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ABSTRACT

In multi-label classification, each example in a dataset may be annotated as be-
longing to one or more classes (or none of the classes). Example applications
include image (or document) tagging where each possible tag either applies to a
particular image (or document) or not. With many possible classes to consider,
data annotators are likely to make errors when labeling such data in practice. Here
we consider algorithms for finding mislabeled examples in multi-label classifica-
tion datasets. We propose an extension of the Confident Learning framework to
this setting, as well as a label quality score that ranks examples with label errors
much higher than those which are correctly labeled. Both approaches can utilize
any trained classifier. Here we demonstrate that our methodology1 empirically
outperforms other methods for label error detection. Applying our approach to
CelebA, we estimate over 30, 000 images in this dataset are incorrectly tagged.

1 Introduction

Many real-world datasets contain label errors, which should be identified and fixed to train the best
models for supervised learning (Natarajan et al., 2013; Lee et al., 2018; Song et al., 2022; Huang
et al., 2019; Northcutt et al., 2021a). Label errors are particularly likely in tasks where annotators
must make many choices for each individual example in the dataset, such as structured prediction
(Reiss et al., 2020). Finding the mislabeled examples can be done much more efficiently assisted
by algorithms (Kuan & Mueller, 2022). Confident Learning algorithms offer a principled approach
to detecting mislabeled examples in multi-class classification datasets (Northcutt et al., 2021b).
Alternatively one may rank examples by their mislabeling likelihood, as estimated via a label
quality score (Kuan & Mueller, 2022), which enables efficient review of the most suspicious labels.

Detecting label errors has been studied for multi-class classification (Brodley & Friedl, 1999; Müller
& Markert, 2019; Northcutt et al., 2021b) and other tasks like token classification (Wang & Mueller,
2022) or image segmentation (Rottmann & Reese, 2022). However little research exists on label
error detection in multi-label classification datasets. In multi-label classification, each example can
belong to one or more of K classes or none of them. It is equivalent to solving K binary classification
problems, in a one-vs-rest fashion, where each class either applies to a particular example or not.
In contrast, the K classes in multi-class classification are mutually exclusive. While the term one-
vs-rest commonly refers to a strategy of training independent binary classifiers, we do not advocate
for such an approach that ignores inter-class correlations. We use one-vs-rest to refer to a general
viewpoint of multi-label classification, where each class either applies to each example or not.

From the one-vs-rest perspective, annotators for multi-label classification must consider K questions
when labeling each example, thus increasing the potential for annotation errors. Here we consider
two approaches for label error detection, called Flagger and Scorer methods by Klie et al. (2022).
Flaggers estimate which examples are mislabeled, and Scorers estimate a label quality score that
should be monotonically related to the likelihood it is correctly labeled. These approaches can help
estimate the number of mislabeled examples and prioritize which ones should be re-examined under
a limited label verification budget, respectively. Our algorithms for label error detection are entirely
model-agnostic and can utilize any multi-label classifier, regardless of how it was trained.

1Code to run our method: https://github.com/cleanlab/cleanlab
Reproduce our benchmarks: https://github.com/cleanlab/multilabel-error-detection-benchmarks
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Figure 1: 15 of the top-50 scoring images in the CelebA dataset based our proposed EMA label-
quality-score, which are also flagged by our Confident Learning extension. Here we choose not
to show many additional label errors related to incorrect annotation of the no beard tag amongst
these top-50 images, in order to highlight diverse label errors in this dataset automatically detected
by our methodology. The dataset has both extraneously added tags as well as many missing tags.

2 Methods
We assume a multi-label classifier has already been trained used to obtain predicted class probabili-
ties pi P RK for each example i in our dataset. To remain robust against overfitting, these predictions
should be out-of-sample, meaning pi is produced by a copy of the model that has never been trained
on the ith example. This can be achieved through cross-validation. The K probability values in any
pi need not sum to 1 since the classes in multi-label classification are not mutually exclusive. A
major strength of our proposed methods is how straightforward they are. The sole inputs required
are these predicted class probabilities and the given labels for the dataset. No access to the origi-
nal features or any form of nonstandard modeling is required. Given more accurate predicted class
probabilities, our label error detection methods can immediately better identify annotation errors.

Throughout it is useful to adopt a one-vs-rest perspective, considering for each datapoint the binary
task of whether each label applies or not. For each of the K classes, form a binary label bki whether
class k applies to example i or not, according to the given multi-label annotation. We extract the
corresponding kth entry from the predicted class probabilities pi (denoted as pki ) as an estimate
of the probability that bki “ 1. For each class k, Confident Learning is independently applied to
these binary labels and predicted binary probabilities pki to flag examples with estimated wrong
binary label bki annotations. By combining the union of these binary errors detected over all classes
k “ 1, ...,K for each example, we can report the subset of examples in the multi-label classification
dataset estimated to contain an error in their annotation. This approach entails a straightforward
extension of Confident Learning to multi-label settings, detailed further in Appendix A.

2.1 Scoring Label Quality in Multi-Labeled Data

A limited budget may prohibit exhaustive verification of candidate examples flagged by our Confi-
dent Learning extension. To prioritize examples, we propose numeric label quality scores to rank
them by our estimated confidence that each one is correctly labeled (Kuan & Mueller, 2022). Un-
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der the one-vs-rest perspective, each example has K binary labels bki , each with an associated label
quality score ski that estimates how likely a particular bki is incorrect. Verifying bki for an example i
and class k requires effort to understand xi, so it is better to simultaneously verify the other labels
for this example than to review a different example.

Hence a key focus of this paper is to estimate a single label quality score si̊ for each multi-
label example in a dataset, where si̊ should be smaller for those examples xi with any incorrect
annotations. Our primary aim is to ensure these label quality scores achieve high precision/recall
for detecting examples with any annotation error. Additionally, the lowest si̊ should correspond
to severely mislabeled examples with multiple incorrect labels, as these can have more damaging
effects than single incorrect labels (see Table 2), and thus it is more critical to spot them.

Favoring a straightforward approach, we propose the following to compute si̊ : compute a separate
label quality score ski for each binary label bki corresponding to a particular class k, then pooling
s1i , ..., s

K
i into a single overall score for example i. We focus on self-confidence as a binary la-

bel quality score (Kuan & Mueller, 2022; Northcutt et al., 2021b; Klie et al., 2022), which is the
classifier-estimated likelihood of the given label:

ski “ bki ¨ pki ` p1 ´ bki q ¨ p1 ´ pki q (1)

Pooling Scores. One can consider several methods to pool the K scores si ” ps1i , ..., sKi q into a
single score, si̊ , for the ith example in a dataset. These methods include taking the lowest, highest,
mean, or median score as the aggregated score. The minimum score can be viewed as a bound on
the probability of at least one b1i , ..., b

K
i being incorrect leading to better precision/recall. It does not

necessarily prioritize examples for which many of b1i , ..., b
K
i are incorrect. The mean and median

scores should better reflect all s1i , ..., s
K
i , which can be helpful to prioritize examples with many

errors in b1i , ..., b
K
i , but can be more sensitive to nuisance variation (e.g. due to estimation error) in

the s1i , ..., s
K
i for correctly annotated b1i , ..., b

K
i .

To achieve a score that accounts for all classes’ scores but emphasizes the score of the most suspect
class annotation, we propose pooling s1i , ..., s

K
i via an exponential moving average (EMA). Letting

š1i ě ¨ ¨ ¨ ě šKi denote the sorted binary label quality scores of an example i, we run through them
in descending order and report their exponential moving average as an overall label quality score:

si̊ “ SK
i , where St

i “
"
š1i for t “ 1

α ¨ šti ` p1 ´ αq ¨ St´1
i for t ą 1

(2)

Here 0 ă α ă 1 is a forgetting-factor constant that is fixed a priori. It defines the relative importance
of the ski based on where they occur in the sorted ordering. We propose to use α “ 0.8, such that si̊
is most heavily influenced by the binary label bki with the smallest ski value, while still being directly
affected by all s1i , ..., s

K
i values. This aligns with our primary aim to ensure si̊ achieves the highest

precision/recall for detecting examples with any error in b1i , ..., b
K
i while also favoring examples for

which many of these binary labels are incorrect. Figures 9-12 show the effect of different α values.

Additional pooling methods evaluated in our benchmark study are presented in Appendix B.

3 Experiments

For evaluation, we consider two groups of multi-label classification datasets (one large, one small)
that contain examples with multiple noisy labels and bag of words features. Each group has ten
synthetic datasets, with differences in sample size, feature- and class counts, expected number of
classes per example, and overall degree of label noise. We know the ground truth labels and can
evaluate the label error detection performance. See Appendix C for more details.

To produce predicted class probabilities for finding label errors, we train two multi-label classifiers,
logistic regression and random forest, on each dataset using one-vs-rest 5-fold cross-validation.
The random forest model tends to be more accurate than the logistic regression model for the Small
datasets, but its predicted class probabilities vary less smoothly across different feature values (Table
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2). The differences in between these models’ accuracies for the Large datasets is much lower, where
classes are more likely to be linearly separable.

By comparing ground truth labels with noisy given labels, we evaluate label quality scores for
each example (estimated from the given labels) via various precision/recall metrics. Here we re-
port AP @ T and Average 2-Precision @ T , with additional evaluation metrics in the Appendix.
Higher values correspond to a better performing method. AP @ T is the Average Precision of
the label quality score in detecting mislabeled examples among the bottom-T scoring examples.
Average 2-Precision @ T measures how well scores prioritize examples with at least two incorrect
binary labels, among the bottom-T scoring examples.

Figures 2, 3 and 6 to 8 show that across all metrics, EMA performs well relative to the other overall
label quality scoring approaches. Weighted cumulative average pooling performs similarly to EMA,
but is not as effective. Pooling approaches with minimum-like behavior are good at detecting exam-
ples for which any tag is incorrectly chosen, while other approaches like cumulative average pooling
are better at detecting severely mislabeled examples for which many tags are incorrect.

These results validate that one can better detect examples with any sort of label error via methods like
min-pooling which are not influenced by most of the per-class label quality scores for a particular
example. However, accounting for more per-class scores beyond just the minimum score helps
better detect severely mislabeled with many errors in more than one of their per-class annotations.
Of the alternative methods, those most similar to EMA (like our weighted cumulative average and
softmin pooling) perform the best. Using a typical multi-label classification training loss (equivalent
to log transform pooling) is not as effective for overall label quality scoring as EMA and similar
approaches.

Figures 9 to 12 reveal the effect of different α values in our EMA label quality scoring method.
As α grows toward 1, the overall EMA score si̊ becomes increasingly dominated by the smallest
of the per-class scores s1i , ..., s

K
i . Our benchmarks reveal this generally leads to better detection

of examples where any of the per-class annotations b1i , ..., b
K
i are incorrect (Figure 9) but worse

detection of the severely mislabeled examples for which many of b1i , ..., b
K
i are incorrect (Figures

10-12). α “ 0.8 appears to effectively address both objectives. Since the weight of the k-th smallest
per-class score ŝki is αp1´αqk´1 in the final moving average, with α “ 0.8, the overall EMA score
si̊ is 3.2% determined by the 3rd lowest per-class score ŝ3i and only 0.64% determined by the 4th
lowest per-class score ŝ4i .

3.1 Finding label errors in the CelebA image tagging dataset

To demonstrate our approach in an image tagging application, we consider the CelebA dataset (Liu
et al., 2015). CelebA is a face attributes dataset depicting images of celebrities labeled with various
attributes. Here we consider only the following subset of the original CelebA tags (and the subset
of 188,000 images annotated with at least one of the tags under consideration): Wearing Hat,
Wearing Necklace, Wearing Necktie, Eyeglasses, No Beard, and Smiling.

We train a neural network for multi-label classification by fine-tuning a pretrained network back-
bone (efficientnet (Tan & Le, 2019) implemented in the TIMM library (Wightman, 2019)) with a
K-dimensional linear output layer added for our prediction task. Each output node uses an indepen-
dent sigmoid activation rather than a softmax activation which would constrain the predicted class
probabilities to be mutually exclusive. Rather than training this classifier in a one-vs-rest fashion,
we fine-tune the model using Adam (Kingma & Ba, 2015) to jointly optimize a binary cross-entropy
loss at the output node for each class, such that the classifier can learn to model correlations between
tags. We produce held-out predictions for each image in the dataset via 4-fold cross-validation.

Running our multi-label extension of Confident Learning and sorting the flagged examples based
on our EMA label quality score reveals that CelebA contains many mislabeled examples (Figure 1).
There are both extraneously added tags as well as many missing tags in the dataset. In particular,
CelebA contains a No Beard tag that should actually apply to a large fraction of the images in the
dataset, yet is often not present in the given label. The annotations may contain other inconsisten-
cies reflecting likely annotator confusion regarding when tags like Wearing Hat, No Beard, or
Eyeglasses should apply (Figure 4).
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Figure 2: Average Precision @ T achieved by various overall label quality scores si̊ for each dataset
(shown as dot), where T is the number of mislabeled examples in the dataset. We show results based
on predicted class probabilities from both a Logistic Regression model and a Random Forest model.
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Figure 3: Average 2-Precision @ T achieved by various overall label quality scores si̊ for each
dataset, where T is the number of mislabeled examples in the dataset. We show results based on
predicted class probabilities from both a Logistic Regression model and a Random Forest model.

We conducted a small expert validation experiment and found that among 100 randomly chosen
images from the dataset 15 were mislabeled – this suggests the the CelebA dataset may contain
approximately 15% (30,000) mislabeled images! Among the top-100 images ranked according to
our EMA label quality score si̊ , we identify 67 mislabeled images. Thus the Lift @ 100 for detect-
ing annotation errors via our approach is around 4.5, i.e. mislabeled images are 4.5 times more
prevalent among the set prioritized by our label quality score compared to the overall dataset.

4 Discussion

This paper introduced model-agnostic methods to identify which examples are mislabeled in multi-
label classification datasets and score the confidence of these estimates. A key question to extend
these capabilities from multi-class classification to multi-label settings is how to define a single
overall label quality score per example. Our proposed EMA score effectively detects examples
whose annotated labels contain errors, prioritizing severely mislabeled examples whose label con-
tains many errors.

Beyond images, the approach presented here can be used to easily find such annotation errors in
any type of multi-label classification dataset, as long as a reasonable classifier can be fit to the
data. Following the spirit of data-centric AI (Ng et al., 2021), our model-agnostic methodology can
be used with any existing model to find and fix errors in its training set, in order to subsequently
train a better model. As more accurate models are invented, our proposed methods can use their
improvements to more accurately detect label errors in the same data without modification.
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Inconsistency in No_Beard Annotations

Inconsistency in Eyeglasses Annotations

Inconsistency in Wearing_Hat Annotations

Figure 4: Examples of inconsistency in Wearing Hat, No Beard, or Eyeglasses annotations
in the CelebA dataset. Note how for each pair of vertically-arranged similar images, one of these
tags (e.g. Wearing Hat) is annotated for the top image but not the bottom image, so one of their
labels is clearly incorrect. Images shown are selected among the smallest (most likely erroneous)
EMA label quality scores. These examples represent a small subset of the many issues in these tags
that we observed throughout the CelebA dataset.
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Appendix: Identifying Incorrect Annotations in
Multi-Label Classification Data

A Extending Confident Learning to Flag Label Issues in
Multi-labeled Data

This section details our proposed method to estimate the set of mislabeled examples in a multi-label
dataset. For multi-class classification, Northcutt et al. (2021b) proposed Confident Learning (CL),
an approach theoretically proven to identify the mislabeled examples under mild assumptions, even
in the presence of asymmetric class-conditional label noise and an imperfectly trained classifier.
Despite only requiring predicted probabilities from any trained classifier to identify label errors,
Confident Learning has been shown to empirically outperform many more complex approaches
(Northcutt et al., 2021b; Klie et al., 2022). Thus, we consider an extension of the CL framework to
multi-label datasets.

A naive CL-extension might consider each observed combination of classes that co-occur for a
particular example as a separate “class”, which can result in up to 2K “classes” and is statistically
and computationally impractical.

Instead here we adopt the one-vs-rest perspective. We consider for each datapoint the binary task of
whether each label applies or not. Specifically, for each of the K classes, we form a binary label bki
whether class k applies to example i or not, according to the given multi-label annotation. We extract
the corresponding kth entry from the predicted class probabilities pi (denoted as pki ) as an estimate
of the probability that bki “ 1. For each class k, Confident Learning is independently applied to
these binary labels and predicted binary probabilities pki to flag examples with estimated wrong
binary label bki annotations. By combining the union of these binary errors detected over all classes
k “ 1, ...,K for each example, we can report the subset of examples in the multi-label classification
dataset estimated to contain an error in their annotation. This approach entails a straightforward
extension of Confident Learning to multi-label settings. For each class k, this approach estimates
the number of examples i incorrectly annotated as belonging to class k via the following equation:∣∣∣∣∣

#
xi P Xk : p1 ´ pki q ě 1

|XC
k |

ÿ

xjPXC
k

p1 ´ pkj q
+∣∣∣∣∣ (false positives) (3)

Here Xk denotes the subset of examples annotated as belonging to class k (i.e. where bki “ 1),
and XC

k denotes its complement (i.e. the examples j for which bkj “ 0). Estimating the number
of examples incorrectly annotated as not belonging to class k is done in a similar fashion, see the
detailed description by Northcutt et al. (2021b).

Our multi-label extension of Confident Learning comes with the following theoretical guarantees.
Our approach here closely models a binary special case of Confident Learning studied by Northcutt
et al. (2017), and can be proven to exactly flag the examples with label errors as long as the classifier
is rank-separable for each one-vs-rest binary problem (Northcutt et al., 2017). As long as the num-
ber of classes K is significantly lower than the number of examples in the dataset N (which is almost
always the case to train an effective classifier), the theoretical guarantees for the estimation of misla-
beled examples established by Northcutt et al. (2021b) also hold for the approach we consider here.

This binary approach to flagging multi-label errors does not require additional modeling of depen-
dencies between classes because we assume the multi-label classifier producing pi already reflects
these dependencies in its predictions. When applying these methods, we caution against training
the classifier in a one-vs-rest manner and instead recommend training a multi-label classifier on the
multi-label annotations to obtain binary predicted probabilities pki for each example (i.e., the class-
probabilities for each example do not sum to 1). Even if the inter-class dependencies are imperfectly
captured in pi, this approach can accurately flag the examples whose labels are not entirely correct
as long as the per-class binary probabilities pki estimate the binary label bki well enough to satisfy the
conditions of Northcutt et al. (2021b). As with Confident Learning, the efficacy of our approach does
depend on the accuracy of the trained classifier. In multi-label settings, a classifier that effectively
models dependencies between classes will usually produce more accurate predictions.
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B Additional Pooling Methods

Many alternative pooling methods could be applied to obtain a label quality score per example. Here
we consider additional approaches evaluated in our benchmark study presented in Section 3.

Softmin pooling. Recall that pooling scores via a hard minimum implies si̊ is solely determined
by one of the ski values for each example. An alternative way to take the other classes’ scores into
consideration while still emphasizing the minimum, as done by our EMA method, is to pool via
a softer minimum-like operator. Recalling that si “ ps1i , ..., sKi q denotes a vector of the per-class
scores for example i, a simple way to pool using a softer minimum is via the softmax operator as
follows:

si̊ “ si ¨ softmaxτ p1 ´ siq “
řK

k“1 s
k
i ¨ exp ` 1´ski

τ

˘
řK

k“1 exp
` 1´ski

τ

˘ (4)

Here τ ą 0 denotes the temperature of the softmax. We choose τ “ 0.1 which heavily emphasizes
the smallest scores corresponding to the most suspicious class annotations. Larger values of τ did
not perform as well in our benchmarks.

Log-transform Pooling. Alternatively, taking an arithmetic mean of the logarithm of all the scores
should significantly emphasize the low-scoring class for a particular example, while still being ac-
counting for the remaining classes’ scores.

si̊ “ 1

K

Kÿ

k“1

logpski ` ϵq (5)

Here a positive infinitesimal, ϵ “ 1e ´ 8, is added to all scores to avoid scores of zero. This si̊
corresponds to a common loss function used to train multi-label classifier models (log-likelihood).
Much existing research has proposed using the training loss of each example as a label quality score
(Klie et al., 2022; Müller & Markert, 2019), as done via this log-transform approach.

Cumulative Average of Bottom Scores. For subsequent pooling methods, we let ŝ1i ď ... ď ŝKi ,
denote the same values as s1i , ..., s

K
i now sorted in increasing order. Another pooling method that

emphasizes the smallest scores, but not only the minimum value, is to take an average of the J
smallest scores for each example. Here we simply set J “ 2 as larger values did not perform as
well.

si̊ “ 1

J

Jÿ

k“1

ŝki (6)

Weighted Sum of Cumulative Averages. A more flexible variant of this method is to take cumu-
lative averages across the per-class scores (again sorted in ascending order) for different values of J ,
and subsequently report an exponentially-weighted sum of these averages as the aggregated score.

si̊ “
Kÿ

J“1

Jÿ

k“1

expp1 ´ Jq
J

ŝki (7)

Mean Simple Moving Average (SMA). Most of the presented pooling methods aim to emphasize
lower per-class scores based on the intuition that these should matter more to detect examples i for
which any of b1i , ..., b

K
i are misannotated. De-emphasizing the other classes’ scores helps mitigate

nuisance variation in the scores for class annotations that are likely correct. Another way to mitigate
nuisance variation may be to smooth the scores across different classes. We consider simple moving
averages of the sorted scores with period P ă K. Moving averages smooth out variation in the
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scores for adjacent classes (in the sort ordering), which are often both correctly annotated. These
moving averages can then be mean-pooled as an overall label quality score.

si̊ “ 1

P pK ´ P ` 1q
Kÿ

k1“P

k1ÿ

k“k1´P`1

ŝki (8)

Empirically, we found P “ 2 outperformed larger values of P in our benchmarks.

C Details for Label Quality Score Benchmark

Metrics. We also consider a few other metrics to evaluate label quality scores, by comparing
them against discrepancies between ground truth labels and noisy given labels:

• AUPRC is the area under Precision-Recall curve obtained by comparing estimated scores
against a binary target. Note that AUPRC “ AP @ N where N is the number of examples
in the dataset.

• Average 3-Precision @ T measures how well scores prioritize examples with at least 3
incorrect binary labels, among the bottom-T scoring examples.

• Spearman Correlation measures how well scores retrieve examples with many incorrect
binary labels. It is the Spearman Correlation between the (complementary) label quality
score and the number of tags bki which are incorrectly annotated for example i.

Datasets. Next, we describe our large/small groups of multi-label classification datasets
used for evaluation. The ten datasets in each group were each generated from the same
underlying distribution with different random seeds. We produced each dataset via the
make multilabel classification data generator from the sklearn package2 (Pe-
dregosa et al., 2011). This method produces bag of words features (our datasets had an expected
word count of 500). Table 1 lists various differences between our Large and Small datasets.

We introduce class-wise label noise in the given labels by randomly generating class noise matrices
with traces Tk for class k, described by eqs. (9) and (10):

Yk “ p1 ´ Xkq
¨
˝1 ´

exp
´ ´pkargsort´1q2

K

¯

2K

˛
‚ (9)

Tk “ maxt2Yk, 2 ´ 2Yku (10)

where Xk „ Γpκ, θq is drawn from a gamma distribution with pκ, θq “ p2, 0.01q and kargsort is
the index of Xk in X “ pX1, . . . , XKq after being sorted in ascending order. The expression in the
latter parentheses in eq. (9) reweights the samples exponentially based on their relative ordering to
emphasize classes with the worst label noise. Each example i is limited to at most 3 errors in the
individual per class annotations b1i , ..., b

K
i .

Table 1: Summaries of the two groups of datasets used to benchmark label quality scores.

Small Large
Number of samples 5000 30000
Number of test samples 1000 7500
Number of features 3 20
Number of classes 4 50
Expected number of class assignments 2 5

2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_multilabel_classification.html
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Appendix

A Details for Label Quality Score Benchmark

Here we describe our large/small groups of multi-label classification datasets used for evaluation. The
ten datasets in each group were each generated from the same underlying distribution with di↵erent
random seeds. We produced each dataset via the make multilabel classification data generator
from the sklearn package2 [Pedregosa et al., 2011]. This method produces bag of words features (our
datasets had an expected word count of 500). Table S1 lists various di↵erences between our Large and
Small datasets.

We introduce class-wise label noise in the given labels by randomly generating class noise matrices
with traces Tk for class k, described by eqs. (12) and (13):

Yk “ p1 ´ Xkq
¨
˝1 ´

exp
´ ´pkargsort´1q2

K

¯

2K

˛
‚ (12)

Tk “ maxt2Yk, 2 ´ 2Yku (13)

where Xk „ �p, ✓q is drawn from a gamma distribution with p, ✓q “ p2, 0.01q and kargsort is the index
of Xk in X “ pX1, . . . , XKq after being sorted in ascending order. The expression in the latter paren-
theses in eq. (12) reweights the samples exponentially based on their relative ordering to emphasize
classes with the worst label noise. Each example i is limited to at most 3 errors in the individual per
class annotations b1

i , ..., b
K
i .

Figure S1: Average traces of noise matrices for a dataset with K “ 10 classes, sampled via eq. (12).

Table S1: Summaries of the two groups of synthetically generated datasets

Small Large
Number of samples 5000 30000
Number of test samples 1000 7500
Number of features 3 20
Number of classes 4 50
Expected number of class assignments 2 5

2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_multilabel_classification.

html
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Figure 5: Average traces of noise matrices for a dataset with K “ 10 classes, sampled via eq. (9).

D Additional Results

Table 2: The average-per-class accuracies and Jaccard scores of different models trained and tested
with either true or noisy labels for each group of datasets in our label quality scoring benchmark.
Values reported are the mean over the 10 datasets in each group. In parenthesis is the corresponding
standard deviation to the precision of the least significant digit of the mean value.

Average accuracy Jaccard score
Datasets Classifier Train labels Test labels

Small

Logistic regression
Noisy Noisy 0.76(3) 0.62(4)

True 0.81(4) 0.69(6)

True Noisy 0.75(3) 0.61(5)
True 0.81(3) 0.69(6)

Random forest
Noisy Noisy 0.81(3) 0.69(5)

True 0.88(4) 0.81(6)

True Noisy 0.82(3) 0.72(5)
True 0.90(4) 0.86(6)

Large

Logistic regression
Noisy Noisy 0.906(3) 0.30(2)

True 0.922(2) 0.36(2)

True Noisy 0.907(3) 0.31(2)
True 0.923(2) 0.38(2)

Random forest
Noisy Noisy 0.903(3) 0.25(2)

True 0.919(2) 0.31(2)

True Noisy 0.903(3) 0.25(2)
True 0.919(2) 0.31(2)

Tag Accuracy
Eyeglasses 0.97

Wearing Earrings 0.84
Wearing Hat 0.97

Wearing Necklace 0.87
Wearing Necktie 0.93

No Beard 0.92
Smiling 0.81

Table 3: Held-out accuracy for each tag (i.e. class) obtained by our CelebA multi-label classifier.
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Figure 6: AUPRC for detecting mislabeled examples achieved by various overall label quality scores
si̊ for each dataset (shown as dot). 1We show results based on predicted class probabilities from
both a Logistic Regression model and a Random Forest model.
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Figure 7: Average 3-Precision @ T achieved by various overall label quality scores si̊ , where T
is the number of mislabeled examples in each dataset. We show results based on predicted class
probabilities from both a Logistic Regression model and a Random Forest model.
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Figure 8: Spearman correlation between label quality scores si̊ (produced via various methods) and
number of class annotations b1i , ..., b

K
i which are incorrect per example i. We show results based on

predicted class probabilities from both a Logistic Regression model and a Random Forest model.
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Figure 9: Average Precision @ T achieved by our EMA label quality scoring method with different
values of α. Here T is the number of mislabeled examples in each dataset, and all examples with
any sort of error in their label are counted as positive hits. We show results based on predicted class
probabilities from both a Logistic Regression model and a Random Forest model.
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Figure 10: Average 2-Precision @ T achieved by our EMA label quality scoring method with dif-
ferent values of α. In 2-Precision, an example is only counted as a positive hit if its label contains
at least 2 misannotated classes. T is the number of mislabeled examples in each dataset. We show
results based on predicted class probabilities from both a Logistic Regression model and a Random
Forest model.
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Figure 11: Average 3-Precision @ T achieved by our EMA label quality scoring method with dif-
ferent values of α. In 3-Precision, an example is only counted as a positive hit if its label contains
at least 3 misannotated classes. T is the number of mislabeled examples in each dataset. We show
results based on predicted class probabilities from both a Logistic Regression model and a Random
Forest model.
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Figure 12: Spearman correlation between label quality scores si̊ and number of class annotations
b1i , ..., b

K
i which are incorrect per example i. The scores si̊ are produced via our EMA method with

different values of α. We show results based on predicted class probabilities from both a Logistic
Regression model and a Random Forest model.
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