by eq. [I63]and eq. [I68] we have proved that at step h, it holds that
max QU (s,a) < Qin' (s,a), QNP (s,a) < QT (s,a). (169)
c 4, ,

We now assume that eq. [[61]hold for A-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition[9), eq. 8] and CE Equilibrium, we get

—k.pi —k,pi —k,pi
Vi,hp (8) = Ea~7r’“(~|s) |:Qi,lf: (s,a)} = gé%XEaN¢QWk('|5) |:Qi,lf: (s,a)} . (170)
By the definition of max V‘m” Pi (s) in eq. [3} we get
PED
¢<>7" sPi — ¢
gé%x Vi Pi(s) = f&%anN(ﬁwk( Is) [H;SaxQ Pi(s, a)} . (171)

ko ps ko
Since by induction, for any (s,a), Q; ’,fl (s,a) > max QY™ 1 (s,a). As aresult, we also have
: cd, Vi

Vﬁ V() > max V, V‘zs<>7r i (s), which is eq. for h-th step. Similarly, we can show that
7 (s,2)]

h
7h7p1 (s, a)] 7

W ymiri (s), (172)

VP (5) = Bgunr(s) [Qf
[eng

(i)
< Eavrr(s)

where (i) is due to the fact that Qf}f (s,a) < QZ’;”” (s,a) and (ii) is by definition of Vf,:”’ (s) as
given by Bellman equation in Proposition[9] O

G.2 AUXILIARY LEMMAS FOR KL-DRMG

Lemma 35 (Concentration of Value Function in KL-DRMG). Under the typical event Ek; as defined
in eq. the following concentration bound holds with probability at least 1 — 6:

.75 pi Tﬂr’ii’pl
07;5(570) {V;,hﬂ —Opli(s,a) Vi,h+1

ClH L + i
{Nh 5,a \/1} min, h( ) \/E,
where | = log (53 (T, Ai)H2K3/2/5) and c; is an absolute constant.

Proof. This proof establishes a concentration bound for the difference between the empirical and

true robust value functions. We use the definition of the KL-divergence operator opr: (, o) [V:hi’fm]

from eq. and the empirical minimum probability P¥. , (s, a) from eq. to express this

min,h
difference as a supremum:

ol LR
O-'P/i{z(s,a) |:‘/i’h+1 :| - 0-73531(570,) |:Vi’h+1 :|
Tvﬂ]ir'vpi
V;' h+1l
n|log (Eﬁ,’f(-|s,a) [exp{—TH
T’”’i'#pi
V. i
_10g<EP,:(s,a) I:exp{_l’h;l}}>‘ (173)

Under the high-probability event E;. (defined in eq. [I04), we apply a known concentration inequality
from (Wang et al.,|2024e, Lemma 16) to bound this expression:

ClH L : (174)
{Nksa\/]‘} rnlnh( )

< sup
n€[n,H/pi]

1,75 pi Tﬂfﬁmpl
U@(s,a) |:Vi,h+1 J’Pqp’h(s,a) Vi,h-{-l
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This bound holds for any 1 within a fine-grained cover of the interval [0, H/pmin|. By applying a
standard covering argument, we extend this bound to hold for all ) € [0, H/pmin], thereby concluding
the proof of Lemma [33] O

Lemma 36 (Bound for DRMG-KL and the robust value function of 7). Under event Ex; in eq.
and for any EQUILIBRIUM € {NASH, CE, CCE}, we assume that the optimism and pessimism
inequalities hold at (h + 1, k), where these inequalities can correspond to any of the following cases
of EQUILIBRIUM:

* NE: Lemma 32| using eq. [I36)and eq.[I37]

* CCE: Lemma[33|using eq. [[49 and eq. [I50}

* CE: Lemma 34 using eq. [I61]and eq. [162}
Then the following bound holds:

B,

ih

Wk,pz: kai
(s,a) |:‘/i,h+1 _gPi’}l(s,a) ‘/i,h+1

<c1H L n 1
= pi \[{NF(s,@) V1I}PE, L (s,a)  VE'

where . = log (53 ([T, A;) H2K?3/2/5), and c; is an absolute constant.

1=

Proof. This proof establishes a concentration bound for the difference between the empirical and
true robust value functions under the KL-divergence. By using the definition of the robust operator

Tpri (s,a) [Vf;f 1] from eq. and the empirical minimum probability P*. (s, a) from eq. ,

min,h
we can bound the absolute difference as follows:

‘ﬂ'k,m Wkaﬂz‘
O—Pf,ih(&a) {‘/i,h-‘rl 7JP£E(S,Q) V;’,h-i—l

‘n'k, i
o B oo {22}
o pi
~log (Ep,;<-s,a> [exp{—v"fl}]) | (175)

Under the high-probability event E;, (defined in eq. [I04), and by applying a known concentration
inequality from (Wang et al.,|2024e, Lemma 17), we can establish a uniform bound on this difference:

call L . (76)
Pi {N}’f(s, a)V 1}Prlflin,h(5’ a)

This inequality holds for any 7 in a fine-grained cover of the interval [0, H/pmin|. We conclude
the proof of Lemma [36] by using a standard covering argument to extend the bound to all n €
[07 H / pmin] . D

< sup 7
n€ln,H/pi)

,n_k

k
1Pi ) ™ P0
(s,a) |:‘/i7h+1i| - U’Pﬁ’h(s,a) |:V;'7h+1:|

0'7;;

ih

Lemma 37 (Bounds for RMG-KL and optimistic and pessimistic robust value estimators). Under
event gy in eq. andfor any EQUILIBRIUM € {NASH, CE, CCE}, we assume that the optimism
and pessimism inequalities hold at (h + 1, k), where these inequalities can correspond to any of the
following cases of EQUILIBRIUM:

* NE: Lemma[32|using eq. [I36|and eq.[I37]
* CCE: Lemma[33|using eq. [[49 and eq.
* CE: Lemma[34 using eq. [I61)and eq. [162]
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Then the following bound holds:
k,pi k,pi
O e (L] 7 0 [V

max {
ClH L 1
< = +14/ =
pi \| {Nf(s,a) V 1} Pk, (s, @) K

where v = log (S* (TTi~, A;) H2K3/2/(5)) and ¢y is an absolute constant.

1=

k.o k.o
057 i — Opri 1
i Vi) = oot e [ Vi

b

}

Proof. We follow the same proof lines as Lemma|[36] and thereby we omit it. O

Lemma 38 (Bound on Binomal random variable). Suppose X ~ Binomial(n,p), where n > 1 and
p € [0,1]. Forany é € (0,1), we have

1
X > %, if np > 8log <> , (177)

8log (3) )

e2np ifnp > log (1)
< ’ P LA 178
{262log((15), ifnpﬁ?log(%), (178)
hold with probability at least 1 — 46.

Proof. Refer to (Shi et al.,2023| Lemma 8) for details. [

H OTHER TECHNICAL LEMMAS

Here, we present some auxiliary lemmas which are useful in the proof.

Lemma 39 (Azuma Hoeffding’s Inequality). Let {Z;}.cz, be a martingale with respect to the
filtration {F;}icz.,. Assume that there are predictable processes {A}iez, and {By}iez, with

respect to {ft}tez+, i.e., forallt, Ay and By are F;_1-measurable, and constants 0 < cq,ca, -+ <
400 such that Ay < Zy — Zy_1 < By and By — Ay < ¢ almost surely. Then, for all B > 0
P(|Z:—Zy| >8] < 262 (179)
— ex — .
t 0| = = p Z C%
i<t
Proof. Refer to the proof of Theorem 5.1 of (Dubhashi & Panconesil, 2009). O

Lemma 40 (Self-bounding variance inequality (Maurer & Pontil, 2009, Theorem 10)). Let
X1, ..., X7 be independent and identically distributed random variables with finite variance, that is,
Var(X1) < co. Assume that X, € [0, M] for every t with M > 0, and let

1 & 1 &\
2 L 2 (1
ST—TgXt (TEXt>.
t=1 t=1
Then, for any € > 0, we have

P(‘ST—\/W‘ 25) < 2exp (—;XZ)

Proof. Refer to the proof of Lemma 7 of (Panaganti & Kalathil, [2022). [
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