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Abstract

Predicting the behavior of a dynamical system from noisy observations of its past outputs
is a classical problem encountered across engineering and science. For linear systems with
Gaussian inputs, the Kalman filter – the best linear minimum mean-square error estimator
of the state trajectory – is optimal in the Bayesian sense. For nonlinear systems, Bayesian
filtering is typically approached using suboptimal heuristics such as the Extended Kalman
Filter (EKF), or numerical methods such as particle filtering (PF). In this work, we show
that transformers, employed in an in-context learning (ICL) setting, can implicitly infer
hidden states in order to predict the outputs of a wide family of dynamical systems, without
test-time gradient updates or explicit knowledge of the system model. Specifically, when
provided with a short context of past input–output pairs and, optionally, system parameters,
a frozen transformer accurately predicts the current output. In linear-Gaussian regimes, its
predictions closely match those of the Kalman filter; in nonlinear regimes, its performance
approaches that of EKF and PF. Moreover, prediction accuracy degrades gracefully when key
parameters, such as the state-transition matrix, are withheld from the context, demonstrating
robustness and implicit parameter inference. These findings suggest that transformer in-
context learning provides a flexible, non-parametric alternative for output prediction in
dynamical systems, grounded in implicit latent-state estimation.

1 Introduction

In-context learning (ICL), particularly in the form of few-shot prompting (Yogatama et al., 2019), has emerged
as a prominent research direction in natural language processing (NLP). In this framework, a large language
model (LLM) performs new tasks by conditioning on a small number of input–output examples provided
in the prompt. One of the earliest works to demonstrate this capability was by Brown et al. (2020), who
evaluated GPT-3 across a range of NLP datasets under “zero-shot", “one-shot" and “few-shot" settings. Zhao
et al. (2021) identified majority-label bias, recency bias, and common-token bias as sources of instability in
GPT-3’s accuracy under few-shot prompting, and proposed contextual calibration as a remedy. A theoretical
explanation for ICL as a form of implicit Bayesian inference is offered in Xie et al. (2021). Min et al. (2022)
explore why ICL works in practice, showing that its success is not dependent on having access to ground-truth
labels; it further emphasized the importance of label space, input distribution, and prompt format. In
parallel, Schlag et al. (2021) provide a theoretical analysis showing that transformers can act as fast weight
programmers.

Early work on using standard transformer decoders for in-context learning of autoregressive models includes
(Garg et al., 2022), where the ability of transformers to learn function classes from examples is empirically
investigated. A model is said to learn a function class F over a domain X if, for any f ∈ F and any
inputs x1, x2, . . . , xN , xquery drawn i.i.d. from X , the model can predict f(xquery) given the sequence
x1, f(x1), x2, f(x2), . . . , xN , f(xN ), xquery. The function classes studied by Garg et al. (2022) range from
simple linear functions to sparse linear models, two-layer neural networks, and decision trees.

Two parallel works by Von Oswald et al. (2023) and Akyürek et al. (2023) examine which algorithms
transformers implicitly implement when learning function classes in-context. Von Oswald et al. (2023) build
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on Schlag et al. (2021) and show that linear self-attention layers can be interpreted as performing a step
of gradient descent. Specifically, they prove that for a single-headed linear attention layer, there exist key,
query, and value matrices such that a forward pass corresponds to one step of gradient descent with an ℓ2 loss
applied to each token. In contrast, Akyürek et al. (2023) introduce a raw operator framework that supports
operations such as matrix multiplication, scalar division, and memory-like read/write. They demonstrate
that a single transformer head equipped with suitable key, query, and value matrices can approximate this
operator, implying that transformers are, in principle, capable of performing linear regression via either
stochastic gradient descent or in closed-form.

Our work investigates whether transformers, using in-context learning (ICL), can learn to perform filtering
in dynamical systems described by noisy state-space models. Specifically, we study whether a transformer,
conditioned on a short context of past input–output pairs (and, optionally, system parameters), can predict
the current output of the system. The model is pre-trained on synthetic trajectories generated by randomly
sampled system parameters and evaluated without gradient-based updates at test time. Our goal is to
understand which classical filtering algorithms the transformer’s behavior most closely resembles under this
setup. To that end, we begin by examining the structure of the Kalman filter (Kalman, 1960), the optimal
linear estimator for systems with Gaussian noise, and ask whether its operations can be replicated by a
transformer architecture. We show that Kalman filtering can indeed be expressed using operations that are
readily implemented by a transformer, and provide both a proof-by-construction and empirical evidence that,
when sufficiently scaled and provided with enough context, the transformer learns to emulate Kalman-like
behavior. Notably, its performance remains strong even when some parameters, such as the state-transition
matrix, are omitted from the context, suggesting robustness and an ability to infer missing information
implicitly. We then turn our attention to nonlinear systems and empirically demonstrate that transformers
can in-context learn to achieve output prediction accuracy comparable to that of classical nonlinear filters
such as the Extended Kalman Filter and particle filters. While our analysis and experiments primarily focus
on output prediction, we also include preliminary evidence that transformers can, in some cases, explicitly
recover latent states, thus highlighting their potential for more general inference tasks.

1.1 Related work

Prior research at the interface of deep learning and Kalman filtering include Deep Kalman Filters (Krishnan
et al., 2015) and KalmanNet (Revach et al., 2021), which learns the Kalman gain in a data-driven manner
using a recurrent neural network. A follow-up study (Revach et al., 2022) extends this approach using gated
recurrent units to estimate both the Kalman gain and noise statistics while assuming fixed system parameters.
In contrast, our model is trained on data generated from randomly sampled system parameters, encouraging
the transformer to learn the filtering procedure itself rather than memorize input–output mappings for
a specific system. Other works have explored connections between attention mechanisms and structured
state-space models (SSMs). Dao & Gu (2024) reformulate SSM computations as matrix multiplications on
structured matrices, drawing parallels with efficient attention variants. Sieber et al. (2024) propose a unified
dynamical systems framework encompassing attention, SSMs, RNNs, and LSTMs. However, neither of these
works address state estimation, filtering, or in-context learning. Goel & Bartlett (2024) show that softmax
self-attention can approximate the Nadaraya–Watson kernel smoother, which in turn resembles the Kalman
filter. In contrast, our work directly targets in-context learning for dynamical systems and builds on the raw
operator framework of Akyürek et al. (2023) to show that transformers can implement the exact operations
needed for Kalman filtering, as supported by both theoretical constructions and empirical validation.

1.2 Summary of contributions

We present, to our knowledge, the first study demonstrating that a transformer, pre-trained on trajectories
generated from randomly sampled system parameters, can in-context learn to perform filtering in dynamical
systems. Specifically, we show that a frozen transformer, when conditioned on a short context of input–output
pairs (and, optionally, system parameters), can predict the current output without test-time updates or direct
model supervision. Our contributions are as follows:
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• We provide a proof-by-construction showing that the Kalman filter can be reformulated using
operations readily implementable by a transformer. Using the mean squared prediction difference
(MSPD), we empirically demonstrate that a transformer can in-context learn to emulate the Kalman
filter tailored to individual systems.

• Beyond linear systems, we show that transformers can in-context learn to perform accurate output
prediction in certain nonlinear dynamical systems. This includes a challenging maneuvering target
tracking task with unknown turning rate, where the performance is comparable to that of the
Extended Kalman Filter and particle filtering.

• We evaluate robustness by withholding portions of the system model from the prompt. Notably,
even in the absence of the state-transition matrix, the transformer approximates the operations
and predictive accuracy of the Dual Kalman filter, demonstrating implicit parameter inference and
context-level adaptability.

• We observe that transformer behavior depends on scale: Small models and short contexts tend to
emulate classical regression methods (e.g., SGD, Ridge, OLS), which do not involve latent state
inference, while larger models and longer contexts exhibit filtering behavior that suggests implicit
recovery of hidden states, approximating Kalman, Extended Kalman, and particle filters.

The remainder of the paper is organized as follows. Section 2 reviews relevant background on in-context
learning and filtering. Section 3 introduces the system model and presents constructive arguments showing
that transformers can in-context learn to implement Kalman filtering under white observation noise. Section
4 presents simulation results, including applications to non-linear systems and robustness to missing model
parameters. Section 5 concludes the paper. The code used to generate experimental results is available here.

2 Background

2.1 Transformers

Transformers, introduced by Vaswani et al. (2017), are a class of neural network architectures that rely on an
attention mechanism to capture relationships among elements in an input sequence. This mechanism enables
transformers to model long-range dependencies and has been central to their success in sequence-to-sequence
tasks. The experiments in this paper utilize the GPT-2 architecture (Radford et al., 2019), a decoder-only
variant of the transformer.

A brief overview of the attention mechanism sets the stage for the discussion that follows. Let G(l−1) denote
the input to the lth layer. A single attention head, indexed by γ, consists of key, query, and value matrices
denoted by W K

γ , W Q
γ , and W V

γ , respectively. The output of head γ is computed as

bl
γ = Softmax

(
(W Q

γ G(l−1))T (W K
γ G(l−1))

)(
W V

γ G(l−1)
)

. (1)

The softmax matrix in equation (1) assigns attention weights that indicate how strongly each token attends
to others in the sequence. The outputs of all B heads are concatenated and projected via W F , yielding

Al = W F [bl
1, bl

2, ..., bl
B ]. (2)

This result is added to the layer input and passed through a feedforward block to produce the output of the
lth layer

G(l) = W1σ
(

W2λ
(

Al + G(l−1)
))

+ Al + G(l−1), (3)

where λ denotes layer normalization and σ is the activation function. In our experiments, we use the Gaussian
Error Linear Unit (GeLU) activation (Hendrycks & Gimpel, 2016).
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2.2 State-space models for linear dynamical systems

Linear dynamical systems can be described by a finite-dimensional state-space model involving hidden states
xt ∈ Rn and observations yt ∈ Rm, related by the equations

xt+1 = Ftxt + qt (4)
yt = Htxt + rt, (5)

where qt ∈ Rn and rt ∈ Rm denote zero-mean white process and measurement noise, respectively (for
simplicity, we assume no external control input ut). The state equation (4), parameterized by the state
transition matrix Ft ∈ Rn×n and the noise covariance matrix Q, models the temporal evolution of the latent
state. The measurement equation (5), parameterized by the measurement matrix Ht ∈ Rm×n and the noise
covariance R, defines how observations are generated from the underlying state via a linear transformation.

State-space models are widely used across machine learning (Gu et al., 2021), computational neuroscience
(Barbieri et al., 2004), control theory (Kailath, 1980), signal processing (Kailath et al., 2000), and economics
(Zeng & Wu, 2013). A central problem in many of these domains is the estimation of the latent state sequence
xt and its functions (e.g., the system’s output) given noisy observations yt and the parameters of the model.

2.3 In-context learning in the absence of dynamics

When F = In×n, Q = 0, H = ht ∈ R1×n (scalar measurements), and x0 = x, the state space model simplifies
to

xt = x (6)
yt = htxt + rt, (7)

i.e., the state becomes time-invariant and the system reduces to a linear measurement model. At the crux of
estimation problems in this setting is the inference of the unknown random vector x from past measurements
y1, y2, . . . , yN and the corresponding measurements vectors h1, h2, . . . , hN . This problem can be addressed
using several classical methods:

• Stochastic Gradient Descent. Initialize with x̂0 = 0n×1, and update recursively as

x̂t = x̂t−1 − 2α(ht−1x̂T
t−1ht−1 − ht−1yt−1), (8)

where α denotes the learning rate. Once a pre-specified convergence criterion is met, the final estimate
is set to x̂SGD = x̂N .

• Ordinary Least Squares (OLS). Form the matrix H̄ ∈ RN×n with rows h1, h2, . . . , hN , and let
Ȳ = [y1, y2, ..., yN ]T . The OLS estimate is

x̂OLS = (H̄T H̄)−1H̄T Ȳ. (9)

• Ridge Regression. To reduce overfitting, OLS can be regularized as

x̂Ridge = (H̄T H̄ + λIn×n)−1H̄T Ȳ, (10)

where λ denotes the regularization parameter.

Note that if λ = σ2

τ2 , where σ2 is the variance of the measurement noise and τ2 is the variance of the prior on
the latent vector x0 = x, then ridge regression yields the lowest mean square error among all linear estimators
of x, i.e., those that linearly combine measurements y1, ..., yN to form x̂. Moreover, if x0 ∼ N (0, τ2I) and
rt ∼ N (0, σ2I), then the ridge regression solution coincides with the minimum mean square error (MMSE)
estimate, i.e., x̂ = E[X|y1, ..., yN ].

A pioneering study that explored the ability of language models to learn linear functions and implement
simple algorithms was presented by Garg et al. (2022). Building on that work, Akyürek et al. (2023) examined
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whether GPT-2–based transformers can in-context learn the setting where xt = x as in (7). Specifically, they
investigated which algorithms the transformer implicitly learns to implement when tasked with predicting
yN , given an input formatted as the matrix[

0 y1 0 y2 ... 0 yN−1 0
hT

1 0 hT
2 0 ... hT

N−1 0 hT
N

]
.

In Akyürek et al. (2023), the transformer was trained on batches of examples constructed from randomly
sampled latent states and measurement parameters. The authors observed that the model’s behavior depends
on both the architecture size and the context length. For small models trained with short contexts, the
transformer approximates stochastic gradient descent (SGD). For moderate context lengths (up to the
dimensionality of the latent state) and moderately sized models, its behavior resembles ridge regression.
Finally, with large architectures and context lengths exceeding the latent dimension, the transformer’s
performance approaches that of ordinary least squares (OLS).

A major contribution of Akyürek et al. (2023) was to theoretically demonstrate that transformers can
approximate the operations required to implement SGD and closed-form regression. This was accomplished
by introducing the RAW (Read–Arithmetic–Write) operator (see Appendix G), parameterized by matrices
Wo, Wa, and W , along with an element-wise operator ◦ ∈ [+, ∗]. The RAW operator maps the input to
layer l, denoted ql, to the output ql+1 using index sets s, r, w, a time set map K, and token positions
i = 1, . . . , 2N according to

ql+1
i,w = Wo

  Wa

|K(i)|
∑

k∈K(i)

ql
k[r]

 ◦Wql
i[s]

 , (11)

ql+1
i,j /∈w = ql

i,j /∈w. (12)

A single transformer head can approximate this operator for arbitrary choices Wo, Wa, W , and ◦. Moreover,
there exist specific parametrizations Wo, Wa, W, ◦ ∈ {+, ∗} that allow the transformer to emulate key
operations needed for SGD and closed-form regression, including affine transformations, matrix multiplication,
scalar division, dot products, and memory-based read/write operations. For completeness, a detailed
exposition of the RAW operator is provided in AppendixG.

3 In-Context Learning for Dynamical Systems

We begin by outlining an in-context learning procedure for the generic linear state-space model defined in
(4)–(5), assuming a time-invariant state equation (i.e., Ft = F ̸= I, Q ̸= 0). For simplicity of presentation, we
first consider the case of scalar measurements. In this setting, the optimal causal linear estimator of the state
sequence xt, in terms of mean-square error, is the well-known Kalman filter (Kalman, 1960). The procedure
begins by specifying the initial state estimate and its corresponding error covariance matrix, denoted x̂+

0 and
P̂ +

0 , respectively. (In our experiments, we initialize these as x̂+
0 = 0 and P̂ +

0 = In×n.) Subsequent estimates
and covariances are computed recursively using the Kalman filter’s prediction and update steps, as detailed
by the expressions below.

Prediction Step:

x̂−
t = Fx̂+

t−1 (13)
P̂ −

t = FP̂ +
t−1F T + Q (14)

Update Step:

Kt = P̂ −
t HT

t (HtP̂
−
t HT

t + R)−1 (15)
x̂+

t = x̂−
t + Kt(yt −Htx̂

−
t ) (16)

P̂ +
t = (I −KtHt)P̂ −

t (17)
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In the case of scalar measurements, where Ht = ht (row vector) and R = σ2 (scalar), the matrix inversion in
(15) simplifies to scalar division, an operation that can be readily approximated by a single transformer head.
The update equations in this scalar setting reduce to

x̂+
t = x̂−

t + P̂ −
t hT

t

htP̂
−
t hT

t + σ2
(yt − htx̂

−
t ) (18)

P̂ +
t = (I − P̂ −

t hT
t ht

htP̂
−
t hT

t + σ2
)P̂ −

t . (19)

These simplified forms highlight the modular arithmetic structure of the Kalman update, which we later
exploit in constructing transformer-executable analogs.

To examine whether a transformer can in-context learn to approximate the behavior of the Kalman filter,
we design a training procedure based on synthetic data generated from linear dynamical systems with
scalar observations. For each training instance, we randomly sample system parameters – including the
state transmition matrix F , the measurement vectors h1, . . . , hN , the process noise covariance Q, and the
measurement noise covariance σ2 – along with the corresponding outputs y1, . . . , yN−1. These quantities are
arranged into a structured input matrix of dimensions (n + 1)× (2n + 2N + 1), formatted as[

0 0 σ2 0 y1 0 y2 ... yN−1 0
F Q 0 hT

1 0 hT
2 0 ... 0 hT

N

]
. (20)

The transformer, denoted by Tθ(), is trained to predict the output at every other position beginning from
the (2n + 1)st token. In particular, the objective is to minimize the mean squared error over the prediction
horizon using the loss function

1
N

N∑
t=1

(yt − Tθ(h1, y1, ..., ht−1, yt−1, ht, F, Q, σ2))2. (21)

This formulation explicitly tests whether the transformer can, based only on a short trajectory of input–output
pairs and system parameters, learn to predict the current output in a way consistent with Kalman filtering.

As shown by Akyürek et al. (2023), there exists a parametrization of a transformer’s head that can approximate
the Read–Arithmetic–Write (RAW) operator defined in equations (11)–(12). Building on this, we identify a
set of basic matrix operations, each implementable using the RAW operator, that are sufficient to reformulate
the Kalman filter’s prediction and update steps. These operations are defined over specific index subsets of
the transformer’s input matrix. For example, consider the system matrix F ; the indices corresponding to F
in the input matrix of expression (20) are denoted by

Iinput
F = {(1, 0), (1, 1), (1, 2), ..., (1, n− 1), ..., (n, 0), (n, 1), ..., (n, n− 1)}.

Further details on constructing these index sets are provided in the appendix.

To facilitate aforementioned reformulation of the Kalman filtering recursions, we define the following primitive
operations:

• Mul(I, J, K). Multiplies submatrices at index sets I and J , and writes the result to index set K.

• Div(I, j, K). Divides each element at indices in I by the scalar at index j, and stores the result to
index set K.

• Aff(I, J, K, W1, W2). Performs the affine transformation W1 ·mat(I) + W2 ·mat(J) and writes the
result to K, where mat(I) and mat(J) denote submatrices at index sets I and J , respectively.

• Transpose(I, J). Computes the transpose of the matrix at I and writes it to J .

With the primitive operations defined above, the Kalman filter recursions can be reformulated using
transformer-executable instructions. To enable this, we introduce auxiliary notation for managing in-
termediate computations. We assume that the input to the transformer can be prepended with a matrix of
identity and zero submatrices, denoted by Aappend. The full input is then Acat = [Aappend,Ainput]. Within
Acat, we define the following index sets for intermediate variables:
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• IB1: an n× n identity submatrix;

• IB2, IB9: two n× n submatrices of zeros;

• IB3: a 1× n row vector of zeros;

• IB4, IB8: two n× 1 column vectors of zeros;

• IB5, IB6, IB7: scalar zeros.

We also define the index sets IF , IQ, and Iσ to refer to the locations of F , Q, and σ2 in Acat, respectively.

These buffers provide writeable memory slots for storing the evolving Kalman variables (such as the state,
covariance matrix, and intermediate expressions) through the course of the algorithm. The complete recursive
implementation is detailed in Algorithm 1. A line-by-line explanation of how each transformer operation
maps to a Kalman step is available in Appendix A.

The above framework naturally extends to systems with vector-valued observations and uncorrelated noise.
Suppose yt ∈ Rm and rt ∼ N (0, R), where R is a diagonal matrix with positive entries σ2

1 , σ2
2 , . . . , σ2

m. Let
Ht denote the measurement matrix, yj

t denote the jth component of yt, and H
(j)
t denote the jth row of Ht.

Then the Kalman update equations become (Kailath et al., 2000)

x̂
(1)+
t = x̂−

t + P̂ −
t H

(1)T
t

H
(1)
t P̂ −

t H
(1)T
t + σ2

1
(y(1)

t −H
(1)T
t x̂−

t ) (22)

P̂
(1)+
t = (I − P̂ −

t H
(1)T
t H

(1)
t

H
(1)
t P̂ −

t H
(1)T
t + σ2

1
)P̂ −

t (23)

x̂
(j)+
t = x̂

(j−1)+
t +

P̂
(j−1)+
t H

(j)T
t

H
(j)
t P̂

(j−1)+
t H

(j)T
t + σ2

j

(y(j)
t −H

(j)T
t x̂

(j−1)+
t )

j = 2, . . . , m (24)

P̂
(j)+
t = (I − P̂

(j−1)+
t H

(j)T
t H

(j)
t

H
(j)
t P̂

(j−1)+
t H

(j)T
t + σ2

j

)P̂ (j−1)+
t

j = 2, . . . , m (25)

x̂+
t = x̂

(m)+
t (26)

P̂ +
t = P̂

(m)+
t (27)

This recursive structure enables sequential updates for each measurement dimension and is readily encoded
in a format similar to that in the scalar case. In particular, the in-context learning can be performed by
providing to the transformer the input formatted as

0 0 σ2
1 0 y

(1)
1 ... 0 y

(1)
N−1 0

0 0 σ2
2 0 y

(2)
1 ... 0 y

(2)
N−1 0

. . . . . . . . .

. . . . . . . . .

0 0 σ2
m 0 y

(m)
1 ... 0 y

(m)
N−1 0

F Q 0 H
(1)T
1 0 ... H

(1)T
N−1 0 H

(1)T
N

. . . . . . . . .

. . . . . . . . .

0 0 0 H
(m)T
1 0 ... H

(m)T
N−1 0 H

(m)T
N


. (28)

This layout enables a direct extension of the scalar Kalman filtering implementation to the multivariate
setting, using the same transformer-executable primitives (e.g., Mul, Div, Aff, and Transpose).
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Algorithm 1: Formulating the KF recursions using elementary operations implementable by transformers.
Input: Acat, IF , IQ, Iσ, IB1, IB2, IB3, IB4, IB5, IB6, IB7, IB8, IB9

1 Initialize IX̂Curr
← (1 : n, 2n) ;

2 for i = 1 to N do
3 IX̂next

← (1 : n, 2n + 2i) ;
4 Ih ← (1 : n, 2n + 2i− 1) ;
5 Iy ← (0, 2n + 2i) ;
6 Transpose(IF , IB2) ;
7 Mul(IF , IX̂Curr

, IX̂next
) ;

8 Mul(IF , IB1, IB1) ;
9 Mul(IB1, IB2, IB1) ;

10 Aff(IB1, IQ, IB1, W1 = In×n, W2 = In×n) ;
11 Transpose(Ih, IB3) ;
12 Mul(IB1, Ih, IB4) ;
13 Mul(IB3, IB4, IB5) ;
14 Aff(IB5, Iσ, IB6, W1 = 1, W2 = 1) ;
15 Div(IB4, IB6, IB4) ;
16 Mul(Ih, IX̂next

, IB7) ;
17 Aff(Iy, IB7, IB7, W1 = 1, W2 = −1) ;
18 Mul(IB7, IB4, IB8) ;
19 Aff(IX̂next

, IB8, IX̂next
, W1 = 1, W2 = 1) ;

20 Mul(IB4, IB3, IB9) ;
21 Mul(IB9, IB1, IB9) ;
22 Aff(IB1, IB9, IB1, W1 = In×n, W2 = −In×n) ;
23 IX̂Curr

← IX̂next
;

4 Simulation Results

4.1 Experimental setup

For transparency and reproducibility, we build upon the code and model released by Garg et al. (2022). We
adopt curriculum learning, starting with a context length of N = 10 and incrementing it by 2 every 2000
training steps until reaching N = 40. Unless stated otherwise, the presented results are obtained for the
hidden state dimension set to n = 8.

Training is performed using the Adam optimizer (Kingma, 2014) with a learning rate of 0.0001 and a batch
size of 64. For each training example, x0 and the measurement matrices H1, H2, . . . , HN are sampled from
isotropic Gaussian distributions. The process noise qt is sampled from N (0, Q), where Q = UQΣQUT

Q . Here,
UQ is a randomly sampled 8× 8 orthonormal matrix and ΣQ is diagonal with entries drawn from the uniform
distribution U [0, σ2

q ]. A training curriculum gradually increases σ2
q over 100,000 steps, after which it is held

constant at 0.025. Similarly, the measurement noise rt is sampled from N (0, R), where R is diagonal with
entries σ2

1 , . . . , σ2
m drawn from U [0, σ2

r ], with σ2
r also increasing over the first 100,000 training steps to a fixed

value of 0.025. Both Q and R are re-sampled independently for each training example.

We consider two strategies for generating the state transition matrix F .

1. Strategy 1 (Unitary-Interpolated Dynamics): We generate the state transition matrix as

F = (1− α)I + αUF ,

where α ∼ U [0, 1] and UF is a randomly sampled orthonormal matrix. As a result, the eigenvalues of
F are generally complex and can be expressed as pejϕ. For a fixed α, the phase range ϕ ∈ [−ϕα, ϕα]
expands from 0 to π as α increases from 0 to 1. At the endpoints α = 0 and α = 1, all eigenvalues lie
on the unit circle; for intermediate values of α, they may also lie inside it.
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Since F may have eigenvalues on or near the unit circle, systems generated under this strategy are
not necessarily stable. In fact, we empirically observe that when α = 1, the transformer’s loss fails to
decrease, indicating poor convergence. To address this, we implement a training schedule in which α
is gradually increased from 0 to 1 over 50,000 steps and then held constant.

2. Strategy 2 (Guaranteed Stable Dynamics): The state transition matrix is constructed as

F = UF ΣF UT
F ,

where UF is a random orthonormal matrix and ΣF is diagonal with entries sampled from U [−1, 1].
This ensures that all eigenvalues of F lie strictly within the unit circle, yielding a stable system.

To evaluate the transformer’s ability to approximate baseline estimators, we report both mean-squared
error (MSE) and mean-squared prediction difference (MSPD). The MSE quantifies the average squared error
between the transformer’s predicted output and the true output. MSPD, on the other hand, compares the
predictions of two models directly, regardless of ground truth. For two algorithms A1 and A2, and for a given
context D = [H1, . . . , HN−1] ∼ p(D), the MSPD is defined as:

MSPD(A1,A2) = ED,hN ∼p(h)

[
(A1(D)(hN )−A2(D)(hN ))2

]
. (29)

4.2 Results on linear systems

We start by evaluating the transformer in an in-context learning setting on linear dynamical systems. The
transformer model used in these experiments has 32 layers, 4 attention heads and a hidden size of 512.
Unless otherwise noted, evaluation is performed on batches of 5000 randomly sampled examples. The noise
covariances are fixed at σ2

q = σ2
r = 0.025, and the Kalman filter baseline is initialized with a zero state

estimate and identity error covariance.

Before analyzing in-context output prediction performance, we first demonstrate that transformers can
explicitly estimate the latent state sequence from scalar observations provided in the format of expression (20).
To this end, we train a transformer under the unitary-interpolated dynamics regime (Strategy 1) to directly
predict the hidden state using the loss function

1
N

N∑
t=1

(xt − Tθ(h1, y1, ..., ht−1, yt−1, ht, F, Q, σ2))2. (30)

(a) Mean squared error (MSE) (b) Mean-squared prediction difference (MSPD)

Figure 1: Performance of the transformer in explicit state estimation from scalar measurements (Strategy 1).
The transformer’s predictions are compared to Kalman filtering, SGD, ridge regression, and OLS.

Figure 1(a) shows the mean-squared error (MSE) between the transformer’s prediction of xN and the ground
truth, compared against several baselines including Kalman filtering, ordinary least squares, ridge regression
(with λ = 0.01 and 0.05), and stochastic gradient descent (with learning rates of 0.01 and 0.05). The
corresponding MSPD values between transformer predictions and each baseline are reported in Figure 1(b).
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The Kalman filter achieves the lowest MSE, as expected. As context length increases, the transformer’s
performance converges to that of the Kalman filter, distancing itself away from the regression-based estimators
which do not account for temporal dynamics. A notable trend observed for both ridge regression and
SGD baselines is a sharp rise in MSE at small-to-intermediate context lengths, followed by recovery at
longer horizons. This behavior, recurring across many experiments, is consistent with the double descent
phenomenon (Schaeffer et al., 2023) wherein models initially transition from an over-parameterized to an
under-parameterized regime. When the number of input features (i.e., context length) grows beyond the
model’s capacity to disambiguate noise from signal, overfitting leads to increased test error. As context
continues to grow, the model eventually gains sufficient statistical leverage to suppress noise and recover
performance.

We next assess the transformer’s ability to perform in-context one-step output prediction. Given a context
of past inputs and outputs, the model is tasked with predicting the system output yt at each step. The
resulting MSE and MSPD for Strategy 1 are shown in Figures 2(a) and 2(b), respectively; their counterparts
for Strategy 2 are shown in Figures 2(c) and 2(d). Under Strategy 1, performance of the transformer is
closest to that of the Kalman filter. Under Strategy 2, at short context lengths, the transformer’s predictions
most closely resemble those of stochastic gradient descent (SGD) with learning rate 0.01. As the context
length increases, its behavior progressively aligns with that of the Kalman filter. The differences between
methods are more pronounced under Strategy 1, where the system may be unstable, and narrower under
Strategy 2, where the dynamics are constrained to be stable.

(a) Mean-squared error (Strategy 1) (b) Mean-squared prediction difference (Strategy 1)

(c) Mean-squared error (Strategy 2) (d) Mean-squared prediction difference (Strategy 2)

Figure 2: Comparison between transformer and classical estimators in one-step output prediction for scalar
measurements.

To assess the robustness of the transformer to incomplete context, we repeat the previous experiment while
withholding the noise covariance matrices R and Q. As shown in Figure 3, the transformer’s performance
remains stable in both strategies, with minimal degradation in MSE or MSPD. These findings suggest that
the transformer may be implicitly inferring the missing noise statistics as part of its in-context learning
process. Note that the Kalman filter baseline still has access to the full model parameters, including noise
covariances. If this information were withheld from the Kalman filter as well, estimation would require a
more complex approach such as expectation-maximization (EM) to recover the unknown covariances.

10
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(a) Mean-squared error (Strategy 1) (b) Mean-squared prediction difference (Strategy 1)

(c) Mean-squared error (Strategy 2) (d) Mean-squared prediction difference (Strategy 2)

Figure 3: Performance of in-context learning with a transformer that is not provided noise covariances Q
and R. (a) Mean-square error (MSE) under Strategy 1. (b) Mean-squared prediction difference (MSPD)
relative to the baselines under Strategy 1. (c) MSE under Strategy 2. (d) MSPD relative to the baselines
under Strategy 2.

We next evaluate the transformer’s ability to perform in-context learning in systems with multi-dimensional
(non-scalar) measurements. Specifically, we consider observations of dimension two and white Gaussian noise.
The transformer’s input is formatted according to expression (28), and includes the full parameterization of
the state-space model. Figure 4 shows both the mean-squared error (left) and the mean-squared prediction
difference (right) between the transformer’s predictions and those of several baselines. The results confirm
that the transformer emulates the Kalman filter in this more general setting.

Our final set of experiments involving linear dynamical systems investigates the transformer’s ability to
perform in-context learning when no model parameters (i.e., neither the state transition matrix nor the noise
covariances) are provided in the context. To keep the setup minimal, we revert to scalar measurements.
Figure 5 presents both the MSE and MSPD of the transformer relative to various baselines. As seen
in the figure, when faced with the challenging task of both capturing the state dynamics and implicitly
estimating unknown state transition matrix, the transformer struggles and achieves performance that most
closely resembles performance of SGD (learning rate 0.01). However, if this task is rendered somewhat
easier by reducing dimension of the state vector from n = 8 to n = 2, thus consequently reducing the
number of parameters needed to specify unknown transition matrix, the same transformer model succeeds
in closely emulating performance of the Kalman filter that is provided the information withheld from the
transformer. Remarkably, despite the absence of model-specific information, the transformer’s performance
progressively approaches that of the Kalman filter as the context length increases. This behavior is reminiscent
of the Dual Kalman Filter (DKF)(Wan & Nelson, 1996), which alternates between estimating the hidden
state and the unknown state transition matrix. Specifically, the transition matrix is treated as a latent
variable and estimated via a secondary Kalman filter that uses a regressor constructed from prior state
estimates. Appendices B and C present theoretical arguments and an implementation blueprint showing how
a transformer can emulate the DKF in this setting.

11
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(a) Mean-squared error (Strategy 1) (b) Mean-squared prediction difference (Strategy 1)

(c) Mean-squared error (Strategy 2) (d) Mean-squared prediction difference (Strategy 2)

Figure 4: In-context learning (ICL) with a transformer for systems with 2D measurements. The transformer
receives the full system specification and performs one-step output prediction.

Appendix E.1 presents results evaluating the transformer’s robustness to distribution shifts between training
and inference. For instance, a model trained under Strategy 1 with measurement matrices Hi drawn from
N (0, 1) is tested on systems where Hi ∼ U [0, 3]. Despite this substantial change in the observation model, the
transformer’s MSPD relative to the Kalman filter remains low, indicating strong generalization. Appendix E
further evaluates robustness to variations in state dimensionality. Finally, Appendix D demonstrates that the
transformer’s in-context learning capabilities extend naturally to systems with control inputs, and provides
implementation details and input formatting for this setting.

4.3 Results on nonlinear systems

We now assess whether transformers can in-context learn to emulate filtering behavior in nonlinear dynamical
systems. As discussed in Appendix F, key operations of the Extended Kalman Filter (EKF) can be
implemented using transformer primitives, suggesting that transformers are capable of learning nonlinear
filtering strategies via in-context learning (ICL). To further contextualize performance, we also compare it
against particle filtering (PF), which is widely used for nonlinear systems with non-Gaussian posteriors. Note
that PF relies on stochastic sampling and resampling steps, which do not lend themselves as naturally to
transformer architectures.

We compare the performance of transformer with baseline algorithms on two representative systems:

1. System 1 (Nonlinear State Evolution): A system with nonlinear state dynamics and linear
measurements:

xt+1 = F tanh(2xt) + qt (31)
yt = Htxt + rt. (32)

Here, the state and measurement dimensions are fixed to 2. The matrix F is given by F =
0.8I + 0.15UF , where UF has entries drawn from a standard Gaussian distribution. The process noise

12
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(a) Mean-squared error (Strategy 1) (b) Mean-squared prediction difference (Strategy 1)

(c) Mean-squared error (Strategy 2) (d) Mean-squared prediction difference (Strategy 2)

Figure 5: Performance of in-context learning (ICL) with a transformer under fully missing model parameters
(scalar measurements). No information about the state transition matrix or noise covariances is included in
the context.

covariance is set to Q = 0.01(I + 0.1Zq), with Zq also drawn from a standard normal distribution.
The observation noise covariance is R = 0.01I, and the measurement matrices Ht are sampled from
an isotropic Gaussian distribution. Variations of this system with different state transition functions
and dimensionalities are explored in Appendix F.

2. System 2 (Maneuvering Target with Unknown Turn Rate): A nonlinear tracking model with
time-varying dynamics and measurement equations. Full model details are provided in Appendix F.

The transformer model used to obtain results in Figures 6- 7 has 16 layers, 4 attention heads and a hidden
size of 512. Figure 6 reports the mean-squared error (MSE) and mean-squared prediction difference (MSPD)
for System 1, where the variance of the process and measurement noise is σ2

q = σ2
r = 0.0125. The results

demonstrate that the transformer closely tracks the performance of both the EKF and PF, indicating that it
learns to emulate nonlinear filtering behavior in this regime.

Figure 7 presents results for System 2, a more complex maneuvering target model with nonlinear observations.
Interestingly, in this setting the transformer achieves the best performance (i.e., the lowest MSE) among all
the considered methods. This indicates that in-context learning generalizes effectively even when key latent
parameters, such as turn rate, are unobserved.1 Linear regression and SGD are omitted from this comparison
due to the nonlinearity of the measurement model.

Finally, we fix the context length to 40 and investigate how the transformer’s behavior in System 1 depends
on model capacity, varying both the number of layers and the embedding dimension. The results, summarized
in Tables 1 and 2, reveal that smaller transformers exhibit behavior more similar to that of SGD and Ridge
Regression, while larger models yield outputs that increasingly align with those of EKF and the particle filter,
i.e., methods that incorporate knowledge of the system’s dynamical structure. This transition underscores

1Note that EKF and particle filter incorporate the turn rate into the state vector and thus estimate it recursively – for details,
please see Appendix F.2.
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(a) Mean-squared error (MSE) (b) Mean-squared prediction difference (MSPD)

Figure 6: Performance of in-context learning (ICL) on System 1 with nonlinear state evolution and linear
measurements. Transformer achieves performance on par with Extended Kalman Filter (EKF) and Particle
Filter (PF).

(a) Mean-squared error (MSE) (b) Mean-squared prediction difference (MSPD)

Figure 7: Performance of in-context learning (ICL) on System 2, a nonlinear tracking model with unknown
turn rate. Transformer performance matches that of PF and exceeds EKF in terms of MSE.

the role of model capacity in enabling the transformer to approximate sophisticated recursive inference
algorithms. Notably, even modest increases in either depth or embedding dimension significantly improve the
transformer’s alignment with classical filters, as measured by MSPD. These findings suggest that architectural
scale is a key factor in unlocking in-context learning of dynamics-aware estimation procedures.

Number of Layers ICL and EKF ICL and Particle Filter ICL and SGD 0.01 ICL and SGD 0.05 ICL and Ridge 0.01 ICL and Ridge 0.05

1 1.0281 0.9904 0.2662 1.0010 0.7484 0.7463
2 0.2447 0.2274 0.2433 0.1806 0.1691 0.1689
4 0.1251 0.1078 0.3598 0.1800 0.2448 0.2446
8 0.0526 0.0337 0.3970 0.1924 0.2892 0.2891
16 0.0531 0.0336 0.4273 0.2199 0.3191 0.3189

Table 1: Effects of transformer depth on MSPD in System 1. The table reports mean-squared prediction
difference (MSPD) between the transformer and various baselines as the number of transformer layers increases
(embedding dimension fixed to 512).

5 Conclusion

This work investigated whether transformers, trained via in-context learning on synthetic trajectories from
randomly sampled dynamical systems, can implicitly learn to perform filtering without test-time gradient
updates or explicit access to model equations. We provided constructive arguments showing that the Kalman
filter can be expressed using operations natively supported by transformer architectures, and empirically
demonstrated that, in linear systems, transformer predictions closely track those of the Kalman filter when
given sufficient context. The nature of the learned algorithm was found to depend on both model scale and
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Embedding Dim ICL and EKF ICL and Particle Filter ICL and SGD 0.01 ICL and SGD 0.05 ICL and Ridge 0.01 ICL and Ridge 0.05

8 1.068 1.041 0.283 1.036 0.795 0.793
32 0.152 0.130 0.314 0.126 0.214 0.214
64 0.104 0.087 0.366 0.170 0.264 0.263
256 0.060 0.046 0.411 0.215 0.310 0.310
512 0.053 0.034 0.397 0.192 0.289 0.289

Table 2: Effect of embedding dimension on MSPD in System 1. The table reports MSPD between the
transformer and various baselines as the embedding dimension increases (number of transformer layers fixed
at 8).

context length – smaller models or shorter contexts emulate linear regression or stochastic gradient descent,
while larger models with longer contexts converge toward optimal filtering behavior.

Beyond linear systems, we demonstrated that transformers can generalize to nonlinear dynamical systems as
well. In particular, we showed that they can match the performance of the Extended Kalman Filter and the
particle filter, and in some settings even outperform them. These results suggest that transformers do not
merely replicate a fixed algorithm but instead learn a flexible, data-driven inference strategy.

The robustness of transformer-based filtering to missing context, such as unobserved noise covariances or
system parameters, further highlighting its potential as a general-purpose alternative to manually designed
filters. Future work will explore extensions to temporally correlated noise and examine the emergence of
internal representations that support in-context filtering.
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A Details regarding the implementation of Algorithm 1

We elaborate on the operations in Algorithm 1, focusing for simplicity on the case of scalar measurements.
Let the state dimension be n. Define the auxiliary matrix

Aappend =
[

B1 B2 B9 BT
3 B4 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 B5 B6 B7

]
. (33)

For illustration, consider n = 2, where

Aappend =
[ 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

]
. (34)

Form the concatenated matrix Acat = [Aappend Ainput], and define index sets such as IB1 =
{(0, 0), (1, 0), (0, 1), (1, 1)}, IB2 = {(0, 2), (1, 2), (0, 3), (1, 3)}, and so on. These index sets specify mem-
ory regions corresponding to the working blocks in the transformer’s computation, where operations like
matrix multiplications, transpositions, and affine combinations are carried out.

To build intuition, we walk through the first iteration of the FOR loop in Algorithm 1. We initialize x̂+
0 = 0

and carry out a sequence of transformer-readable operations:

1. Initialization: Set IX̂Curr
← (1 : n, 2n).

2. Pointer setup: For i = 1, set IX̂next
← (1 : n, 2n + 2).

3. Measurement access: Define

• Ih ← (1 : n, 2n + 1) (for hT
1 )

• Iy ← (0, 2n + 2) (for y1)

4. Transpose: Write F T to B2 using Transpose(IF , IB2).

5. State prediction: Compute x̂−
1 = Fx̂+

0 via Mul(IF , IX̂Curr
, IX̂next

).

6. Covariance prediction:

• Compute FP̂ +
0 to B1

• Multiply by F T to get FP̂ +
0 F T in B1

• Add Q via Aff(IB1, IQ, IB1) to form P̂ −
1

7. Kalman gain computation:

• Transpose hT
1 to B3

• Compute P̂ −
1 hT

1 to B4

• Compute scalar s = h1P̂ −
1 hT

1 to B5

• Add measurement noise σ2: Aff(IB5, Iσ, IB6)
• Divide to compute K1: Div(IB4, IB6, IB4)

8. Measurement update:

• Compute predicted observation h1x̂−
1 to B7

• Subtract from y1 to get residual in B7

• Multiply K1 with residual to get B8

• Update x̂+
1 = x̂−

1 + K1(y1 − h1x̂−
1 ) to IX̂next

9. Covariance update:

• Compute outer product h1K1 to B9
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• Multiply with P̂ −
1 to form h1K1P̂ −

1

• Subtract from P̂ −
1 to form P̂ +

1 in B1

10. Pointer update: Set IX̂Curr
← IX̂next

.

Each of these steps is directly implementable via a composition of the primitive operations defined in the
main text: Mul, Div, Aff, and Transpose.

B A brief summary of the Dual Kalman Filter

Consider the state-space model

xt+1 = Ftxt + qt (35)
yt = Htxt + rt, (36)

where both the latent state xt and the transition matrix Ft must be estimated. The Dual Kalman Filter
(DKF), introduced by Wan & Nelson (1996), addresses this by alternating between two Kalman filtering
recursions – one for xt given an estimate of Ft, and one for Ft given an estimate of xt.

Let ft ∈ Rn2 be the vectorized form of Ft, and define the matrix Xt ∈ Rn×n2 as:

Xt =


x̂+T

t−1 0 . . . 0
0 x̂+T

t−1 . . . 0
...

... . . . ...
0 0 . . . x̂+T

t−1

 . (37)

This formulation enables the re-expression of the system as a linear model in ft:

ft = ft−1, (38)
yt = Hf,tft−1 + rf,t, (39)

where Hf,t = HtXt, and rf,t = Htqt + rt, with rf,t ∼ N (0, Rf ) and Rf = HtQHT
t + R.

The DKF then proceeds with standard Kalman filter prediction and update steps applied to ft.

Prediction Step:

f̂−
t = f̂+

t−1 (40)
P̂ −

f,t = P̂ +
f,t−1 (41)

Update Step:

Kf,t = P̂ −
f,tH

T
f,t(Hf,tP̂

−
f,tH

T
f,t + Rf )−1 (42)

f̂+
t = f̂−

t + Kf,t(yt −Hf,tf̂
−
t ) (43)

P̂ +
f,t = (I −Kf,tHf,t)P̂ −

f,t (44)

In the scalar measurement case, Hf,tP̂
−
f,tH

T
f,t, HtQHT

t , and R reduce to scalars. Thus, the Kalman gain
simplifies to

Kf,t = 1
Hf,tP̂

−
f,tH

T
f,t + Rf

P̂ −
f,tH

T
f,t. (45)
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C Transformer Can In-Context Learn to Perform Dual Kalman Filtering for a System
with Scalar Measurements

We now consider the setting where the state transition matrix is not provided as part of the context. Let the
transformer’s input be [

0 σ2 0 y1 0 y2 ... yN−1 0
Q 0 hT

1 0 hT
2 0 ... 0 hT

N

]
. (46)

One can argue analogously to the proof-by-construction used for the Kalman filter that a transformer can
learn to perform Dual Kalman Filtering in context, even in the absence of explicit dynamics. To support
this, we extend the previously introduced set of elementary operations with a new one, MAP(I, J), which
takes the vector at indices I and transforms it into a matrix of the form shown in expression (37), storing the
result at indices J .

In addition to the index sets defined in the main text (i.e., Acat, IF , IQ, Iσ, IB1 through IB9), we introduce
the following index sets: IB10: indices of an n× n2 block initialized to zeros; IB11: indices of a 1× n2 vector
block; IB12 and IB14: indices of n2 × n2 matrices; IB13 and If̂next

: indices of n2 × 1 vectors.

The complete Dual Kalman Filter recursion can now be expressed using operations implementable by
transformers; the pseudo-code below shows one iteration of the resulting algorithm.

1. Initialization: Set IX̂Curr
← (1 : n, 2n).

2. Pointer setup for iteration i = 1:

• IX̂next
← (1 : n, 2n + 2)

• Ih ← (1 : n, 2n + 1)
• Iy ← (0, 2n + 2)

3. State prediction:

• Transpose(IF , IB2): Write F T to B2

• Mul(IF , IX̂Curr
, IX̂next

): Compute x̂−
1 = Fx̂+

0

4. Covariance prediction:

• Mul(IF , IB1, IB1): FP̂ +
0

• Mul(IB1, IB2, IB1): FP̂ +
0 F T

• Aff(IB1, IQ, IB1, W1 = I, W2 = I): P̂ −
1

5. Kalman gain computation:

• Transpose(Ih, IB3): h1

• Mul(IB1, Ih, IB4): P̂ −
1 hT

1

• Mul(IB3, IB4, IB5): h1P̂ −
1 hT

1

• Aff(IB5, Iσ, IB6, W1 = 1, W2 = 1): s = h1P̂ −
1 hT

1 + σ2

• Div(IB4, IB6, IB4): Kalman gain K1

6. Measurement update:

• Mul(Ih, IX̂next
, IB7): predicted y1

• Aff(Iy, IB7, IB7, W1 = 1, W2 = −1): residual y1 − ŷ1

• Mul(IB7, IB4, IB8): K1(y1 − ŷ1)
• Aff(IX̂next

, IB8, IX̂next
, W1 = 1, W2 = 1): x̂+

1

7. Covariance update:
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• Mul(IB4, IB3, IB9): h1K1

• Mul(IB9, IB1, IB9): h1K1P̂ −
1

• Aff(IB1, IB9, IB1, W1 = I, W2 = −I): P̂ +
1

8. DKF step: latent transition matrix estimation

• MAP(IX̂next
, IB10): Build X1

• Mul(IB3, IB10, IB11): Hf,1 = h1X1

• Transpose(IB11, IB13)
• Mul(IB11, IB12, IB11): Hf,1P̂ −

f,1

• Mul(IB11, IB13, IB5): Hf,1P̂ −
f,1HT

f,1
• Aff(IB5, Iσ, IB6, W1 = 1, W2 = 1): add Rf

• Div(IB13, IB6, IB13): Kalman gain for f

• Mul(IB7, IB13, IB8)
• Aff(If̂next

, IB8, If̂next
, W1 = 1, W2 = 1): f̂+

1

• Mul(IB3, IB10, IB11)
• Mul(IB13, IB11, IB14)
• Mul(IB14, IB12, IB14)
• Aff(IB12, IB14, IB12, W1 = I, W2 = −I): P̂ +

f,1
• MAP(If̂next

, IF ): overwrite F for next round

9. Pointer update: Set IX̂Curr
← IX̂next

.

D Experiments with Control Input

The filtering setup studied in the main text can be extended to systems with control inputs, provided that
the measurement noise remains white. In this case, the state-space model becomes

xt+1 = Ftxt + Btut + qt (47)
yt = Htxt + rt, (48)

and the Kalman filter prediction step is modified accordingly:

x̂−
t = Fx̂+

t−1 + But. (49)

The derivation showing that transformers can implement Kalman filtering operations under this model follows
the same constructive arguments presented for the zero-input case and is omitted for brevity. Instead, we
report empirical results for scalar measurements and nonzero control inputs.

In these experiments, the control matrix B ∈ R8×8 is generated as B = UBΣBUT
B , where UB is a random

orthonormal matrix and ΣB is a diagonal matrix with entries sampled from U [−1, 1]. Control vectors ut ∈ R8

are sampled from a standard Gaussian distribution and then normalized to unit norm.

The input to the transformer in this setting is formatted as[
0 0 0 σ2 0 0 0 y1 · · · 0 0
F Q B 0 0 hT

1 u1 0 · · · hT
N uN

]
. (50)

Here, F is generated using the Unitary-Interpolated Dynamics strategy (Strategy 1), and the remaining
settings match those of the baseline experiments without control.

Figure 8 shows the results. The transformer maintains low MSE relative to the ground truth and exhibits
MSPD behavior similar to that of the Kalman filter, indicating successful in-context learning in the presence
of control inputs.
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(a) Mean-squared error (MSE) (b) Mean-squared prediction difference (MSPD)

Figure 8: Transformer performance on linear systems with control inputs. The model retains effective filtering
behavior even with added input terms.

E Additional Experiments and Further Details

E.1 An illustration of the performance on out-of-sample parameters

To evaluate the performance of the transformer on systems with parameters sampled from a distribution
different from that used during training, we train the model with F generated using Strategy 1 and
Hi ∼ N (0, 1). We then evaluate the trained transformer under two representative distributional shifts:

1. The measurement matrix Hi is sampled from a uniform distribution U [0, 3];

2. The state transition matrix F is generated using Strategy 2 instead of Strategy 1.

As shown in Fig. 9, the transformer maintains low MSPD in both settings, indicating robustness of in-context
learning to shifts in both measurement geometry and underlying dynamics.

(a) MSPD under uniform sampling of Hi ∼ U(0, 3). (b) MSPD under shift from Strategy 1 to Strategy 2
for generating F .

Figure 9: Evaluation of a transformer trained on Gaussian-distributed systems under representative out-of-
distribution shifts.

E.2 Transformer performance across varying state dimensions

We next assess how transformer performance varies with the dimensionality of the latent state. The transformer
is trained using default settings and again with F sampled via Strategy 1. During evaluation, we fix the
context length to 40 and vary the state dimension from 2 to 8.

Figure 10 shows the MSPD (normalized by state dimension) between the transformer and various baseline
methods. We find that:

• The gap between the transformer and Kalman filter remains nearly constant across dimensions.
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• The discrepancy between the transformer and SGD / Ridge regression grows with increasing state
dimension, reflecting the degraded performance of those baselines.

Figure 10: Normalized MSPD between transformer and various baselines as a function of state dimension.
Context length is fixed to 40.

E.3 Justification of the choice of the learning rates for SGD

To identify optimal learning rates for stochastic gradient descent (SGD), we fix the context length to 40 and
the state dimension to 8. The transition matrix F is generated using the Unitary-Interpolated Dynamics
strategy (Strategy 1), and all other simulation parameters remain consistent with the main experiments.

We compute the MSPD between the transformer’s predictions and those of SGD for various values of the
learning rate α. The results are shown in Table 3.

α 1e–5 5e–5 1e–4 5e–4 1e–3 5e–3 1e–2 5e–2 1e–1
MSPD 1.0087 0.9999 0.9753 0.8882 0.8789 0.4766 0.2997 0.2887 2.8923

Table 3: Mean-squared prediction difference (MSPD) between transformer and SGD for various learning rates.
Best results are highlighted in bold.

We observe that the lowest MSPD is achieved for α = 0.01 and α = 0.05. Accordingly, these values are used
in all SGD baseline comparisons throughout the paper.

F Extended Results and Analysis for Nonlinear Systems

This section provides additional details for the nonlinear systems analyzed in Section 4.3. Specifically, we
consider systems governed by nonlinear state-space dynamics of the form:

xt+1 = fη(xt) + qt (51)
yt = Htxt + rt, (52)

where fη(·) is a nonlinear transition function parameterized by η = [η1, . . . , ηw], and qt, rt denote the process
and observation noise, respectively.

A classical approach to estimating the latent states in such systems is by means of the Extended Kalman Filter
(EKF), which linearizes the dynamics around the current estimate at each time step. The EKF proceeds via
the following prediction and update recursions:
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Prediction Step:

x̂−
t = fη(x̂+

t−1) (53)
P̂ −

t = F̃xP̂ +
t−1F̃ ⊤

x + Q (54)

Update Step:

Kt = P̂ −
t H⊤

t (HtP̂
−
t H⊤

t + R)−1 (55)
x̂+

t = x̂−
t + Kt(yt −Htx̂

−
t ) (56)

P̂ +
t = (I −KtHt)P̂ −

t (57)

Here, F̃x denotes the Jacobian of fη evaluated at x̂+
t−1.

F.1 System 1: Nonlinear State Transitions with tanh Dynamics

We consider a specific nonlinear state transition function fη(x) = [η1 tanh(η2x1), . . . , η1 tanh(η2xn)], where
the parameters η1 and η2 are independently sampled from the uniform distribution U [−1, 1]. For this function,
the Jacobian with respect to the state vector is diagonal and given by

F̃x = η1η2 · diag
(
1− tanh2(η2x1), . . . , 1− tanh2(η2xn)

)
.

This structure enables efficient computation of the EKF update steps using element-wise operations. We argue
that a transformer can emulate these operations in-context, provided that the input sequence is formatted as[

η1 η2 0 σ2 0 y1 . . . yN−1 0
0 0 Q 0 hT

1 0 . . . 0 hT
N

]
. (58)

Prior work (e.g., Akyürek et al. (2023)) has observed that the GeLU nonlinearity can approximate scalar
multiplication and, with sufficient additive bias, act nearly as an identity function. Building on this observation,
we construct an expression that closely approximates tanh(x) using GeLU activations as√

π
2 x

2 tanh(x + cx3) ≈ GeLU
(√

π

2 x

)
−GeLU

(√
π
2 x

2 + Nb

)
+ Nb,

where Nb ≫ 1 is a large bias term and c = π
2 · 0.044715. This identity leverages the approximation of tanh(·)

as a difference of GeLU activations with shifted inputs.

Since transformers can effectively bypass softmax via large biases (making attention weights nearly one-hot),
this approximation can be implemented by a single attention head. In the regime we study, x + cx3 ≈ x, so
the net operation approximates tanh(x) directly. When combined with the transformer’s ability to realize
primitive arithmetic operations such as Mul(), Div(), and Aff(), this suffices to emulate the nonlinear
update steps of the Extended Kalman Filter for the system under consideration.

F.2 System 2: Target Tracking with Unknown Turn Rate

We evaluate the transformer’s in-context learning capabilities on a practical nonlinear system: maneuvering
target tracking with an unknown turning rate Piché et al. (2012). The state vector is xt = [at, ȧt, bt, ḃt, ωt],
where (at, bt) is the position, (ȧt, ḃt) is the velocity, and ωt is the angular turn rate.

The state transition model is

xt+1 = Ftxt + qt, (59)
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where Ft is a nonlinear function of ωt

Ft =


1 sin(ωt∆t)

ωt
0 cos(ωt∆t)−1

ωt
0

0 cos(ωt∆t) 0 − sin(ωt∆t) 0
0 1−cos(ωt∆t)

ωt
1 sin(ωt∆t)

ωt
0

0 sin(ωt∆t) 0 cos(ωt∆t) 0
0 0 0 0 1


and the process noise covariance is

Q =

q1M 0 0
0 q1M 0
0 0 q2

 , M =
[
∆3

t /3 ∆2
t /2

∆2
t /2 ∆t

]
.

The measurement vector consists of noisy versions of the polar coordinates of the target, i.e.,

yt =
[ √

a2
t + b2

t

arctan( bt

at
)

]
+ rt.

We set ∆t = 0.1 and draw each simulation’s parameters as: q1 ∼ U [0, 0.1], q2 ∼ U [0, 0.00025], σ2
1 ∼ U [0, 0.025],

σ2
2 ∼ U [0, 0.000016], and the initial state from x0 ∼ N ([0, 10, 0,−5,−0.053]T , Q). The transformer is trained

to predict yN from an input formatted as[
0 σ2 y1 y2 ... yN−1
Q 0 0 0 ... 0

]
. (60)

To implement the Extended Kalman Filter, we compute the Jacobians as

Fx =


1 sin(ωt∆t)

ωt
0 cos(ωt∆t)−1

ωt
ȧtf1t + ḃtf2t

0 cos(ωt∆t) 0 − sin(ωt∆t) −∆tsin(ωt∆t)ȧt −∆tcos(ωt∆t)ḃt

0 1−cos(ωt∆t)
ωt

1 sin(ωt∆t)
ωt

−ȧtf2t + ḃtf1t

0 sin(ωt∆t) 0 cos(ωt∆t) ∆tcos(ωt)ȧt −∆tsin(ωt∆t)ḃt

0 0 0 0 1


and

Hx =
[ at√

a2
t +b2

t

0 bt√
a2

t +b2
t

0 0
− bt

a2
t +b2

t
0 − at

a2
t +b2

t
0 0

]
,

where

f1k = ωt∆tcos(ωt∆t)− sin(ωt∆t)
ω2

t

and f2k = 1− ωk∆tsin(ωt∆t)− cos(ωt∆t)
ω2

t

.

F.3 RAW Operator Approximation of Smooth Nonlinearities

The set of operations implementable by the RAW operator, including multiplication, affine combinations,
and repeated composition, is sufficient to construct any polynomial. Indeed, monomials of the form cxk

can be computed via one scalar multiplication followed by k1 applications of the multiplication operator.
Once computed, polynomial terms can be linearly combined using the affine operator. As a result, functions
expressible via Taylor expansions can be approximated by transformers to arbitrary accuracy. For example:

sin(x) ≈ x− x3

3! + x5

5! −
x7

7! + x9

9! −
x11

11! + · · · (61)

cos(x) ≈ 1− x2

2! + x4

4! −
x6

6! + x8

8! −
x10

10! + x12

12! + · · · (62)

tanh(x) ≈ x− x3

3 + 2x5

15 −
17x7

315 + 62x9

2835 −
1382x11

155925 + · · · (63)
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Similar series exist for arctan(x) and
√

x, which also appear in the nonlinear systems considered in this
work. Since transformers can represent these polynomial approximations with sufficient depth and width,
this supports the claim that they are capable of learning to approximate the behavior of extended Kalman
filtering in nonlinear dynamical systems.

F.4 Additional Non-linear State Transitions

Figure 11 presents results for several variations of nonlinear dynamical systems, each differing in the form of
the state transition function:

1. System I: fη(x) = F sin(2x) + qt, with n = 2 and m = 2. System parameters F , Q, and R are
identical to those used in System 1 of the main paper.

2. System II: fη(x) = Fσ(2x) + qt, with n = 2 and m = 2, where σ(·) denotes the sigmoid function.
All other system parameters match those of System 1.

3. System III: fη(x) = F tanh(2x) + qt, with n = 8 and m = 1. System parameters remain consistent
with System 1.

4. System IV: fη(x) = F tanh(2x) + 2
9 exp(−x2) + qt, with n = 2 and m = 2, and system parameters

again matching those of System 1.

In all cases, the entries of the measurement matrix Ht are drawn from an isotropic Gaussian distribution.
These experiments confirm that the transformer’s performance generalizes across a range of nonlinearities.
In all four cases, the MSE closely matches or outperforms the Extended Kalman Filter and tracks the
performance of the particle filter, particularly as context length increases. This consistency highlights the
transformer’s capacity to adapt its inference strategy to diverse dynamical structures.

(a) MSE of various methods for System I (b) MSE of various methods for System II

(c) MSE of various methods for System III (d) MSE of various methods for System IV

Figure 11: Transformer performance on nonlinear systems with varying state transition functions. Evaluation
is conducted for each of the systems described above, illustrating that in-context learning remains effective
across a range of nonlinearities.
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G Derivation of the RAW Operator

To make this work self-contained, we briefly summarize how the RAW operator can be constructed and
used to emulate key computational primitives within transformer architectures. This derivation follows the
treatment in Appendix C of Akyürek et al. (2023), to which we refer interested readers for additional technical
details and formal proofs.

G.1 Embedding Layer Design and Positional Control

We assume the existence of a linear embedding layer immediately preceding the transformer layers. This
embedding layer can be parameterized to include extra scratch space necessary for intermediate computations.
Specifically, we use the embedding matrix

We =
[
I(d+1)×(d+1) 0

0 0

]
, (64)

which embeds the input into the first d + 1 dimensions and reserves the remaining entries for auxiliary
operations.

Following Akyürek et al. (2023), attention is directed using position embeddings that encode keys and queries.
These are structured as

pi =
[
0d+1 k0

i q0
i . . . k

(L)
i q

(L)
i 0H−2pT −1

]
,

where each kl
i, ql

i ∈ Rp controls the attention for head l at time step i. This setup allows queries and keys to
be extracted via

W l
Q =

[
0 . . . 0 Ip×p 0 . . .

]
, W l

K =
[
0 . . . 0 Ip×p 0 . . .

]
,

where Ip×p selects the appropriate query or key block.

Using this formulation, two common attention patterns can be encoded:

1. Attend to the previous token. To enforce attention from time step i to i− 1, set

ki = ei (65)
qi = Nei−1, (66)

where ei is the ith standard basis vector and N ≫ 1 ensures the softmax selects the intended token.

2. Attend to a fixed token. To force every future token to attend to token t, define

K(i) =
{
{t}, i > t

∅, otherwise
(67)

and set the positional encodings to

ki =
{
−N, i ̸= t

N, i = t
, qi = N. (68)

G.2 Utilizing Nonlinearities

The nonlinear components of transformer layers can be exploited to implement element-wise arithmetic
operations with high accuracy. Below, we restate three key results that underpin the construction of such
operations within transformer blocks.
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1. Element-wise multiplication via GeLU. The GeLU activation can approximate multiplication,√
π

2 (GeLU(x + y)−GeLU(x)−GeLU(y)) = xy +O(x3 + y3), (69)

enabling scalar products to be implemented through combinations of GeLU activations and additive
operations.

2. Bypassing GeLU. The GeLU nonlinearity can be made approximately linear by shifting its input
by a large constant according to

GeLU(N + x)−N ≈ x, N ≫ 1. (70)

This allows a transformer head to effectively implement identity transformations when needed.

3. Bypassing layer normalization. With appropriate padding and large additive constants, layer
normalization can be suppressed, i.e.,√

2
L

N · λ([x, N, −N −
∑

x, 0]) ≈ [x, 2N, −2N −
∑

x, 0], (71)

where λ(·) denotes layer normalization and x ∈ RL. This result shows that layer norm can be
effectively neutralized by padding the input with tailored constants.

G.3 Parameterizing the RAW Operator

Recall the transformer layer formulation:

b(l)
γ = Softmax

(
(W Q

γ G(l−1))⊤(W K
γ G(l−1))

)
(W V

γ G(l−1)), (72)

A(l) = W F [b(l)
1 , b

(l)
2 , . . . , b

(l)
B ], (73)

G(l) = W1σ
(

W2λ
(

A(l) + G(l−1)
))

+ A(l) + G(l−1). (74)

We aim to show that a transformer layer with parameters θ = {W F , W1, W2, (W Q, W K , W V )m} can approxi-
mate the RAW operator. Following the construction in Akyürek et al. (2023), this can be achieved using just
two attention heads. Key and query matrices are set to implement the token access pattern K(i), enabling
the approximation of

Wa

|K(i)|
∑

k∈K(i)

G
(l)
k [r]. (75)

The first head is configured as follows:

• W Q
1 , W K

1 encode the attention pattern K(i).

• W V
1 is sparse, with nonzero entries (W V

1 )t[m], r[n] = (Wa)m,n, m = 1, . . . , |t|, n = 1, . . . , |r|.

• This ensures that only entries in t are modified, while others remain unchanged, i.e.,

(A(l)
i + G

(l)
i )t = Wa

|K(i)|
∑

k∈K(i)

G
(l)
k [r], (A(l)

i + G
(l)
i )t′ /∈t = G

(l)
i [t′ /∈ t]. (76)

To cancel the residual in t, the second head is set up as

(W Q
2 , W K

2 ) : K(i) = i, (W V
2 )t[m], r[n] = −1. (77)
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The feedforward projection combines the two heads as

(W F )t[m], t[m] = 1, (W F )t[m], t[m]+H = −1. (78)

This yields the attention output matching expression (75), isolating changes to t.

The complete RAW operator is defined as

G
(l+1)
i,w = Wo

 Wa

|K(i)|
∑

k∈K(i)

G
(l)
k [r]

 ◦WG
(l)
i [s]

 , (79)

G
(l+1)
i,j /∈w = G

(l)
i,j /∈w. (80)

Let mi denote the output of the second MLP layer. To emulate the RAW operator, we require

(mi)t′∈w = Wo

 Wa

|K(i)|
∑

k∈K(i)

G
(l)
k [r]

 ◦WG
(l)
i [s]

−G
(l)
i [w]−Ai[w], (81)

(mi)t′∈t = −G
(l)
i [t]−Ai[t], (82)

(mi)t′ /∈t∪w = 0. (83)

The exact structure of the MLP depends on whether ◦ represents addition or element-wise multiplication.

G.3.1 Additive Operator (◦ = +)

Let ui be the output of the first MLP layer. Since the GeLU non-linearity can be bypassed by adding a large
bias term N , we aim to configure ui such that

(ui)t̂ = WG
(l−1)
i [s] + G

(l)
i [t] + Ai[t] + N, (84)

(ui)t = −(G(l)
i [t] + Ai[t]) + N, (85)

(ui)w = −(G(l)
i [w] + Ai[w]) + N, (86)

(ui)j /∈(t∪t̂∪w) = −N. (87)

This is achieved by setting the first MLP layer’s weights W1 as

(W1)t̂[m], s[n] = Wm,n, (88)
(W1)t̂[m], t[n] = 1, (89)
(W1)t[m], t[m] = −1, (90)

(W1)w[m], w[m] = −1, (91)

and its bias b1 as

(b1)t̂, (b1)t, (b1)w = N, (92)
(b1)j /∈(t∪t̂∪w) = −N. (93)

The second MLP layer is configured to combine and cancel terms as needed,

(W2)w[m], t̂[n] = (Wo)m,n, (94)
(W2)t[m], t[m] = 1, (W2)w[m], w[m] = 1, (95)

with bias

(b2)w[m] = −N
∑

j

(Wo)m,j −N, (96)

(b2)t[m] = −N, (97)
(b2)j /∈t = 0. (98)
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G.3.2 Multiplicative Operator (◦ = ∗)

To approximate multiplication, we introduce three auxiliary hidden slots ta, tb, tc. The first MLP layer’s
output is configured as

(ui)ta = WG
(l)
i [s] + G

(l)
i [t] + Ai[t]

N
, (99)

(ui)tb
= G

(l)
i [t] + Ai[t]

N
, (100)

(ui)tc
= W (G(l)

i [s] + Ai[s])
N

, (101)

(ui)t = −(G(l)
i [t] + Ai[t]) + N, (102)

(ui)w = −(G(l)
i [w] + Ai[w]) + N, (103)

(ui)j /∈(t∪ta∪tb∪tc∪w) = −N. (104)

This behavior is achieved by setting the first MLP layer’s parameters as

(W1)ta[m], s[n] = Wm,n

N
, (W1)ta[m], t[n] = 1

N
, (105)

(W1)tb[m], t[m] = 1
N

, (W1)tc[m], s[m] = 1
N

, (106)

(W1)t[m], t[m] = −1, (W1)w[m], w[m] = −1, (107)

and bias vector

(b1)t∪ta∪tb∪tc
= 0, (b1)t∪w = N, (b1)j /∈(t∪ta∪tb∪tc∪w) = −N. (108)

The second MLP layer computes the product via

(W2)w[m], ta[n] = (Wo)m,nN2
√

π

2 , (109)

(W2)w[m], tb[n] = −(Wo)m,nN2
√

π

2 , (110)

(W2)w[m], tc[n] = −(Wo)m,nN2
√

π

2 , (111)

(W2)w[m], w[m] = 1, (W2)t[m], t[m] = 1, (112)

with bias

(b2)t∪w = N, (b2)j /∈(t∪w) = 0. (113)

Division via LayerNorm. To compute y/c from a structured input vector [c, y, 0]T , one can use the
approximation√

2
L

MN λ
(

[Nc, y/M, −Nc−
∑

y/M, 0]
)
≈ [MN, y/c, −MN − y/c, 0], (114)

where M, N ≫ 1. The desired quotient y/c can then be isolated through appropriate weight selection in the
feedforward layer.
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G.4 Expressing Core Operations via the RAW Operator

Three fundamental operations used throughout this paper can be expressed as special cases of the RAW
operator. Specifically:

dot(G; (i, j), (i′, j′), (i′′, j′′)) = Mul(G; 1, |i− j|, 1, (i, j), (i′, j′), (i′′, i′′ + 1))
= RAW(G; ∗, W = I, Wa = I, Wo = ⊮T , s = (i, j), r = (i′, j′),

w = (i′′, i′′ + 1), K = {(t, {t}) ∀t}) (115)
Aff(G; (i, j), (i′, j′), (i′′, j′′), W1, W2, b) = RAW(G; +, W = W1, Wa = W2, Wo = I, b0 = b,

s = (i, j), r = (i′, j′), w = (i′′, i′′ + 1), K = {(t, {t}) ∀t})
(116)

mov(G; s, t, (i, j), (i′, j′)) = RAW(G; +, W = 0, Wa = I, Wo = I,

s = (), r = (i′, j′), w = (i, j), K = {(t, {s})}) (117)

These equivalences follow directly by substitution. Moreover, the dot operator naturally extends to parallel
execution, enabling efficient matrix-level implementation of Mul.
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