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ABSTRACT

Well-trained multi-agent systems can fail when deployed in real-world
environments due to model mismatches between the training and deployment
environments, caused by environment uncertainties including noise or adversarial
attacks. Distributionally Robust Markov Games (DRMGs) enhance system
resilience by optimizing for worst-case performance over a defined set of
environmental uncertainties. However, current methods are limited by their
dependence on simulators or large offline datasets, which are often unavailable.
This paper pioneers the study of online learning in DRMGs, where agents learn
directly from environmental interactions without prior data. We introduce the
Multiplayer Optimistic Robust Nash Value Iteration (MORNAVI) algorithm and
provide the first provable guarantees for this setting. Our theoretical analysis
demonstrates that the algorithm achieves low regret and efficiently finds the optimal
robust policy for uncertainty sets measured by Total Variation divergence and
Kullback-Leibler divergence. These results establish a new, practical path toward
developing truly robust multi-agent systems.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL), along with its stochastic game-based mathematical
formulation (Shapley, 1953; Littman, 1994), has emerged as a cornerstone paradigm for intelligent
multi-agent systems capable of complex, coordinated behavior. It provides the theoretical and
algorithmic foundation for enabling multiple agents to learn, adapt, and make sequential decisions
in shared, dynamic environments. Its practical impacts span from strategic gaming, where MARL
agents have achieved superhuman mastery (Silver et al., 2016; Vinyals et al., 2019); autonomous
transportation, where it is used to coordinate fleets of vehicles to navigate complex traffic scenarios
(Shalev-Shwartz et al., 2016; Hua et al., 2024); and distributed robotics, where teams of robots learn
to execute tasks (Lowe et al., 2017; Matignon et al., 2012).

Despite the remarkable progress in MARL, a fundamental and pervasive challenge severely restricts its
reliable deployment in practice: the Sim-to-Real gap (Zhao et al., 2020; Peng et al., 2018). A standard
pipeline of RL involves training extensively within a high-fidelity simulator and then deploying in
practice. However, any simulator inevitably fails to capture the full richness and complexity of the
real world, omitting subtle physical effects, unpredictable sensor noise, unmodeled system dynamics,
or latent environmental factors (Padakandla et al., 2020; Rajeswaran et al., 2016). Consequently, a
policy that appears optimal within the simulation can be brittle and perform poorly—or even fail
catastrophically—when deployed into the noisy, unpredictable environment.

This vulnerability to model mismatch is magnified exponentially in the multi-agent context: this
uncertainty is amplified through a cascading feedback loop of agent interactions. A minor, unmodeled
perturbation that affects one agent can cause it to deviate from its expected behavior. This deviation
alters the environment for its peers, who in turn must adapt their policies. Their adaptations further
change the dynamics for all other agents, including the one first affected. This can trigger a chain of
unpredictable responses, destabilizing the collective strategy and leading to a highly non-stationary
learning environment far more volatile than that caused by strategic adaptation alone (Papoudakis
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et al., 2019; Canese et al., 2021; Wong et al., 2023). The entire multi-agent system becomes fragile,
as the intricate inter-agent dependencies act as amplifiers for even the smallest model inaccuracies.

To enable MARL against such uncertainty, the framework of Distributionally Robust Markov Games
(DRMGs) offers a principled and powerful solution (Zhang et al., 2020; Kardeş et al., 2011). DRMG
approach embraces a principle of pessimism. It defines an uncertainty set of plausible environment
models centered around the nominal one, and the goal is to maximize the worst-case expected returns
across the entire uncertainty set. This robust optimization strategy yields two profound benefits.
First, it provides a formal performance guarantee: if the true environment lies within the uncertainty
set, the policy’s performance is guaranteed to be no worse than the optimized worst-case value.
Second, it acts as a powerful regularizer, forcing agents to discover more generalizable policies that
are inherently less sensitive to perturbations, thereby enhancing generalization even to environments
outside the set (Vinitsky et al., 2020; Abdullah et al., 2019; Liu et al., 2025).

However, despite its theoretical appeal, the current body of research on DRMGs is built upon
assumptions that create a critical disconnect from the realities of many high-stakes applications.
The prevailing algorithmic frameworks fall into two main categories: those that assume access to
a generative model (Shi et al., 2024b; Jiao & Li, 2024), which is tantamount to having a perfect,
queryable oracle or simulator, and those designed for the offline setting (Li et al., 2025; Blanchet
et al., 2023), which presuppose the existence of a large, static, and sufficiently comprehensive dataset
collected beforehand. These assumptions are untenable in precisely the domains where robustness is
most crucial. Consider applications in autonomous systems (Demontis et al., 2022) or personalized
healthcare (Alaa Eldin, 2023; Lu et al., 2021). In these settings, creating a high-fidelity simulator is
often impossible, and pre-collecting a dataset that covers all critical scenarios is infeasible. Agents
have no choice but to learn online, through direct, sequential interaction with the complex and
unknown real world. In this online paradigm, data is not a free commodity to be sampled at will;
it is earned through experience, where every action has a real cost and naive exploration can lead
to severe or irreversible outcomes. This necessitates a new class of algorithms that can navigate the
exploration-exploitation tradeoff under the additional burden of worst-case environmental uncertainty.

We aim for robustness that survives contact with reality: agents must cope with misspecification
while learning purely from experience. Without simulators or sizable offline datasets, existing
approaches struggle to bridge theory and practice. This shortfall clarifies the gap we address and
motivates our central question of our work: How to design a provably effective online algorithms
for distributionally robust Markov games?

In this paper, we answer the above question by designing a model-based online algorithm for DRMGs
and providing corresponding theoretical guarantees. Our contributions are summarized as follows.

Hardness in Online DRMGs: We first revealed the inherent hardness of online learning in DRMGs.
Specifically, we first showed that the online learning can suffer from the support shifting issue, where
the support of the worst-case kernel is not fully covered by the support of the nominal environment,
by constructing a hard instance that achieve an Ω

(
Kmin{H,

∏
iAi}

)
-regret for any algorithm.

Moreover, we use another example to show that even without the support shifting issue, the regret can
still have a minimax lower bound of Ω(

√
K
∏

iAi). Here, K is the number of iteration episodes, H
is the DRMG horizon, and

∏
iAi is the size of the joint action space. These results directly imply the

hardness of online learning, comparing to other well-posed learning schemes, including generative
model (Shi et al., 2024a; Jiao & Li, 2024) or offline learning (Li et al., 2025).

A Framework for Online Robust MARL: We introduce f -MORNAVI, a novel model-based
meta-algorithm designed specifically for online learning in DRMGs. Our framework pioneers a dual
approach that synergizes the pessimism required for robust optimization with the optimism essential
for provably efficient online exploration. At its core, f -MORNAVI learns the nominal environment
model from online interactions and then incorporates a carefully constructed, data-driven bonus
term, β. This bonus term is uniquely tailored to the geometry of the chosen uncertainty set, guiding
exploration while guaranteeing that the learned policy is robust to worst-case model perturbations.
We further present two concrete instantiations of our framework for uncertainty sets defined by Total
Variation (TV) distance and Kullback-Leibler (KL) divergence.

Near-Optimal Regret Bounds for Online DRMGs: We establish the first known theoretical
guarantees for online learning in general-sum DRMGs by providing rigorous, high-probability regret
bounds for our algorithms. The regret measures the performance gap between our algorithm and
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an optimal robust policy, thus formally characterizing the sample complexity needed to solve the
DRMG. We futher prove that our algorithms converge to an ϵ-optimal robust policy with high sample
efficiency (see Corollary 6). Our results are significant as they are the first to demonstrate that finding
a robust equilibrium in a general-sum DRMG is achievable in a sample-efficient manner through
online interaction, without requiring a simulator or a pre-collected dataset.

2 PROBLEM FORMULATION

2.1 DISTRIBUTIONALLY ROBUST MARKOV GAMES

A Distributionally Robust Markov Game (DRMG) can be specified as MGrob ={
M,S,A, H, {Pi}i∈M, r

}
, where M = {1, ...,m} is the set of m agents, S = {1, 2, . . . , S}

denotes the finite state space, A denotes the joint action space for all agents as A = A1 × · · · × Am,
where Ai = {1, 2, . . . , Ai} being the action space of agent i, H denotes the horizon length. We
consider non-stationary DRMGs, i.e., r is the reward function: r = {ri,h}1≤i≤m,1≤h≤H with
ri,h : S × A 7→ [0, 1]. Specifically, for any (i, h, s,a) ∈ M × [H] × S × A, ri,h(s,a) is the
immediate (deterministic) reward received by the i-th agent in state s when the joint action profile
is a. Agents in a DRMG maintain their own uncertainty sets of transition kernels Pi, to capture
the potential environment uncertainties in their perspective. At each step, the environment transits
following an arbitrary kernel from the uncertainty set.

Drawing inspiration from the rectangularity condition in robust single-agent RL (Iyengar, 2005;
Wiesemann et al., 2013a; Zhou et al., 2021b; Shi et al., 2023), and following standard DRMG studies
(Shi et al., 2024b;a; Zhang et al., 2020), we consider the agent-wise (s,a)-rectangular uncertainty
set, due to its computational tractability1. Namely, for each agent i, the DRMG specify an uncertainty
set Pi, which is independently defined over all horizons, states, and joint actions:

Pi =
⊗

(h,s,a)∈[H]×S×A

Pρi

i,h,f (s,a), (1)

where ⊗ denotes the Cartesian product. At step h, if all agents take a joint action ah at the state sh,
the transition kernel can be chosen arbitrarily from the prescribed uncertainty set Pρi

i,h,f (sh,ah). We
consider the uncertainty set Pρi

i,h,f (s,a) centered on a nominal kernel P ⋆:

Definition 1 (f -Divergence Uncertainty Set). The f -divergence uncertainty set is defined as:

Pρi

i,h,f (s,a) =
{
Ph ∈ ∆(S) : f

(
Ph, P

⋆
h (·|s,a)

)
≤ ρi

}
, (2)

where the f -divergence is f
(
Ph, P

⋆
h (·|s,a)

)
=
∑
s′∈S

f
(

Ph(s
′)

P⋆
h (s′|s,a)

)
P ⋆
h (s

′|s,a).

The f -divergence uncertainty sets with different f have been extensively studied in distributionally
robust RL (Clavier et al., 2023; Shi et al., 2023; Panaganti et al., 2022; Yang et al., 2022; Wang et al.,
2024e; Zhang et al., 2025). In this work, we focus on TV and KL-divergence.

Robust Value Functions. For a DRMG, each agent aims to maximize its own worst-case
performance over all possible transition kernels in its own (possibly different) prescribed uncertainty
set. The strategy of agent i taking actions is captured by a policy πi = {πi,h : S → ∆(Ai)}Hh=1.
Since the immediate rewards and transition kernels are determined by the joint actions, the
worst-case performance of the i-th agent over its own uncertainty set Pi is determined by a
joint policy π = {πh : S → ∆(A)}Hh=1, which we refer to as the robust value function
V π,ρi

i,h and the robust Q-function Qπ,ρi

i,h , for an initial state s and initial action a: Qπ,ρi

i,h (s,a) ≜

inf P̃∈Pi
Eπ,P̃

[∑H
t=h ri,t(st,at)

∣∣∣∣∣ sh = s,ah = a

]
, and V π,ρi

i,h (s) ≜
∑

a π(a|s)Q
π,ρi

i,h (s,a).

where the expectation is taken over the randomness of the joint policy π and the kernel P̃ .

1Robust MDPs without rectangular assumption can be NP-hard to solve (Wiesemann et al., 2013b).
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Solutions to DRMGs. Due to different objectives among players, the goal of a DRMG is to achieve
some notions of equilibrium (Fudenberg & Tirole, 1991). For any given joint policy π, π−i is the
marginal policies of all agents excluding the i-th agent. The agent i’s best response policy to π−i,
π†,ρi

i (π−i), is the policy that maximizes its own robust value function, at the give step h and state s:
π†,ρi

i (π−i) ≜ argmaxπ′
i∈∆(Ai) V

(π−i×π′
i),ρi

i,h (s). The corresponding robust value function is

V
†,π−i,ρi

i,h (s) ≜ max
π′
i∈∆(Ai)

V
π′
i×π−i,ρi

i,h (s). (3)

The goal of a DRMG is to compute an equilibrium policy (Fudenberg & Tirole, 1991), such that
each agent’s policy is the best response to the others, so that no single agent can improve its robust
value by deviating while the rest remain fixed. Standard notions of equilibria include robust Nash
Equilibrium (NE), robust Coarse Correlated Equilibrium (CCE), and robust Correlated Equilibrium
(CE) (their exist are shown in (Blanchet et al., 2023)), defined as follows:

Robust ε-NE. A product policy π ∈ ∆(A1) × · · · × ∆(Am) is a robust-ε NE if for any s ∈ S:
gapNE(π, s) ≜ maxi∈M

{
V

†,π−i,ρi

i,1 (s)− V π,ρi

i,1 (s)
}
≤ ε.

Robust NE ensures that, the agent i’s policy induced by the NE is a best response policy
to the remaining agents’ joint policy (up to ϵ), thus no agent can improve its worst-case
performance—evaluated over its own uncertainty set Pi—by unilaterally deviating from the NE.

Robust ε-CCE. A (possibly correlated) joint policy π ∈ ∆(A) is a robust-ε CCE if for any s ∈ S:
gapCCE(π, s) ≜ maxi∈M

{
V

†,π−i,ρi

i,1 (s)− V π,ρi

i,1 (s)
}
≤ ε. Robust CCE relaxes the notion of NE

by allowing for potentially correlated policies, while still ensuring that no agent has an incentive to
unilaterally deviate from it.

Robust ε-CE. A joint policy π ∈ ∆(A) is a robust-ε CE if for any s ∈ S:
gapCE(π, s) ≜ maxi∈M

{
maxϕ∈Φi V

ϕ⋄π,ρi

i,1 (s)− V π,ρi

i,1 (s)
}
≤ ε. Here, a strategy modification

ϕ ≜ {ϕh,s}(h,s)∈[H]×S for player i is a set of [H]× S functions from Ai to itself. Let Φi denote the
set of all possible strategy modifications for player i. Given a joint policy π, applying a modification
ϕ yields a new joint policy ϕ⋄π, which matches π everywhere except that at each state s and timestep
h, player i’s action ai is replaced by ϕh,s(ai).

Online Learning in DRMGs. We consider online learning in DRMGs, aiming to compute equilibria
{NASH,CCE,CE} via interaction with the nominal environment P ⋆ over K ∈ N episodes. Each
episode starts from sk1 , proceeds with a policy πk chosen from experience, and ends with an update
for the next round. We use robust regret as our performance metric, which compares the learned
outcome to the target equilibrium in the presence of model error.
Definition 2 (Robust Regret). Let πk be the execution policy in the kth episode. After a
total of K episodes, the corresponding robust regret is defined as Regret{NASH,CCE,CE}(K) =∑K

k=1 gap{NASH,CCE,CE}(π
k, sk1).

Notably, if an algorithm has a sub-linear regret, it achieves a robust equilibrium as K →∞.

3 OPTIMISTIC ROBUST NASH VALUE ITERATION

We then present Multiplayer Optimistic Robust Nash Value Iteration for f -Divergence Uncertainty
Set (f -MORNAVI), a meta-algorithm for episodic, finite-horizon DRMGs with interactive data
collection. f -MORNAVI handles general f -divergences, with emphasis on KL and TV.

3.1 ALGORITHM DESIGN

Our algorithm has the following three stages.

Stage 1: Nominal Transition Estimation (Line 4). At the start of each episode k ∈ [K], we
maintain an estimate of the nominal kernel P ⋆ using the historical data D = {(sτh,aτh, sτh+1)}

k−1,H
τ=1,h=1

4
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Algorithm 1: f -MORNAVI

1: Input: Uncertainty level ρi > 0 for all i ∈M.
2: Initialize: Dataset D = ∅
3: for episode k = 1, . . . ,K do
4: Compute the transition kernel estimator P̂ k

h (s,a, s
′) as given in eq. 4.

5: Set V
k,ρi

H+1(·) = V k,ρi

H+1(·) = 0 for all i ∈M.
6: for step h = H, . . . , 1 do
7: For all (s,a) ∈ S ×A and i ∈M, update Q

k,ρi

i,h (s,a) [eq. 5] and Qk,ρi

i,h
(s,a) [eq. 6].

8: For all s ∈ S, update πk
h(·|s) by eq. 7, update V

k,ρi

i,h (s) and V k,ρi

i,h (·) by eq. 8.
9: end for

10: Receive initial State sk1 ∈ S
11: for step h = 1, . . . ,H do
12: Take action akh ∼ πk

h(· | skh), observe reward rh(skh,a
k
h) and next state skh+1.

13: end for
14: Set D = D ∪ {(skh,akh, skh+1)}Hh=1.
15: end for
16: Output: Return policy πout = {πk}Kk=1.

collected from past interactions with the training environment. Specifically, f -MORNAVI updates
the empirical transition kernel for each tuple (h, s,a, s′) ∈ [H]× S ×A× S as follows:

P̂ k
h (s

′|s,a) = Nk
h (s,a, s

′)

Nk
h (s,a)

(if Nk
h (s,a) > 0), and P̂ k

h (s
′|s,a) = 1

|S|
(if Nk

h (s,a) = 0), (4)

where Nk
h (s,a, s

′) and Nk
h (s,a), are calculated on the current dataset D by Nk

h (s,a, s
′) =

k−1∑
τ=1

1{(sτh,aτh, sτh+1) = (s,a, s′)}, and Nk
h (s,a) =

∑
s′∈S

Nk
h (s,a, s

′). Note that we adopt a

model-based approach that estimates transition kernels. Although this leads to higher memory
consumption, model-free DRMGs are inherently challenging due to the non-linearity of worst-case
expectation w.r.t. nominal kernels, which makes model-free estimators biased or sample-inefficient
(Liu et al., 2022; Wang et al., 2023c; 2024d; Zhang et al., 2025).

Stage 2: Optimistic Robust Planning (Lines 5–9). The f -MORNAVI constructs the episode policy
πk via optimistic robust planning based on the empirical model P̂ k. This involves estimating an
upper bound on the robust value function, following the principle of Upper-Confidence-Bound (UCB)
methods, which are well-established in online vanilla RL (Auer & Ortner, 2010; Azar et al., 2017;
Zanette & Brunskill, 2019; Zhang et al., 2021b; Ménard et al., 2021; Zhang et al., 2024), and this
optimism encourages exploration of less-visited state–action pairs.

To this end, f -MORNAVI maintains a bonus term at each episode k, capturing the gap between
the robust value function under P̂ k and that under the true model. This bonus is added to the robust
Bellman estimate to ensure its optimism. Specifically, for each (h, s,a) ∈ [H]× S ×A, we set

Q
k,ρi

i,h (s,a) =min
{
ri,h(s,a) + σP̂ρi

i,h,f (s,a)
[V

k,ρi

i,h+1] + βk
i,h,f (s,a), H

}
. (5)

Qk,ρi

i,h
(s,a) =max

{
ri,h(s,a) + σP̂ρi

i,h,f (s,a)
[V k,ρi

i,h+1]− β
k
i,h,f (s,a), 0

}
, (6)

here, σP [V ] = infP∈P EP [V ] is the support function of V over the uncertainty set P , and can be
calculated through its dual representation (see Lemma 7); P̂ρi

i,h,f is the uncertainty set centered at P̂ k

from eq. 4: P̂ρi

i,h,f (s,a) =
{
Ph ∈ ∆(S) : f

(
Ph, P̂

k
h (·|s,a)

)
≤ ρi

}
.

Each of these estimates in eq. 5 and eq. 6 are based on estimated robust Bellman operators (see
Appendix C for details) and a bonus term βk

i,h,f (s,a) ≥ 0. The bonus term is constructed (we will
discuss the construction later) to ensure the estimation becomes a confidence interval of the true
robust value function, i.e., Q†,π−i,ρi

i,h (s,a) ∈ [Qk,ρi

i,h
(s,a), Q

k,ρi

i,h (s,a)], with high probability.

5
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EQUILIBRIUM subroutine (Line 8). Given robust Q-function estimates Qk,ρi

i,h
(s,a) and

Q
k,ρi

i,h (s,a) for i ∈ M at step h, the sub-routine EQUILIBRIUM ∈ {NASH,CCE,CE} finds a

corresponding equilibrium πk
h(·|s) for the matrix-form game with pay-off matrices {Qk,ρi

i,h (s, ·)}i∈M:

πk
h(·|s)← EQUILIBRIUM

({
Q

k,ρi

i,h (s, ·)
}
i∈M

)
. (7)

Note that finding a NE can be PPAD-hard (Daskalakis et al., 2009), but computing CE or CCE
remains tractable in polynomial time (Liu et al., 2021). We follow standard MG studies, assuming
EQUILIBRIUM can be executed, and mainly focus on sample complexity and statistic efficiency.

We then update the estimation of V †,π−i,ρ
h as

V
k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)
]

and V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Qk,ρi

i,h
(s,a)

]
. (8)

Note that while the lower estimate in eq. 6 does not influence policy execution directly, it plays a
crucial role in constructing valid exploration bonuses and ensuring strong theoretical guarantees. By
leveraging both upper and lower bounds, the algorithm performs optimistic robust planning, enabling
structured, uncertainty-aware exploration that balances exploration, exploitation, and robustness.

Stage 3: Execution of Policy and Data Collection (Lines 10–16). After evaluating the policy
{πk

h}Hh=1 for episode k, the learner takes action based on πk
h and observes the reward rh(skh,a

k
h) and

next state skh+1, which get appended to the historical dataset collected till episode k − 1.

4 HARDNESS OF ONLINE LEARNING

In this section, we aim to discuss the inherent hardness of online learning in DRMGs from two
aspects: (1) When there is the support shift issue, no MARL algorithm can obtain a sub-linear regret
on a certainty DRMG; (2) Even if there is no support shift issue, there exists a DRMG such that
any online algorithm suffers from the curse of multi-agency. This is a separation between DRMGs
with interactive data collection and generative model/offline data, and also between DRMGs with
non-robust MGs, showing the inherent challenges of online DRMGs.

4.1 HARDNESS WITH SUPPORT SHIFT

Support shift (Lu et al., 2024) refers to the case that the support of the worst-case transition kernel is
not covered by the support of the nominal kernel. It can happen when, for instance, the uncertainty
set is defined through TV. It will result in a challenge that, for those states that is not covered by the
nominal kernel, there is no data available, so that the agent can never learn the optimal robust policy
efficiently. Specifically, we derive the following result to illustrate the hardness.

Theorem 1. There exists a TV-DRMG, such that any online learning algorithm satisfies that:

inf
ALG

E[RegretNASH(K)] ≥ Ω
(
ρK ·min{H,

∏
i∈M

Ai}
)
.

Our construction is deferred to Example 10 in Appendix. This regret bound is linear in the number of
episodes K, creating a combinatorial explosion that makes the problem information-theoretically
intractable. Moreover, our result shows that when the game horizon H is large enough, the minimax
lower bound depends on the joint action space, showing the hardness of online learning compared to
generative models and offline settings.

4.2 HARDNESS WITHOUT SUPPORT SHIFT

We then illustrate the hardness of online DRMGs when there is no support shift. Note that when the
uncertainty set is defined through, e.g., KL divergence, the worst-case support will be covered by the
nominal one, so there will not be any support shift. However, we construct another example to show
that, even without the support shift, the online learning can still be challenging and inefficient.

6
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Theorem 2 (Lower Bound for Robust Learning without Support Shift). There exists a DRMG, such
that any learning algorithm suffers the following cumulative regret lower bound over K episodes:

inf
ALG

E[RegretNASH(K)] ≥ Ω
(√

K
∏
i∈M

Ai

)
.

This result illustrates that, even without any support shift, some hard instance can require at least
Ω
(√

K
∏

iAi

)
regret. Our result hence suggests that the dependence on the joint action space

may be inevitable in online DRMGs, which suffer from the curse of multi-agency. Specifically, in
DRMGs, agents need to solve the robust optimization (i.e., estimate the support function σP(·)),
which requires knowledge of the whole transition kernels to find the worst-case from the uncertainty
set. Thus the agents have to explore the whole model, introducing an inevitable dependence on∏

iAi. In non-robust MGs, however, agents can estimate the single nominal performance merely
from samples instead of model estimations, thus the multi-agency curse can be broken.

5 THEORETICAL GUARANTEES

5.1 REGRET BOUND FOR TOTAL VARIATION

As discussed in Section 4, no efficient algorithm can be expected due to the support shifting issue. We
hence adopt a standard fail-state assumption (Lu et al., 2024; Liu et al., 2024) to ensure the worst-case
kernel support will be covered by the nominal one, bypassing the issue.
Assumption 3 (Failure States). For any agent i, there exists an (agent-specified) set of failure states
Sif ⊆ S, such that ri(s,a) = 0, and P ⋆

h (s
′|s,a) = 0, ∀a ∈ A,∀s ∈ Sif ,∀s′ /∈ Sif .

This assumption is only needed for TV case. Assumption 3 is a standard assumption in single-agent
robust RL studies (Panaganti et al., 2022; Lu et al., 2024), and we adapt it to multi-agent cases.

We then present our threotical guarantees.
Theorem 4 (Upper bound of TV-MORNAVI). Denote ρmin := mini∈M ρi. For any δ ∈ (0, 1),

we set βk
i,h,f (s,a) as

√√√√ c1ιVar
P̂k
h

(·|s,a)

[
V

k,ρi
i,h+1

+V
k,ρi
i,h+1

2

]
Nk

h (s,a)∨1
+ c2H

2Sι√
Nk

h (s,a)∨1
+

2E
P̂k
h

(·|s,a)

[
V

k,ρi
i,h+1−V

k,ρi
i,h+1

]
H +

1√
K

, where ι = log
(
S2(
∏m

i=1Ai)H
2K3/2/δ

)
and c1, c2 are absolute constants. Then under

Assumption 3, for EQUILIBRIUM being one of {NASH,CE,CCE}, with probability at least 1 −
δ, the regret of our TV-MORNAVI algorithm can be bounded as: Regret{NASH,CCE,CE}(K) =

Õ
(√

min
{
ρ−1
min, H

}
H2SK

(∏
i∈MAi

))
.

5.2 REGRET BOUND FOR KL-DIVERGENCE

We then study the regret bound of KL-divergence set. As discussed, KL set is free from supporting
issue hence no additional assumption is required. Our regret bound result is as follows.

Theorem 5. For any δ, set βk
i,h,f (s,a) in KL-DRMG as 2cfH

ρi

√
ι(

Nk
h (s,a)∨1

)
P̂k

min,h(s,a)
+√

1
K , where P̂ k

min,h(s,a) = min
s′∈S
{P̂ k

h (s
′|s,a) : P̂ k

h (s
′|s,a) > 0}, ι =

log
(
S2(
∏m

i=1Ai)H
2K3/2/δ

)
, and cf is an absolute constant. Then for EQUILIBRIUM

being one of {NASH,CE,CCE}, with probability at least 1 − δ, it holds that

Regret{NASH,CCE,CE}(K) = Õ

(√
H4 exp(2H2)KS

(∏
i∈MAi

)(
ρ2minP

⋆
min

)−1
)
, here,

P ⋆
min ≜ min(s,a,s′,h):Ph(s′|s,a)>0 P (s

′|s,a) is the smallest positive entry of the nominal kernel.

We note that exp(H) term is inherently from the duality form of the distributionally robust
optimization with KL-ball (see equation 12). It is standard in existing robust RL studies under

7
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KL settings, and can be directly replaced by (P ⋆
min)

−1 (see, e.g., (Panaganti & Kalathil, 2022;
Blanchet et al., 2023; Ghosh et al., 2025; Si et al., 2020; Xu et al., 2023b; Zhou et al., 2021a)). It
reflects the inherent hardness of the KL-based robust RL, and are inevitable in sample complexity.
In practice, for moderate horizons, P ⋆

min > 0, and non-vanishing σ, these worst-case factors remain
controlled and do not pose serious issues.

We then briefly discuss the construction of β under the two cases. Recall that in our meta–algorithm
f -MORNAVI, for each agent i, episode k and step h, we maintain an optimistic and a pessimistic
robust Q–estimate Qρi

k,i,h(s, a), Q
ρi

k,i,h
(s, a), defined via the empirical robust Bellman operators as

in eqs 5-6, and shifted by an exploration bonus βk
i,h,f (s, a) ≥ 0. We use σP [V ] := infP∈P EP [V ]

for the support function over the uncertainty set. The purpose of the bonus is to make these estimates
form a tight, uniform high–probability confidence interval around the true robust Q–values, i.e.

Q
†,π−i,ρi

i,h (s, a) ∈
[
Qρi

k,i,h
(s, a), Q

ρi

k,i,h(s, a)
]

for all (i, h, k, s, a). (9)

TV–uncertainty. For TV–balls we use the dual representation of the robust Bellman operator in
equation 11. Under Assumption 3 (failure states) it holds that mins V (s) = 0, and the deviation
between the true and empirical robust operators at (h, s, a) then decomposes as∣∣∣σPρi

TV(P⋆
h (·|s,a))[V ]− σPρi

TV(P̂k
h (·|s,a))[V ]

∣∣∣ ≤ max
η∈[0,H/ρmin]

∣∣∣EP⋆
h (·|s,a)[Vη]− EP̂k

h (·|s,a)[Vη]
∣∣∣.

To simultaneously control the estimation error for all (i, h, k, s, a) and all value functions of the
form V = V ρi

k,i,h+1 and V ρi

k,i,h+1, we utilize the standard ϵ-net (Shi & Chi, 2022; Li et al., 2024a)
of the interval [0, H/ρmin], and construct a Bernstein–type concentration inequality for empirical
expectations of the random functions Vη as∣∣∣EP⋆

h (·|s,a)[U ]− EP̂k
h (·|s,a)[U ]

∣∣∣ ≲
√

VarP̂k
h (·|s,a)(U) ι

Nk
h (s, a) ∨ 1

+
H2
√
Sι√

Nk
h (s, a) ∨ 1

, (10)

for all U with ∥U∥∞ ≤ H . In our algorithm we set U =
V

ρi
k,i,h+1+V

ρi
k,i,h+1

2 , and ∆V := V
ρi

k,i,h+1 −
V ρi

k,i,h+1, which allows us to relate the variance under P ⋆ and P̂ k and to control the gap E[∆V ] that
appears in the robustness amplification term. Combining equation 10 with these comparisons yields∣∣∣σPρi

TV(P⋆
h (·|s,a))[V

ρi

k,i,h+1]− σPρi
TV(P̂k

h (·|s,a))[V
ρi

k,i,h+1]
∣∣∣

≲

√√√√VarP̂k
h (·|s,a)

[
1
2 (V

ρi

k,i,h+1 + V ρi

k,i,h+1)
]
ι

Nk
h (s, a) ∨ 1

+
H2
√
Sι√

Nk
h (s, a) ∨ 1

+
1

H
EP̂k

h (·|s,a)
[
∆V

]
.

This motivates choosing the TV–bonus as

βk
i,h,f (s, a) =

√√√√c1ιVarP̂k
h (·|s,a)

[
1
2 (V

ρi

k,i,h+1 + V ρi

k,i,h+1)
]

Nk
h (s, a) ∨ 1

+
2

H
EP̂k

h (·|s,a)
[
∆V

]
+

c2H
2
√
Sι√

Nk
h (s, a) ∨ 1

+
1√
K
.

With this choice, Lemma 20 shows that equation 9 holds under TV–uncertainty.

KL–uncertainty. For KL–balls we again appeal to the dual formulation equation 12. Thus the robust
Bellman operator becomes a log–moment generating function of V . The key difficulty is that we now
need to control the deviation between the true and empirical log–MGFs,∣∣∣∣− 1

λ
logEP⋆

h (·|s,a)
[
exp(−λV )

]
+

1

λ
logEP̂k

h (·|s,a)
[
exp(−λV )

]∣∣∣∣ ,
uniformly over all (i, h, k, s, a) and the random value functions V = V ρi

k,i,h+1 generated by the
algorithm. We utilize the Hoeffding’s inequality to derive a self–normalized concentration inequality
for empirical MGFs:∣∣logEP⋆ [e−λV ]− logEP̂k [e

−λV ]
∣∣ ≲√ ι

(Nk
h (s, a) ∨ 1)P ⋆

min,h(s, a)
.

8
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Multiplying both sides by H/ρi (since λ ≍ ρi/H) and using the boundedness ∥V ∥∞ ≤ H to control
higher–order terms in the MGF expansion, we obtain the local deviation∣∣∣σPρi

KL(P
⋆
h (·|s,a))[V ]− σPρi

KL(P̂
k
h (·|s,a))[V ]

∣∣∣ ≲ H

ρi

√
ι

(Nk
h (s, a) ∨ 1)P ⋆

min,h(s, a)
.

Since only the support of P ⋆ matters, and we only observe empirical transitions, we replace
P ⋆
min,h(s, a) by its empirical counterpart P̂ k

min,h(s, a), at the cost of an extra factor that is absorbed
into the constants (cf. Lemma 31). This leads to the KL–bonus

βk
i,h,f (s, a) = 2cf

H

ρi

√
ι

(Nk
h (s, a) ∨ 1) P̂ k

min,h(s, a)
+

√
1

K
.

5.3 SAMPLE COMPLEXITY

As a direct corollary, we derive the sample complexity to learn an ε-equilibrium. Using a standard
online-to-batch conversion (Cesa-Bianchi et al., 2001), we have the following results.
Corollary 6 (Sample Complexity). With probability at least 1−δ, and under the settings of Theorem 4
and Theorem 5, the number of samples required to find an ϵ-approximate equilibrium is bounded as:

KH =

 Õ
(
ϵ−2 min

{
ρ−1
min, H

}
H3S

(∏
i∈MAi

))
, for TV-DRMG

Õ
(
ϵ−2H5 exp(2H2)S

(∏
i∈MAi

)(
ρ2minP

⋆
min

)−1)
, for KL-DRMG

.

Our results hence implies that, despite the inherent hardness of online learning in DRMGs, our
algorithm is able to learn an equilibrium with efficient sample complexity. As we shall discussed in
the next section, our complexity bounds are near-optimal (expect the term

∏
i∈MAi).

6 COMPARISON WITH PRIOR WORKS AND DISCUSSION

We then compare our results with prior works (the detailed Comparisons are shown in Table 1).

Table 1: Comparison with prior results. C⋆
u/p are coverage coefficients for offline learning.

Setting &
Algorithm Uncertainty Set Sample Complexity

Generative
(Shi et al., 2024b) TV Õ

(
ϵ−2H3S(

∏
i∈MAi)min

{
ρ−1
min, H

})
Generative

(Jiao & Li, 2024) Contamination Õ(ϵ−2H3S(
∑

i∈MAi)min
{
ρ−1
min, H

}
)

Generative
(Shi et al., 2024a) TV (fictitious) Õ

(
ϵ−4H6S(

∑
i∈MAi)min

{
ρ−1
min, H

})
Offline

(Blanchet et al., 2023)
KL Õ

(
ϵ−2ρ−2

minC
⋆
uH

4 exp(H)S2(
∏

i∈MAi)
)

TV Õ
(
ϵ−2C⋆

uH
4S2(

∏
i∈MAi)

)
Offline

(Li et al., 2025) TV Õ
(
ϵ−2C⋆

pH
4S(
∑m

i=1Ai)min {f(H, ρ), H}
)

Online
(Ma et al., 2023) KL Õ(ϵ−2H5S(maxi{Ai})2) (with an oracle)

Online
(Our work)

TV Õ
(
ϵ−2H3S(

∏
i∈MAi)min

{
ρ−1
min, H

})
KL Õ

(
ϵ−2ρ−2

min(P
⋆
min)

−1H5 exp(2H2)S
(∏

i∈MAi

))
Generative

Lower bound
(Shi et al., 2024b)

TV Ω̃
(
ϵ−2H3S(maxi∈MAi)min

{
ρ−1
min, H

})
A substantial body of research on DRMGs has focused on two primary settings: (i) generative model
setting, where the agents can freely sample from all state-action pairs (Shi et al., 2024a;b; Jiao

9
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& Li, 2024); (ii) offline setting, which relies on a comprehensive, pre-collected dataset (Blanchet
et al., 2023; Li et al., 2025). As we discuss in Section 4, both of these avoid exploration and are
therefore easier than the online regime we consider. Despite this added difficulty, our algorithm
attains complexities comparable to those reported for the generative and offline settings.

For both uncertainty sets, our results match or improve upon previous results and the minimax lower
bound in all parameters except for the action-product term,

∏
iAi, under the generative model setting.

In the offline setting, if the dataset is generated uniformly, the convergence coefficients C⋆
u/p from

(Li et al., 2025; Blanchet et al., 2023) introduce an additional
∏

iAi term into the sample complexity.
Consequently, our results also match or surpass the offline complexity in all parameter dependence.
This raises an important open question: Can any DRMG learning algorithm overcome the curse
of multi-agency and eliminate the dependence on

∏
iAi under general settings?

While some works (Shi et al., 2024a; Jiao & Li, 2024; Li et al., 2025; Ma et al., 2023) have achieved
independence from

∏
iAi, it remains unclear whether these improvements are applicable to general

DRMGs. Specifically, the results in (Shi et al., 2024a) and (Jiao & Li, 2024) are developed for special
uncertainty sets with desirable properties. For instance, the fictitious TV uncertainty set in (Shi et al.,
2024a) allows the global transition kernel to be estimated from a single agent’s local information;
And robust RL under contamination models is known to be equivalent to a non-robust problem with a
specific discount factor (Wang et al., 2023a). And the improvement in the offline setting is attributed
to the benefits of the coverage coefficient.

The only online method (which also breaks the curse of multi-agency) is presented in (Ma et al., 2023).
However, their algorithm relies on additional assumptions about uncertainty sets and a powerful oracle.
This oracle is required to provide an ϵ-accurate estimation of the worst-case performance, σPi

[V ]
(see Theorem 12 of (Ma et al., 2023)), without any need for exploration. A central challenge in the
analysis of robust learning algorithms is precisely quantifying this estimation error, as demonstrated
in works like (Shi et al., 2023; Xu et al., 2023a; Panaganti & Kalathil, 2022; Liu & Xu, 2024). By
assuming the existence of such an oracle, they bypass this core challenge, which significantly reduces
their sample complexity. Moreover, their results need additional assumptions on the radius ρ. For
instance, it is assumed that ρ ≤ P⋆

min

H , whereas ours do not require any of them.

Therefore, the complexity reduction in these works is in fact a blessing of their specific uncertainty
set structures, the properties of offline coverage coefficients, or the use of an impractical oracle. As
our lower bound derived in Section 4, we argue that the dependence on the joint action space may be
inevitable in DRMGs. In the robust settings, agents need to estimate the entire nominal kernel so that
they can learn the worst-case from the uncertainty set through distributionally robust optimization,
which requires samples from all joint actions to estimate the whole transition kernel; Whereas in
non-robust case, there is only one transition kernel and agents can use samples to directly estimate
the performance under it, instead of estimating the whole transition model. We leave the exploration
of this direction, including whether practical relaxations and techniques can avoid it, for future work.

7 CONCLUSION

In this paper, we introduced the Multiplayer Optimistic Robust Nash Value Iteration (MORNAVI)
algorithm, pioneering the study of online learning in DRMGs. Our work provides the first provable
guarantees for this challenging setting, demonstrating that MORNAVI achieves low regret and
efficiently identifies optimal robust policies for TV-divergence and KL-divergence uncertainty sets.
This research establishes a practical path toward developing truly robust multi-agent systems that
learn directly from environmental interactions. Despite the inherent hardness of online DRMGs, our
algorithm achieves complexity results comparable to generative model and offline settings. This work
also highlights a critical open question: whether online DRMG learning algorithms can overcome the
curse of multi-agency and eliminate the dependence on the joint action space size. Future work will
explore this fundamental challenge to advance the scalability of robust MARL.
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Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov Decision Processes.
Mathematics of Operations Research, 38(1):153–183, 2013a.
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A USE OF LARGE LANGUAGE MODELS

We used ChatGPT only as a general-purpose assistant for language editing and typesetting. Its role
was limited to (i) improving grammar, style, and readability, and (ii) LaTeX support—adjusting
algorithm placement, tidying BibTEX entries and citation styles, and resolving compile issues (e.g.,
Type-3 font warnings and package conflicts). All ideas, derivations, and final claims were conceived,
checked, and validated by the authors, who bear full responsibility for the paper’s content.

B RELATED WORKS

In this section we discuss other related works.

Single-Agent Robust RL. Robust RL for single-agent settings has been extensively studied
across a wide range of formulations. In particular, a substantial body of work has examined the
generative-model setting (Clavier et al., 2023; Liu et al., 2022; Panaganti & Kalathil, 2022; Ramesh
et al., 2023; Shi et al., 2023; Wang et al., 2023b; 2024c;b; Xu et al., 2023a; Yang et al., 2022; 2023),
where the agent is assumed to have access to a simulator. These studies develop distributionally robust
RL algorithms under various uncertainty sets, including TV, KL, χ2, and Wasserstein divergences.
Another, and arguably more challenging, line of research focuses on the offline setting (Blanchet
et al., 2023; Ma et al., 2022; Panaganti et al., 2022; Shi & Chi, 2024; Zhang et al., 2023; Liu &
Xu, 2024; Wang et al., 2024e; Blanchet et al., 2023; Wang et al., 2024a). In this setting, the agent
must learn exclusively from a fixed offline dataset, without the ability to collect additional online
samples. Finally, we consider the online setting (Badrinath & Kalathil, 2021; Dong et al., 2022; Li
et al., 2022; Liang et al., 2023; Wang & Zou, 2021), where the agent learns exclusively through direct
interaction with the environment. Prior work spans model-based, model-free, and policy-gradient
approaches, with some methods, such as the policy optimization algorithm of (Dong et al., 2022),
achieving sublinear regret guarantees.

Robust MARL. Besides the distributionally robust Markov games we considered in our paper, there
are also other works investigate robustness in MARL for cooperative tasks, where all agents share
a unified objective. (Bukharin et al., 2023) enhance robustness through adversarial regularization,
perturbing the environment to encourage Lipschitz-continuous policies. (Lin et al., 2020) explore
adversarial attacks on MARL agents as a means of improving resilience, while (Li et al., 2019) extend
this approach to continuous action spaces by modifying the MADDPG algorithm (Lowe et al., 2017)
to focus on worst-case actions—a narrower interpretation of worst-case optimization in robust RL.
(Wang et al., 2022) studied robust MARL with network agents.

Another line of research focuses on the robustness in MARL under observation uncertainty, under the
formulation of partially observable MDPs. The framework of observation-robust games is proposed
in (He et al., 2023; Han et al., 2024). Observation-robust cooperative MARL is studied in (Zhou
et al., 2024).

Non-Robust Markov Games. Markov games (MGs), or stochastic games, introduced by (Shapley,
1953), form the standard foundation for multi-agent reinforcement learning (MARL), particularly in
equilibrium learning. Comprehensive surveys such as (Busoniu et al., 2008; Oroojlooy & Hajinezhad,
2023; Zhang et al., 2021a) offer thorough coverage of the field’s evolution. Early work in MARL
focused on asymptotic convergence guarantees (Littman et al., 2001; Littman & Szepesvári, 1996),
whereas recent research emphasizes finite-sample analyses to establish non-asymptotic guarantees,
especially for learning Nash equilibria (NE)—a central solution concept. The existence of NE
in general-sum MGs was shown by (Fink, 1964), and the algorithmic foundation was laid by the
seminal work of (Littman, 1994). Classical algorithms such as Nash-Q (Hu & Wellman, 2003),
FF-Q (Littman et al., 2001), and correlated-Q learning (Greenwald et al., 2003) were proposed to
compute NE and its variants. However, computing NE in general-sum multi-player settings remains
PPAD-complete (Daskalakis, 2013), and no polynomial-time algorithms exist for this case (Jin et al.,
2022; Deng et al., 2023). In contrast, the two-player zero-sum setting admits tractable solutions, with
the first polynomial-time algorithm developed by (Hansen et al., 2013). To address the computational
intractability in general-sum MGs, attention has shifted to weaker notions like CE and CCE, with
polynomial-time algorithms such as V-learning (Jin et al., 2021; Mao & Başar, 2023; Song et al., 2021)
and Nash value iteration (Liu et al., 2021) enabling efficient computation. Furthermore, significant
progress in finite-sample analysis—spanning both model-based and model-free algorithms—has
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been achieved in the two-player zero-sum setting, as evidenced by (Bai & Jin, 2020; Xie et al.,
2020; Cui et al., 2023; Chen et al., 2022; Liu et al., 2021; Feng et al., 2023; Li et al., 2024b),
advancing the theoretical understanding of equilibrium learning in standard MARL without robustness
considerations.

C DRMG WITH f -DIVERGENCE UNCERTAINTY SET

We review the formulation of DRMG with f -divergence uncertainty sets. This framework operates
under the S × A-rectangularity assumption, where the nominal transition probability P ⋆ and the
agent-specific radius ρi for i ∈M define the robust problem as per Definition 1.
Lemma 7 (Strong duality for f -divergence). Let Pρi

f (s,a) be an f -divergence uncertainty set as
defined in Definition 1. For any value function Vi : S → R+ and a nominal transition kernel
P ⋆ : S × A → ∆(S), the worst-case expected value, σPρi

f (s,a)[Vi] := infP∈Pρi
f (s,a) [PVi] (s,a),

admits a dual representation given by:

σPρi
i,h,f (s,a)

[V ] = sup
λ≥0, η∈R

{
− λ

∑
s∈S

P ⋆(s)f⋆
(
η − V (s)

λ

)
− λρi + η

}
,

where f⋆ is the convex conjugate of f .

The detailed proof is given in Lemma B.1 of (Yang et al., 2022).
Corollary 8 (Dual representation for TV and KL-divergence). Under the assumption of S ×
A-rectangularity, the dual representation from Lemma 7 simplifies to the following for two specific
cases of f -divergence. For any value function V : S → [0, H] and a nominal distribution P ⋆

h over
the next states:

TV-Divergence. For an uncertainty set defined by TV-divergence, where f(t) = 1
2

∣∣∣t− 1
∣∣∣, the robust

expectation σPρi
i,h,TV(s,a)

[Vi] is expressed as:

σPρi
i,h,TV (s,a)[Vi] = sup

η∈[0,H]

{
− EP⋆

h (·|s,a)

[
max(0, η − Vi)

]
−ρ
2
max(0, η − min

s′∈S
Vi(s

′)) + η

}
. (11)

KL-Divergence. For an uncertainty set defined by KL-divergence, with f(t) = t log(t), the robust
expectation σPρi

i,h,KL(s,a)
[Vi] is expressed as:

σPρi
i,h,KL(s,a)[Vi] = sup

η∈[η,H/ρi]

{
− η log

(
EP⋆

h (·|s,a)

[
exp

{
− Vi

η

}])
− ηρi

}
. (12)

ROBUST BELLMAN EQUATIONS.

Analogous to standard MGs, the following proposition provides the robust Bellman equation for
DRMGs. In particular, the robust value functions V π,ρi

i,h (s) associated with any joint policy π for all
(i, h, s) ∈M× [H]× S obeys the following proposition given below:
Proposition 9 (Robust Bellman Equation). Under the S × A-rectangularity assumption, for any
nominal transition kernel P ⋆ and joint policy π, the robust Bellman equation holds for any (i, h, s,a):

Qπ,ρi

i,h (s,a) = ri,h(s,a) + σPρi
i,h(s,a)

[
V π,ρi

i,h+1

]
(13)

V π,ρi

i,h (s) = Ea∼πh(·|s)

[
Qπ,ρi

i,h (s,a)
]

(14)

The detailed proof of Proposition 9 for finite-horizon RMDP is given in (Blanchet et al., 2023,
Proposition 2.3). We emphasize that the robust Bellman equation in 14 is fundamentally grounded
in the agent-wise (s,a)-rectangularity condition imposed on the uncertainty set. This condition
decouples the dependencies of uncertainty across agents, state-action pairs, and time steps, thereby
enabling the recursive structure of the Bellman equation.
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D NUMERICAL EXPERIMENTS

In this section, we develop numerical experiments to validate our theoretical results. We highlight that
numerical experiment for Markov games can be significantly challenging due to, e.g., the equilibrium
identification challenge and computational barrier (Shoham & Leyton-Brown, 2008), hence we use
some small-scale experiments to validate our results.

D.1 FULLY COOPERATIVE DRMG

As the first step in numerical experiment, we design a 2-agent, 2-step fully cooperative DRMG (with
identical rewards for both players), to illustrate the separation between our robust learning algorithm
and the non-robust ones in standard Markov games.

The game is formally defined by the following components:

• Agents (M): The set of agents isM = {1, 2}.
• Horizon (H): The game has a finite horizon of H = 2.
• State Space (S): The state space is S = {s0, sH , sM , sT }. The game always starts in state
s0 at h = 1. The states sH (High), sM (Medium), and sT (Trap) are the potential states for
h = 2, and the episode terminates after this step.

• Action Space (A): Each agent has two actions, Ai = {0, 1} for i ∈ M. The joint action
space is A = A1 ×A2, with joint actions a = (a1, a2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

In our game, agents receive no reward at the first step: ri,1(s0, a) = 0 for all i, a. At step h = 2, the
reward ri,2(s, a) for both agents is determined by the current state s ∈ {sH , sM , sT } and the joint
action a. The rewards are defined as:

• At sH (High): This is the high-reward state, where ri,2(sH , a) = 1 for all i, a.
• At sM (Medium): This is a medium-reward state, where ri,2(sM , a) = 0.6 for all i, a.
• At sT (Trap): This is the low-reward, trap state, where ri,2(sT , a) = 0 for all i, a.

We then set the nominal transition kernel from s0 at h = 1, P ⋆
1 (·|s0, a). The probabilities are detailed

as follows:

Table 2: Nominal transition probabilities P ⋆
1 (·|s0, a) from the start state.

Joint Action a P ⋆
1 (sH |s0, a) P ⋆

1 (sM |s0, a) P ⋆
1 (sT |s0, a) Description

a = (1, 1) 0.90 0.00 0.10 Risky (high reward, trap support)
a = (0, 0) 0.60 0.40 0.00 Safe (no trap support)
a = (1, 0) 0.50 0.25 0.25 Mediocre
a = (0, 1) 0.50 0.25 0.25 Mediocre

It can be seen that, under the nominal kernel, the risky action is preferred as it has higher probability
to transit to sH . However, when there are model mismatch between the training and deploying
environment, and under the risky action, the probability of transiting to the Trap state sT becomes
higher, then the non-robust equilibrium becomes sub-optimal. On the other hand, our robust learning
considers the worst-case, so it prefers to take the safe action. We will numerically show that our robust
learning algorithm will learn a more robust policy that performs better under model uncertainties or
the sim-to-real gap.

We aim to numerically verify two of our claims: (1). Our MORNAVI algorithm converges to the
robust equilibria; And (2). The robust equilibria learned are more robust against model uncertainty
compared to non-robust ones.

Specifically, we construct the uncertainty set as a KL-divergence ball centered at P ⋆
h as in Equation (2),

which ρi = ρ. We then implement our algorithm (Algorithm 1) together with the non-robust Nash
value iteration (Liu et al., 2021) as the baseline. Due to the hardness of computing Nash equilibria
(which is PPAD-hard in the worst-case (Deng et al., 2023)), we compute the CCE for the games.
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We develop two experiments as follows. Firstly, we run both algorithms (we set ρ = 0.25 in our
algorithm) for 10 times, and plot the averaged robust value function of Player 1 against the total
number of samples. We also plot the standard deviation to show statistical errors. Secondly, we
test the learned equilibria from both algorithm under different uncertainty radii ρ. For different ρ,
we compute the robust value function of Player 1 (since both players have identical performance)
under the KL-ball, to showcase the robustness of our algorithm. The experiment results are shown in
Figure 1.

(a) Performance of KL-MORNAVI vs. Episodes (b) KL-MORNAVI vs. Uncertainty Level (ρ)

Figure 1: f -MORNAVI v.s. Multi-Nash-VI under KL-Divergence

(a) Performance of TV-MORNAVI vs. Episodes (b) TV-MORNAVI vs. Uncertainty Level (ρ)

Figure 2: f -MORNAVI v.s. Multi-Nash-VI under TV-Divergence

As the results shown, our algorithm converges to the robust equilibrium, validating the convergence
of our theoretical results and convergence guarantees. Moreover, our robust equilibrium shows an
enhanced robustness when model mismatch exists. Specifically, when ρ ≈ 0 and there is no model
mismatch, then the non-robust algorithm outperforms ours (as we are conservative and robust while
non-robust is optimization for the nominal kernel); However, when the uncertainty radius increasing
and model mismatch is introduced, performance of the non-robust equilibrium decreases significantly,
whereas ours shows a more stable and robust performance. Our results hence validate our theoretical
results and claims.

Similarly, we develop experiments with TV-based uncertainty set, and plot results in Figure 2. As
results shown, our algorithm converges to a robust equilibrium, which is more stable and robust
against model uncertainties. Our results hence align with and validate our theoretical findings.

D.2 GENERAL-SUM DRMG

We then slightly modify the fully cooperative DRMG considered, transferring it to a general-sum
DRMG, to further validate our theoretical results.
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We set the nominal kernel as follows. At step 1, the nominal transition P ⋆
1 (· | s0, a) is

P ⋆
1 (· | s0, a) =


0.82 δsH + 0.18 δsT , a = (1, 1) (risky),

0.60 δsH + 0.40 δsM , a = (0, 0) (safe),

0.48 δsH + 0.22 δsM + 0.30 δsT , a ∈ {(1, 0), (0, 1)} (off-diag).

At step 2 the kernel is absorbing: P ⋆
2 (s

′ | s, a) = 1{s′ = s} for s ∈ {sH , sM , sT }.
The rewards are settled as follows. At the terminal step (step 2), each terminal state induces a 2×2
matrix game; let R(1)(s), R(2)(s) ∈ R2×2 denote the row/column players’ payoffs. We set

High: R(1)(sH) =

[
0.55 0.90

1.00 1.20

]
, R(2)(sH) =

[
0.70 0.85

0.90 1.00

]
,

Medium: R(1)(sM ) =

[
0.45 0.35

0.35 0.30

]
, R(2)(sM ) =

[
0.65 0.55

0.50 0.45

]
,

Trap: R(1)(sT ) = 0, R(2)(sT ) = 0.

Both players then have different rewards and the game becomes a general-sum DRMG.

Similarly, we implement our algorithms with non-robust baseline under both KL and TV uncertainty
sets. We plot the performance of both players (as they are different). Our observations from the
experiment results remain the same. In Figure 3a and Figure 4a, our robust algorithm converges
to a robust equilibrium (sample) efficiently. And in Figure 3b and Figure 4b, the robust equilibria
learned by our algorithms maintain a more robust and stable performance under model mismatches,
showcasing the enhanced robustness of our methods in MARL settings.

(a) Performance of KL-MORNAVI vs. Episodes (b) KL-MORNAVI vs. Uncertainty Level (ρ)

Figure 3: f -MORNAVI v.s. Multi-Nash-VI under KL-Divergence

(a) Performance of TV-MORNAVI vs. Episodes (b) TV-MORNAVI vs. Uncertainty Level (ρ)

Figure 4: f -MORNAVI v.s. Multi-Nash-VI under TV-Divergence
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E HARDNESS OF MULTI-AGENT ONLINE LEARNING

E.1 HARDNESS WITH SUPPORT SHIFT

Example 10 (The “Initial Shock” Game). Consider a class of N -agent DRMGs, {Ma∗}a∗∈A,
parameterized by a “secret escape route” a∗ ∈ A.

• Action Spaces: Ai =M for each agent. The joint action space has size |A| =
∏

i∈[N ]Ai =

MN .

• States, Horizon, Rewards: S = {sgood, sbad}, horizon H , initial state s1 = sgood, and
rewards are defined as

ri(s,a) =

{
1, if s = sgood or if (s = sbad and a = a∗)

0, if s = sbad and a ̸= a∗ .

• Dynamics: The system dynamics create the trap.

– From sgood: Nominally, the system stays in sgood. An adversary can force a transition
to sbad with probability ρ.

– From sbad: This is the trap. The only way to escape is to play the secret joint action:

Next State =

{
sgood, if a = a∗

sbad, if a ̸= a∗ .

• Uncertainty Set: The uncertainty is non-zero only at the first step.

– At h = 1 and s1 = sgood: The uncertainty set is a TV-ball with radius ρ.
– For all h > 1 or s ̸= sgood: There is no uncertainty (ρ = 0). The transition is the

nominal one.

Theorem 11. For the “Initial Shock” DRMG, any decentralized online learning algorithm suffers
the following best-response regret lower bound:

inf
ALG

sup
a∗∈A

E[Regreti(K)] ≥ Ω

ρK ·min

H, ∏
i∈[N ]

Ai


 .

Proof. Step 1: Decomposing the Per-Episode Regret. The best-response regret for Agent 1 in
an episode is Regretk1 = V

†,π−i,ρ
1,1 − V π,ρ

1,1 . We expand this using the robust Bellman equation at
s1 = sgood, where uncertainty exists.

Regretk1 =
(
1 + (1− ρ)V †,π−i,ρ

1,2 (sgood) + ρV
†,π−i,ρ
1,2 (sbad)

)
−
(
1 + (1− ρ)V π,ρ

1,2 (sgood) + ρV π,ρ
1,2 (sbad)

)
= (1− ρ)

(
V

†,π−i,ρ
1,2 (sgood)− V π,ρ

1,2 (sgood)
)
+ ρ

(
V

†,π−i,ρ
1,2 (sbad)− V π,ρ

1,2 (sbad)
)
.

Since there is no uncertainty for h > 1, the transition from sgood at h = 2 is deterministically to
sgood at h = 3. Thus, V1,2(sgood) is a constant independent of the policy in the trap state, which
means V †,π−i,ρi

1,2 (sgood) = V π
1,2(sgood). The first term is exactly zero, and thus we have that

Regretk1 = ρ
(
V

†,π−i,ρ
1,2 (sbad)− V π,ρ

1,2 (sbad)
)
= ρ ·∆V ρ

2 (sbad). (15)

Step 2: Formalizing the Value Gap ∆V ρ
2 (sbad). The value gap is the expected difference in total

future rewards. This difference is precisely the expected number of steps wasted in the trap. Note
that the value of state sbad at step h under a policy π′ is the expected sum of future rewards. Let
τ = τ(π′) be the random variable for the number of steps to escape (i.e., play a∗), starting from
step h. Let C = H − h+ 1 be the number of steps remaining in the episode, then the total reward
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collected from h = 2 is V π′,ρ
1,2 (sbad) = E[I[τ ≤ C] · (C − τ + 2)] as it will always receive r = 1

when at sgood.

Moreover, note that the total number of available rewards is C, and since C = min(τ −1, C)+ I[τ ≤
C](C − τ + 1), the value can therefore be expressed as V π′,ρ

1,2 (sbad) = C − E[min(τ − 1, C)].

Therefore, the value gap is the difference in the expected number of wasted steps:
∆V ρ

2 (sbad) = (C − E[min(τ∗ − 1, C)])− (C − E[min(τ − 1, C)])

= E[min(τ − 1, C)]− E[min(τ∗ − 1, C)].

where τ∗ is the escape probability of π∗. Since the best-response policy π∗
1 plays a∗1 deterministically,

so its escape time τ∗ depends only on the other agents’ policies, π−1. The algorithm’s escape time τ
depends on its full policy π.

Step 3: Lower Bounding the Value Gap. The best response for Agent 1 is to play a∗
1, so τ∗ does

not involve any search for Agent 1. In contrast,

However, the algorithm does not know a∗
1 and must search. We are interested in the worst-case

regret over the choice of a∗. The expected wasted steps for the algorithm is E[min(τ − 1, C)]. Let
p1 = Prπ1(a1 = a∗1) and p−1 = Prπ−1(a−1 = a∗

−1). The algorithm’s one-step escape probability is
p1 ·p−1. Its expected escape time is E[τ ] = 1/(p1 ·p−1). The expected wasted steps is lower-bounded
by:

E[min(τ − 1, C)] ≥ Ω(min(E[τ − 1], C)) = Ω(min(1/(p1 · p−1), H − 1)),

where the inequality is due to Lemma 12.

In the worst case over the unknown a∗, the probabilities p1 and p−1 are minimized:

inf
a∗
1

p1 ≤ 1/A1 and inf
a∗

−1

p−1 ≤ 1
/( N∏

i=2

Ai

)
.

The best-response policy suffers much less waste. Thus, the value gap ∆V ρ
2 (sbad) is dominated by

the algorithm’s large number of wasted steps.

sup
a∗

∆V ρ
2 (sbad) ≥ Ω

(
min

{
1
/(

(1/A1) · (1
/( N∏

i=2

Ai

))
, H

})
= Ω

(
min

{
N∏
i=1

Ai, H

})
.

Step 4: Finalizing the Bound. Substituting this back into the per-episode regret expression from
Step 1:

sup
a∗

E[Regretk1 ] ≥ ρ · Ω

(
min

{
N∏
i=1

Ai, H

})
.

This per-episode regret is incurred because the information bottleneck prevents the algorithm from
learning a∗. Summing over K episodes gives the final total regret bound:

inf
ALG

sup
a∗

E[Regret1(K)] =

K∑
k=1

sup
a∗

E[Regretk1 ] ≥ Ω

(
ρK ·min

{
N∏
i=1

Ai, H

})
.

This completes the proof.

Lemma 12. Let τ be the random variable for the escape time from the trap state, and let C =
H − 1 be the number of steps remaining in the episode. The true expected number of wasted steps,
E[min(τ − 1, C)], has the following asymptotic lower bound:

E[min(τ − 1, C)] ≥ Ω(min(E[τ − 1], C)).

Proof. Note that τ follows a Geometric distribution τ ∼ Geo(p) and have the probability mass
function P (τ = k) = (1− p)k−1p for k ∈ {1, 2, 3, . . . }. The random variable τ − 1 represents the
number of failures before the first success. Its expectation is E[τ − 1] = 1−p

p .

We first derive an expression for E[min(τ − 1, C)]. We use the tail sum formula for the expectation
of a non-negative, integer-valued random variable X , which states E[X] =

∑∞
k=0 P (X > k).

Let X = min(τ − 1, C). The event {X > k} is equivalent to the event {τ − 1 > k and C > k}.
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• If k ≥ C, then P (X > k) = 0.

• If k < C, then P (X > k) = P (τ − 1 > k).

The event {τ − 1 > k} means the first k + 1 trials resulted in failure, so its probability is P (τ >
k + 1) = (1− p)k+1.

The expectation is therefore the sum over the non-zero probabilities:

E[min(τ − 1, C)] =

∞∑
k=0

P (min(τ − 1, C) > k)

=

C−1∑
k=0

P (τ − 1 > k) =

C−1∑
k=0

(1− p)k+1.

Letting q = 1− p, this is a finite geometric series:

C∑
j=1

qj = q
1− qC

1− q
=
q(1− qC)

p
.

Substituting q = 1− p back, we express the expectation in terms of E[τ − 1]:

E[min(τ − 1, C)] =
1− p
p

(1− (1− p)C) = E[τ − 1](1− (1− p)C).

Let µ = E[τ − 1] = 1−p
p . We want to show that there exists a universal constant k > 0 such that:

µ(1− (1− p)C) ≥ k ·min(µ,C).

We proceed with a case analysis based on the relationship between µ and C.

Case 1: µ ≤ C: In this case, min(µ,C) = µ. We need to show that µ(1− (1− p)C) ≥ k · µ, which
simplifies to proving that 1− (1− p)C ≥ k.

The condition µ ≤ C implies a lower bound on p:

1− p
p
≤ C =⇒ 1− p ≤ Cp =⇒ 1 ≤ (C + 1)p =⇒ p ≥ 1

C + 1
.

Using the standard inequality 1− x ≤ e−x, we have (1− p)C ≤ e−pC . Thus,

1− (1− p)C ≥ 1− e−pC .

Since p ≥ 1
C+1 , we have pC ≥ C

C+1 . As the function f(x) = 1− e−x is increasing for x > 0,

1− e−pC ≥ 1− e−C/(C+1).

The function g(C) = C
C+1 is increasing for C ≥ 1, with a minimum value of g(1) = 1/2. Therefore,

for any integer C ≥ 1,
1− (1− p)C ≥ 1− e−1/2.

Thus, the inequality holds in this case with the constant k1 = 1− e−1/2 ≈ 0.393.

Case 2: µ > C: In this case, min(µ,C) = C. We need to show that µ(1− (1− p)C) ≥ kC.

The condition µ > C implies an upper bound on p:

1− p
p

> C =⇒ 1− p > Cp =⇒ 1 > (C + 1)p =⇒ p <
1

C + 1
.

From our calculation of the expectation, we have a sum of C positive, decreasing terms:

E[min(τ − 1, C)] =

C−1∑
k=0

(1− p)k+1.
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This sum is greater than C times its smallest term, which is (1− p)C :

E[min(τ − 1, C)] > C(1− p)C .

From the condition p < 1
C+1 , it follows that 1− p > 1− 1

C+1 = C
C+1 . Therefore,

E[min(τ − 1, C)] > C

(
C

C + 1

)C

= C

(
1− 1

C + 1

)C

.

The sequence aC =
(
1− 1

C+1

)C
is decreasing for C ≥ 1, and its limit as C →∞ is 1/e. Hence,

for all C ≥ 1, the sequence is bounded below by its limit:(
1− 1

C + 1

)C

≥ lim
n→∞

(
1− 1

n+ 1

)n

=
1

e
.

This gives the lower bound:

E[min(τ − 1, C)] > C · 1
e
.

So, the inequality holds in this case with the constant k2 = 1/e ≈ 0.368. By combining the two cases,
the inequality is shown to hold for a universal constant k = min(k1, k2) = min(1− e−1/2, 1/e) =
1/e.

Therefore, for all p ∈ (0, 1) and integers C ≥ 1, we have established that:

E[min(τ − 1, C)] ≥ 1

e
min(E[τ − 1], C) = Ω(min(E[τ − 1], C)),

which hence completes the proof.

E.2 HARDNESS WITHOUT SUPPORT SHIFT

Example 13 (The “Robust Corrupted Bandit” Game). Consider a class of N -agent DRMGs,
{Mθ}θ∈A, where each game is parameterized by a secret “best” joint action θ ∈ A.

• States and Horizon: A single state, s, and horizon H = 1. This reduces the problem to a
one-shot game, equivalent to a multi-armed bandit setting where each episode corresponds
to a single step or arm pull.

• Action Spaces: The joint action space A is the set of arms, with size |A| =
∏N

i=1Ai.

• Reward Function (R ∈ {0, 1}): The rewards are stochastic. Let ϵ ∈ (0, 1/2) be a small
constant. The nominal model Mθ defines the following Bernoulli reward distributions for
any agent i:

E[Ri(s,a)|Mθ] =

{
1/2 + ϵ, if a = θ

1/2, if a ̸= θ.

• KL-Divergence Uncertainty Set: The true reward distribution for an action a, denoted
P̃ (·|a), can be any distribution that is close to the nominal one P ∗(·|a):

Pρi

i,h,KL(.,a) =
{
P̃ : KL(P̃ (·|a)∥PMθ

(·|a)) ≤ ρi,∀a ∈ A
}
.

This uncertainty set does not have a support shift.

The learning problem is to identify the best arm θ by observing noisy rewards that are actively
corrupted by an adversary.
Theorem 1 (Lower Bound for Robust Learning without Support Shift). For the “Robust Corrupted
Bandit” game, any learning algorithm suffers the following cumulative regret lower bound over K
episodes (steps):

inf
ALG

sup
θ∈A

E[Regreti(K)] ≥ Ω


√√√√ N∏

i=1

AiK

 .
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Proof. The proof proceeds by a formal reduction to the classic multi-armed bandit (MAB) problem.

LetMρ = {Mθ,ρ}θ∈A denote the class of robust game instances from our example, with uncertainty
radius ρ > 0. LetM0 = {Mθ,0}θ∈A be the corresponding class of non-robust instances, where the
uncertainty radius is zero and the rewards are always drawn from the nominal distributions.

Note that since the horizon H = 1, the robust problem reduces to a non-robust one, and thus the
worst-case regret over the robust classMρ must be at least as high as the worst-case regret over the
non-robust classM0:

E[Regret(K;Mθ,ρ)] ≥ E[Regret(K;Mθ,0)].

And thus
inf
ALG

sup
θ∈A

E[Regret(K;Mθ,ρ)] ≥ inf
ALG

sup
θ∈A

E[Regret(K;Mθ,0)]. (16)

Therefore, we can establish a lower bound for the robust problem by proving one for the simpler
non-robust case.

The non-robust problem instance, M0, is a classic stochastic multi-armed bandit problem with
M = |A| arms. A foundational result in this area provides a strong lower bound on regret.

Note that following standard lemma:

Lemma 14. (Auer et al., 2002) For any integer M ≥ 2 and K > M , and for any bandit algorithm,
there exists a multi-armed bandit problem instance with M arms whose reward distributions are
supported on [0, 1], such that the expected cumulative regret after K steps is lower-bounded by:

E[Regret(K)] ≥ Ω(
√
MK).

We apply the lemma to our non-robust problem instanceM0.

• The number of arms, M , is the size of the joint action space, |A|.

• The number of steps is K.

• The reward distributions (Bernoulli) are supported on [0, 1].

The conditions of the lemma are met. Therefore, for the class of problemsM0, the worst-case regret
is lower-bounded:

inf
ALG

sup
θ∈A

E[Regret(K;Mθ,0)] ≥ Ω


√√√√ N∏

i=1

AiK

 . (17)

Combining the regret dominance principle from eq. 16 with the specific lower bound from eq. 17, we
arrive at the final result for our robust problem:

inf
ALG

sup
θ∈A

E[Regreti(K;Mθ,ρ)] ≥ Ω


√√√√ N∏

i=1

AiK

 . (18)

This completes the formal proof by reduction.

F PROOF OF REGRET BOUND OF TV-MORNAVI

In this section, we prove our regret bound for TV-DRMG. Before presenting all the proofs, we first
denote π† as the joint robust best responses over the agents, and is gven by

π† = π†,ρ1

1 (π−1)× · · · × π†,ρm
m (π−m). (19)

We will use the notation of π† later on our proof-lines. In addition, we leverage Assumption 3, which
generalizes to the case where the minimal value vanishes, i.e., mins∈S V (s) = 0, to address the
support shift or extrapolation challenge arising in interactive data collection, as discussed in Remark

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B.3 of (Lu et al., 2024). Consequently, this allows us to eliminate the mins∈S V (s) term in the dual
formulation of the TV-DRMG optimization problem, as shown in 11.

We now recall the bonus term used in TV-MORNAVI for agent i in episode k at step h, as follows:

βk
i,h(s,a) =

√√√√√c1ιVarP̂k
h (·|s,a)

[(
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

)]
{Nk

h (s,a) ∨ 1}
+

2EP̂k
h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
c2H

2Sι√
{Nk

h (s,a) ∨ 1}
+

1√
K
, (20)

where ι = log
(
S2(
∏m

i=1Ai)H
2K3/2/δ

)
and c1, c2 are absolute constants.

We begin by defining the high-probability event ETV, stated in the next lemma. Our proof outline is
inspired by (Lu et al., 2024) and (Ghosh et al., 2025).
Lemma 15 (Uniform Concentration Bound of event ETV). Let ETV be the event in which, for all
(s,a, s′, h, k) ∈ S ×A×S × [H]× [K], and for all η in a 1/(S

√
K)-cover of [0, H], and is defined

as

ETV :=

{∣∣∣∣∣[EP̂k
h (·|s,a) − EP⋆

h (·|s,a)

](
η − V †,πk

−i,ρi

i,h+1

)
+

∣∣∣∣∣ ≤
√√√√√c1ιVarP̂k

h

(
η − V †,πk

−i,ρi

i,h+1

)
+

Nk
h (s,a) ∨ 1

+
c2Hι

{Nk
h (s,a) ∨ 1}

,

∣∣∣P̂ k
h (s

′ | s,a)− P ⋆
h (s

′ | s,a)
∣∣∣ ≤

√√√√c1 min
{
P ⋆
h (s

′ | s,a), P̂ k
h (s

′ | s,a)
}
· ι

{Nk
h (s,a) ∨ 1}

+
c2ι

{Nk
h (s,a) ∨ 1}

,

∀(s,a, s′, h, k) ∈M× S ×A× S × [H]× [K],∀η ∈ N1/(S
√
K)([0, H])

}
, (21)

where ι = log
(
S3(
∏m

i=1Ai)H
2K3/2/δ

)
, c1, c2 > 0 are two absolute constants,N1/(S

√
K)([0, H])

denotes an 1/S
√
K-cover of the interval [0, H].

Then, this event ETV occurs with high probability, i.e., Pr(ETV) ≥ 1− δ.

Proof. This proof builds upon standard techniques by applying classical concentration inequalities
and a union bound. To simplify our analysis, we first consider a fixed state-action-time tuple (s,a, h)
within a given episode k. We can then construct an equivalent stochastic process:

(i) Before the agents’ interaction, the environment draws a sequence of next states
{s(1), s(2), . . . , s(k−1)} independently from the nominal distribution P ⋆

h (·|s,a), where
s(i) ∈ S represents the state sampled in episode i.

(ii) When the agents visit the (s,a) tuple at time step h for the i-th time, the environment causes
a transition to the pre-sampled next state s(i).

The randomness of this constructed process is identical to that of our original, interactive learning
environment. Consequently, the probability of any event is the same in both contexts. This allows us
to prove the required concentration inequalities within this more tractable, simplified setting.

Leveraging this fact, we directly apply Lemma 40, which presents a variant of Bernstein’s inequality
and its empirical counterpart from (Maurer & Pontil, 2009). To establish a uniform bound, we apply
a union bound across all tuples (h, s,a, s′, k, η) ∈ [H] × S × A × S × [K] × N1/(S

√
K)([0, H]).

The size of this ϵ-cover, N1/(S
√
K)([0, H]), is on the order of O(SH

√
K).
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F.1 PROOF OF THEOREM 4 (TV-DRMG SETTING)

Proof. By leveraging Lemma 20, we can establish an upper bound on the regret by considering the
difference between the optimistic and pessimistic value functions:

RegretNASH(K) =

K∑
k=1

max
i∈M

(
V

†,πk
−i,ρi

i,1 − V πk,ρi

i,1

)
(sk1) ≤

K∑
k=1

max
i∈M

(
V

k,ρi

i,1 − V
k,ρi

i,1

)
(sk1). (22)

For the TV-divergence uncertainty set, we begin by analyzing the difference between the upper and
lower Q-values. Given our definitions for Q

k

h, Qk,ρi

i,h
, V

k,ρi

i,h , and V k,ρi

i,h (from eq. 5- 8), along with

the bonus term βk
i,h(s,a) defined in eq. 20, we can establish a bound on this difference for any

(h, k) ∈ [H]× [K] and (s,a) ∈ S ×A:

Q
k

h(s,a)−Q
k

h
(s,a) ≤ σ

P̂ρi
i,h(s,a)

[
V

k,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V k,ρi

h+1

]
+ 2βk

i,h(s,a). (23)

We introduce two key terms, A and B, to simplify this expression:

A :=σ
P̂ρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
+ σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V k,ρi

i,h+1

]
. (24)

B :=σPρi
i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]
. (25)

By substituting these definitions into eq. 23, we obtain a new bound:

Q
k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a) ≤ A+B + 2βk

i,h(s,a). (26)

We then proceed to bound each of these terms. A concentration bound argument tailored for TV robust
expectations in Lemma 18 shows that A ≤ 2βk

i,h(s,a). For term B, we use the dual representation
of σPρi

i,h(s,a)
[V ] from eq. 11 and Assumption 3 to first establish that B ≤ supη∈[0,H]{EP⋆

h (·|s,a)[η −

V
k,ρi

i,h+1]+−EP⋆
h (·|s,a)[η−V k,ρi

i,h+1]+}. Since V
k,ρi

i,h+1 ≥ V
k,ρi

i,h+1 (by Lemma 20), we can simplify this

further to B ≤ EP⋆
h (·|s,a)[V

k,ρi

i,h+1 − V
k,ρi

i,h+1].

By substituting the bounds for A and B back into eq. 26, we arrive at the following inequality:

Q
k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a) ≤ EP⋆

h (·|s,a)[V
k,ρi

i,h+1 − V
k,ρi

i,h+1] + 4βk
i,h(s,a). (27)

Using Lemma 19 to upper bound the bonus term, and rearranging the terms, we obtain:

Q
k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a) ≤

(
1 +

20

H

)
EP⋆

h (·|s,a)[V
k,ρi

i,h+1 − V
k,ρi

i,h+1]

+ 4

√√√√c1ιVarP⋆
h (·|s,a)

[
V πk,ρi

i,h+1

]
{Nk

h (s,a) ∨ 1}

+
4c2H

2Sι

{Nk
h (s,a) ∨ 1}

+

√
4

K
, (28)

where c1, c2 > 0 are absolute constants. From the definitions in eq. 8, the difference in V-functions
is given by:

V
k,ρi

i,h (s)− V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a)

]
. (29)
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Now, let’s define a new recursive value function Ṽ k,ρmin

h and a corresponding Q-function Q̃k,ρmin

h

with Ṽ k,ρmin

H+1 = 0, where ρmin = min
i∈M

ρi:

Q̃k,ρmin

h (s,a) =

(
1 +

20

H

)
EP⋆

h (·|s,a)

[
Ṽ k,ρmin

h+1

]
+ 4

√√√√c1ιVarP⋆
h (·|s,a)

[
V πk,ρmin

h+1

]
{Nk

h (s,a) ∨ 1}

+
4c2H

2Sι

{Nk
h (s,a) ∨ 1}

+

√
4

K
, (30)

Ṽ k,ρmin

h (s) = Ea∼πk(·|s)

[
Q̃k,ρmin

h (s,a)
]
. (31)

It is a well-known property of robust value functions under TV-divergence that they become more
conservative as the uncertainty radius ρi decreases (e.g., (Iyengar, 2005; Nilim & El Ghaoui, 2005)).
Given that ρmin ≤ ρi for all agents i ∈M, it follows that for every next state s′ ∈ S:

V πk,ρi

i,h+1 (s
′) ≤ V πk,ρmin

h+1 (s′) ∀i ∈M and s ∈ S.
We can inductively prove that for any (i, h, s,a) ∈M× [H]× S ×A:

max
i∈M

(
Q

k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a)

)
≤ Q̃k,ρmin

h (s, a), (32)

max
i∈M

(
V

k,ρi

i,h (s)− V k,ρi

i,h (s)
)
≤ Ṽ k,ρmin

h (s). (33)

Therefore, we only need to upper bound the sum
∑K

k=1 Ṽ
k,ρmin

1 (sk1). For simplicity, we define the
following notations for the differences at any (h, k) ∈ [H]× [K]:

∆k
h := Ṽ k,ρmin

h (skh), (34)

ζkh := ∆k
h − Q̃

k,ρmin

h (skh,a
k
h), (35)

ξkh := EP⋆
h (·|skh,a

k
h)
[Ṽ k,ρmin

h+1 ]−∆k
h+1. (36)

We can confirm that {ζkh}(h,k) and {ξkh}(h,k) are martingale difference sequences with respect to their
respective filtrations. By substituting eq. 30 into eq. 35, we get:

∆k
h = ζkh + Q̃k,ρmin

h (skh,a
k
h)

≤ ζkh +

(
1 +

20

H

)
EP⋆

h (·|skh,a
k
h)

[
Ṽ k,ρmin

h+1

]
+ 4

√√√√c1ιVarP⋆
h (·|skh,a

k
h)

[
V πk,ρmin

h+1

]
{Nk

h (s
k
h,a

k
h) ∨ 1}

+
4c2H

2Sι

{Nk
h (s

k
h,a

k
h) ∨ 1}

+

√
4

K

= ζkh +

(
1 +

20

H

)
ξkh +

(
1 +

20

H

)
∆k

h+1 + 4

√√√√c1ιVarP⋆
h (·|s,a)

[
V πk,ρmin

h+1

]
{Nk

h (s
k
h,a

k
h) ∨ 1}

+
4c2H

2Sι

{Nk
h (s

k
h,a

k
h) ∨ 1}

+

√
4

K
. (37)

By recursively applying eq. 37 and noting that
(
1 + 20

H

)h
≤
(
1 + 20

H

)H
≤ c for some constant

c ≥ 0, we can upper bound the right-hand side of eq. 22 as:

RegretNASH(K) ≤
K∑

k=1

∆k
1 ≤ c

K∑
k=1

H∑
h=1

{
(ζkh + ξkh)

+

(
4

√√√√c1ιVarP⋆
h (·|s,a)

[
V πk,ρmin

h+1

]
{Nk

h (s,a) ∨ 1}
+

4c2H
2Sι

{Nk
h (s,a) ∨ 1}

)

+

√
4

K

}
. (38)
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The first term, a sum of martingale differences, is bounded using the Azuma-Hoeffding inequality
from Lemma 39, yielding:

K∑
k=1

H∑
h=1

(ζkh + ξkh) ≤ c1 min

{
1

ρmin
, H

}
√
HKι, (39)

where c1 > 0 is an absolute constant. For the second term, we apply the Cauchy–Schwarz inequality
to the summation of the variance terms:

K∑
k=1

H∑
h=1

√√√√VarP⋆
h (·|skh,a

k
h)

[
V πk,ρmin

h+1

]
Nk

h (s
k
h,a

k
h) ∨ 1

≤

√√√√( K∑
k=1

H∑
h=1

VarP⋆
h (·|skh,a

k
h)

[
V πk,ρmin

h+1

])
·

√√√√( K∑
k=1

H∑
h=1

1

Nk
h (s

k
h, a

k
h) ∨ 1

)
. (40)

The second factor on the right-hand side is bounded by c2HS(
∏m

i=1Ai)ι, as shown in (Liu et al.,
2021, Theorem 3), while the first factor is bounded using the Law of Total Variation and standard
martingale concentration arguments (from (Jin et al., 2018) and (Lu et al., 2024)):

K∑
k=1

H∑
h=1

VarP⋆
h (·|skh,a

k
h)

[
V πk,ρmin

h+1

]
≤ c3 ·

(
min

{
1

ρmin
, H

}
HK +min

{
1

ρmin
, H

}3

Hι

)
. (41)

By combining these bounds and substituting them into eq. 40, we can obtain a final bound for the

second term. The third term,
∑K

k=1

∑H
h=1

√
4
K , is straightforwardly bounded by c5

√
H2K. By

combining the bounds for all three terms, we arrive at the final regret bound for RegretNash(K):

RegretNASH(K) = O

(√
min

{
1

ρmin
, H

}
H2SK

( ∏
i∈M

Ai

)
ι′

)
, (42)

where ι′ = log2
(

SHK
∏

i∈M Ai

δ

)
. This completes the proof of Theorem 4.

Remark 16. The methodology for bounding the regret for Correlated Equilibrium (CE) and Coarse
Correlated Equilibrium (CCE) settings mirrors the approach outlined here for the Nash equilibrium
in the TV-DRMG context. The proofs leverage Lemma 21 and Lemma 22, respectively.

F.2 KEY LEMMAS FOR TV-DRMG

Lemma 17 (Gap between maximum and minimum (Lu et al., 2024)). Consider any RMGMGrob =
{S,A, H, {Pρi

TV(P
⋆)}mi=1, r}. The robust value function V π,ρi

i,h for all i ∈M and h ∈ [H] associated
with any joint policy π satisfies

∀(i, h) ∈M× [H] : max
s∈S

V π,ρi

i,h (s)−min
s∈S

V π,ρi

i,h (s) ≤ νρi

H ,

where νρi

H := min
{

1
ρi
, H − h+ 1

}
≤ min

{
1
ρi
, H
}

.

Proof. Refer to the proof-lines of Lemma 3 in (Shi et al., 2024b).

Lemma 18 (Bound of optimistic and pessimistic value estimators with bonus for TV-DRMG). Under
the typical event ETV defined in eq. 21 and by setting the bonus βk

i,h as in eq. 20, it holds that

σ
P̂ρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
+ σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V k,ρi

i,h+1

]
≤ 2βk

i,h(s,a).
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Proof. Let’s denote the term to be bounded as A.

A := σ
P̂ρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
+ σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V k,ρi

i,h+1

]
. (43)

Under the high-probability event ETV (as defined in eq. 21), we can apply the concentration inequality
from Lemma 24 to upper bound A as follows:

A ≤ 2

√√√√c1 VarP̂k
h

(
V

†,πk
−i,ρi

i,h+1

)
ι

Nk
h (s,a) ∨ 1

+
2EP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
2c′2H

2S ι

Nk
h (s,a) ∨ 1

+
2√
K
. (44)

where ι = log
(
S2(
∏m

i=1Ai)H
2K3/2/δ

)
and c1, c′2 > 0 are absolute constants. By applying the

result from Lemma 26 to the variance term in eq. 44, we obtain the required bound presented in the
lemma statement. This concludes the proof.

Lemma 19 (Bound of the bonus term for TV-DRMG). Under the typical event ETV, the bonus term
defined in 20 is bounded by

βk
i,h(s,a) ≤

√√√√c1ιVarP⋆
h (·|s,a)

[
V πk,ρi

i,h+1

]
Nk

h (s,a) ∨ 1
+

5EP⋆
h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
c2H

2S ι

Nk
h (s,a) ∨ 1

+
√

1
K .

where ι = log(S3(
∏m

i=1Ai)H
2K3/2/δ) and c1, c2 > 0 are constants.

Proof. The proof-lines are similar to (Lu et al., 2024, Lemma E.4) or (Ghosh et al., 2025, Lemma
K.3). Recall the bonus term defined in eq. 20. We need to bound the first and second term of eq. 20.
We first bound the second term of βk

i,h(s,a) by using Lemma 25, and we get

2EP̂k
h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

≤
(

2

H
+

2

H2

)
EP⋆

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
+

c′2HSι

{Nk
h (s,a) ∨ 1}

≤
4EP⋆

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
c′2HSι

{Nk
h (s,a) ∨ 1}

, (45)

where the second inequality is from H ≥ 1. We now bound the first term (variance term) of eq. 20
by using Lemma 27, which gives√√√√√c1ιVarP̂k

h (·|s,a)

[
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

]
Nk

h (s,a) ∨ 1
≤

√√√√c′1ιVarP⋆
h (·|s,a)

[
V πk,ρi

i,h+1

]
Nk

h (s,a) ∨ 1

+
EP⋆

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
c3H

2Sι

Nk
h (s,a) ∨ 1

.

(46)

where c3 > 0 is an absolutely constant. Thus by combining eq. 45 and eq. 46 with the choice of
bonus term in eq. 20, we can conclude the proof of Lemma 19.
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NE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
TV-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions fro NE version.

Lemma 20 (Optimistic and pessimistic estimation of the robust values for TV-DRMG for NE version).
By setting the bonus term βk

i,h as in eq. 20, with probability 1− δ, for any (s,a, h, i) and k ∈ [K], it
holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) , (47)

V
†,πk

−i,ρi

i,h (s) ≤ V k,ρi

i,h (s) , V k,ρi

i,h (s) ≤ V πk,ρi

i,h (s) . (48)

Proof. The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma 20.

• Ineq. 1: To prove Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a).

• Ineq. 2: To prove Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a).

We know that, at step h = H + 1, V
k,ρi

i,H+1(s) = V
†,πk

−1,ρi

i,H+1 (s) = 0. Now, we assume that both eq. 47
and eq. 48 hold at the (h+ 1)-th step.

• Proof of Ineq. 1: We first consider robustQ at the h-th step. Then, by Proposition 9 (Robust
Bellman Equation) and eq. 5, we have that

Q
k,ρi

i,h (s,a)−Q†,πk
−i,ρi

i,h (s,a) = min

{
σ
P̂ρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
+ βk

i,h(s,a), ν
ρi

H −Q
†,πk

−i,ρi

i,h (s,a)

}
≥ min

{
σ
P̂ρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
+ βk

i,h(s,a), 0
}
, (49)

where the second inequality follows from the induction of V
†,πk

−i,ρi

i,h+1 ≤ V k,ρi

i,h+1 at the h+1-th

step and the fact that Q
†,πk

−i,ρi

i,h ≤ νρi

H by Lemma 17. By Lemma 23, we get

σ
P̂ρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
≤

√√√√c1VarP̂k
h

(
V

†,πk
−i,ρi

i,h+1

)
· ι

{Nk
h (s,a) ∨ 1}

+
c2Hι

{Nk
h (s,a) ∨ 1}

+
1√
K
. (50)
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Now by further applying Lemma 26 to the variance term in the above inequality, we can
obtain that

σ
P̂ρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]

≤

√√√√√c1

(
VarP̂k

h (·|s,a)

[(
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

)]
+ 4HEP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

])
ι

{Nk
h (s,a) ∨ 1}

+
c2Hι

{Nk
h (s,a) ∨ 1}

+
1√
K

(i)

≤

√√√√√c1ιVarP̂k
h (·|s,a)

[(
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

)]
{Nk

h (s,a) ∨ 1}
+

√√√√√4Hc1ιEP̂k
h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

])
{Nk

h (s,a) ∨ 1}

+
c2Hι

{Nk
h (s,a) ∨ 1}

+
1√
K

(ii)

≤

√√√√√c1ιVarP̂k
h (·|s,a)

[(
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

)]
{Nk

h (s,a) ∨ 1}
+

EP̂k
h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

])
H

+
H2c′2ι

{Nk
h (s,a) ∨ 1}

+
1√
K
, (51)

where the inequality (i) is due to
√
a+ b ≤

√
a +
√
b, and the last inequality (ii) is from√

ab ≤ a+ b where c′2 > 0 is an absolute constant. Therefore, combining eqns. 49, 50, 51,

and the choice of bonus in 20, we can conclude that Q
k,ρi

i,h (s,a)−Q†,πk
−i,ρi

i,h (s,a) ≥ 0.

• Proof of Ineq. 2: By Proposition 9 (Robust Bellman Equation) and eq. 6, we have that

Qk,ρi

i,h
(s,a)−Qπk,ρi

i,h (s,a) = max

{
σ
P̂ρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a), 0−Q
†,πk

−i,ρi

i,h (s,a)

}
,

≤ max
{
σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a), 0
}
, (52)

where the second inequality follows from the induction of V πk,ρi

i,h+1 ≥ V
k,ρi

i,h+1 at the h+ 1-th

step and the fact that Qπk,ρi

i,h ≥ 0. By Lemma 23, we can confirm that

σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
≤

√√√√c1VarP̂k
h

(
V

†,πk
−i,ρi

i,h+1

)
· ι

{Nk
h (s,a) ∨ 1}

+
EP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1)
]

H

+
c′2H

2Sι

{Nk
h (s,a) ∨ 1}

+
1√
K
. (53)
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Now by further applying Lemma 26 to the variance term in the above inequality, with an
argument similar to eq. 50 we can obtain that

σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
≤

√√√√c1VarP̂k
h

(
V

†,πk
−i,ρi

i,h+1

)
· ι

{Nk
h (s,a) ∨ 1}

+
EP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1)
]

H

+
c′′2H

2Sι

{Nk
h (s,a) ∨ 1}

+
1√
K
. (54)

where c′′2 > 0 is an absolute constant. Therefore, combining eqns. 52, 53, 54, and the choice
of bonus in 20, Qk,ρi

i,h
(s,a)−Qπk,ρi

i,h (s,a) ≤ 0.

Therefore, by eq. 51 and eq. 54, we have proved that at step h, it holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) . (55)

We now assume that eq. 47 hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition 9), and eq. 8, and NASH Equilibrium, we get

V
k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)
]
= max

π′
i

Ea∼π′
i×πk

−i(·|s)

[
Q

k,ρi

i,h (s,a)
]
. (56)

By the definition of V
†,πk

−i,ρi

i,h (s) in eq. 3, we get

V
†,πk

−i,ρi

i,h (s) = max
π′
i

Ea∼π′
i×πk

−i(·|s)

[
Q

†,πk
−i,ρi

i,h (s,a)

]
. (57)

Since by induction, for any (s,a), Q
k,ρi

i,h (s,a) ≥ Q
†,πk

−i,ρi

i,h (s,a). As a result, we also have

V
k,ρi

i,h (s) ≥ V †,πk
−i,ρi

i,h (s), which is eq. 48 for h-th step. Similarly, we can show that

V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Qk,ρi

i,h
(s,a)

]
,

(i)

≤ Ea∼πk(·|s)

[
Qπk,ρi

i,h (s,a)
]
,

(ii)
= V πk,ρi

i,h (s) , (58)

where (i) is due to the fact that Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) and (ii) is by definition of V πk,ρi

i,h (s) as
given by Bellman equation in Proposition 9.

CCE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
TV-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions for CCE version.

Lemma 21 (Optimistic and pessimistic estimation of the robust values for TV-DRMG for CCE
version). By setting the bonus term βk

i,h as in eq. 20, with probability 1− δ, for any (s,a, h, i) and
k ∈ [K], it holds that

max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) , (59)

max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s) ≤ V k,ρi

i,h (s) , V k,ρi

i,h (s) ≤ V πk,ρi

i,h (s) . (60)
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Proof. The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma 21.

• Ineq. 1: To prove Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a).

• Ineq. 2: To prove Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a).

We know that, at step h = H + 1, V
k,ρi

i,H+1(s) = V
†,πk

−1,ρi

i,H+1 (s) = 0. Now, we assume that both eq. 59
and eq. 60 hold at the (h+ 1)-th step.

• Proof of Ineq. 1: We first consider robustQ at the h-th step. Then, by Proposition 9 (Robust
Bellman Equation) and eq. 5, we have that

Q
k,ρi

i,h (s,a)−Q†,πk
−i,ρi

i,h (s,a) = min

{
σ
P̂ρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
+ βk

i,h(s,a), ν
ρi

H −Q
†,πk

−i,ρi

i,h (s,a)

}
,

≥ min
{
σ
P̂ρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
+ βk

i,h(s,a), 0
}
, (61)

where the second inequality follows from the induction of V
†,πk

−i,ρi

i,h+1 ≤ V k,ρi

i,h+1 at the h+1-th

step and the fact that Q
†,πk

−i,ρi

i,h ≤ νρi

H by Lemma 17. By Lemma 23, we get

σ
P̂ρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
≤

√√√√c1VarP̂k
h

(
V

†,πk
−i,ρi

i,h+1

)
· ι

{Nk
h (s,a) ∨ 1}

+
c2Hι

{Nk
h (s,a) ∨ 1}

+
1√
K
. (62)

Now by further applying Lemma 26 to the variance term in the above inequality, we can
obtain that

σ
P̂ρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]

≤

√√√√√c1

(
VarP̂k

h (·|s,a)

[(
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

)]
+ 4HEP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

])
ι

{Nk
h (s,a) ∨ 1}

+
c2Hι

{Nk
h (s,a) ∨ 1}

+
1√
K

(i)

≤

√√√√√c1ιVarP̂k
h (·|s,a)

[(
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

)]
{Nk

h (s,a) ∨ 1}
+

√√√√√4Hc1ιEP̂k
h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

])
{Nk

h (s,a) ∨ 1}

+
c2Hι

{Nk
h (s,a) ∨ 1}

+
1√
K

(ii)

≤

√√√√√c1ιVarP̂k
h (·|s,a)

[(
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

)]
{Nk

h (s,a) ∨ 1}
+

EP̂k
h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

])
H

+
H2c′2ι

{Nk
h (s,a) ∨ 1}

+
1√
K
, (63)
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where the inequality (i) is due to
√
a+ b ≤

√
a +
√
b, and the last inequality (ii) is from√

ab ≤ a+ b where c′2 > 0 is an absolute constant. Therefore, combining eqns. 61, 62, 63,

and the choice of bonus in 20, we can conclude that Q
k,ρi

i,h (s,a)−Q†,πk
−i,ρi

i,h (s,a) ≥ 0.

• Proof of Ineq. 2: By Proposition 9 (Robust Bellman Equation) and eq. 6, we have that

Qk,ρi

i,h
(s,a)−Qπk,ρi

i,h (s,a) = max

{
σ
P̂ρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a), 0−Q
†,πk

−i,ρi

i,h (s,a)

}
,

≤ max
{
σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a), 0
}
, (64)

where the second inequality follows from the induction of V πk,ρi

i,h+1 ≥ V
k,ρi

i,h+1 at the h+ 1-th

step and the fact that Qπk,ρi

i,h ≥ 0. By Lemma 23, we can confirm that
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+
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K
. (65)

Now by further applying Lemma 26 to the variance term in the above inequality, with an
argument similar to eq. 62 we can obtain that

σ
P̂ρi
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V πk,ρi
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]
− σPρi
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[
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]
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K
. (66)

where c′′2 > 0 is an absolute constant. Therefore, combining eqns. 64, 65, 66, and the choice
of bonus in 20, Qk,ρi

i,h
(s,a)−Qπk,ρi

i,h (s,a) ≤ 0.

Therefore, by eq. 63 and eq. 66, we have proved that at step h, it holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) . (67)

We now assume that eq. 59 hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition 9), eq. 8, and CCE Equilibrium, we get

V
k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)
]
≥ max

π′
i

Ea∼π′
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−i(·|s)

[
Q

k,ρi

i,h (s,a)
]
, (68)

By the definition of V
†,πk

−i,ρi

i,h (s) in eq. 3, we get

V
†,πk

−i,ρi

i,h (s) = max
π′
i

Ea∼π′
i×πk

−i(·|s)

[
Q

†,πk
−i,ρi

i,h (s,a)

]
. (69)
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Since by induction, for any (s,a), Q
k,ρi

i,h (s,a) ≥ Q
†,πk

−i,ρi

i,h (s,a). As a result, we also have

V
k,ρi

i,h (s) ≥ V †,πk
−i,ρi

i,h (s), which is eq. 60 for h-th step. Similarly, we can show that

V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Qk,ρi

i,h
(s,a)

]
,

(i)

≤ Ea∼πk(·|s)

[
Qπk,ρi

i,h (s,a)
]
,

(ii)
= V πk,ρi

i,h (s) , (70)

where (i) is due to the fact that Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) and (ii) is by definition of V πk,ρi

i,h (s) as
given by Bellman equation in Proposition 9.

CE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
TV-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions for CE version.
Lemma 22 (Optimistic and pessimistic estimation of the robust values for TV-DRMG for CE version).
By setting the bonus term βk

i,h as in eq. 20, with probability 1− δ, for any (s,a, h, i) and k ∈ [K], it
holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) , (71)

V
†,πk

−i,ρi

i,h (s) ≤ V k,ρi

i,h (s) , V k,ρi

i,h (s) ≤ V πk,ρi

i,h (s) . (72)

Proof. The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma 22.

• Ineq. 1: To prove Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a).

• Ineq. 2: To prove Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a).

We know that, at step h = H + 1, V
k,ρi

i,H+1(s) = V
†,πk

−1,ρi

i,H+1 (s) = 0. Now, we assume that both eq. 71
and eq. 72 hold at the (h+ 1)-th step.

• Proof of Ineq. 1: We first consider robustQ at the h-th step. Then, by Proposition 9 (Robust
Bellman Equation) and eq. 5, we have that

Q
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where the second inequality follows from the induction of V
†,πk

−i,ρi

i,h+1 ≤ V k,ρi

i,h+1 at the h+1-th

step and the fact that Q
†,πk

−i,ρi

i,h ≤ νρi

H by Lemma 17. By Lemma 23, we get
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. (74)
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Now by further applying Lemma 26 to the variance term in the above inequality, we can
obtain that
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, (75)

where the inequality (i) is due to
√
a+ b ≤

√
a +
√
b, and the last inequality (ii) is from√

ab ≤ a+ b where c′2 > 0 is an absolute constant. Therefore, combining eqns. 73, 74, 75,

and the choice of bonus in 20, we can conclude that Q
k,ρi

i,h (s,a)−Q†,πk
−i,ρi

i,h (s,a) ≥ 0.

• Proof of Ineq. 2: By Proposition 9 (Robust Bellman Equation) and eq. 6, we have that
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where the second inequality follows from the induction of V πk,ρi

i,h+1 ≥ V
k,ρi

i,h+1 at the h+ 1-th

step and the fact that Qπk,ρi

i,h ≥ 0. By Lemma 23, we can confirm that
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. (77)
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Now by further applying Lemma 26 to the variance term in the above inequality, with an
argument similar to eq. 74 we can obtain that
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]
− σPρi
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, (78)

where c′′2 > 0 is an absolute constant. Therefore, combining eqns. 76, 77, 78, and the choice
of bonus in 20, Qk,ρi

i,h
(s,a)−Qπk,ρi

i,h (s,a) ≤ 0.

Therefore, by eq. 75 and eq. 78, we have proved that at step h, it holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) . (79)

We now assume that eq. 71 hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition 9), eq. 8, and CE Equilibrium, we get

V
k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)
]
= max

ϕ∈Φi

Ea∼ϕ⋄πk(·|s)

[
Q

k,ρi

i,h (s,a)
]
. (80)

By the definition of max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s) in eq. 3, we get

max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s) = max
ϕ∈Φi

Ea∼ϕ⋄πk(·|s)

[
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ϕ′

Qϕ′⋄πk,ρi

i,h (s,a)

]
. (81)

Since by induction, for any (s,a), Q
k,ρi

i,h (s,a) ≥ max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a). As a result, we also have

V
k,ρi

i,h (s) ≥ max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s), which is eq. 162 for h-th step. Similarly, we can show that

V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Qk,ρi

i,h
(s,a)

]
,

(i)

≤ Ea∼πk(·|s)

[
Qπk,ρi

i,h (s,a)
]
,

(ii)
= V πk,ρi

i,h (s) , (82)

where (i) is due to the fact that Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) and (ii) is by definition of V πk,ρi

i,h (s) as
given by Bellman equation in Proposition 9.

F.3 AUXILIARY LEMMAS FOR TV-DRMG

Lemma 23 (Bernstein bound for TV-DRMG and the robust value functions of πk and π†).
Under event ETV in eq. 21 and definition of π† as given in eq. 19, we assume that for any
EQUILIBRIUM ∈ {NASH,CE,CCE} the optimism and pessimism inequalities holds at (h + 1, k),
where these inequalities can correspond to any of the following cases of EQUILIBRIUM:

• NE: Lemma 20 using eq. 47 and eq. 48,

• CCE: Lemma 21 using eq. 59 and eq. 60,

• CE: Lemma 22 using eq. 71 and eq. 72,
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Then, it holds that∣∣∣∣σP̂ρi
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where ι = log

(
S2(
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i=1 Ai)H

2K3/2

δ

)
and c1, c′2 > 0 are absolute constants.

Proof. By our definition of the operator σPρi
i,h(s,a)

[V πk,ρi

i,h+1 ] in eq. 11, we can arrive at,

∣∣σ
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where we denote
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We deal with Term (i) and Term (ii) respectively.

Bound for Term (i): Term (i) is referred to Bernstein bound for Bernstein bound for TV-DRMG
and the robust value function of the robust best response π†,ρi

i (π−i). More specifically, we find

the Bernstein bound on the gap
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By now according to the first inequality of event E in eq. 21, we can bound eq. 86 as
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for any η ∈ N1/(S
√
K)([0, H]). Here the second inequality is because Var[(a −X)+] ≤ Var[X].

Therefore, by applying the covering argument in eq. 87, for any η ∈ [0, H], it holds that
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Bound for Term (ii): For Term (ii), we apply the second inequality of event E in eq. 21, and we
obtain that

Term (ii) ≤ sup
η∈[0,H]

{∑
s′∈S

(√
c1 min

{
P ⋆
h (s

′ | s,a), P k
h (s

′ | s,a)
}
· ι

{Nk
h (s,a) ∨ 1}

+
c2ι

{Nk
h (s,a) ∨ 1}

)

×

∣∣∣∣∣(η − V πk,ρi

i,h+1 ]
)
+
−
(
η − V †,πk

−i,ρi

i,h+1 ]

)
+

∣∣∣∣∣
}
. (89)

Now by assuming that eq. 48 holds at (h+ 1, k), we can upper bound the absolute value above by∣∣∣∣∣(η − V πk,ρi

i,h+1 ]
)
+
−
(
η − V †,πk

−i,ρi

i,h+1 ]

)
+

∣∣∣∣∣ (i)≤
∣∣∣∣V πk,ρi

i,h+1 − V
†,πk

−i,ρi

i,h+1

∣∣∣∣
(ii)

≤ V
k,ρi

i,h+1(s
′)− V k,ρi

i,h+1(s
′), (90)

where the first inequality (i) is due to the 1-Lipschitz continuity of ψη(x) = (η−x)+, and the second
inequality (ii) is due to eq. 48. Thus combining eq. 89 and eq. 90, we get

Term (ii) ≤
∑
s′∈S

(√
c1P̂ k

h (s
′ | s,a) · ι

{Nk
h (s,a) ∨ 1}

+
c2ι

{Nk
h (s,a) ∨ 1}

)
·
(
V

k,ρi

i,h+1(s
′)− V k,ρi

i,h+1(s
′)

)
(i)

≤
∑
s′∈S

(
P̂ k
h (s

′ | s,a)
H

+
c1Hι

{Nk
h (s,a) ∨ 1}

+
c2ι

{Nk
h (s,a) ∨ 1}

)

.

(
V

k,ρi

i,h+1(s
′)− V k,ρi

i,h+1(s
′)

)
(ii)

≤
EP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
c′2H

2Sι

{Nk
h (s,a) ∨ 1}

, (91)

where c′2 > 0 is an absolute constant. The first inequality (i) is by
√
ab ≤ a + b and the second

inequality (ii) is due to V
k,ρi

i,h+1, V
k,ρi

i,h+1 ∈ [0, H]. Finally, by combining eq. 88 and eq. 91 and
applying in eq. 83, we get the required bound as

Term (ii) ≤

√√√√c1VarP̂k
h

(
V

†,πk
−i,ρi

i,h+1

)
· ι

{Nk
h (s,a) ∨ 1}

+
EP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
c′2H

2Sι

{Nk
h (s,a) ∨ 1}

+
1√
K
. (92)

This concludes the proof of Lemma 23.
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Lemma 24 (Bernstein bound for TV-DRMG and optimistic and pessimistic robust value estimators).
Under event ETV in eq. 21 and definition of π† as given in eq. 19, we assume that for any
EQUILIBRIUM ∈ {NASH,CE,CCE} the optimism and pessimism inequalities holds at (h + 1, k),
where these inequalities can correspond to any of the following cases of EQUILIBRIUM:

• NE: Lemma 20 using eq. 47 and eq. 48,

• CCE: Lemma 21 using eq. 59 and eq. 60,

• CE: Lemma 22 using eq. 71 and eq. 72,

Then, it holds that

max

{∣∣∣∣σP̂ρi
i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

k,ρi

i,h+1

]∣∣∣∣, ∣∣∣∣σP̂ρi
i,h(s,a)

[
V k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]∣∣∣∣
}

≤

√√√√c1VarP̂k
h

(
V

†,πk
−i,ρi

i,h+1

)
· ι

{Nk
h (s,a) ∨ 1}

+
EP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
c′2H

2Sι

{Nk
h (s,a) ∨ 1}

+
1√
K
,

where ι = log

(
S2(

∏m
i=1 Ai)H

2K3/2

δ

)
and c1, c′2 > 0 are absolute constants.

Proof. This follows from the same proof as Lemma 23 and is thus omitted.

Lemma 25 (Non-robust Concentration for TV-DRMG). Under event ETV in eq. 21 and definition
of π† as given in eq. 19, we assume that for any EQUILIBRIUM ∈ {NASH,CE,CCE} the optimism
and pessimism inequalities holds at (h+ 1, k), where these inequalities can correspond to any of the
following cases of EQUILIBRIUM:

• NE: Lemma 20 using eq. 47 and eq. 48,

• CCE: Lemma 21 using eq. 59 and eq. 60,

• CE: Lemma 22 using eq. 71 and eq. 72,

Then, it holds that

∣∣∣EP⋆
h (·|s,a)[V

k,ρi

i,h+1 − V
k,ρi

i,h+1]− EP̂k
h (·|s,a)[V

k,ρi

i,h+1 − V
k,ρi

i,h+1]
∣∣∣ ≤ EP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
H

+
c′2H

2Sι

{Nk
h (s,a) ∨ 1}

,

where ι = log

(
S2(

∏m
i=1 Ai)H

2K3/2

δ

)
and c′2 > 0 are absolute constants.

Proof. Assuming that eq. 48 holds for (h+ 1, k), we apply the second inequality of event E in eq.
21 to get the required bound Lemma 25.

Lemma 26 (Variance analysis for π† for TV-DRMG). Under the definition of π† as given in
eq. 19, we assume that for any EQUILIBRIUM ∈ {NASH,CE,CCE} the optimism and pessimism
inequalities holds at (h+1, k), where these inequalities can correspond to any of the following cases
of EQUILIBRIUM:

• NE: Lemma 20 using eq. 47 and eq. 48,

• CCE: Lemma 21 using eq. 59 and eq. 60,

• CE: Lemma 22 using eq. 71 and eq. 72,
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Then, it holds that

∣∣∣∣VarP̂k
h (·|s,a)

[
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

]
−VarP̂k

h (·|s,a)

[
V

†,πk
−i,ρi

i,h+1

]∣∣∣∣ ≤ 4H EP̂k
h (·|s,a)

[
V

k,ρi

h+1 − V
k,ρi

h+1

]
.

Proof. Our proof closely follows the lines of Lemma 22 in (Liu et al., 2021) and Lemma E.11 in (Lu
et al., 2024), with detailed elaboration on each step for clarity. The left hand side of the inequality in
Lemma 26 can be upper bounded by the following∣∣∣∣∣∣VarP̂k

h (·|s,a)

V k,ρi

i,h+1 + V k,ρi

i,h+1

2

−VarP̂k
h (·|s,a)

[
V

†,πk
−i,ρi

i,h+1

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣EP̂k
h (·|s,a)


V k,ρi

i,h+1 + V k,ρi

i,h+1

2

2
− EP̂k

h (·|s,a)

[(
V

†,πk
−i,ρi

i,h+1

)2
]∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
EP̂k

h (·|s,a)

V k,ρi

i,h+1 + V k,ρi

i,h+1

2

2

−
(
EP̂k

h (·|s,a)

[
V

†,πk
−i,ρi

i,h+1

])2

∣∣∣∣∣∣∣. (93)

By applying eq. 48 and the facts that V
k,ρi

i,h+1 and V k,ρi

i,h+1, V
k,ρi

i,h+1, V
k,ρi

i,h+1, V
†,πk

−i,ρi

i,h+1 ∈ [0, H], we
can further upper bound eq. 93 as∣∣∣∣∣∣VarP̂k

h (·|s,a)

V k,ρi

i,h+1 + V k,ρi

i,h+1

2

−VarP̂k
h (·|s,a)

[
V

†,πk
−i,ρi

i,h+1

]∣∣∣∣∣∣
≤ 4H EP̂k

h (·|s,a)

[∣∣∣∣∣V k,ρi
i,h+1+V

k,ρi
i,h+1

2 − V †,πk
−i,ρi
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]
≤ 4H EP̂k

h (·|s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
. (94)

This concludes the proof of Lemma 26.

Lemma 27 (Variance analysis for any robust joint policy πk for TV-DRMG). Under event ETV
in eq. 21 and definition of π† as given in eq. 19, we assume that for any EQUILIBRIUM ∈
{NASH,CE,CCE} the optimism and pessimism inequalities holds at (h + 1, k), where these
inequalities can correspond to any of the following cases of EQUILIBRIUM:

• NE: Lemma 20 using eq. 47 and eq. 48,

• CCE: Lemma 21 using eq. 59 and eq. 60,

• CE: Lemma 22 using eq. 71 and eq. 72,

Then, then the following inequality holds,∣∣∣∣∣∣VarP̂k
h (·|s,a)

V k,ρi

i,h+1 + V k,ρi

i,h+1

2

−VarP⋆
h (·|s,a)

[
V πk,ρi

i,h+1

]∣∣∣∣∣∣
≤ 4HEP⋆

h (·|s,a)

[
V

k,ρi

h+1 − V
k,ρi

h+1

]
+

c′2H
4Sι

{Nk
h (s,a) ∨ 1}

+ 1.

Proof. We follow the proof-lines of Lemma 23 in (Liu et al., 2021) and Lemma E.12 of (Lu et al.,
2024). We present a detailed derivation as follows. We first relate the variance on P̂ k

h to the variance
on P ⋆

h . Specifically, we have∣∣∣∣∣∣VarP̂k
h (·|s,a)

V k,ρi

i,h+1 + V k,ρi

i,h+1

2

−VarP⋆
h (·|s,a)

[
V πk,ρi

i,h+1

]∣∣∣∣∣∣ ≤ Term (i) + Term (ii), (95)
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where we denote

Term (i) :=
∣∣∣∣VarP̂k

h (·|s,a)

[
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

]
−VarP⋆

h (·|s,a)

[
V

k,ρi
i,h+1+V

k,ρi
i,h+1

2

]∣∣∣∣ . (96)

Term (ii) :=

∣∣∣∣∣∣VarP⋆
h (·|s,a)

V k,ρi

i,h+1 + V k,ρi

i,h+1

2

−VarP̂k
h (·|s,a)

[
V πk,ρi

i,h+1

]∣∣∣∣∣∣. (97)

We will now bound Term (i) and Term (ii) respectively.

• Term (i): By applying the fact
(
V

k,ρi

i,h+1 + V k,ρi

i,h+1

)/
2 ∈ [0, H] in the variance terms on

Term (i), we can upper bound Term (i) as

Term (i) ≤ H2
∑
s′∈S

∣∣∣P ⋆
h (s

′|s,a)− P̂ k
h (s

′|s,a)
∣∣∣

(i)

≤ H2
∑
s′∈S

(√
c1P̂ k

h (s
′ | s,a) · ι

{Nk
h (s,a) ∨ 1}

+
c2ι

{Nk
h (s,a) ∨ 1}

)
(ii)

≤ H2

(√
c1Sι

{Nk
h (s,a) ∨ 1}

+
c2Sι

{Nk
h (s,a) ∨ 1}

)
(iii)

≤ 1 +
c′2H

4Sι

{Nk
h (s,a) ∨ 1}

, (98)

where the inequality (i) is by the second inequality in event E in eq. 21, the inequality (ii) is
by Cauchy- Schwartz inequality and the probability distribution sums up to 1, and the last
inequality (iii) is from the fact

√
ab ≤ a+ b.

• Term (ii): By using the proof-lines of Lemma 26 and assuming that the optimism and
pessimism inequality eq. 48 holds for (h+ 1, k), we can bound Term (ii) as

Term (ii) ≤ 4HEP⋆
h (·|s,a)

[
V

k,ρi

h+1 − V
k,ρi

h+1

]
. (99)

Applying eq. 98 and eq. 99, we get the required bound in Lemma 27.

G PROOF OF REGRET BOUND OF KL-MORNAVI

Similar to (Ghosh et al., 2025), we consider the following definitions:

P̂ k
min,h(s,a) := min

s′∈S

{
P̂ k
h (s

′|s,a) : P̂ k
h (s

′|s,a) > 0
}
, (100)

P ⋆
min,h(s,a) := min

s′∈S
{P ⋆

h (s
′|s,a) : P ⋆

h (s
′|s,a) > 0} , (101)

P ⋆
min := min

(h,s)∈[H]×S
P ⋆
min,h(s, π

⋆
h(s)), (102)

where the following inequality is satisfied: P ⋆
h (s

′|s,a) ≥ P ⋆
min,h(s, π

⋆
h(s)) ≥ P ⋆

min.

We now recall the bonus term of KL-MORNAVI for agent i in episode k at step h, as follows:

βk
i,h(s,a) =

2cfH

σi

√
ι(

Nk
h (s,a) ∨ 1

)
P̂ k
min,h(s,a)

+

√
1

K
, (103)

where P̂ k
min,h(s,a) = min

s′∈S
{P̂ k

h (s
′|s,a) : P̂ k

h (s
′|s,a) > 0}, ι = log

(
S2(
∏m

i=1Ai)H
2K3/2/δ

)
,

and cf is an absolute constant.

Before proceeding to all key lemmas, we introduce the high-probability “typical” event EKL in the
lemma below. The proof strategy follows (Lu et al., 2024) and (Ghosh et al., 2025).
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Lemma 28 (Uniform Concentration Bound of event EKL). Let EKL be the event in which, for all
(s,a, s′, h, k) ∈ S × A × S × [H]× [K], and for all η in a 1

ρminS
√
K

-cover of [0, H/ρmin], and is
defined as

EKL =

{∣∣∣∣log(EP̂k
h (·|s,a)

[
exp

{
− Vh+1

η

}])
− log

(
EP⋆

h (·|s,a)

[
exp

{
− Vh+1

η

}])∣∣∣∣
≤ c1

√
ι

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
,

∀(h, s,a, s′, k) ∈ [H]× S ×A× S × [K],∀η ∈ N 1
ρminS

√
K

([
0,

H

ρmin

])}
, (104)

where P̂ k
min,h(s,a) is defined in eq. 100, ι = log

(
S3
(∏m

i=1Ai

)
H2K3/2/δ

)
, c1 > 0 is an absolute

constant and η ∈ N 1
ρminS

√
K
([0, H/ρmin]), where ρmin = min

i∈M
ρi and N 1

ρminS
√

K
([0, H/ρmin])

denotes an 1/(ρminS
√
K)-cover of the interval [0, H/ρmin].

Then, this event EKL occurs with high probability, i.e., Pr(EKL) ≥ 1− δ.

Proof. The proof follows standard techniques: we apply classical concentration inequalities followed
by a union bound. Consider a fixed tuple (s,a, h) for a fixed episode k. Now we consider
the following equivalent random process: (i) before the agents starts, the environment samples
{s(1), s(2), . . . , s(k−1)} independently from P ⋆

h (·|s,a), where s(i) ∈ S denotes the state sampled at
episode i; (ii) during the interaction between the agents and the environment, the i-th time the state
and joint actions (s,a) tuple is visited at step h, the environment will make the agents transit to the
next state s(i). Note that the randomness induced by this interaction procedure is exactly the same
as the original one, which means the probability of any event in this context is the same as in the
original problem. Therefore, it suffices to prove the target concentration inequality in this context.

Based on the above fact, we directly apply (Wang et al., 2024e, Lemma 16). To extend the bound
uniformly, we apply a union bound over all tuples (h, s,a, s′, k, η) ∈ [H] × S × A × S × [K] ×
N1/(ρminS

√
K)

(
[0, H/ρmin]

)
. Note that the η-cover for each agent i lies in the interval [0, H/ρi] ≤

[0, H/ρmin] for all i ∈ M, and this cover contains a valid 1
ρiS

√
K

-cover for each agent-specific

interval
[
0, Hρi

]
. Therefore, we define the common η-cover as η ∈ N 1

ρminS
√

K

([
0, H

ρmin

])
, where

N 1
ρminS

√
K

([
0, H

ρmin

])
denotes a 1

ρminS
√
K

-cover of the interval
[
0, H

ρmin

]
.

PROOF OF THEOREM 5 (KL-DRMG SETTING)

Proof. With Lemma 32, we can establish an upper bound on the regret by considering the difference
between our optimistic and pessimistic value functions:

RegretNASH(K) =

K∑
k=1

max
i∈M

(V
†,πk

−i,ρi

i,1 − V πk,ρi

i,1 )(sk1) ≤
K∑

k=1

max
i∈M

(V
k,ρi

i,1 − V
k,ρi

i,1 )(sk1). (105)

For the KL-divergence uncertainty set, we will refer to the bonus term as βk
i,h(s,a), as given in eq.

103. Our first step is to establish a bound on the difference between the upper and lower Q-values.
Given our definitions for Q

k,ρi

i,h , Qk,ρi

i,h
, V

k,ρi

i,h , V k,ρi

i,h , and the bonus term βk,ρi

i,h (s,a) as defined in eq.
5 through eq. 103, for any (i, h, k, s,a) ∈M× [H]× [K]× S ×A, we have

Q
k,ρi

i,h (s,a)−Qk

i,h
(s,a) ≤ σ

P̂ρi
i,h(s,a)

[
V

k,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V k,ρi

i,h+1

]
+ 2βk,ρi

i,h (s,a). (106)
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We define the following terms, A and B, to simplify our analysis:

A := σ
P̂ρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
+ σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V k,ρi

i,h+1

]
. (107)

B := σPρi
i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]
. (108)

By applying eq. 107 and eq. 108 to eq. 106, we obtain:

Q
k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a) ≤ A+B + 2βk,ρi

i,h (s,a). (109)

We can upper bound term A using a concentration argument tailored for KL robust expectations from
Lemma 30, which shows that

A ≤ 2βk,ρi

i,h (s,a). (110)

For term B, we use the definition of EPρ
h(s,a)

[V ] from eq. 12 to establish the following bound:

B = sup
η∈

[
0, H

ρi

]
{
− η log

(
EP⋆

h (·|s,a)

[
exp

{
−
V

k,ρi

i,h+1

η

}])
− ηρi

}

− sup
η∈

[
0, H

ρi

]
{
− η log

(
EP⋆

h (·|s,a)

[
exp

{
−
V k,ρi

i,h+1

η

}])
− ηρi

}

≤ sup
η∈[0,H/ρi]

η

{
log

(
EP⋆

h (·|s,a)

[
exp

{
−
V k,ρi

i,h+1

η

}])

− log

(
EP⋆

h (·|s,a)

[
exp

{
−
V

k,ρi

i,h+1

η

}])}

= sup
η∈[0,H/ρi]

η log

(EP⋆
h (·|s,a)

[
exp

{
− V

k,ρi
i,h+1

η

}]
EP⋆

h (·|s,a)

[
exp

{
− V

k,ρi
i,h+1

η

}])

= sup
η∈[0,H/ρi]

η log

(
1 +

EP⋆
h (·|s,a)

[
exp

{
− V

k,ρi
i,h+1

η

}
− exp

{
− V

k,ρi
i,h+1

η

}]
EP⋆

h (·|s,a)

[
exp

{
− V

k,ρi
i,h+1

η

}] )

(a)
≤ sup

η∈[0,H/ρi]

η

EP⋆
h (·|s,a)

[
exp

{
− V

k,ρi
i,h+1

η

}
− exp

{
− V

k,ρi
i,h+1

η

}]
EP⋆

h (·|s,a)

[
exp

{
− V

k,ρi
i,h+1

η

}]
(b)
≤ sup

η∈[η,H/ρi]

η exp

{
H

η

}
EP⋆

h (·|s,a)

[
exp

{
−
V k,ρi

i,h+1

η

}
− exp

{
−
V

k,ρi

i,h+1

η

}]
(c)
≤ exp

{
H

η

}
EP⋆

h (s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
, (111)

where inequality (a) uses the fact that log(1 + x) ≤ x, inequality (b) holds because 0 ≤ V k,ρi

i,h+1 ≤ H
and η ∈ [η,H/ρi], and inequality (c) is due to the 1

η -Lipschitz continuity of ϕη(x) = exp
{
− x

η

}
for x ≥ 0, as well as V k,ρi

i,h+1 ≤ V
k,ρi

i,h+1.

By applying the bounds for A and B to eq. 109, we get

Q
k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a) ≤ exp

{
H

η

}
EP⋆

h (s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
+ 4βk,ρi

h (s,a). (112)

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Using Lemma 31 to upper bound the bonus term, and rearranging the terms, we further obtain:

Q
k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a) ≤ exp

{
H

η

}
EP⋆

h (s,a)

[
V

k,ρi

i,h+1 − V
k,ρi

i,h+1

]
+

4c1H

ρmin

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
4

K
, (113)

where c1 > 0 is an absolute constant. From the definitions in eq. 8, the difference in V-functions is
given by:

V
k,ρi

i,h (s)− V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)−Qk,ρi

i,h
(s,a)

]
. (114)

We now define a new recursive value function Ṽ k,ρmin

h and a corresponding Q-function Q̃k,ρmin

h with
Ṽ k,ρmin

H+1 = 0, where ρmin = min
i∈M

ρi:

Q̃k,ρmin

h (s,a) = exp

{
H

η

}
EP⋆

h (s,a)

[
Ṽ k,ρmin

h+1

]
+

4c1H

ρmin

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
4

K
. (115)

Ṽ k,ρmin

h (s) = Ea∼πk
h(·|s)

[
Q̃k,ρmin

i,h (s,a)
]
. (116)

By an inductive proof, we can show that for any (i, h, s,a) ∈ M× [H] × S × A, the following
bounds hold:

max
i∈M

(Q
k,ρi

i,h −Q
k,ρi

i,h
)(s,a) ≤ Q̃k,ρmin

h (s,a), (117)

max
i∈M

(V
k,ρi

i,h − V
k,ρi

i,h )(s) ≤ Ṽ k,ρmin

h (s). (118)

Therefore, our analysis can focus on bounding the sum
∑K

k=1 Ṽ
k,ρmin

1 (sk1). For simplicity, we
introduce the following notations for the differences at any (h, k) ∈ [H]× [K]:

∆k
h := Ṽ k,ρmin

h (skh), (119)

ζkh := ∆k
h − Q̃

k,ρmin

h (skh,a
k
h), (120)

ξkh := EP⋆
h (·|skh,a

k
h)
[Ṽ k,ρmin

h+1 ]−∆k
h+1. (121)

We can confirm that {ζkh}(h,k) and {ξkh}(h,k) are martingale difference sequences with respect to their
respective filtrations. By substituting eq. 115 into eq. 120, we obtain the recursive relationship:

∆k
i,h = ζki,h + Q̃k,ρmin

h (skh,a
k
h)

≤ ζki,h + exp

{
H

η

}
EP⋆

h (s,a)

[
Ṽ k,ρmin

h+1

]
+

4c1H

ρmin

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
4

K

= ζki,h + exp

{
H

η

}
ξki,h + exp

{
H

η

}
∆k

i,h+1 +
4c1H

ρmin

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
4

K
. (122)

By recursively applying eq. 122 and noting that 1 ≤
(
exp

{
H
η

})h
≤
(
exp

{
H
η

})H
:= dH , we

can upper bound the right hand side of eq. 105 as:

RegretNASH(K) ≤
K∑

k=1

∆k
1 ≤ c′dH

K∑
k=1

H∑
h=1

{
(ζkh + ξkh)

+

(
4c1H

ρmin

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
4

K

)}
. (123)
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Next, we bound each of these two main terms. The first term, a sum of martingale differences, is
bounded using the Azuma-Hoeffding inequality from Lemma 39, yielding:

K∑
k=1

H∑
h=1

(ζki,h + ξki,h) ≤ c′1
√
H3KL, (124)

where c′1 > 0 is an absolute constant. For the second term, we apply the proof lines of (Liu et al.,
2021, Theorem 3) to bound the sum of the inverse counts:

K∑
k=1

H∑
h=1

√
1

{Nk
h (s

k
h,a

k
h) ∨ 1}

≤ c′2

(√
H2KS

∏
i∈M

Ai +HS
∏
i∈M

Ai

)
. (125)

By applying eq. 125 to the second term of eq. 123, we get the following:
K∑

k=1

H∑
h=1

(
4c1H

ρmin

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
4

K

)
≤ c′2

(√
H4KS

(∏
i∈MAi

)
ι2

ρ2minP
⋆
min

+
H2S

(∏
i∈MAi

)
ι

ρmin

√
P ⋆
min

+
√
H2K

)
. (126)

By combining the bounds for both terms in eq. 123, we can upper bound the final regret as follows:

RegretNASH(K) ≤ c′dH

(√
H4KS

(∏
i∈MAi

)
ι2

ρ2minP
⋆
min

)

= O

(√
H4 exp(2H2)KS

(∏
i∈MAi

)
(ι′)3

ρ2minP
⋆
min

)
. (127)

This completes the proof of Theorem 5.

Remark 29. The proof techniques for bounding RegretCCE(K) and RegretCE(K) follow the same
lines of proof for RegretNASH(K), leveraging Lemma 33 and Lemma 34, respectively, in the context
of KL-DRMG.

G.1 KEY LEMMAS FOR KL-DRMG

Lemma 30 (Concentration Bound for Robust Value Estimators in KL-DRMG). Let EKL be the
typical event and let the bonus term βk

i,h be set defined in eq. 103. Then, the following inequality
holds:

σ
P̂ρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

k,ρi

i,h+1

]
+ σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V k,ρi

i,h+1

]
≤ 2c1H

ρmin

√
ι

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
+

√
2

K
, (128)

where ι = log
(
S3 (

∏m
i=1Ai)H

2K3/2/δ
)
, and c1 > 0 is an absolute constant.

Proof. We begin by defining the term that we need to bound. Let’s denote this term by A:

A := σP̂ρ
h(s,a)

[
V

k

h+1

]
− σPρ

h(s,a)

[
V

k

h+1

]
+ σPρ

h(s,a)

[
V k

h+1

]
− σP̂ρ

h(s,a)

[
V k

h+1

]
. (129)

Under the high-probability event EKL, we can directly apply the concentration inequality given in
Lemma 37. This allows us to upper bound A as follows:

A ≤ 2c1H

ρmin

√
ι

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
+

√
2

K
, (130)

where c1 > 0 is an absolute constant and ι = log
(
S3 (

∏m
i=1Ai)H

2K3/2/δ
)
. This bound is exactly

the bonus term multiplied by a constant. Therefore, based on our choice of βk
i,h(s,a) as defined in

eq. 103, the inequality in eq. 128 holds. This completes the proof of Lemma 30.
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Lemma 31 (Bound of the bonus term for KL-DRMG). Let EKL be the typical event, the bonus term
βk
i,h in eq. 103 is bounded by

βk
i,h(s,a) ≤

c1H

ρmin

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
1

K
, (131)

where ι = log
(
S3 (

∏m
i=1Ai)H

2K3/2/δ
)
, and c1 > 0 is an absolute constant.

Proof. The proof-lines are similar to (Ghosh et al., 2025, Lemma K.7). We recall the choice of βk
i,h

as given in eq. 103, i.e.

βk
i,h(s,a) =

2cfH

ρi

√
ι

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
+

√
1

K
, (132)

where ι = log
(
S3 (

∏m
i=1Ai)H

2K3/2/δ
)
, P̂ k

min,h(s,a) is defined in eq. 100, and cf > 0 is an
absolute constant.

By Lemma 38 and the union bound, it holds that with probability at least 1− δ that for all (h, s,a) ∈
[H]× S ×A, we get

∀s′ ∈ S : P ⋆
h (s

′ | s,a) ≥ P̂ k
h (s

′ | s,a)
e2

≥ P ⋆
h (s

′ | s,a)
8e2ι

. (133)

To characterize the relation between P ⋆
min,h(s,a) and P̂ k

min,h(s,a) for any (h, s,a) ∈ [H]× S ×A,
we suppose—without loss of generality—that P ⋆

min,h(s,a) = P ⋆
h (s1 | s,a) and P̂ k

min,h(s,a) =

P̂ k
h (s2 | s,a) for some s1, s2 ∈ S. Then, it follows that

P ⋆
min,h(s,a) = P ⋆

h (s1 | s,a)
(i)
≥ P̂ k

h (s1 | s,a)
e2

≥
P̂ k
min,h(s,a)

e2

=
P̂ k
h (s2 | s,a)

e2

(ii)
≥ P ⋆

h (s2 | s,a)
8e2ι

≥
P ⋆
min,h(s,a)

8e2ι

(iii)
≥ P ⋆

min

8e2ι
. (134)

where the inequalities (i) and (ii) follow from eq. 133, and inequality (iii) follows by eq. 102.

By applying eq. 134 in eq. 132, we get

βk
i,h(s,a) ≤

2cfH

ρi

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
1

K
≤ c1H

ρmin

√
ι2

{Nk
h (s,a) ∨ 1}P ⋆

min

+

√
1

K
. (135)

This concludes the proof of Lemma 31.

NE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
KL-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions fro NE version.
Lemma 32 (Optimistic and pessimistic estimation of the robust values for KL-DRMG for NE
Version). Under the event EKL and by setting the bonus term βk

i,h as in eq. 103, it holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) , (136)

V
†,πk

−i,ρi

i,h (s) ≤ V k,ρi

i,h (s) , V k,ρi

i,h (s) ≤ V πk,ρi

i,h (s) . (137)
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Proof. The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma 32

• Ineq. 1: To prove Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a).

• Ineq. 2: To prove Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a).

Assume that both eq. 136 and eq. 137 hold at the (h+ 1)-th step.

• Proof of Ineq. 1: We first consider robustQ at the h-th step. Then, by Proposition 9 (Robust
Bellman Equation) and eq. 5, we have that

Q
†,πk

−i,ρi

i,h (s,a)−Qk,ρi

i,h (s,a) = max

{
σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V

k,ρi

i,h+1

]
− βk

i,h(s,a), Q
†,πk

−i,ρi

i,h (s,a)−H
}
,

≤ max

{
σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]

− βk
i,h(s,a), 0

}
, (138)

where the second inequality follows from the induction of V
†,πk

−i,ρi

i,h+1 ≤ V k,ρi

i,h+1 at the h+1-th

step and the fact that Q
†,πk

−i,ρi

i,h ≤ H . By Lemma 35 and by the definition of P̂ k
min,h(s,a)

as given in eq. 100, we have that

σPρi
i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)

+

√
1

K
. (139)

By the choice of βk
i,h in eq. 103 and eq. 139 and applying in eq. 138, we conclude that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a). (140)

• Proof of Ineq. 2: By using Proposition 9 (Robust Bellman Equation) and eq. 6, we have
that

Qk,ρi

i,h
(s,a)−Qπk,ρi

i,h (s,a) = max

{
σ
P̂ρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a),

0−Qπk,ρi

i,h (s,a)

}
(141)

≤ max

{
σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a),

0

}
, (142)
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where the second inequality follows from the induction of V k,ρi

i,h+1 ≤ V
πk,ρi

i,h+1 at the (h+1)-th

step and the fact that Qπk,ρi

i,h ≥ 0. By Lemma 36, we get

σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)

+

√
1

K
. (143)

By the choice of βk
i,h in eq. 103 and eq. 143 and applying in eq. 142, we conclude that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a). (144)

Therefore, by eq. 140 and eq. 144, we have proved that at step h, it holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) . (145)

We now assume that eq. 136 hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition 9), eq. 8, and NASH Equilibrium, we get

V
k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)
]
= max

π′
i

Ea∼π′
i×πk

−i(·|s)

[
Q

k,ρi

i,h (s,a)
]
. (146)

By the definition of V
†,πk

−i,ρi

i,h (s) in eq. 3, we get

V
†,πk

−i,ρi

i,h (s) = max
π′
i

Ea∼π′
i×πk

−i(·|s)

[
Q

†,πk
−i,ρi

i,h (s,a)

]
. (147)

Sine by induction, for any (s,a),Q
k,ρi

i,h (s,a) ≥ Q†,πk
−i,ρi

i,h (s,a). As a result, we also have V
k,ρi

i,h (s) ≥

V
†,πk

−i,ρi

i,h (s), which is eq. 137 for h-th step. Similarly, we can show that

V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Qk,ρi

i,h
(s,a)

]
,

(i)

≤ Ea∼πk(·|s)

[
Qπk,ρi

i,h (s,a)
]
,

(ii)
= V πk,ρi

i,h (s) , (148)

where (i) is due to the fact that Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) and (ii) is by definition of V πk,ρi

i,h (s) as
given by Bellman equation in Proposition 9.

CCE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
KL-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions fro CCE version.

Lemma 33 (Optimistic and pessimistic estimation of the robust values for KL-DRMG for CCE
Version). Under the event EKL and by setting the bonus term βk

i,h as in eq. 103, it holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) , (149)

V
†,πk

−i,ρi

i,h (s) ≤ V k,ρi

i,h (s) , V k,ρi

i,h (s) ≤ V πk,ρi

i,h (s) . (150)

Proof. The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma 33
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• Ineq. 1: To prove Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a).

• Ineq. 2: To prove Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a).

Assume that both eq. 149 and eq. 150 hold at the (h+ 1)-th step.

• Proof of Ineq. 1: We first consider robustQ at the h-th step. Then, by Proposition 9 (Robust
Bellman Equation) and eq. 5, we have that

Q
†,πk

−i,ρi

i,h (s,a)−Qk,ρi

i,h (s,a) = max

{
σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V

k,ρi

i,h+1

]
− βk

i,h(s,a), Q
†,πk

−i,ρi

i,h (s,a)−H
}
,

≤ max

{
σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− βk

i,h(s,a), 0

}
, (151)

where the second inequality follows from the induction of V
†,πk

−i,ρi

i,h+1 ≤ V k,ρi

i,h+1 at the h+1-th

step and the fact that Q
†,πk

−i,ρi

i,h ≤ H . By Lemma 35 and by the definition of P̂ k
min,h(s,a)

as given in eq. 100, we have that

σPρi
i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σ

P̂ρi
i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)

+

√
1

K
. (152)

By the choice of βk
i,h in eq. 103 and eq. 152 and applying in eq. 151, we conclude that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a). (153)

• Proof of Ineq. 2: By using Proposition 9 (Robust Bellman Equation) and eq. 6, we have
that

Qk,ρi

i,h
(s,a)−Qπk,ρi

i,h (s,a) = max

{
σ
P̂ρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a), 0−Q
πk,ρi

i,h (s,a)

}

≤ max

{
σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a), 0

}
, (154)

where the second inequality follows from the induction of V k,ρi

i,h+1 ≤ V
πk,ρi

i,h+1 at the (h+1)-th

step and the fact that Qπk,ρi

i,h ≥ 0. By Lemma 36, we get

σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)

+

√
1

K
. (155)
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By the choice of βk
i,h in eq. 103 and eq. 155 and applying in eq. 154, we conclude that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a). (156)

Therefore, by eq. 153 and eq. 156, we have proved that at step h, it holds that

Q
†,πk

−i,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) . (157)

We now assume that eq. 149 hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition 9), eq. 8, and CCE Equilibrium, we get

V
k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)
]
≥ max

π′
i

Ea∼π′
i×πk

−i(·|s)

[
Q

k,ρi

i,h (s,a)
]
. (158)

By the definition of V
†,πk

−i,ρi

i,h (s) in eq. 3, we get

V
†,πk

−i,ρi

i,h (s) = max
π′
i

Ea∼π′
i×πk

−i(·|s)

[
Q

†,πk
−i,ρi

i,h (s,a)

]
. (159)

Sine by induction, for any (s,a),Q
k,ρi

i,h (s,a) ≥ Q†,πk
−i,ρi

i,h (s,a). As a result, we also have V
k,ρi

i,h (s) ≥

V
†,πk

−i,ρi

i,h (s), which is eq. 150 for h-th step. Similarly, we can show that

V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Qk,ρi

i,h
(s,a)

]
,

(i)

≤ Ea∼πk(·|s)

[
Qπk,ρi

i,h (s,a)
]
,

(ii)
= V πk,ρi

i,h (s) , (160)

where (i) is due to the fact that Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) and (ii) is by definition of V πk,ρi

i,h (s) as
given by Bellman equation in Proposition 9.

CE VERSION: OPTIMISTIC AND PESSIMISTIC ESTIMATION OF THE ROBUST VALUES FOR
KL-DRMG.

Here we will proof the optimistic estimations are indeed upper bounds of the corresponding robust
V-value and robust Q-value functions fro CE version.

Lemma 34 (Optimistic and pessimistic estimation of the robust values for KL-DRMG for CE version).
By setting the bonus term βk

i,h as in eq. 103, with probability 1− δ, for any (s,a, h, i) and k ∈ [K],
it holds that

max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) , (161)

max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s) ≤ V k,ρi

i,h (s) , V k,ρi

i,h (s) ≤ V πk,ρi

i,h (s) . (162)

Proof. The proof-lines are similar to (Ghosh et al., 2025) adapted to the multi-agent case.
We will run a proof for each inequality outlined in Lemma 34

• Ineq. 1: To prove max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a).

• Ineq. 2: To prove Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a).

Assume that both eq. 161 and eq. 162 hold at the (h+ 1)-th step.
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• Proof of Ineq. 1: We first consider robustQ at the h-th step. Then, by Proposition 9 (Robust
Bellman Equation) and eq. 5, we have that

max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a)−Qk,ρi

i,h (s,a)

= max

{
σPρi

i,h(s,a)

[
max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h

]
− σ

P̂ρi
i,h(s,a)

[
V

k,ρi

i,h+1

]
− βk

i,h(s,a),

max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a)−H

}

≤ max

{
σPρi

i,h(s,a)

[
max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h

]
− σ

P̂ρi
i,h(s,a)

[
max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h

]
− βk

i,h(s,a),

0

}
, (163)

where the second inequality follows from the induction of max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h+1 (s) ≤ V k,ρi

i,h+1 (s)

at the h+ 1-th step and the fact that max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a) ≤ H . By Lemma 35 and by the

definition of P̂ k
min,h(s,a) as given in eq. 100, we have that

σPρi
i,h(s,a)

[
max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s)

]
− σ

P̂ρi
i,h(s,a)

[
max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s)

]
≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
+

√
1

K
. (164)

By the choice of βk
i,h in eq. 103 and eq. 164 and applying in eq. 163, we conclude that

max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) . (165)

• Proof of Ineq. 2: By using Proposition 9 (Robust Bellman Equation) and eq. 6, we have
that

Qk,ρi

i,h
(s,a)−Qπk,ρi

i,h (s,a)

= max

{
σ
P̂ρi

i,h(s,a)

[
V k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a), 0−Q
πk,ρi

i,h (s,a)

}
,

≤ max

{
σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− βk

i,h(s,a), 0

}
, (166)

where the second inequality follows from the induction of V k,ρi

i,h+1 ≤ V
πk,ρi

i,h+1 at the (h+1)-th

step and the fact that Qπk,ρi

i,h ≥ 0. By Lemma 36, we get

σ
P̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)

+

√
1

K
. (167)

By the choice of βk
i,h in eq. 103 and eq. 167 and applying in eq. 166, we conclude that

Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a). (168)
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Therefore, by eq. 165 and eq. 168, we have proved that at step h, it holds that

max
ϕ∈Φi

Qϕ⋄π,ρi

i,h (s,a) ≤ Qk,ρi

i,h (s,a) , Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) . (169)

We now assume that eq. 161 hold for h-th step. Then, by the definition of robust value function as
given by robust Bellman equation (Proposition 9), eq. 8, and CE Equilibrium, we get

V
k,ρi

i,h (s) = Ea∼πk(·|s)

[
Q

k,ρi

i,h (s,a)
]
= max

ϕ∈Φi

Ea∼ϕ⋄πk(·|s)

[
Q

k,ρi

i,h (s,a)
]
. (170)

By the definition of max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s) in eq. 3, we get

max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s) = max
ϕ∈Φi

Ea∼ϕ⋄πk(·|s)

[
max
ϕ′

Qϕ′⋄πk,ρi

i,h (s,a)

]
. (171)

Since by induction, for any (s,a), Q
k,ρi

i,h (s,a) ≥ max
ϕ∈Φi

Qϕ⋄πk,ρi

i,h (s,a). As a result, we also have

V
k,ρi

i,h (s) ≥ max
ϕ∈Φi

V ϕ⋄πk,ρi

i,h (s), which is eq. 162 for h-th step. Similarly, we can show that

V k,ρi

i,h (s) = Ea∼πk(·|s)

[
Qk,ρi

i,h
(s,a)

]
,

(i)

≤ Ea∼πk(·|s)

[
Qπk,ρi

i,h (s,a)
]
,

(ii)
= V πk,ρi

i,h (s) , (172)

where (i) is due to the fact that Qk,ρi

i,h
(s,a) ≤ Qπk,ρi

i,h (s,a) and (ii) is by definition of V πk,ρi

i,h (s) as
given by Bellman equation in Proposition 9.

G.2 AUXILIARY LEMMAS FOR KL-DRMG

Lemma 35 (Concentration of Value Function in KL-DRMG). Under the typical event EKL as defined
in eq. 104, the following concentration bound holds with probability at least 1− δ:∣∣∣∣σP̂ρi

h (s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

h (s,a)

[
V

†,πk
−i,ρi

i,h+1

]∣∣∣∣ ≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
+

1√
K
,

where ι = log
(
S3
(∏m

i=1Ai

)
H2K3/2/δ

)
and c1 is an absolute constant.

Proof. This proof establishes a concentration bound for the difference between the empirical and

true robust value functions. We use the definition of the KL-divergence operator σPρi
i,h(s,a)

[V
†,πk

−i,ρi

i,h+1 ]

from eq. 12 and the empirical minimum probability P̂ k
min,h(s,a) from eq. 100 to express this

difference as a supremum:∣∣∣∣σP̂ρi
i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]∣∣∣∣
≤ sup

η∈[η,H/ρi]

η

∣∣∣∣∣log
(
EP̂k

h (·|s,a)

[
exp
{
−
V

†,πk
−i,ρi

i,h+1

η

}])

− log

(
EP⋆

h (·|s,a)

[
exp
{
−
V

†,πk
−i,ρi

i,h+1

η

}])∣∣∣∣∣. (173)

Under the high-probability event EKL (defined in eq. 104), we apply a known concentration inequality
from (Wang et al., 2024e, Lemma 16) to bound this expression:∣∣∣∣σP̂ρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V

†,πk
−i,ρi

i,h+1

]∣∣∣∣ ≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
, (174)
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This bound holds for any η within a fine-grained cover of the interval [0, H/ρmin]. By applying a
standard covering argument, we extend this bound to hold for all η ∈ [0, H/ρmin], thereby concluding
the proof of Lemma 35.

Lemma 36 (Bound for DRMG-KL and the robust value function of πk). Under event EKL in eq.
104 and for any EQUILIBRIUM ∈ {NASH,CE,CCE}, we assume that the optimism and pessimism
inequalities hold at (h+ 1, k), where these inequalities can correspond to any of the following cases
of EQUILIBRIUM:

• NE: Lemma 32 using eq. 136 and eq. 137,

• CCE: Lemma 33 using eq. 149 and eq. 150,

• CE: Lemma 34 using eq. 161 and eq. 162.

Then the following bound holds:∣∣∣∣σP̂ρi
i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]∣∣∣∣ ≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
+

1√
K
,

where ι = log
(
S3 (

∏m
i=1Ai)H

2K3/2/δ
)
, and c1 is an absolute constant.

Proof. This proof establishes a concentration bound for the difference between the empirical and
true robust value functions under the KL-divergence. By using the definition of the robust operator
σPρi

i,h(s,a)
[V πk,ρi

i,h+1 ] from eq. 12 and the empirical minimum probability P̂ k
min,h(s,a) from eq. 100,

we can bound the absolute difference as follows:∣∣∣∣∣σP̂ρi
i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]∣∣∣∣∣
≤ sup

η∈[η,H/ρi]

η

∣∣∣∣∣log
(
EP̂k

h (·|s,a)

[
exp
{
−
V πk,ρi

i,h+1

η

}])

− log

(
EP⋆

h (·|s,a)

[
exp
{
−
V πk,ρi

i,h+1

η

}])∣∣∣∣∣. (175)

Under the high-probability event EKL (defined in eq. 104), and by applying a known concentration
inequality from (Wang et al., 2024e, Lemma 17), we can establish a uniform bound on this difference:∣∣∣∣σP̂ρi

i,h(s,a)

[
V πk,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V πk,ρi

i,h+1

]∣∣∣∣ ≤ c1H

ρi

√
L

{Nk
h (s,a) ∨ 1}P̂ k

min,h(s,a)
. (176)

This inequality holds for any η in a fine-grained cover of the interval [0, H/ρmin]. We conclude
the proof of Lemma 36 by using a standard covering argument to extend the bound to all η ∈
[0, H/ρmin].

Lemma 37 (Bounds for RMG-KL and optimistic and pessimistic robust value estimators). Under
event EKL in eq. 104 and for any EQUILIBRIUM ∈ {NASH,CE,CCE}, we assume that the optimism
and pessimism inequalities hold at (h+ 1, k), where these inequalities can correspond to any of the
following cases of EQUILIBRIUM:

• NE: Lemma 32 using eq. 136 and eq. 137,

• CCE: Lemma 33 using eq. 149 and eq. 150,

• CE: Lemma 34 using eq. 161 and eq. 162.
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Then the following bound holds:

max
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[
V
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i,h+1

]
− σPρi

i,h(s,a)

[
V
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]∣∣∣∣, ∣∣∣∣σP̂ρi
i,h(s,a)

[
V k,ρi

i,h+1

]
− σPρi

i,h(s,a)

[
V k,ρi

i,h+1

]∣∣∣∣
}

≤ c1H

ρi

√
L

{Nk
h (s, a) ∨ 1}P̂ k

min,h(s,a)
+

√
1

K
,

where ι = log
(
S3 (

∏m
i=1Ai)H

2K3/2/δ
)
) and c1 is an absolute constant.

Proof. We follow the same proof lines as Lemma 36, and thereby we omit it.

Lemma 38 (Bound on Binomal random variable). Suppose X ∼ Binomial(n, p), where n ≥ 1 and
p ∈ [0, 1]. For any δ ∈ (0, 1), we have

X ≥ np

8 log
(
1
δ

) , if np ≥ 8 log

(
1

δ

)
, (177)

X ≤
{
e2np, if np ≥ log

(
1
δ

)
,

2e2 log
(
1
δ

)
, if np ≤ 2 log

(
1
δ

)
,

(178)

hold with probability at least 1− 4δ.

Proof. Refer to (Shi et al., 2023, Lemma 8) for details.

H OTHER TECHNICAL LEMMAS

Here, we present some auxiliary lemmas which are useful in the proof.

Lemma 39 (Azuma Hoeffding’s Inequality). Let {Zt}t∈Z+ be a martingale with respect to the
filtration {Ft}t∈Z+

. Assume that there are predictable processes {At}t∈Z+
and {Bt}t∈Z+

with
respect to {Ft}t∈Z+

, i.e., for all t, At and Bt are Ft−1-measurable, and constants 0 < c1, c2, · · · <
+∞ such that At ≤ Zt − Zt−1 ≤ Bt and Bt −At ≤ ct almost surely. Then, for all β > 0

P
(
|Zt − Z0| ≥ β

)
≤ exp

{
− 2β2∑

i≤t

c2t

}
. (179)

Proof. Refer to the proof of Theorem 5.1 of (Dubhashi & Panconesi, 2009).

Lemma 40 (Self-bounding variance inequality (Maurer & Pontil, 2009, Theorem 10)). Let
X1, . . . , XT be independent and identically distributed random variables with finite variance, that is,
Var(X1) <∞. Assume that Xt ∈ [0,M ] for every t with M > 0, and let

S2
T =

1

T

T∑
t=1

X2
t −

(
1

T

T∑
t=1

Xt

)2

.

Then, for any ε > 0, we have

P
(∣∣∣ST −

√
Var(X1)

∣∣∣ ≥ ε) ≤ 2 exp

(
− Tε2

2M2

)
.

Proof. Refer to the proof of Lemma 7 of (Panaganti & Kalathil, 2022).
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