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Abstract

Graph Neural Networks (GNNs) are prominent in graph machine learning and have shown
state-of-the-art performance in Link Prediction (LP) tasks. Nonetheless, recent studies
show that GNNs struggle to produce good results on low-degree nodes despite their overall
strong performance. In practical applications of LP, like recommendation systems, improving
performance on low-degree nodes is critical, as it amounts to tackling the cold-start problem of
improving the experiences of users with few observed interactions. In this paper, we investigate
improving GNNs’ LP performance on low-degree nodes while preserving their performance
on high-degree nodes and propose a simple yet surprisingly effective augmentation technique
called NodeDup. Specifically, NodeDup duplicates low-degree nodes and creates links
between nodes and their own duplicates before following the standard supervised LP training
scheme. By leveraging a “multi-view” perspective for low-degree nodes, NodeDup shows
significant LP performance improvements on low-degree nodes without compromising any
performance on high-degree nodes. Additionally, as a plug-and-play augmentation module,
NodeDup can be easily applied on existing GNNs with very light computational cost.
Extensive experiments show that NodeDup achieves 38.49%, 13.34%, and 6.76% relative
improvements on isolated, low-degree, and warm nodes, respectively, on average across all
datasets compared to GNNs and the existing cold-start methods.

1 Introduction

Link prediction (LP) is a fundamental task of graph-structured data (Liben-Nowell & Kleinberg, 2007;
Trouillon et al., 2016), which aims to predict the likelihood of the links existing between two nodes in the
network. It has wide-ranging real-world applications across different domains, such as friend recommendations
in social media (Sankar et al., 2021; Tang et al., 2022; Fan et al., 2022), product recommendations in
e-commerce platforms (Ying et al., 2018; He et al., 2020), knowledge graph completion (Li et al., 2023;
Vashishth et al., 2020; Zhang et al., 2020), and chemical interaction prediction (Stanfield et al., 2017; Kovács
et al., 2019; Yang et al., 2021).
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Figure 1: Node Degree Distribution and LP Per-
formance (GSage as an encoder and inner product
as a decoder) Distribution w.r.t Nodes Degrees
showing reverse trends on Citeseer dataset.

In recent years, graph neural networks (GNNs) (Kipf &
Welling, 2016a; Veličković et al., 2017; Hamilton et al.,
2017) have been widely applied to LP, and a series
of cutting-edge models have been proposed (Zhang &
Chen, 2018; Zhang et al., 2021; Zhu et al., 2021; Zhao
et al., 2022b). Most GNNs follow a message-passing
scheme (Gilmer et al., 2017) in which information is it-
eratively aggregated from neighbors and used to update
node representations accordingly. Consequently, the suc-
cess of GNNs usually heavily relies on having sufficient
high-quality neighbors for each node (Zheng et al., 2021;
Liu et al., 2021). However, real-world graphs often ex-
hibit long-tailed distribution in terms of node degrees,

∗Corresponds to zcguo@uw.edu.

1

https://openreview.net/forum?id=hIOTzz87N9


Published in Transactions on Machine Learning Research (08/2025)

where a significant fraction of nodes have very few neighbors (Tang et al., 2020b; Ding et al., 2021; Hao et al.,
2021). For example, Figure 1 shows the long-tailed degree distribution of the Citeseer dataset. Moreover,
LP performances w.r.t. node degrees on this dataset also clearly indicate that GNNs struggle to generate
satisfactory results for nodes with low or zero degrees. For simplicity, in this paper, we refer to the nodes
with low or zero degrees as cold nodes and the nodes with higher degrees as warm nodes.

To boost GNNs’ performance on cold nodes, recent studies have proposed various training strategies (Liu
et al., 2020; 2021; Zheng et al., 2021; Hu et al., 2022) and augmentation strategies (Hu et al., 2022; Rong
et al., 2019; Zhao et al., 2022b) to improve representation learning quality. For instance, ColdBrew (Zheng
et al., 2021) posits that training a powerful MLP can rediscover missing neighbor information for cold nodes;
TailGNN (Liu et al., 2021) utilizes a cold-node-specific module to accomplish the same objective. However,
such advanced training strategies (e.g., ColdBrew and TailGNN) share a notable drawback: they are trained
with a bias towards cold nodes, which then sacrifices performance on warm nodes (empirically validated in
Table 1). However, in real-world applications, both cold nodes and warm nodes are critical (Clauset et al.,
2009). On the other hand, while augmentation methods such as LAGNN (Liu et al., 2022b) do not have
such bias, they primarily focus on improving the overall performance of GNNs in LP tasks, which may be
dominated by warm nodes due to their higher connectivity. Additionally, the augmentation methods usually
introduce a significant amount of extra computational costs (empirically validated in Figure 8). In light of
the existing work discussed above on improving LP performance for cold nodes, we are naturally motivated
to explore the following crucial but rather unexplored research question:

Can we improve LP performance on cold nodes without compromising warm node
performance?

We observe that cold node LP performance usually suffers because they are under-represented in standard
supervised LP training due to their few (if any) connections. Given this observation, in this work, we
introduce a simple yet effective augmentation method, NodeDup, for improving LP performance on cold
nodes. Specifically, NodeDup duplicates cold nodes and establishes edges between each original cold node
and its corresponding duplicate. Subsequently, we conduct standard supervised end-to-end training of GNNs
on the augmented graph. To better understand why NodeDup is able to improve LP performance for
cold nodes, we thoroughly analyze it from multiple perspectives, during which we discover that this simple
technique effectively offers a “multi-view” perspective of cold nodes during training. This “multi-view”
perspective of the cold nodes acts similarly to an ensemble and drives performance improvements for these
nodes. Additionally, our straightforward augmentation method provides valuable supervised training signals
for cold nodes and especially isolated nodes. Furthermore, we also introduce NodeDup(L), a lightweight
variation of NodeDup that adds only self-loop edges into training edges for cold nodes. NodeDup(L)
empirically offers up to a 1.3× speedup over NodeDup for the training process and achieves significant
speedup over existing augmentation baselines. In our experiments, we comprehensively evaluate our method
on seven benchmark datasets. Compared to GNNs and the existing cold-start methods, NodeDup achieves
38.49%, 13.34%, and 6.76% relative improvements on isolated, low-degree, and warm nodes, respectively,
on average across all datasets. NodeDup also greatly outperforms augmentation baselines on cold nodes,
with comparable warm node performance. Finally, as plug-and-play augmentation methods, our methods are
versatile and effective with different LP encoders/decoders. They also achieve significant performance in a
more realistic inductive setting. Our code can be found at https://github.com/zhichunguo/NodeDup.

2 Preliminaries
Notation. Let an attributed graph be G = {V, E , X}, where V is the set of N nodes and E ⊆ V × V is the
edges where each evu ∈ E indicates nodes v and u are linked. Let X ∈ RN×F be the node attribute matrix,
where F is the attribute dimension. Let Nv be the set of neighbors of node v, i.e., Nv = {u|evu ∈ E}, and
the degree of node v is |Nv|. We separate the set of nodes V into three disjoint sets Viso, Vlow, and Vwarm by
their degrees based on the threshold hyperparameter δ1. For each node v ∈ V, v ∈ Viso if |Nv| = 0; v ∈ Vlow

if 0 < |Nv| ≤ δ; v ∈ Vwarm if |Nv| > δ. For ease of notation, we also use Vcold = Viso ∪ Vlow to denote the
cold nodes, which is the union of Isolated and Low-degree nodes.

1This threshold δ is set as 2 in our experiments, based on observed performance gaps in LP on various datasets, as shown in
Figure 1 and Figure 10. Further reasons for this threshold are detailed in Appendix C.1.
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LP with GNNs. In this work, we follow the commonly-used encoder-decoder framework for GNN-based
LP (Kipf & Welling, 2016b; Berg et al., 2017; Schlichtkrull et al., 2018; Ying et al., 2018; Davidson et al., 2018;
Zhu et al., 2021; Yun et al., 2021; Zhao et al., 2022b), where a GNN encoder learns the node representations
and the decoder predicts the link existence probabilities given each pair of node representations. Most GNNs
follow the message passing design (Gilmer et al., 2017) that iteratively aggregate each node’s neighbors’
information to update its embeddings. Without the loss of generality, for each node v, the l-th layer of a
GNN can be defined as

h(l)
v = UPDATE

(
h(l−1)

v , m(l−1)
v

)
, s.t. m(l−1)

v = AGG
(
{h(l−1)

u } : ∀u ∈ Nv

)
, (1)

where h
(l)
v is the l-th layer’s output representation of node v, h

(0)
v = xv, AGG(·) is the (typically permutation-

invariant) aggregation function, and UPDATE(·) is the update function that combines node v’s neighbor
embedding and its own embedding from the previous layer. For any node pair v and u, the decoding process
can be defined as ŷvu = σ

(
DECODER(hv, hu)

)
, where hv is the GNN’s output representation for node v and

σ is the Sigmoid function. Following existing literature, we use inner product (Wang et al., 2021; Zheng et al.,
2021) as the default DECODER.

The standard supervised LP training optimizes model parameters w.r.t. a training set, which is usually the
union of all observed M edges and KM no-edge node pairs (as training with all O(N2) no-edges is infeasible
in practice), where K is the negative sampling rate (K = 1 usually). We use Y = {0, 1}M+KM to denote the
training set labels, where yvu = 1 if evu ∈ E and 0 otherwise.

The Cold-Start Problem. The cold-start problem is prevalent in various domains and scenarios. In
recommendation systems (Chen et al., 2020; Lu et al., 2020; Hao et al., 2021; Zhu et al., 2019; Volkovs et al.,
2017; Liu & Zheng, 2020), cold-start refers to the lack of sufficient interaction history for new users or items,
which makes it challenging to provide accurate recommendations. Similarly, in the context of GNNs, the
cold-start problem refers to performance in tasks involving cold nodes, which have few or no neighbors in
the graph. As illustrated in Figure 1, GNNs usually struggle with cold nodes in LP tasks due to unreliable
or missing neighbors’ information. In this work, we focus on enhancing LP performance for cold nodes,
specifically predicting the presence of links between a cold node v ∈ Vcold and target node u ∈ V (w.l.o.g.).
Additionally, we aim to maintain satisfactory LP performance for warm nodes. Prior studies on cold-start
problems (Tang et al., 2020b; Liu et al., 2021; Zheng et al., 2021) inspired this research direction.

3 Node Duplication to Improve Cold-start Performance

Algorithm 1: NodeDup.
Require: Graph G = {V, E, X}, Supervision Y, AGG, UPDATE, GNNs

Layer L, DECODER, Supervised loss function Lsup.
1: # Augment the graph by duplicating cold-start nodes Vcold.
2: Identify cold node set Vcold based on the node degree.
3: (Step I) Duplicate all cold nodes to generate the augmented node set

V ′ = V ∪ Vcold, whose node feature matrix is then X′ ∈ R(N+|Vcold|)×F .
4: (Step II) Add an edge between each cold node v ∈ Vcold and its

duplication v′, then get the augmented edge set
E ′ = E ∪ {evv′ : ∀v ∈ Vcold}.

5: (Step III) Add the augmented edges into the training set and get
Y ′ = Y ∪ {yvv′ = 1 : ∀v ∈ Vcold}.

6: (Step IV) # End-to-end supervised training based on the
augmented graph G′ = {V ′, E ′, X′}.

7: for l = 1 to L do
8: for v in V ′ do
9: h

′(l+1)
v = UPDATE

(
h

′(l)
v , AGG

(
{h

′(l)
u } : ∀euv ∈ E ′

))
10: end for
11: end for
12: for (i, j) in Y ′ do
13: ŷ′

ij = σ
(

DECODER(h′
i, h′

j)
)

14: end for
15: Loss =

∑
(i,j)∈Y′ Lsup(ŷ′

ij , yij)

As described in Section 2, a model will not
see an isolated node unless it is randomly
sampled as a negative training edge for
another node in standard supervised LP
training. In the same vein, all the cold
nodes are strongly underrepresented in
the LP training, given their few or even no
directly connected neighbors. In light of
such observations, our proposed augmen-
tation technique is simple: we duplicate
under-represented cold nodes. By both
training and aggregating with the edges
connecting the cold nodes with their dupli-
cations, cold nodes are able to gain better
visibility in the training process, which al-
lows the GNN-based LP models to learn
better representations. In this section, we
introduce NodeDup in detail, followed by
comprehensive analyses of why it works
from different perspectives.
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3.1 Proposed Method

We summarize the entire process of NodeDup in Algorithm 1, where the key steps are broken down into four
simple stages: Step I: Duplicate all cold nodes to generate the augmented node set V ′ = V ∪ Vcold, whose
node feature matrix is then X′ ∈ R(N+|Vcold|)×F ; Step II: For each cold node v ∈ Vcold and its duplication
v′, add an edge between them and get the augmented edge set E ′ = E ∪ {evv′ : ∀v ∈ Vcold}; Step III: Include
the augmented edges into the training set and get Y ′ = Y ∪ {yvv′ = 1 : ∀v ∈ Vcold}; Step IV: Proceed with
the standard supervised LP training on the augmented graph G′ = {V ′, E ′, X′} with augmented training set
Y ′. Based on extensive experimental analysis, we choose to duplicate code nodes once. The impact of both
the type of duplicated nodes and the duplication frequency is further analyzed in Section 4.7.

Time Complexity. We discuss complexity of our method in terms of the training process on the augmented
graph. We use GSage (Hamilton et al., 2017) and inner product decoder as the default architecture when
demonstrating the following complexity (w.l.o.g). With the augmented graph, GSage has a complexity of
O(RL(N + |Vcold|)D2), where R represents the number of sampled neighbors for each node, L is the number
of GSage layers (Wu et al., 2020), and D denotes the size of node representations. In comparison to the
non-augmented graph, NodeDup introduces an extra time complexity of O(RL|Vcold|D2). For the inner
product decoder, we incorporate additionally |Vcold| positive edges and also sample |Vcold| negative edges into
the training process, resulting in the extra time complexity of the decoder as O(|Vcold|D). Given that all cold
nodes have few (R ≤ 2 in our experiments) neighbors, and GSage is also always shallow (so L is small) (Zhao
& Akoglu, 2019), the overall extra complexity introduced by NodeDup is O(|Vcold|D2 + |Vcold|D).

3.2 How does Node Duplication Help Cold-start LP?

In this subsection, we analyze how such a simple method can improve cold-start LP from two perspectives:
the neighborhood aggregation in GNNs and the supervision signal during training, in comparison to
self-loops in GNNs (e.g., the additional self-connection in the normalized adjacency matrix by GCN).

Duplicated Cold Node

Cold Node

Neighbor Aggregation

Self Aggregation

GNN with Self-loop

𝑾𝟏
𝑾𝟐

𝑾𝟐

NodeDup

𝑾𝟏
𝑾𝟐

𝑾𝟐

𝑾𝟐

NodeDup(Isolated)

𝑾𝟏
𝑾𝟐

Augmented Neighbor 
Aggregation

Figure 2: Comparison of aggregation mechanisms:
GNN with Self-loop, NodeDup for Low-degree nodes,
and NodeDup for Isolated nodes.

Aggregation. As described in Equation (1), when
UPDATE(·) and AGG(·) do not share the transforma-
tion for node features, GNNs would have separate
weights for self-representation and neighbor represen-
tations, as shown in Figure 2. The separate weights
enable the neighbors and the node itself to play dis-
tinct roles in the UPDATE step. By leveraging this
property, with NodeDup, the model can leverage
the two “views” for each node: first, the existing
view is when a node is regarded as the anchor node
during message passing, and the additional view
is when that node is regarded as one of its neigh-
bors thanks to the duplicated node from NodeDup. Taking the official PyG (Fey & Lenssen, 2019)
implementation of GSage (Hamilton et al., 2017) as an example, it updates node representations using
h

(l+1)
v = W1h

(l)
v + W2m

(l)
v . Here, W1 and W2 correspond to the self-representation and neighbors’ represen-

tations, respectively. Without NodeDup, isolated nodes Viso have no neighbors. Thus, the representations
of all v ∈ Viso are only updated by h

(l+1)
v = W1h

(l)
v . With Step II in NodeDup, the updating process

for isolated node v becomes h
(l+1)
v = W1h

(l)
v + W2h

(l)
v = (W1 + W2)h(l)

v . It indicates that W2 is also
incorporated into the node updating process for isolated nodes, which offers an additional perspective for
isolated nodes’ representation learning. Similarly, GAT (Veličković et al., 2017) updates node representations
with h

(l+1)
v = αvvΘh

(l)
v +

∑
u∈Nv

αvuΘh
(l)
u , where αvu = exp(LeakyReLU(a⊤[Θh(l)

v ||Θh(l)
u ]))∑

i∈Nv∪v
exp(LeakyReLU(a⊤[Θh

(l)
v ||Θh

(l)
i

]))
. Attention

scores in a partially correspond to the self-representation hv and partially to neighbors’ representation
hu. In this case, neighbor information offers a different perspective compared to self-representation. Such
“multi-view” enriches the representations learned for the isolated nodes in a similar way to how ensemble
methods work (Allen-Zhu & Li, 2020). Apart from addressing isolated nodes, the same mechanism and
multi-view perspective also apply to Low-degree nodes.
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𝐺𝑡: Graph Learned 
by Teacher GNN

𝐺𝑜: Original Graph

SP

Student GNN
KD 

Student GNN
SP

≈

GNN
SP

Self-distillation Whole graph duplication NodeDup

KD: knowledge distillation      SP: supervised training  

GNN
SP

Figure 5: Comparing NodeDup to self-distillation. The self-distillation process can be approximated by
training the student GNN on an augmented graph, which combines Go, Gt, and edges connecting corresponding
nodes in the two graphs. This process can be further improved by replacing Gt with Go to explore the whole
graph duplication. NodeDup is a lightweight variation of it.

Duplicated Cold Node

Cold Node

GNN with Self-loop NodeDup NodeDup(Isolated)

Positive Supervision

Augmented Positive Supervision

Figure 3: Comparison of supervision mechanisms.

Supervision. In LP tasks, edges not only facilitate aggre-
gation but also act as positive supervised training signals,
as depicted in Figure 3. Cold nodes, which typically have
few or no positive training edges, are particularly sus-
ceptible to out-of-distribution (OOD) issues (Wu et al.,
2022), especially in the case of Isolated nodes. Unlike
normal self-loops and the self-loops introduced in previous
works (Cai et al., 2019; Wang et al., 2020), where self-loops
are solely for aggregation, the edges added by NodeDup
also serve as positive supervision signals for cold nodes through Step III of Algorithm 1. By leveraging these
additional signals, cold nodes can learn more robust and higher quality embeddings, ultimately improving
their performance in LP tasks.
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GSage
NodeDup w/o Step III
NodeDup w/o Step II
NodeDup

Figure 4: Ablation study of NodeDup on Physics.
Both Step II and Step III, introduced in Algorithm 1,
play an important role in performance improvements
of NodeDup.

Ablation Study. Figure 4 shows an ablation study
on these two designs where NodeDup w/o Step III
indicates only using the augmented nodes and edges
in aggregation but not supervision; NodeDup w/o
Step II indicates only using the augmented edges
in supervision but not aggregation. We can observe
that using augmented nodes and edges either in su-
pervision or aggregation can significantly improve
the LP performance on Isolated nodes. By combin-
ing them, NodeDup results in larger improvements.
Besides, NodeDup also achieves improvements on
Low-degree nodes while not sacrificing the perfor-
mance on Warm nodes.

3.3 Further Insight: Understanding NodeDup through Self-distillation

As introduced in Section 3.2, the effectiveness of NodeDup arises from leveraging diverse perspectives or
signals obtained during both the aggregation and supervision steps. Allen-Zhu & Li (2020) showed that the
success of self-distillation, similar to our method, contributes to ensemble learning by providing models with
different perspectives on the knowledge. Building on this insight, we show an interesting interpretation of
NodeDup, positioning it as a simplified and enhanced adaptation of self-distillation for LP tasks for cold
nodes, as illustrated in Figure 5, in which we draw a connection between self-distillation and NodeDup.
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Figure 6: Performance with different training strate-
gies introduced in Figure 5 on Citeseer. NodeDup
achieves better performance across all settings.

In self-distillation, a teacher GNN is first trained
to learn the node representations Ht from original
features X through supervised training for LP tasks
on the original graph. We denote the original graph
as Go, and we denote the graph, where we replace
the node features in Go with Ht, as Gt in Figure 5.
The student GNN is then initialized with random
parameters and trained with the sum of two loss func-
tions: LSD = LSP + LKD, where LSP denotes the
supervised training loss with Go and LKD denotes
the knowledge distillation loss with Gt. Figure 6
shows that self-distillation outperforms the teacher
GNN across all settings.

The effect of LKD is similar to that of creating an additional link connecting nodes in Go to their corresponding
nodes in Gt when optimizing with LSP . This is illustrated by the red dashed line in Figure 5. For better
clarity, we show the similarities between these two when we use the inner product as the decoder for
LP with the following example. Given a node v with normalized teacher embedding ht

v and normalized
student embedding hv, the additional loss term that would be added for distillation with cosine similarity is
LKD = − 1

N

∑
v∈V hv · ht

v. On the other hand, for the dashed line edges in Figure 5, we add an edge between
the node v and its corresponding node v′ in Gt with embedding ht

v′ . When trained with an inner product
decoder and binary cross-entropy loss, it results in the following: LSP = − 1

N

∑
yvv′ log(hv · ht

v′) + (1 −
yvv′) log(1 − hv · ht

v′). Since we always add the edge (v, v′), we know yvv′ = 1, and can simplify the loss as
follows: LSP = − 1

N

∑
log(hv · ht

v′). Here, we can observe that LKD and LSP are positively correlated as
log(·) is a monotonically increasing function.

To further improve this step and mitigate potential noise in Gt, we explore a whole graph duplication
technique, where Gt is replaced with an exact duplicate of Go to train the student GNN. The results in
Figure 6 demonstrate significant performance enhancement achieved by whole graph duplication compared
to self-distillation. NodeDup is a lightweight variation of the whole graph duplication technique, which
focuses on duplicating only the cold nodes and adding edges connecting them to their duplicates. From the
results, it is evident that NodeDup consistently outperforms the teacher GNN and self-distillation in all
scenarios. Additionally, NodeDup exhibits superior performance on isolated nodes and is much more efficient
compared to the whole graph duplication approach.

3.4 NodeDup(L): An Efficient Variant of NodeDup

SupervisionAggregation

𝑾𝟏
𝑾𝟐

𝑾𝟐
𝑾𝟐

Cold Node

Neighbor Aggregation

Augmented Neighbor 
Aggregation

Self Aggregation

Positive Supervision

Augmented Positive
Supervision

Figure 7: Aggregation and supervision
mechanisms of NodeDup(L).

Inspired by the above analysis, we further introduce a lightweight
variant of NodeDup for better efficiency, NodeDup(L). To provide
above-described “multi-view” information as well as the supervision
signals for cold nodes, NodeDup(L) simply add additional self-loop
edges for the cold nodes into the edge set E , that is, E ′ = E ∪
{evv : ∀v ∈ Vcold}. During aggregation, NodeDup(L) intentionally
incorporates the self-representation h

(l)
v into the aggregated neighbors’

representation m
(l)
v through these additional edges. This allows the

weight matrix W2 to provide an extra “view” of h
(l)
v when updating

h
(l+1)
v . For supervision, the added edges also serve as positive training

samples for cold nodes. As demonstrated in Figure 7, NodeDup(L)
preserves the two essential designs of NodeDup while avoiding the addition of extra nodes, which further
saves time and space complexity. Moreover, NodeDup differs from NodeDup(L) since each duplicated
node in NodeDup will provide another view for itself because of dropout layers, which leads to different
performance as shown in Section 4.2.
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4 Experiments

4.1 Experimental Settings

Datasets and Evaluation Settings. We conduct experiments on 7 benchmark datasets: Cora, Citeseer,
CS, Physics, Computers, Photos and IGB-100K, with their details specified in Appendix B. We randomly
split edges into training, validation, and testing sets. We allocated 10% for validation and 40% for testing in
Computers and Photos, 5%/10% for testing in IGB-100K, and 10%/20% in other datasets. We follow the
standard evaluation metrics used in the Open Graph Benchmark (Hu et al., 2020) for LP, in which we rank
missing references higher than 500 negative reference candidates for each node. The negative references are
randomly sampled from nodes not connected to the source node. We use Hits@10 as the main evaluation
metric (Han et al., 2022). We follow Guo et al. (2022) and Shiao et al. (2022) for the inductive settings, where
new nodes appear after the training process. Additionally, results for large-scale datasets and heterophilic
graphs are presented in Appendix C.3 and Appendix C.4.

Baselines. Both NodeDup and NodeDup(L) are flexible to integrate with different GNN encoder
architectures and LP decoders. For our experiments, we use GSage (Hamilton et al., 2017) encoder and the
inner product decoder as the default base LP model. To comprehensively evaluate our work, we compare
NodeDup against three categories of baselines. (1) Base LP models. (2) Cold-start methods: TailGNN (Liu
et al., 2021) and Cold-brew (Zheng et al., 2021) primarily aim to enhance the performance on cold nodes. We
also compared with Imbalance (Lin et al., 2017), viewing cold nodes as an issue of the imbalance concerning
node degrees. (3) Graph data augmentation methods: Augmentation frameworks including DropEdge (Rong
et al., 2019), TuneUP (Hu et al., 2022), and LAGNN (Liu et al., 2022b) typically improve the performance
while introducing additional preprocessing or training time. Performance comparisons with heuristic methods
and additional cold-start methods (e.g. Upsampling, DegFairGNN (Liu et al., 2023), SAILOR (Liao et al.,
2023) and GRADE (Wang et al., 2022)) are in Appendix C.6 and Appendix C.7.

4.2 Performance Compared to Base GNN LP Models

Isolated and Low-degree Nodes. We compare our methods with base GNN LP models that consist of a
GNN encoder in conjunction with an inner product decoder and are trained with a supervised loss. From
Table 1, we observe consistent improvements for both NodeDup(L) and NodeDup over the base GSage
model across all datasets, particularly in the Isolated and Low-degree node settings. Notably, in the Isolated
setting, NodeDup achieves an impressive 29.6% improvement, on average, across all datasets. These findings
provide clear evidence that our methods effectively address the issue of sub-optimal LP performance on cold
nodes.

Warm Nodes and Overall. It is encouraging to see that NodeDup(L) consistently outperforms GSage
across all the datasets in the Warm nodes and Overall settings. NodeDup also outperforms GSage in 13
out of 14 cases under both settings. These findings support the notion that our methods can effectively
maintain and enhance the performance of Warm nodes. Why? The superior performance on Warm nodes
is directly tied to our focus on LP tasks, where we evaluate node pair outcomes. Given the substantial
number of Warm-Cold node pairs under prediction, these outcomes contribute to the overall performance
metrics for both Warm node prediction. Better learning of Cold nodes thus boosts Cold-Warm node pairs
link prediction performance, which subsequently elevates the prediction accuracy for Warm nodes. A more
detailed experimental analysis is provided in Section 4.8.

NodeDup vs. NodeDup(L). Furthermore, we observe that NodeDup achieves greater improvements over
NodeDup(L) for Isolated nodes. However, NodeDup(L) outperforms NodeDup on 6 out of 7 datasets for
Warm nodes. The additional improvements achieved by NodeDup for Isolated nodes can be attributed to
the extra view provided to cold nodes through node duplication during aggregation. On the other hand, the
impact of node duplication on the original graph structure likely affects the performance of Warm nodes,
which explains the superior performance of NodeDup(L) in this setting compared to NodeDup.
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Table 1: Performance compared with base GNN and baselines for cold-start methods. The best result is bold,
and the runner-up is underlined. NodeDup and NodeDup(L) outperform GSage and cold-start baselines
almost all the cases.

GSage Imbalance TailGNN Cold-brew NodeDup(L) NodeDup

Cora

Isolated 32.20±3.58 34.51±1.11 36.95±1.34 28.17±0.67 39.76±1.32 44.27±3.82

Low-degree 59.45±1.09 59.42±1.21 61.35±0.79 57.27±0.63 62.53±1.03 61.98±1.14

Warm 61.14±0.78 59.54±0.46 60.61±0.90 56.28±0.81 62.07±0.37 59.07±0.68

Overall 58.31±0.68 57.55±0.67 59.02±0.71 54.44±0.53 60.49±0.49 58.92±0.82

Citeseer

Isolated 47.13±2.43 46.26±0.86 37.84±3.36 37.78±4.23 52.46±1.16 57.54±1.04

Low-degree 61.88±0.79 61.90±0.60 62.06±1.73 59.12±9.97 73.71±1.22 75.50±0.39

Warm 71.45±0.52 71.54±0.86 71.32±1.83 65.12±7.82 74.99±0.37 74.68±0.67

Overall 63.77±0.83 63.66±0.43 62.02±1.89 58.03±7.72 70.34±0.35 71.73±0.47

CS

Isolated 56.41±1.61 46.60±1.66 55.70±1.38 57.70±0.81 65.18±1.25 65.87±1.70

Low-degree 75.95±0.25 75.53±0.21 73.60±0.70 73.99±0.34 81.46±0.57 81.12±0.36

Warm 84.37±0.46 83.70±0.46 79.86±0.35 78.23±0.28 85.48±0.26 84.76±0.41

Overall 83.33±0.42 82.56±0.40 79.05±0.36 77.63±0.23 84.90±0.29 84.23±0.39

Physics

Isolated 47.41±1.38 55.01±0.58 52.54±1.34 64.38±0.85 65.04±0.63 66.65±0.95

Low-degree 79.31±0.28 79.50±0.27 75.95±0.27 75.86±0.10 82.70±0.22 84.04±0.22

Warm 90.28±0.23 89.85±0.09 85.93±0.40 78.48±0.14 90.44±0.23 90.33±0.05

Overall 89.76±0.22 89.38±0.09 85.48±0.38 78.34±0.13 90.09±0.22 90.03±0.05

Computers

Isolated 9.32±1.44 10.14±0.59 10.63±1.59 9.75±1.24 17.11±1.62 19.62±2.63

Low-degree 57.91±0.97 56.19±0.82 51.21±1.58 49.03±0.94 62.14±1.06 61.16±0.92

Warm 66.87±0.47 65.62±0.21 62.77±0.44 57.52±0.28 68.02±0.41 68.10±0.25

Overall 66.67±0.47 65.42±0.20 62.55±0.45 57.35±0.28 67.86±0.41 67.94±0.25

Photos

Isolated 9.25±2.31 10.80±1.72 13.62±1.00 12.86±2.58 21.50±2.14 17.84±3.53

Low-degree 52.61±0.88 50.68±0.57 42.75±2.50 43.14±0.64 55.70±1.38 54.13±1.58

Warm 67.64±0.55 64.54±0.50 61.63±0.73 58.06±0.56 69.68±0.87 68.68±0.49

Overall 67.32±0.54 64.24±0.49 61.29±0.75 57.77±0.56 69.40±0.86 68.39±0.48

IGB-100K

Isolated 75.92±0.52 77.32±0.79 77.29±0.34 82.31±0.30 87.43±0.44 88.04±0.20

Low-degree 79.38±0.23 79.19±0.09 80.57±0.14 83.84±0.16 88.37±0.24 88.98±0.17

Warm 86.42±0.24 86.01±0.19 85.35±0.19 82.44±0.21 88.54±0.31 88.28±0.20

Overall 84.77±0.21 84.47±0.14 84.19±0.18 82.68±0.17 88.47±0.28 88.39±0.18

4.3 Performance Compare to Cold-start Methods

Table 1 presents the LP performance of various cold-start baselines. For both Isolated and Low-degree nodes,
we consistently observe substantial improvements of our NodeDup and NodeDup(L) methods compared to
other cold-start baselines. Specifically, NodeDup and NodeDup(L) achieve 38.49% and 34.74% improvement
for Isolated nodes on average across all datasets, respectively.

In addition, our methods consistently outperform cold-start baselines for Warm nodes across all the datasets,
where NodeDup(L) and NodeDup achieve 6.76% and 7.95% improvements on average, respectively. This
shows that our methods can successfully overcome issues with degrading performance on Warm nodes in
cold-start baselines. Further analyses with other cold-start methods and efficiency comparisons can be found
in Appendix C.7 and Appendix C.8.

4.4 Performance Compared to Augmentation Methods

Effectiveness Comparison. Since NodeDup and NodeDup(L) use graph data augmentation techniques,
we compare them to other data augmentation baselines. The performance and time consumption results for
Citeseer, Physics, and IGB-100K are shown in Figure 8, with additional datasets in Appendix C.9 due to
space constraints. From Figure 8, NodeDup consistently outperforms all the graph augmentation baselines
for Isolated and Low-degree nodes across all three datasets, while NodeDup(L) outperforms baselines in
17/18 cases for Isolated and Low-degree nodes. Both NodeDup and NodeDup(L) also perform on par or
above baselines for Warm nodes.

Efficiency Comparison. Augmentation methods often come with the trade-off of adding additional run
time before or during model training. For example, LAGNN (Liu et al., 2022b) requires extra preprocessing

8



Published in Transactions on Machine Learning Research (08/2025)

40

60

80

Isolated Low-degree Warm Overall

H
its
@
10

GSage Dropedge LAGNN TuneUP NodeDup(L) NodeDup

0.0 5.20.0 6.2

97.7

5.60.0 9.00.1 5.60.2 5.9
0

60

120

Preprocess Train

Ti
m
e(
s)

0

163

0

196233 216

0

360

8

165

6

173

0

200

400

Preprocess Train

Ti
m
e(
s)

40

60

80

Isolated Low-degree Warm Overall

H
its
@
10

70

80

90

Isolated Low-degree Warm Overall

H
its
@
10

Evaluated Nodes

0

86

0

134
86

128

0

217

6

101

10

132

0

100

200

300

Preprocess Train

Ti
m
e(
s)

Evaluated Time

GSage Dropedge LAGNN TuneUp NodeDup(L) NodeDup

Citeseer

IGB-100K

Physics

Figure 8: Performance and runtime comparisons of different augmentation methods. The left histograms show
the performance results, and the right histograms show the preprocessing and training time consumption of
each method. Our methods consistently achieve significant improvements in both performance for Isolated
and Low-degree node settings and runtime efficiency over baselines.

time to train the generative model prior to GNN training. It also takes additional time to generate extra
features for each node during training. Although Dropedge (Rong et al., 2019) and TuneUP (Hu et al., 2022)
are free of preprocessing, they require additional time to drop edges in each training epoch compared to base
GNN training. Furthermore, the two-stage training employed by TuneUP doubles the training time compared
to one-stage training methods. For NodeDup methods, duplicating nodes and adding edges is remarkably
swift and consumes significantly less preprocessing time than other augmentation methods. As an example,
NodeDup(L) and NodeDup are 977.0× and 488.5× faster than LAGNN in preprocessing Citeseer,
respectively. We also observe that NodeDup(L) has the least training time among all augmentation methods
and datasets, while NodeDup also requires less training time in 8/9 cases. Additionally, NodeDup(L)
achieves significant efficiency benefits compared to NodeDup in Figure 8, especially when the number of
nodes in the graph increases substantially. Taking the IGB-100K dataset as an example, NodeDup(L) is
1.3× faster than NodeDup for the entire training process.

4.5 Performance under the Inductive Setting

Table 2: Performance in inductive settings. The best
result is bold, and the runner-up is underlined. Our
methods consistently outperform GSage.

GSage NodeDup(L) NodeDup

Citeseer

Isolated 58.42±0.49 62.42±1.88 62.94±1.91

Low-degree 67.75±1.06 69.93±1.18 72.05±1.23

Warm 72.98±1.15 75.04±1.03 74.40±2.43

Overall 66.98±0.61 69.65±0.83 70.26±1.16

Physics

Isolated 85.62±0.23 85.94±0.15 86.90±0.35

Low-degree 80.87±0.43 81.23±0.56 85.56±0.25

Warm 90.22±0.36 90.37±0.25 90.54±0.14

Overall 89.40±0.33 89.57±0.23 89.98±0.13

IGB-100K

Isolated 84.33±0.87 92.94±0.11 93.95±0.06

Low-degree 93.19±0.06 93.33±0.11 94.00±0.09

Warm 90.76±0.13 91.21±0.07 91.20±0.08

Overall 90.31±0.18 91.92±0.05 92.21±0.04

Under the inductive setting (Guo et al., 2022; Shiao
et al., 2022), which closely resembles real-world LP
scenarios, the presence of new nodes after the train-
ing stage adds an additional challenge compared to
the transductive setting. We evaluate and present the
effectiveness of our methods under this setting in Ta-
ble 2 for Citeseer, Physics, and IGB-100K datasets.
Additional results for other datasets can be found
in Appendix C.10. In Table 2, we observe that our
methods consistently outperform base GSage across
all of the datasets. We also observe significant per-
formance improvements of our methods on Isolated
nodes, where NodeDup and NodeDup(L) achieve
5.50% and 3.57% improvements averaged across the
three datasets, respectively. Additionally, NodeDup
achieves 5.09% improvements on Low-degree nodes. NodeDup leads to more pronounced improvements on
Low-degree/Isolated nodes, making it particularly beneficial for the inductive setting.
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Table 3: Performance with different encoders (inner product as the decoder). The best result for each encoder
is bold, and the runner-up is underlined. Our methods consistently outperform the base models, particularly
for Isolated and Low-degree nodes.

GAT NodeDup(L) NodeDup JKNet NodeDup(L) NodeDup

Citeseer

Isolated 37.78±2.36 38.95±2.75 44.04±1.03 37.78±0.63 49.06±0.60 55.15±0.87

Low-degree 58.04±2.40 61.93±1.66 66.73±0.96 60.74±1.18 71.78±0.64 75.26±1.16

Warm 56.37±2.15 64.55±1.74 66.61±1.67 71.61±0.76 74.66±0.47 75.81±0.89

Overall 53.42±1.59 58.89±0.89 62.41±0.78 61.73±0.57 68.91±0.38 71.75±0.82

Physics

Isolated 38.19±1.23 39.95±1.48 45.89±2.82 42.57±1.93 55.47±2.25 61.11±2.27

Low-degree 74.19±0.31 74.77±0.46 76.36±0.25 75.36±0.23 79.55±0.21 81.14±0.28

Warm 85.84±0.32 86.02±0.45 85.84±0.15 88.24±0.32 89.42±0.16 89.24±0.16

Overall 85.27±0.30 85.47±0.45 85.37±0.14 87.64±0.31 88.96±0.15 88.87±0.15

IGB-100K

Isolated 75.87±0.48 78.17±0.58 80.18±0.31 69.29±0.73 86.60±0.46 86.85±0.41

Low-degree 77.05±0.15 78.50±0.31 81.00±0.12 76.90±0.27 86.94±0.15 87.65±0.20

Warm 81.40±0.07 81.95±0.25 81.19±0.20 84.93±0.30 87.41±0.13 86.19±0.12

Overall 80.42±0.07 81.19±0.25 81.11±0.19 82.91±0.28 87.29±0.13 86.47±0.13

4.6 Performance with Different Encoders/Decoders

As a simple plug-and-play augmentation method, NodeDup can work with different GNN encoders and LP
decoders. In Tables 3 and 4, we present results with GAT (Veličković et al., 2017) and JKNet (Xu et al.,
2018) as encoders, along with a MLP decoder. Due to the space limit, we only report the results of three
datasets here and leave the remaining in Appendix C.11. When applying NodeDup to base LP training,
with GAT or JKNet as the encoder and inner product as the decoder, we observe significant performance
improvements across the board. Regardless of the encoder choice, NodeDup consistently outperforms the
base models, particularly for Isolated and Low-degree nodes. From Appendix C.11, we also observe the
performance improvements of NodeDup with GCN (Kipf & Welling, 2016a), GraphTransformer (Dwivedi &
Bresson, 2020) as encoders.

Table 4: LP performance with MLP decoder (GSage
as the encoder). Our methods outperform the base
model.

MLP-Dec. NodeDup(L) NodeDup

Citeseer

Isolated 17.16±1.14 37.84±3.06 51.17±2.19

Low-degree 63.82±1.58 68.49±1.19 71.98±1.29

Warm 72.93±1.25 75.33±0.54 75.72±0.55

Overall 59.49±1.21 66.07±0.74 69.89±0.65

Physics

Isolated 11.59±1.88 60.25±2.54 59.50±1.87

Low-degree 76.37±0.64 81.74±0.77 82.58±0.79

Warm 91.54±0.33 91.96±0.36 91.59±0.22

Overall 90.78±0.33 91.51±0.38 91.13±0.23

IGB-100K

Isolated 3.51±0.32 82.71±1.05 82.02±0.73

Low-degree 75.25±0.49 85.96±0.42 86.04±0.26

Warm 85.06±0.08 87.89±0.13 86.87±0.48

Overall 80.16±0.16 87.35±0.21 86.54±0.40

In Table 4, we present the results of our methods
applied to the base LP training, where GSage serves
as the encoder and MLP as the decoder. Regardless
of the decoder, we observe better performance with
our methods. These improvements are significantly
higher compared to the improvements observed with
the inner product decoder. The primary reason for
this discrepancy is the inclusion of additional su-
pervised training signals for isolated nodes in our
methods, as discussed in Section 3.2. These signals
play a crucial role in training the MLP decoder,
making it more responsive to the specific challenges
presented by isolated nodes.

Furthermore, we apply NodeDup to SEAL (Zhang &
Chen, 2018), a subgraph-based LP model, and observe notable performance gains, as shown in Appendix C.11,
demonstrating the broad applicability of our method across different GNN models and training paradigms.

4.7 Influence of the Duplication Frequency and Duplicated Node Types in NodeDup

In our experiments, we duplicate the cold nodes once and add one edge for each cold node in NodeDup.
Figure 9 presents the results of our ablation study on Citeseer dataset, which examines how varying the
duplication frequency and the types of duplicated nodes affect the performance of NodeDup across the
Isolated, Low-degree, and Overall settings. The numbers in each block represent the performance differences
relative to the baseline of duplicating cold nodes once. From the results, we observe that increasing the
duplication frequency does not consistently lead to performance improvements across all settings. Notably,
duplicating all nodes multiple times significantly enhances the performance of Isolated nodes. However, this
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Figure 9: Ablation study on duplication frequency and node types of NodeDup. (a), (b), (c) show the
performance for Isolated nodes, Low-degree nodes, and Overall settings, respectively. The values in each
block represent the performance differences compared to the baseline setting of duplicating cold nodes once.

Table 5: Distribution and AUC performance of testing Warm-Warm and Warm-Cold links. NodeDup
improves Warm-Cold link performance while maintaining Warm-Warm link performance.

Warm-Warm Warm-Cold
Number GSage NodeDup(L) NodeDup Number GSage NodeDup(L) NodeDup

Cora 157738 94.92±0.31 95.17±0.19 95.18±0.18 16759 77.06±1.40 81.41±1.18 80.51±1.72

Citeseer 63266 97.21±0.09 97.06±0.21 97.02±0.12 24020 85.40±0.78 87.96±0.79 88.40±0.92

CS 4209161 98.31±0.03 98.30±0.02 98.42±0.02 91458 87.92±0.19 91.47±0.35 90.44±0.84

Physics 11462743 99.01±0.01 99.01±0.02 99.02±0.00 103174 86.21±0.33 89.94±0.31 90.23±0.51

Photos 2984253 97.85±0.06 98.03±0.04 97.87±0.02 104737 59.80±1.33 68.11±0.43 64.32±0.73

Computers 5417165 97.58±0.07 97.60±0.08 97.54±0.09 217090 46.49±0.75 57.32±0.99 57.63±0.49

IGB-100K 6899924 98.70±0.00 98.71±0.02 98.64±0.01 1372994 97.14±0.10 98.63±0.42 98.23±0.06

approach also introduces a large number of isolated nodes into the graph, which negatively impacts the
overall performance. Consequently, duplicating only cold nodes once emerges as the most effective strategy,
as it consistently maintains strong performance across all settings. Further analysis of the impact of different
duplicated node types is provided in Appendix C.2.

4.8 Analyzing Performance Gains of NodeDup on Warm Nodes

To better understand the performance improvements of NodeDup on Warm nodes, we first analyzed the
distribution of Warm-Warm and Warm-Cold links in the testing set. Our analysis reveals that, across all
datasets, the number of Warm-Warm links consistently exceeds that of Warm-Cold links, as shown in Table 5.
This observation indicates that Warm-Cold links do not overwhelmingly influence the overall performance of
Warm nodes. To further investigate, we conducted experiments comparing the performance of our method on
these two types of links. The results demonstrate that our approach consistently enhances performance on
Warm-Cold links while maintaining strong performance on Warm-Warm links. These findings confirm that
our method does not negatively impact the learning ability of Warm nodes. Instead, the observed performance
gains primarily stem from improved learning on Cold nodes, as previously discussed in Section 4.2.

5 Conclusion

GNNs in LP encounter difficulties when dealing with cold nodes that lack sufficient or absent neighbors. To
address this challenge, we presented a simple yet effective augmentation method (NodeDup) specifically
tailored for the cold-start LP problem, which can effectively enhance the prediction capabilities of GNNs for
cold nodes while maintaining overall performance. Extensive evaluations demonstrated that both NodeDup
and its lightweight variant, NodeDup(L), consistently outperformed baselines on both cold node and warm
node settings across 7 benchmark datasets. NodeDup also achieved better runtime efficiency compared to
the augmentation baselines.
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A Related Work

LP with GNNs. Over the past few years, GNN architectures (Kipf & Welling, 2016a; Gilmer et al.,
2017; Hamilton et al., 2017; Veličković et al., 2017; Xu et al., 2018) have gained significant attention and
demonstrated promising outcomes in LP tasks. There are two primary approaches to applying GNNs in LP.
The first approach involves a node-wise encoder-decoder framework, which we discussed in Section 2. The
second approach reformulates LP tasks as enclosing subgraph classification tasks (Zhang & Chen, 2018; Cai &
Ji, 2020; Cai et al., 2021; Dong et al., 2022). Instead of directly predicting links, these methods perform graph
classification tasks on the enclosing subgraphs sampled around the target link. These methods can achieve
even better results compared to node-wise encoder-decoder frameworks by assigning node labels to indicate
different roles within the subgraphs. However, constructing subgraphs poses challenges in terms of efficiency
and scalability, requiring substantial computational resources. Our work focuses on the encoder-decoder
framework for LP, circumventing the issues associated with subgraph construction.

Methods for Cold-start Nodes. Recently, several GNN-based methods (Wu et al., 2019; Liu et al., 2020;
Tang et al., 2020b; Liu et al., 2021; Zheng et al., 2021) have explored degree-specific transformations to
address robustness and cold-start node issues. Tang et al.(Tang et al., 2020b) introduced a degree-related
graph convolutional network to mitigate degree-related bias in node classification tasks. Liu et al.(Liu et al.,
2021) proposed a transferable neighborhood translation model to address missing neighbors for cold-start
nodes. Zheng et al.(Zheng et al., 2021) tackled the cold-start nodes problem by recovering missing latent
neighbor information. These methods require cold-start-node-specific architectural components, unlike our
approach, which does not necessitate any architectural modifications. Additionally, other studies have focused
on long-tail scenarios in various domains, such as cold-start recommendation(Chen et al., 2020; Lu et al.,
2020; Hao et al., 2021). Imbalance tasks present another common long-tail problem, where there are long-tail
instances within small classes (Lin et al., 2017; Ren et al., 2020; Tan et al., 2020; Kang et al., 2019; Tang et al.,
2020a). Approaches like (Lin et al., 2017; Ren et al., 2020; Tan et al., 2020) address this issue by adapting the
loss for different samples. However, due to the different problem settings, it is challenging to directly apply
these methods to our tasks. We only incorporate the balanced cross entropy introduced by Lin et al. (Lin
et al., 2017) as one of our baselines. In addition to these one-shot training methods, many recommendation
studies (Kirkpatrick et al., 2017; Xu et al., 2020; Zhou & Cao, 2021; Valkanas et al., 2024) have addressed the
issue of incorporating new nodes through incremental learning frameworks, where new nodes are continually
added into the training process and specific strategies are designed to alleviate forgetting previous knowledge
(i.e., warm nodes or old classes).

Graph Data Augmentation. Graph data augmentation expands the original data by perturbing or
modifying the graphs to enhance the generalizability of GNNs (Zhao et al., 2022a; Ding et al., 2022). Existing
methods primarily focus on semi-supervised node-level tasks(Rong et al., 2019; Feng et al., 2020; Zhao et al.,
2021; Park et al., 2021) and graph-level tasks (Liu et al., 2022a; Luo et al., 2022). However, the exploration
of graph data augmentation for LP remains limited (Zhao et al., 2022b). CFLP (Zhao et al., 2022b) proposes
the creation of counterfactual links to learn representations from both observed and counterfactual links.
Nevertheless, this method encounters scalability issues due to the high computational complexity associated
with finding counterfactual links. Moreover, there exist general graph data augmentation methods (Liu et al.,
2022b; Hu et al., 2022) that can be applied to various tasks. LAGNN (Liu et al., 2022b) proposed to use a
generative model to provide additional neighbor features for each node. TuneUP (Hu et al., 2022) designs
a two-stage training strategy, which trains GNNs twice to make them perform well on both warm nodes
and cold-start nodes. These augmentation methods come with the trade-off of introducing extra runtime
either before or during the model training. Unlike TLC-GNN (Yan et al., 2021), which necessitates extracting
topological features for each node pair, and GIANT (Chien et al., 2021), which requires pre-training of the
text encoder to improve node features, our methods are more streamlined and less complex.

B Additional Datasets Details

This section provides detailed information about the datasets used in our experiments. We consider various
types of networks, including citation networks, collaboration networks, and co-purchase networks. The
datasets we utilize are as follows:

18



Published in Transactions on Machine Learning Research (08/2025)

Table 6: Detailed statistics of data splits under the transductive and inductive setting.
Transductive Setting

Datasets Original Graph Testing Isolated Testing Low-degree Testing Warm
#Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges

Cora 2,708 5,278 135 164 541 726 662 1,220
Citeseer 3,327 4,552 291 342 492 591 469 887
CS 18,333 163,788 309 409 1,855 2,687 10,785 29,660
Physics 34,493 495,924 275 397 2,062 3,188 25,730 95,599
Computers 13,752 491,722 218 367 830 1,996 11,887 194,325
Photos 7,650 238,162 127 213 516 1,178 6,595 93,873
IGB-100K 100,000 547,416 1,556 1,737 6,750 7,894 23,949 35,109

Inductive Setting

Datasets Original Graph Testing Isolated Testing Low-degree Testing Warm
#Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges

Cora 2,708 5,278 149 198 305 351 333 505
Citeseer 3,327 4,552 239 265 272 302 239 339
CS 18,333 163,788 1,145 1,867 1,202 1,476 6,933 13,033
Physics 34,493 495,924 2,363 5,263 1,403 1,779 17,881 42,548
Computers 13,752 491,722 1,126 4,938 239 302 9,235 43,928
Photos 7,650 238,162 610 2,375 169 212 5,118 21,225
IGB-100K 100,000 547,416 5,507 9,708 8,706 13,815 24,903 41,217

• Citation Networks: Cora and Citeseer originally introduced by Yang et al. (2016), consist of cita-
tion networks where the nodes represent papers and the edges represent citations between papers.
IGB-100K (Khatua et al., 2023) is a recently-released benchmark citation network with high-quality node
features and a large dataset size.

• Collaboration Networks: CS and Physics are representative collaboration networks. In these networks,
the nodes correspond to authors and the edges represent collaborations between authors.

• Co-purchase Networks: Computers and Photos are co-purchase networks, where the nodes represent
products and the edges indicate the co-purchase relationship between two products.

Why there are no OGB (Hu et al., 2020) datasets applied? OGB benchmarks that come with node
features, such as OGB-collab and OGB-citation2, lack a substantial number of isolated or low-degree nodes,
which makes it challenging to yield convincing results for experiments focusing on the cold-start problem.
This is primarily due to the split setting adopted by OGB, where the evaluation is centered around a set
of the most recent papers with high degrees. Besides, considering these datasets have their fixed splitting
settings based on time, it will lead to inconsistent problems to compared with the leaderboard results if we
use our own splitting method to ensure we have a reasonable number of isolated/low-degree nodes. Given
these constraints, we opted for another extensive benchmark dataset, IGB-100K (Khatua et al., 2023), to test
and showcase the effectiveness of our methods on large-scale graphs. We further conducted the experiments
on IGB1M, which are shown in Appendix C.3.

B.1 Transductive Setting

For the transductive setting, we randomly split the edges into training, validation, and testing sets based on
the splitting ratio specified in Section 4.1. The nodes in training/validation/testing are all visible during the
training process. However, the positive edges in validation/testing sets are masked out for training. After the
split, we calculate the degrees of each node using the validation graph. The dataset statistics are shown in
Table 6.
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Figure 10: Node Degree Distribution and LP Performance Distribution w.r.t Nodes Degrees showing reverse
trends on various datasets.

B.2 Inductive Setting

The inductive setting is considered a more realistic setting compared to the transductive setting, where new
nodes appear after the training process. Following the inductive setting introduced in Guo et al. (2022) and
Shiao et al. (2022), we perform node splitting to randomly sample 10% nodes from the original graph as the
new nodes appear after the training process. The remaining nodes are considered observed nodes during the
training. Next, we group the edges into three sets: observed-observed, observed-new, and new-new node pairs.
We select 10% of observed-observed, 10% of observed-new, and 10% of new-new node pairs as the testing
edges. We consider the remaining observed-new and new-new node pairs, along with an additional 10% of
observed-observed node pairs, as the newly visible edges for the testing inference. The datasets statistics are
shown in Table 6.

C Further Experimental Results

C.1 Selection of the threshold δ.

Our decision to set the threshold δ at 2 is grounded in data-driven analysis, as illustrated in Figure 1 and
Figure 10. These figures reveal that nodes with degrees not exceeding 2 consistently perform below the
average Hits@10 across all datasets, and higher than 2 will outperform the average results. Besides, our
choice aligns with methodologies in previous studies (Liu et al., 2020; 2021), where cold nodes are identified
using a fixed threshold across all the datasets. In addition, we conduct experiments with different thresholds
δ on Cora and Citeseer datasets. The results are shown in Table 7. Our findings were consistent across
different thresholds, with similar observations at δ = 1, δ = 2, and δ = 3. This indicates that our method’s
effectiveness is not significantly impacted by changes in this threshold.
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Table 7: Performance with different thresholds δ on Cora and Citeseer datasets.
δ = 1 δ = 2 δ = 3

Gsage NodeDup Gsage NodeDup Gsage NodeDup

Cora

Isolated 31.34±5.60 42.20±2.30 32.20±3.58 44.27±3.82 31.95±1.26 43.17±2.94

Low-degree 53.98±1.20 57.99±1.34 59.45±1.09 61.98±1.14 59.64±1.01 62.68±0.63

Warm 61.68±0.29 61.17±0.43 61.14±0.78 59.07±0.68 61.03±0.79 59.91±0.44

Overall 58.01±0.57 59.16±0.44 58.31±0.68 58.92±0.82 58.08±0.74 59.99±0.53

Citeseer

Isolated 47.25±1.82 56.49±1.72 47.13±2.43 57.54±1.04 47.31±2.17 56.90±1.12

Low-degree 54.10±0.85 71.09±0.47 61.88±0.79 75.50±0.39 62.97±0.83 75.45±0.40

Warm 72.41±0.35 74.57±1.04 71.45±0.52 74.68±0.67 73.57±0.46 75.02±0.84

Overall 64.27±0.45 70.53±0.91 63.77±0.83 71.73±0.47 64.05±0.42 71.80±0.40

C.2 Further analysis about the duplication node types

To make our analysis about the duplication node types more comprehensive, we conducted additional
experiments to evaluate different node duplication strategies under both the NodeDup and NodeDup(L)
settings. We present detailed experiments on the Citeseer dataset, where we duplicate different subsets of
nodes: isolated nodes, cold nodes, mid-warm nodes, warm nodes, random nodes, and all nodes. We report
the corresponding training time, memory usage, and performance across multiple evaluation subsets. The
results are summarized in Table 8.

From the table, we can observe that for both NodeDup and NodeDup(L), duplicating mid-warm and warm
nodes results in little to no performance improvement. Random duplication provides clear improvements
over both no duplication and warm node duplication, but remains less effective than cold node duplication.
Since random duplication and cold nodes duplication duplicate the same number of nodes, they incur similar
memory and training costs. Under the NodeDup setting, compared to cold nodes duplication, all nodes
duplication increases training time by approximately 32% (3.3s vs. 2.5s) and memory usage by approximately
35% (93.99MB vs. 69.46MB), while achieving only marginal additional performance gain (Low-degree Hits@10:
76.09 vs. 75.50). Under the NodeDup(L) setting, full duplication increases training time by approximately
14% (2.4s vs. 2.1s), while memory usage remains identical, again with limited additional performance gain
(Low-degree Hits@10: 75.32 vs. 74.99).

These results demonstrate that our proposed selective cold node duplication achieves most of the performance
improvement while significantly reducing both training time and memory cost compared to full duplication.
This further supports the practical advantage of our method under constrained compute budgets.

C.3 Performance on large-scale datasets

Table 9: Performance on the large-scale dataset. The
best result is bold. Our method consistently outper-
forms GSage on IGB1M.

GSage NodeDup

IGB1M

Isolated 82.10±0.06 87.81±0.40

Low-degree 84.73±0.06 90.84±0.03

Warm 89.98±0.02 91.31±0.02

Overall 89.80±0.02 91.29±0.02

As outlined in Section 3.1, our methods incur a min-
imal increase in time complexity compared to base
GNNs, with the increase being linearly proportional
to the number of cold nodes. This ensures scalabil-
ity. Besides, the effectiveness of our method is also
insensitive to dataset size. We extend our experi-
ments to the IGB1M dataset, featuring 1 million nodes
and 12 million edges. The findings, which we detail
in Table 9, affirm the effectiveness of our methods
in handling large-scale datasets, consistent with observations from smaller datasets.

C.4 Performance on heterophily datasets

We have conducted experiments on two heterophilic datasets (i.e., Chameleon (Pei et al., 2020) and Squirrel (Pei
et al., 2020)), with the results shown in Table 10. Our methods improve GNN performance across all settings
on these datasets. Specifically, NodeDup and NodeDup(L) enhance the performance of Isolated nodes by
9.9% and 23.5% on Chameleon, and by 20.2% and 32.0% on Squirrel.
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Table 8: Computation time, memory usage, and link prediction performance with different duplication nodes
of NodeDup and NodeDup(L) on Citeseer. "D_*" indicates duplication of "*" group nodes for one time.

NodeDup
Time(s) Memory(MB) Performance (Hits@10)
Training Node attributes Edges Isolated Low-degree Warm Overall

Supervised 1.8 47.00 0.14 47.13 61.88 71.45 63.77
D_Isolated 1.9 54.03 0.14 54.04 72.28 74.53 69.95
D_Cold 2.4 69.46 0.14 57.54 75.50 74.68 71.73
D_Mid-warm 2.2 55.83 0.14 46.93 61.34 71.84 63.75
D_Warm 2.2 57.53 0.14 47.49 62.20 71.54 63.99
D_Random 2.4 69.46 0.14 54.10 72.39 75.05 70.06
D_All 3.3 93.99 0.14 58.87 76.09 76.01 72.44

NodeDup(L)
Time(s) Memory(MB) Performance(Hits@10)
Training Node attributes Edges Isolated Low-degree Warm Overall

Supervised 1.8 47.00 0.14 47.13 61.88 71.45 63.77
D_Isolated 2.0 47.00 0.14 49.06 69.95 74.67 68.32
D_Cold 2.1 47.00 0.14 52.46 73.71 74.99 70.34
D_Mid-warm 2.2 47.00 0.14 46.05 61.57 72.30 63.88
D_Warm 2.1 47.00 0.14 46.53 61.86 71.77 63.82
D_Random 2.2 47.00 0.14 48.92 69.59 73.90 67.81
D_All 2.4 47.00 0.14 52.44 74.05 75.21 70.49

Table 10: Performance on heterophilic datasets. The best result for each dataset is bold.
GSage NodeDup(L) NodeDup

Chameleon

Isolated 24.91±6.75 30.76±4.02 27.37±2.88

Low-degree 79.09±1.21 80.11±0.68 80.91±0.41

Warm 94.00±0.23 94.01±0.12 93.68±0.44

Overall 92.77±0.19 92.88±0.10 92.57±0.44

Squirrel

Isolated 25.05±3.70 33.07±3.20 30.11±1.57

Low-degree 63.34±2.12 66.61±0.26 68.05±0.80

Warm 93.35±0.22 93.43±0.11 93.82±0.13

Overall 92.89±0.23 93.02±0.11 93.41±0.13
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Table 12: Performance compared with heuristic methods, Upsampling and DegFairGNN (Liu et al., 2023).
The best result is bold.

CN AA RA Upsampling DegFairGNN GSage NodeDup

Cora

Isolated 0.00 0.00 0.00 32.81±2.75 18.70±1.53 32.20±3.58 44.27±3.82

Low-degree 20.30 20.14 20.14 59.57±0.60 38.43±0.14 59.45±1.09 61.98±1.14

Warm 38.33 38.90 38.90 60.49±0.81 42.49±1.82 61.14±0.78 59.07±0.68

Overall 25.27 25.49 25.49 57.90±0.65 39.24±1.10 58.31±0.68 58.92±0.82

Citeseer

Isolated 0.00 0.00 0.00 46.88±0.45 15.50±1.27 47.13±2.43 57.54±1.04

Low-degree 26.86 27.00 27.00 62.32±1.57 45.06±0.96 61.88±0.79 75.50±0.39

Warm 37.30 39.02 39.02 71.33±1.35 55.47±1.08 71.45±0.52 74.68±0.67

Overall 30.81 31.85 31.85 63.81±0.81 44.58±1.03 63.77±0.83 71.73±0.47

CS

Isolated 0.00 0.00 0.00 49.63±2.24 17.93±1.35 56.41±1.61 65.87±1.70

Low-degree 39.60 39.60 39.60 75.62±0.13 49.83±0.68 75.95±0.25 81.12±0.36

Warm 72.73 72.74 72.72 83.40±0.73 61.72±0.37 84.37±0.46 84.76±0.41

Overall 69.10 69.11 69.10 82.34±0.64 60.20±0.37 83.33±0.42 84.23±0.39

Physics

Isolated 0.00 0.00 0.00 52.01±0.97 19.48±2.94 47.41±1.38 66.65±0.95

Low-degree 46.08 46.08 46.08 79.63±0.13 47.63±0.52 79.31±0.28 84.04±0.22

Warm 85.48 85.74 85.70 89.41±0.32 62.79±0.82 90.28±0.23 90.33±0.05

Overall 83.87 84.12 84.09 89.33±0.46 62.13±0.76 89.76±0.22 90.03±0.05

Computers

Isolated 0.00 0.00 0.00 11.36±0.72 9.36±1.81 9.32±1.44 19.62±2.63

Low-degree 28.31 28.31 28.31 58.23±0.88 18.90±0.81 57.91±0.97 61.16±0.92

Warm 59.67 63.50 62.84 67.07±0.49 31.44±2.25 66.87±0.47 68.10±0.25

Overall 59.24 63.03 62.37 66.87±0.48 31.27±2.22 66.67±0.47 67.94±0.25

Photos

Isolated 0.00 0.00 0.00 10.92±2.15 12.99±1.51 9.25±2.31 17.84±3.53

Low-degree 28.44 28.78 28.78 51.67±0.98 20.18±0.21 52.61±0.88 54.13±1.58

Warm 64.53 67.26 66.88 65.75±0.73 42.72±0.89 67.64±0.55 68.68±0.49

Overall 63.94 66.64 66.26 65.45±0.71 42.37±0.87 67.32±0.54 68.39±0.48

IGB-100K

Isolated 0.00 0.00 0.00 75.49±0.90 57.09±21.08 75.92±0.52 88.04±0.20

Low-degree 12.26 12.26 12.26 79.47±0.11 59.45±21.84 79.38±0.23 88.98±0.17

Warm 30.65 30.65 30.65 86.54±0.19 65.57±20.43 86.42±0.24 88.28±0.20

Overall 26.22 26.22 26.22 84.87±0.14 64.16±20.70 84.77±0.21 88.39±0.18

C.5 Performance on recommendation datasets

Table 11: Performance on the MovieLens. The
best result is bold. Our method consistently
outperforms GSage.

MovieLens_1M
GSage NodeDup(L) NodeDup

Isolated 0 3.08 5.38
Low_degree 30.7 35.07 37.69
Warm 41.79 44.64 45.52
Overall 41.71 44.56 45.78

To further evaluate the practical applicability of our
method to real-world recommendation scenarios, we fol-
lowed the approach introduced in KGCN (Huang et al.,
2021) to construct a movie-movie graph, where two movies
are connected if they received high ratings from the same
user. This graph is then used to recommend similar movies
to users. This setup forms an item-based collaborative
filtering recommendation task, allowing us to apply our
methods. The results is shown in Table 11. Compared to
the baseline, both NodeDup and NodeDup(L) achieve
consistent improvements, particularly on low-degree and isolated nodes, where these cold-start items often
limits recommendation accuracy.

C.6 Performance compared with heuristic methods

We compare our method with traditional link prediction baselines, such as common neighbors (CN), Adamic-
Adar(AA), Resource allocation (RA). The results are shown in Table 12. We observe that NodeDup
can consistently outperform these heuristic methods across all the datasets, with particularly significant
improvements observed on Isolated nodes.

C.7 Performance compared with additional cold-start methods

Upsampling (Provost, 2000). In Section 3, we discussed the issue of under-representation of cold nodes
during the training of LP, which is the main cause of their unsatisfactory performance. To tackle this
problem, one straightforward and naive approach is upsampling (Provost, 2000), which involves increasing
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Table 13: Performance compared with GRADE (Wang et al., 2022) and SAILOR (Liao et al., 2023). The
best result is bold.

GCN GRADE SAILOR NodeDup(L) NodeDup

Cora

Isolated 40.61±3.52 43.29±2.62 45.12±1.29 42.93±2.68 46.71±1.53

Low-degree 63.86±0.78 58.76±1.27 62.98±3.92 64.63±1.60 64.10±1.37

Warm 60.59±0.62 60.00±0.51 57.34±3.80 61.31±0.43 60.26±0.70

Overall 60.16±0.44 56.90±0.71 58.33±3.51 61.02±0.61 59.90±0.89

Citeseer

Isolated 45.56±1.30 50.11±2.24 49.29±2.75 47.84±0.94 50.64±1.10

Low-degree 69.37±0.36 59.49±1.13 65.78±1.11 70.15±1.56 71.13±0.64

Warm 74.68±0.38 70.01±0.50 72.66±0.37 73.26±0.97 72.93±0.78

Overall 67.48±0.42 61.11±0.72 64.80±0.66 67.47±0.83 67.67±0.66

the number of samples in the minority class. In order to further demonstrate the effectiveness of our methods,
we conducted experiments where we doubled the edge sampling probability of code nodes, aiming to enhance
their visibility. The results are presented in Table 12. We can observe that NodeDup outperforms upsampling
in almost all the cases, except for Warm nodes on Cora.

The methods tackling degree bias in GNNs. SAILOR (Liao et al., 2023) proposes a structural
augmentation framework to enhance the representation learning of tail nodes. GRADE (Wang et al., 2022)
improves structural fairness using graph contrastive learning methods. We used GCN as the encoder for
both NodeDup(L) and NodeDup to ensure consistency, as both GRADE and SAILOR used GCN as
their encoder. Table 13 shows that our methods outperform these baselines in all settings. Additionally,
both GRADE and SAILOR perform better than vanilla GCN on Isolated nodes, which is the primary
focus of their training. The sub-optimal performance of GRADE and SAILOR on Low-degree nodes in
link prediction likely stems from the fact that their augmentation strategies, which are tailored for node
classification, are less suited for ranking-based link prediction tasks. The specific reasons are as follows:
GRADE encourages representation smoothness via degree-aware contrastive learning, which benefits node
classification but reduces the embedding discrimination required for link prediction, particularly when ranking
edges involving low-degree nodes, as reflected by Hits@10. SAILOR constructs pseudo-homophilic edges
based on node labels; however, label similarity does not always align with link formation in link prediction,
and adding label-based edges may introduce noise.

DegFairGNN (Liu et al., 2023) introduces a learnable debiasing function in the GNN architecture to produce
fair representations for nodes, aiming for similar predictions for nodes within the same class, regardless of
their degrees. Unfortunately, we’ve found in Table 12 that this approach is not well-suited for link prediction
tasks for several reasons: (1) This method is designed specifically for node classification tasks. For example,
the fairness loss, which ensures prediction distribution uniformity among low and high-degree node groups,
is not suitable for link prediction because there is no defined node class in link prediction tasks. (2) This
approach achieves significant performance in node classification tasks by effectively mitigating degree bias.
However, in the context of link prediction, the degree trait is crucial. Applying DegFairGNN (Liu et al.,
2023) would compromise the model’s ability to learn from structural information, such as isomorphism and
common neighbors. This, in turn, would negatively impact link prediction performance, as evidenced by
references (Zhang & Chen, 2018; Chamberlain et al., 2022).

C.8 Efficiency comparison with the base GNN model and cold-start baselines

The efficiency comparison between our methods and cold-start baselines is presented in Figure 11. We can
observe that our methods and Imbalance exhibit similar efficiency, comparable to GSage. However, TailGNN
and Cold-brew demand significantly more preprocessing and training time. Cold-brew, in particular, needs
the most preprocessing time as it needs to train a teacher model for distillation.

C.9 Additional results compared with augmentation baselines

Figure 12 presents the performance compared with augmentation methods on the remaining datasets. On
Cora and CS datasets, we can consistently observe that NodeDup and NodeDup(L) outperform all the
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Figure 11: Time-consuming compared with cold-start methods. The histograms show the preprocessing and
training time consumption of each method.

graph augmentation baselines for Isolated and Low-degree nodes. Moreover, for Warm nodes, NodeDup
can also perform on par or above baselines. On the Computers and Photos datasets, our methods generally
achieve comparable or superior performance compared to the baselines, except in comparison to TuneUP.
However, it is worth noting that both NodeDup and NodeDup(L) exhibit more than 2× faster execution
speed than TuneUP on these two datasets.

C.10 Additional results under the inductive setting

We further evaluate and present the effectiveness of our methods under the inductive setting on the remaining
datasets in Table 14. We can observe that both NodeDup and NodeDup(L) consistently outperform GSage
for Isolated, Low-degree, and Warm nodes. Compared to NodeDup(L), NodeDup is particularly beneficial
for this inductive setting.
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Table 14: Performance in inductive settings (Remaining results of Table 2). The best result is bold, and the
runner-up is underlined. Our methods consistently outperform GSage.

GSage NodeDup(L) NodeDup

Cora

Isolated 43.64±1.84 45.31±0.83 46.06±0.66

Low-degree 60.06±0.62 60.46±0.91 61.94±2.22

Warm 60.59±1.13 60.95±1.40 62.53±1.23

Overall 57.23±0.33 57.65±0.82 59.24±1.02

CS

Isolated 74.34±0.56 75.42±0.36 77.80±0.68

Low-degree 75.75±0.48 77.02±0.65 81.33±0.60

Warm 82.55±0.27 83.52±0.67 83.55±0.50

Overall 81.00±0.28 82.01±0.59 82.70±0.52

Computers

Isolated 66.81±0.72 67.03±0.51 69.82±0.63

Low-degree 64.17±2.01 65.10±1.76 66.36±0.69

Warm 68.76±0.40 68.78±0.39 70.49±0.41

Overall 68.54±0.42 68.59±0.39 70.40±0.42

Photos

Isolated 68.29±0.67 69.60±0.75 70.46±0.53

Low-degree 63.02±1.51 64.25±1.31 68.49±2.39

Warm 70.17±0.57 71.05±0.70 71.61±0.81

Overall 69.92±0.57 70.84±0.63 71.47±0.77

Table 15: Performance with different encoders (Remaining results of Table 3), where the inner product is the
decoder. The best result for each encoder is bold, and the runner-up is underlined. Our methods consistently
outperform the base models, particularly for Isolated and Low-degree nodes.

GAT NodeDup(L) NodeDup JKNet NodeDup(L) NodeDup

Cora

Isolated 25.61±1.78 30.73±2.54 36.83±1.76 30.12±1.02 37.44±2.27 43.90±3.66

Low-degree 54.88±0.84 55.76±0.50 56.72±0.81 59.56±0.66 61.93±1.64 62.89±1.43

Warm 55.31±1.14 55.36±1.28 53.70±1.26 58.64±0.12 59.36±1.00 57.67±1.60

Overall 52.85±0.91 53.58±0.80 53.43±0.49 56.74±0.27 58.54±0.83 58.40±1.33

CS

Isolated 33.74±1.98 34.77±0.90 41.76±2.99 54.43±1.77 56.38±2.14 64.79±1.68

Low-degree 70.20±0.47 70.90±0.32 71.92±0.36 73.97±0.72 76.64±0.38 77.77±0.43

Warm 78.39±0.28 78.67±0.33 77.69±0.89 82.38±0.67 83.29±0.37 79.20±0.13

Overall 77.16±0.24 77.49±0.30 77.20±0.80 81.35±0.62 82.41±0.32 78.91±0.13

Computers

Isolated 12.04±2.08 16.84±2.34 17.17±2.22 9.92±3.07 23.81±2.02 25.50±1.32

Low-degree 53.60±1.51 53.62±1.00 53.65±2.35 62.29±1.08 67.21±0.99 68.49±0.70

Warm 60.19±1.19 58.64±0.81 58.55±1.01 69.96±0.33 70.90±0.40 70.66±0.25

Overall 60.03±1.19 58.50±0.80 58.77±1.93 69.77±0.32 70.78±0.40 70.55±0.25

Photos

Isolated 15.31±3.46 18.03±2.50 18.77±3.33 12.77±2.40 19.44±1.31 20.56±1.61

Low-degree 43.11±9.93 43.40±9.61 44.21±9.25 57.27±2.06 59.86±1.09 60.93±0.74

Warm 56.17±8.28 56.75±8.33 56.10±8.35 68.35±0.81 69.56±0.69 69.60±0.50

Overall 55.91±9.22 56.48±8.26 55.93±8.28 68.09±0.82 69.33±0.68 69.38±0.49

Table 16: Link prediction performance with MLP decoder (Remaining results of Table 4), where GSage is the
encoder. Our methods achieve better performance than the base model.

MLP-Dec. NodeDup(L) NodeDup

Cora

Isolated 16.83±2.61 37.32±3.87 38.41±1.22

Low-degree 58.83±1.77 64.46±2.13 64.02±1.02

Warm 58.84±0.86 61.57±0.98 58.66±0.61

Overall 55.57±1.10 60.68±0.66 58.93±0.25

CS

Isolated 5.60±1.14 58.68±0.95 60.20±0.68

Low-degree 71.46±1.08 78.82±0.68 79.58±0.31

Warm 84.54±0.32 85.88±0.22 85.20±0.24

Overall 82.48±0.32 84.96±0.25 84.42±0.22

Computers

Isolated 6.13±3.63 27.74±3.38 26.70±3.98

Low-degree 62.56±1.34 62.60±3.38 63.35±3.64

Warm 69.72±1.31 70.01±2.41 68.43±2.50

Overall 69.53±1.30 69.91±3.11 68.30±2.51

Photos

Isolated 6.34±2.67 18.15±2.02 18.97±1.71

Low-degree 55.63±6.21 56.13±6.36 55.93±7.27

Warm 70.40±6.84 70.67±6.30 69.97±5.07

Overall 69.89±6.81 69.93±6.24 69.69±5.07
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Figure 12: Performance and time-consuming compared with augmentation methods (Remaining results of
Figure 8). The left histograms show the performance results, and the right histograms show the preprocessing
and training time consumption of each method.

Table 17: Performance with GCN (Kipf & Welling, 2016a) and GT (Dwivedi & Bresson, 2020) encoders,
where the inner product is the decoder. The best result for each encoder is bold.

GCN GCN+NodeDup(L) GCN+NodeDup GT GT+NodeDup(L) GT+NodeDup

Cora

Isolated 40.61±3.52 42.93±2.68 46.71±1.53 20.93±2.46 38.82±1.27 37.40±1.53

Low-degree 63.86±0.78 64.63±1.60 64.10±1.37 58.59±0.29 61.16±1.08 61.39±0.89

Warm 60.59±0.62 61.31±0.43 60.26±0.70 58.14±1.15 59.29±0.84 59.07±0.05

Overall 60.16±0.44 61.02±0.61 59.90±0.89 55.40±0.43 58.34±0.19 58.18±0.42

Citeseer

Isolated 45.56±1.30 47.84±0.94 50.64±1.10 36.84±3.26 51.46±1.27 52.34±1.46

Low-degree 69.37±0.36 70.15±1.56 71.13±0.64 60.24±1.18 72.98±1.54 73.77±1.03

Warm 74.68±0.38 73.26±0.97 72.93±0.78 71.14±1.47 74.48±1.08 75.08±0.63

Overall 67.48±0.42 67.47±0.83 67.67±0.66 61.15±1.57 69.67±1.10 70.38±0.86

C.11 Ablation study

C.11.1 Performance with various encoders and decoders

For the ablation study, we further explored various encoders and decoders on the remaining datasets. The
results are shown in Table 15 and Table 16. From these two tables, we can observe that regardless of
the encoders or decoders, both NodeDup and NodeDup(L) consistently outperform the base model for
Isolated and Low-degree nodes, which further demonstrates the effectiveness of our methods on cold nodes.
Furthermore, NodeDup(L) consistently achieves better performance compared to the base model for Warm
nodes.
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Besides GSage, GAT and JKNet, we also conducted further experiments with convolutional-based GNNs,
such as GCN (Kipf & Welling, 2016a) and GT(GraphTransformer) (Dwivedi & Bresson, 2020). The results
are shown in Table 17. Our findings indicate that our methods can also improve performance when using
GCN and GT as the encoder. However, since GCN uses the same matrix for both self-representations and
neighbor representations, our methods only benefit from the supervision aspect. This leads to less pronounced
performance improvements on cold nodes compared to using GT and GSage as the encoder. Specifically,
NodeDup shows a 13.10% improvement for GCN, 60.38% for GT, and 29.79% for GSage on isolated nodes.
Moverover, NodeDup(L) on average improves GCN by 5.4%, GT by 62.58%, and GSage by 17.4%.

C.11.2 Performance with SEAL (Zhang & Chen, 2018)

Table 18: Performance with SEAL (Zhang & Chen,
2018) on Cora and Citeseer datasets.

SEAL SEAL + NodeDup

Cora

Isolated 62.20±1.06 70.73±0.61

Low-degree 66.80±2.83 67.70±4.11

Warm 56.69±2.36 54.87±1.61

Overall 60.60±2.38 60.89±2.36

Citeseer

Isolated 56.92±5.53 66.37±1.01

Low-degree 64.13±2.56 65.54±1.69

Warm 58.81±3.22 60.73±2.75

Overall 60.18±2.98 63.35±1.43

Considering our methods are flexible to integrate
with GNN-based link prediction structures, we con-
duct the experiments on top of SEAL (Zhang & Chen,
2018) on the Cora and Citeseer datasets. The re-
sults are shown in Table 18. We can observe that
adding NodeDup on top of SEAL can consistently
improve link prediction performance in the Isolated
and Low-degree node settings on these two datasets.
This further demonstrates the broad applicability of
NodeDup in enhancing the performance of diverse
GNN-based link prediction models.

D Implementation Details

In this section, we introduce the implementation details of our experiments. Our implementation can be
found at https://github.com/zhichunguo/NodeDup.

Parameter Settings. We use 2-layer GNN architectures with 256 hidden dimensions for all GNNs and
datasets. The dropout rate is set as 0.5. We report the results over 10 random seeds. Hyperparameters were
tuned using an early stopping strategy based on performance on the validation set. We manually tune the
learning rate for the final results. For the results with the inner product as the decoder, we tune the learning
rate over range: lr ∈ {0.001, 0.0005, 0.0001, 0.00005}. For the results with MLP as the decoder, we tune the
learning rate over range: lr ∈ {0.01, 0.005, 0.001, 0.0005}.

Hardware and Software Configuration All methods were implemented in Python 3.10.9 with Pytorch
1.13.1 and PyTorch Geometric (Fey & Lenssen, 2019). The experiments were all conducted on an NVIDIA
P100 GPU with 16GB memory.

E Limitations

In our work, NodeDup and NodeDup(L) are specifically proposed for LP tasks. Although cold-start
is a widespread issue in all graph learning tasks, our proposed methods might not be able to generalize
to other tasks, such as node classification, due to their unique design. Furthermore, the two heterophily
datasets we used for evaluation involve graphs where nodes with similar features are assigned different labels.
Our methods may struggle on heterophilic graphs where connected nodes have dissimilar features, such as
molecular networks, which are beyond the scope of this study.
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F Ethics Statement

In this work, our simple but effective method enhances the link prediction performance on cold-start nodes,
which mitigates the degree bias and advances the fairness of graph machine learning. It can be widely used
and beneficial for various real-world applications, such as recommendation systems, social network analysis,
and bioinformatics. We do not foresee any negative societal impact or ethical concerns posed by our method.
Nonetheless, we note that both positive and negative societal impacts can be made by applications of graph
machine learning techniques, which may benefit from the improvements induced by our work. Care must be
taken, in general, to ensure positive societal and ethical consequences of machine learning.

29


	Introduction
	Preliminaries
	Node Duplication to Improve Cold-start Performance
	Proposed Method
	How does Node Duplication Help Cold-start LP?
	Further Insight: Understanding NodeDup through Self-distillation
	NodeDup(L): An Efficient Variant of NodeDup

	Experiments
	Experimental Settings
	Performance Compared to Base GNN LP Models
	Performance Compare to Cold-start Methods
	Performance Compared to Augmentation Methods
	Performance under the Inductive Setting
	Performance with Different Encoders/Decoders
	Influence of the Duplication Frequency and Duplicated Node Types in NodeDup
	Analyzing Performance Gains of NodeDup on Warm Nodes

	Conclusion
	I 
	Related Work
	Additional Datasets Details
	Transductive Setting
	Inductive Setting

	Further Experimental Results
	Selection of the threshold .
	Further analysis about the duplication node types
	Performance on large-scale datasets
	Performance on heterophily datasets
	Performance on recommendation datasets
	Performance compared with heuristic methods
	Performance compared with additional cold-start methods
	Efficiency comparison with the base GNN model and cold-start baselines
	Additional results compared with augmentation baselines
	Additional results under the inductive setting
	Ablation study
	Performance with various encoders and decoders
	Performance with SEAL zhang2018link


	Implementation Details
	Limitations
	Ethics Statement


