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Abstract

Clustering offers a powerful route to identify disease phenotypes, but applying
distance-based methods at population scale remains challenging. Standard k-
medoids with Gower distance, a natural choice for mixed-type clinical data, has
quadratic time and memory complexity that renders it infeasible for modern elec-
tronic health record (EHR) datasets with hundreds of thousands of patients. We
address this barrier with a streaming+coreset k-medoids framework that scales
linearly in runtime and uses bounded memory, enabling clustering under modest
hardware limits. Our approach combines chunk-wise distance computation, Hun-
garian alignment of medoids across chunks, and a coreset-based refinement, with
optional feature weighting to incorporate domain knowledge. Experiments on a syn-
thetic 200,000-patient asthma dataset informed by literature show that the method
(i) matches the accuracy of full-distance clustering, (ii) scales to population-level
datasets under 10 GB RAM, and (iii) recovers minority-dominated phenotypes
when ethnicity is appropriately weighted. This work demonstrates a practical and
broadly applicable framework for large-scale, mixed-type healthcare clustering,
motivated by the needs of precision medicine.

1 Introduction

The promise of precision medicine rests on tailoring care to subgroups, moving beyond a one-size-fits-
all model [[1]]. Chronic conditions account for most of the global healthcare burden, yet many remain
umbrella terms for heterogeneous phenotypes [2]. Identifying these subtypes is critical, as patients
differ in risk, progression, and treatment response [3]]. Clustering offers a data-driven route to such
phenotyping, and routinely collected electronic health records (EHRs) now provide unprecedented
opportunities at population scale [4]. Analysing EHRs, however, poses unique challenges. Datasets
may include hundreds of thousands of patients with mixed data types (numeric, binary, categorical),
and are often analysed in privacy-preserving secure environments with strict hardware limits. Standard
distance-based clustering methods, with quadratic time and memory requirements, are infeasible in
such settings [13. [6].

Asthma provides a motivating exemplar. Affecting over 260 million people worldwide, it is the most
common chronic respiratory disease with substantial heterogeneity [7]. Previous cluster analyses
have identified eosinophilic, neutrophilic, and obesity-related phenotypes [8H10], but these were
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based on carefully selected cohorts of limited size. Ethnic minority patients remain under-represented,
despite evidence of differential risks and treatment responses [7]. A concurrent national-scale analysis
of over 200,000 asthma patients in the Clinical Practice Research Datalink (CPRD)—one of the
largest studies of its kind to date—is examining how prescription hormone exposure relates to asthma
development and manifestation, and how these associations vary across asthma phenotypes and
comorbid metabolic-syndrome-related conditions [[L1]. In this context, applying standard clustering
proved infeasible under the available hardware, motivating the present work. We propose a streaming
+ coreset clustering framework for large, mixed-type healthcare datasets under constrained memory.
Our method extends k-medoids with weighted Gower distances [[12]], chunk-wise streaming [13],
Hungarian alignment of medoids across chunks [14], and a coreset-based refinement step. It scales
linearly with dataset size (up to a small quadratic coreset term) and allows feature weighting to
incorporate domain knowledge. Using a synthetic 200,000-patient asthma dataset informed by
prior literature, we demonstrate: (i) scalability under 16 GB RAM; (ii) performance comparable to
full-distance clustering where feasible; and (iii) recovery of minority-dominated clusters through
feature reweighting. A concise survey is deferred to Appendix [A] covering mixed-type clustering and
asthma phenotyping.

2 Methods

2.1 Problem setup

We consider clustering a dataset of IV patients with mixed feature types—numeric, binary, and
categorical. Let X = {z;}}V, and let K be the target number of clusters. Standard k-medoids (PAM)
optimises
N
min min d(x;, m),
MCX,|M|=K £ meM

where M are the medoids and d(-, -) is a dissimilarity. PAM (the classical k-medoids algorithm
[S]) selects actual data points as representatives and works with arbitrary dissimilarities, which
makes it robust to outliers and suitable for mixed-type data. However, standard PAM requires an
N x N distance matrix—O(N?) time/memory—motivating our streaming-+coreset variant. For mixed
clinical variables we use a weighted Gower dissimilarity to encode domain knowledge via feature
weights (details next).

2.2 Weighted Gower distance

Each patient record z is split into numeric (z(™"™)), binary (z(*)), and categorical (2(°")) features.
For two patients x; and x;, the weighted Gower dissimilarity is
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where w, are feature weights, r,, are numeric ranges, and
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This formulation enables domain experts to re-weight features such as ethnicity, ensuring minority
subgroups are not overlooked.

2.3 Streaming + Coreset framework

To formalise our approach, we outline the procedure in Algorithm [T} which summarises the streaming
k-medoids framework with weighted Gower distance. The pseudocode highlights how chunking,
medoid alignment, and coreset refinement enable efficient clustering of large mixed-type datasets.
All code, configuration files, and scripts for dataset generation, clustering, and evaluation are openly
available at <https://github.com/syedahmar/Memory-Constrained-Clustering>, Default
settings and software environment details are documented in Appendix [B] which also includes scripts
to reproduce all figures reported in this paper.

This algorithm reduces memory usage from quadratic in /V to bounded by the coreset size M, while
runtime grows linearly with IV, all while preserving fidelity to full k-medoids clustering.


<https://github.com/syedahmar/Memory-Constrained-Clustering>

Algorithm 1 Streaming k-Medoids with Weighted Gower Distance

Require: Dataset X’ of N points; target clusters K; chunk size C'; coreset size M < N
Ensure: Refined global medoids M, and labels for all N points
1: for each chunk of size C'in X do
2 Compute weighted Gower distances within the chunk
3 Run local k-medoids — local medoids
4: end for
5. Align local medoids to global medoids using greedy/Hungarian matching
6: for each cluster do
7 Retain candidate pool (closest points + summaries)
8: Maintain hard-point reservoir for outliers
9: end for
10: Construct coreset S of size M from candidate pools + reservoirs
11: Run k-medoids on S — refined global medoids M
12: Final assignment: Assign all N points to nearest medoid in O(N K') time with O(/N') memory
by streaming distances one medoid at a time

2.4 Synthetic dataset

To evaluate scalability and accuracy under controlled conditions, we generated a literature-informed
synthetic dataset of 200,000 patients with asthma, with proportional subsamples from 10k—200k in
10k increments. Ten phenotypes were defined, reflecting patterns reported in prior asthma clustering
studies (eosinophilic, neutrophilic, obesity-related, etc.), with two minority-dominated clusters to
test sensitivity to under-represented groups. Features included demographics (age, Body Mass Index
(BMI) ), binary indicators (e.g., smoking, allergy, inflammatory markers, metabolic-syndrome drugs),
and a categorical variable for ethnicity. Ground-truth cluster labels were retained for evaluation. See
Appendix [C|for further details.

2.5 Complexity analysis

With chunk size C, coreset size M, and K clusters, our algorithm runs in

T(N)=O(NC+ M?+ NK),  Memory = O(C* + M? + N).

Here, O(NC) arises from per-chunk distance builds, O(M?) from coreset refinement, and O(N K)
from final assignment. Memory is dominated by the O(C? + M?) distance buffers, while the O(V)
label array is small. Unlike full k-medoids (O(N?) time/memory), runtime scales linearly and
memory remains bounded for fixed C' and M (see Appendix [D|for the full derivation).

3 Results

Figure [CT] summarises ten literature-informed asthma phenotypes (feature probabilities, age/BMI
ranges, ethnicity), including two minority-dominated phenotypes used as a fairness probe. In Figure[]
streaming+coreset matches full PAM on small NV and remains stable up to N = 200,000 based on
various performance metrics (ARI, NMI, Silhouette, Purity; definitions in Appendix E]); runtime
grows linearly while standard Gower PAM becomes infeasible beyond ~20k (middle); peak memory
stays < 10GB at N = 200,000, whereas full-distance would require > 160 GB (lower), consistent
with our complexity analysis. Figure 2] shows that increasing the ethnicity weight recovers minority-
dominated clusters (8: Black/mixed; 9: Asian) that are otherwise absorbed under uniform weights,
improving subgroup recoverability without degrading overall quality. Extended bootstrap analyses
with confidence intervals for the weighting modes are provided in Appendix [

4 Discussion

We introduced a streaming+coreset k-medoids framework for clustering large, mixed-type healthcare
datasets under memory constraints. Identifying distinct disease phenotypes is a key step toward
precision medicine: patients with the same diagnosis can differ markedly in risk, progression, and



Clustering Quality vs Dataset Size
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Figure 1: Scalability and performance of streaming + coreset k-medoids compared with full PAM. (Upper)
ARI/NMU/silhouette: streaming matches full PAM at small /N and remains stable to N = 200,000. (Middle)
Runtime grows linearly; full PAM becomes infeasible beyond ~20k. (Lower) Peak memory fits in <10 GB at
N = 200,000; full-distance would need > 160 GB.
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Figure 2: Feature weighting effect (100k). Uniform weights merge minority phenotypes; increasing ethnicity
weight recovers clusters 8 (Black/mixed) and 9 (Asian) as distinct patterns.

treatment response. In asthma, for example, discovering clinically meaningful subtypes from national-
scale electronic health records could enable more targeted prevention and therapy, but has been
infeasible with existing distance-based clustering methods due to their quadratic time and memory
requirements. Motivated by this medical challenge, our method overcomes the scalability barriers of
standard PAM, achieving linear runtime scaling and bounded memory usage. In practice, clustering
200,000 patients stayed below 10 GB peak RAM in our runs where full-distance clustering would
require more than 160 GB. While the final assignment maintains an O (V) label array, its absolute
size is tiny compared to the bounded (O(C? + M?)) distance buffers.

Beyond scalability, the framework allows feature weighting to integrate domain knowledge. This was
critical for recovering minority-dominated phenotypes in our synthetic asthma dataset: under uniform
weights, these groups were absorbed into majority clusters, but re-weighting ethnicity enabled their
detection. Such flexibility highlights the role of algorithm design not only in efficiency but also in
promoting fairness and inclusivity in healthcare analytics.

Although we demonstrated the approach in asthma, the framework is broadly applicable to other
chronic diseases and routinely collected EHRs, particularly in contexts where compute resources are



constrained. Our framework makes population-scale, mixed-type clustering feasible under realistic
hardware limits, while allowing domain knowledge to guide discovery of clinically meaningful —
and often overlooked — patient subgroups (see Appendix [G|for contributions, limitations, and future
work).
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A Appendix A: Extended Related Work

A.1 Asthma Phenotyping via Clustering

Asthma is a heterogeneous condition encompassing a range of symptom profiles, inflammatory
patterns, and treatment responses. Early work highlighted that asthma should not be treated as a
single disease entity but as a collection of phenotypes with distinct underlying mechanisms [8]].
Cluster analysis has been instrumental in uncovering these phenotypes.

Haldar et al. [9]] used unsupervised clustering on clinical and biomarker data from patients in the UK
and demonstrated the existence of distinct groups such as early-onset atopic asthma and late-onset
eosinophilic asthma. Moore et al. [[10] extended this work in the Severe Asthma Research Program
(SARP) cohort in the US, again identifying clinically meaningful subgroups that aligned with different
prognoses and treatment responses.

Despite their importance, these studies had notable limitations. They typically analysed highly
selected populations (specialist clinics, severe asthma registries), with sample sizes in the hundreds or
low thousands. As a result, they may not generalise to the wider asthma population captured in routine
care. Furthermore, ethnic minority patients are often under-represented, even though disparities in
asthma outcomes across racial and ethnic groups are well documented [[15]. Recent calls in precision
medicine stress the importance of studying large, diverse, real-world populations to ensure equitable
advances in treatment [[16].

This motivates the use of routinely collected electronic health records (EHRs) for large-scale pheno-
typing. EHR data can capture hundreds of thousands of patients across demographics, comorbidities,
and prescribing patterns, providing a more representative basis for discovering subtypes. However,
the sheer scale and complexity of EHR data (mixed numeric, binary, and categorical variables;
missingness; longitudinality) pose methodological challenges that existing clustering methods were
not designed to handle.

A.2 Clustering Methods for Large-Scale, Mixed-Type Data

Distance-based clustering. Partitioning Around Medoids (PAM) [[17] is a natural choice for clinical
datasets. Unlike k-means, which requires Euclidean space, PAM operates directly on dissimilarity
matrices and is more robust to outliers. For mixed-type data, Gower’s dissimilarity [12] is widely
used because it can handle numeric, binary, and categorical variables simultaneously, while also
permitting feature weighting. These properties have made PAM with Gower dissimilarity a common
choice in healthcare phenotyping [18]. The main drawback is scalability: computing and storing the
full N x N distance matrix requires O(N?) time and memory. For datasets with tens or hundreds of
thousands of patients, as in EHRs, this becomes computationally infeasible.
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Streaming and coreset approaches. To address scalability, researchers have explored streaming and
coreset-based clustering methods. Guha et al. [13] introduced scalable k-medoids approximations in
data stream settings. More recently, Bachem et al. [6] and Feldman & Langberg [19]] studied coreset
constructions that approximate clustering objectives by summarising subsets of the data, reducing
both time and memory requirements. These approaches have shown strong theoretical and empirical
performance on large numeric datasets. However, most work has focused on k-means in Euclidean
space, not k-medoids with general dissimilarities, and almost none address the additional challenges
of mixed-type clinical data. Moreover, healthcare-specific constraints such as operating in Trusted
Research Environments (TREs) with strict memory and compute limits (often <32 GB RAM) make
these scalability concerns especially pressing.

Feature weighting and domain knowledge. Another line of work has considered incorporating
domain knowledge into clustering. Weighted dissimilarities allow certain features to have greater
influence, which is particularly important in healthcare where minority-defining attributes (e.g.,
ethnicity) may otherwise be swamped by majority features. Previous studies proposed weighting
schemes for mixed data [20, 21], though many require supervision or are limited to small datasets.
Our contribution builds on this tradition, showing how explicit feature weighting within a scalable
clustering framework can help recover minority-dominated phenotypes that are otherwise overlooked.

A.3 Summary

In summary, while clustering has played a central role in asthma phenotyping, prior studies have been
limited to small, selective cohorts. At the same time, advances in scalable clustering have focused
on numeric data in machine-learning benchmarks, with little translation to mixed-type healthcare
datasets. Our work bridges this gap: motivated by the clinical need for large-scale, equitable asthma
phenotyping, we extend streaming and coreset methods to weighted Gower dissimilarities, enabling
population-scale clustering under modest hardware constraints.

B Appendix B: Code and Experimental Settings

All code used in this study is openly available at: https://github.com/syedahmar/
Memory-Constrained-Clustering.

B.1 Repository contents
The repository includes:
* Core algorithm implementation: stream_kmedoids_pipeline_v5.py — stream-

ing+coreset k-medoids with weighted Gower dissimilarity.

* Config files: YAML files in configs/ specifying dataset path, feature groups, chunk size
C, coreset size M, weighting mode, and other options.

* Synthetic dataset generator: script to reproduce the asthma phenotypes described in
Appendix [C]

* Experiment runner: pipeline to execute runs across dataset sizes (10k—200k) and save
outputs under runs/.

* Evaluation scripts: functions for ARI, NMI, silhouette, purity, and cluster-level metrics
(precision/recall for minority clusters).

* Plotting utilities: scripts to recreate the figures shown in the main paper.
B.2 Default settings
Unless stated otherwise in the main text, experiments were run with:

e Chunk size (C): 2000
* Coreset size (M ): up to 20,000
* Target clusters (K): 10
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» Weighting modes: none (uniform), manual (Wemnicity=3), supervised (using true labels;
benchmarking only)

* Hardware constraint: runs limited to 32 GB RAM to reflect typical TRE/resource-
constrained environments

B.3 Reproducibility notes

* Random seeds: fixed seeds for initialisation and sampling across all experiments.

* Software environment: Python 3.10; key dependencies listed in requirements.txt (e.g.,
scikit-learn, pyclustering, numpy, pandas, tqdm).

* Runtime tracking: each run logs runtime, peak memory, and clustering metrics to runs/,
along with learned feature weights (when applicable).

B.4 Usage example

Example command:
python stream_kmedoids_pipeline_v5.py --config configs/baseline_uniform.yml

Example configuration files for the baseline (uniform weights), manual weighting, and supervised
weighting are provided under configs/.

C Appendix C: Synthetic Dataset Generation

Phenotype Summary: probabilities, Age/BMI ranges, and Ethnicity
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Figure C1: Synthetic asthma phenotypes. Ten clusters were defined with distributions across demographic,
inflammatory, and treatment features. Age and BMI ranges are shown for each phenotype, alongside ethnicity
proportions. Minority-dominated phenotypes (clusters 8-9) were included explicitly to test the ability of
clustering methods to recover under-represented subgroups.

To evaluate the proposed framework at scale, we generated a synthetic dataset of 200,000 asthma
patients, informed by prior literature on asthma phenotypes. The aim was to build a testbed that
captures key heterogeneity seen in real-world populations while enabling controlled experiments
with ground-truth cluster labels.



C.1 Phenotype design

Based on seminal cluster analyses and subsequent reviews [8H10], we defined ten distinct phenotypes
spanning demographic, clinical, and treatment-related characteristics. These include early-onset
allergic asthma (mild and moderate—severe), late-onset eosinophilic and neutrophilic asthma, obesity-
related phenotypes, smoking-related asthma, and metabolic-syndrome—associated phenotypes. Two
minority-dominated phenotypes were specified as fairness probes: cluster 8 (primarily Black and
mixed-ethnicity patients) and cluster 9 (primarily South Asian patients).

Figure [CI] (Appendix) provides an overview of phenotype definitions, including feature probabilities,
age/BMI distributions, and ethnicity proportions. The ten clusters range from 4%—-20% prevalence in
the synthetic cohort, approximating heterogeneity reported in clinical studies.

C.2 Feature set
Each patient record includes:

* Demographics: age, BMI, smoking status.
* Clinical indicators: eosinophilia, neutrophilia, allergy history, overall severity.

» Treatment exposures: indicators of prescribing for hypertension, diabetes, dyslipidaemia,
and obesity (proxying metabolic syndrome).

* Ethnicity: categorical with six levels (White, Asian, Black, Mixed, Other, Unknown).

Values are assigned probabilistically according to per-phenotype distributions (see Figure [CT} left
panel).

C.3 Scaling

To examine scalability, we evaluated subsets of increasing size from the full dataset: 10k, 20k,
..., 200k patients. This enabled benchmarking of runtime and memory as a function of N, and
comparison against standard k-medoids where feasible.

C.4 Fairness probe

We intentionally set clusters 8 and 9 at 4% and 5% prevalence, respectively. Under uniform feature
weights these minority phenotypes are readily absorbed into majority clusters. As shown in the main
results (Figure [2)), re-weighting ethnicity recovers both as distinct groups, illustrating how domain
knowledge can improve equitable phenotyping.

D Appendix D: Detailed Complexity Analysis

We analyse the runtime and memory complexity of the proposed streaming+coreset k-medoids
algorithm, and contrast it with standard full-distance k-medoids.

D.1 Preliminaries
Let

* N: total number of patients,

¢ K: number of clusters (fixed and small),
e C: chunk size,

* M: coreset size with M < N.

The algorithm proceeds in three phases:

1. Streaming over chunks: build within-chunk distance matrices and run local k-medoids;
2. Coreset refinement: run k-medoids on a reduced set of size M
3. Final assignment: assign all [V points to their nearest refined medoid.



D.2 Time complexity

1) Chunked distance builds. For chunk ¢ of size B, ~ C, constructing the weighted Gower distance
matrix costs
O(B?) per chunk.

With % chunks in total,

S o(B?) ~ %‘0(02) — O(NC).

2) Coreset refinement. After streaming, we construct a coreset of size M (via candidate
pools/reservoirs). Running k-medoids on this subset requires an M x M distance matrix:

O(M?).
3) Final assignment. Each of the IV points is assigned to the nearest of the K refined medoids by

computing weighted Gower distances:
O(NK).

Total time:
T(N) = O(NC + M* + NK).

D.3 Memory complexity

1) Chunk storage. At any time only one chunk is resident; its distance matrix requires
O(C?).

2) Coreset storage. The coreset distance matrix contributes
O(M?).

3) Label storage. We maintain cluster labels/indices for all points:
O(N).

Total memory:
Memory = 0(02 + M? + N).

D.4 Comparison with standard k-medoids

Standard full-distance k-medoids computes and stores the entire N x N distance matrix:
T(N) = O(N?),  Memory = O(N?).
This quadratic growth is typically infeasible for datasets beyond ~50k—100k patients on 32 GB

machines. By contrast, our streaming+coreset method scales linearly in N, with only modest
quadratic terms in C' and M.

D.5 Intuition
* The quadratic bottleneck is shifted from the full dataset (IN?) to manageable subsets (C?
and M?).
* The final assignment O(N K)) is linear in N and cheap in practice since K is small (e.g.,
K=10).

* Memory is dominated by the chunk and coreset distance matrices and thus remains bounded
as N grows (for fixed C' and M).

Summary. Standard k-medoids has prohibitive O(N?) time and memory. Our method achieves
T(N) = O(NC + M? + NK) with memory O(C? + M? + N), enabling clustering of hundreds
of thousands of patients under 16 GB RAM.

Compared to standard full-distance k-medoids (O(N?) time and memory), our method achieves
T(N) = O(NC + M? + NK) and Memory = O(C? + M?) + O(N). For typical settings (e.g.
~——

labels
C ~2,000, M <20,000, K <10), the quadratic terms are bounded and dominate peak RAM, while

the O(N) labels are negligible in practice.
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E Appendix E: Evaluation Metrics

We report clustering performance using four widely used metrics:

Adjusted Rand Index (ARI). Measures agreement between predicted and true labels, corrected for
chance. Values range from —1 (worse than random) to 1 (perfect match), with 0 indicating random
assignment.

Normalised Mutual Information (NMI). Quantifies mutual dependence between predicted and
true clusters, normalised between 0 and 1; 1 indicates identical clusterings.

Silhouette Score. An internal metric based on pairwise distances. For each point, it compares
cohesion (similarity to its own cluster) and separation (dissimilarity to the nearest other cluster).
Scores range from —1 (poor fit) to 1 (well-separated clusters).

Purity. An external measure of cluster homogeneity. Each predicted cluster is assigned the majority
ground-truth label; purity is the fraction of correctly assigned samples and ranges from 0 to 1.

Together, these metrics capture external alignment with ground truth (ARI, NMI, Purity) and internal
separation (Silhouette).

Formal definitions (optional)

Let U = {U;} be ground-truth classes and V' = {V;} predicted clusters over n samples. Let
ni; = Ui N Vil ai = 325 mijs by = 325 i

%

Adjusted Rand Index (ARI).
o 26)20)
IR > R
NN 6 0]
> (3T ()] - —

? J

=

Normalised Mutual Information (NMI). Let p;; = n;;/n, p; = a;/n, p; = b;/n. Define

” 1 1
I(U;V):Zpijlog;;, H(U):Zpilog;, H(V):ijlog;.
] e 7 4 j J

We use the geometric normalisation:

IU;V)

NMI = ——— ol
HU)H(V)

€ [0,1].

Silhouette. For point z, let a(x) be its mean distance to points in its own cluster, and b(z) the
minimal mean distance to any other cluster. Then

= —b(x)fa(z) ilhou = l s(x
s(z) = max{a(2), b(@)} Silhouette nz (z).

x

Purity. With predicted clusters {V;} and true classes {U; },

1
Purity = — Zmax \U; NV
n - 1
j

11



Clustering metrics by weighting mode
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Figure F1: Bootstrap mean + SE for ARI, NMI, silhouette, and purity across the three weighting modes
(uniform, manual, supervised).

F Appendix F: Additional Results on Weighting

To further evaluate the impact of feature weighting, we conducted bootstrap experiments across three
modes:

* None (uniform): all features weighted equally;
* Manual: ethnicity weight set to 3 (others fixed at 1);
* Supervised: weights derived from ground-truth labels (upper bound).

Interpretation. The supervised setting—unrealistic in deployment but informative—provides an
upper bound and consistently yields the highest performance. Manual weighting offers modest gains
in global metrics relative to uniform weighting, but its key benefit is qualitative: it enables recovery of
minority-dominated clusters (clusters 8-9; see Appendix Fig.[CTand main Fig. [2) that are otherwise
absorbed into majority groups. This shows that simple domain-informed adjustments can improve
inclusivity without sacrificing global performance.

Practical significance. While global improvements in ARI/NMI are modest, the ability to recover
under-represented subgroups has outsized importance in healthcare contexts where equity is central.
These findings suggest that flexible feature weighting should be a core component of scalable
clustering frameworks for clinical data.

G Appendix G: Key Contributions, Limitations, and Future Work

G.1 Key Contributions

* Scalability: a streaming+coreset k-medoids algorithm with (empirically) linear runtime and
bounded memory, enabling clustering of 200k+ patients under modest (16 GB) hardware.

* Fairness: support for domain-informed feature weighting, allowing recovery of minority-
dominated phenotypes that uniform clustering overlooks.

* Generalisability: a broadly applicable framework for large, mixed-type healthcare
datasets—motivated by asthma but extendable to other chronic diseases and EHR con-
texts.

G.2 Limitations

* Synthetic evaluation: experiments use a literature-informed synthetic dataset to ensure
controlled ground truth and stress-test scalability

* Single-machine implementation: current results are from a single-node Python pipeline
under RAM constraints; distributed/GPU variants remain future work.

12



» Coreset sensitivity: clustering quality depends on coreset size M ; adaptive or theoretically
guaranteed coreset selection is an open problem.

G.3 Future Directions

* Real-world deployment: apply the method to national EHR datasets (e.g., CPRD, Dat-
alLoch) under TRE conditions for asthma and other chronic diseases.

» Temporal extension: incorporate longitudinal signals (e.g., repeated prescriptions, symptom
trajectories) into the streaming framework.

* Automatic feature weighting: learn weights adaptively to balance domain knowledge with
statistical signal.

* Scalable infrastructure: develop distributed implementations for larger-scale or near—real-
time applications (e.g., patient monitoring systems).

13
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