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Abstract

Large Language Models (LLMs) demonstrate remarkable emergent abilities across
various tasks, yet fall short of complex reasoning and planning tasks. The tree-
search-based reasoning methods address this by encouraging the exploration of
intermediate steps, surpassing the capabilities of chain-of-thought prompting. How-
ever, significant inference latency is introduced due to the systematic exploration
and evaluation of multiple thought paths. This paper introduces SEED, a novel and
efficient inference framework to improve both runtime speed and GPU memory
management concurrently. Based on a scheduled speculative execution, SEED
efficiently handles multiple iterations for thought generation and state evaluation,
leveraging a rounds-scheduled strategy to manage draft model dispatching. Exten-
sive experimental evaluations on three reasoning datasets demonstrate the superior
speedup performance of SEED.

1 Introduction

Despite Large Language Models (LLMs) have shown remarkable emergent abilities across a variety
of tasks [30, 29, 34, 35, 1], their performance on the complex reasoning and planning tasks remains
suboptimal [43]. Traditional or simple prompting techniques [38, 20], which have been widely
leveraged, are insufficient for the tasks that require exploratory actions or strategic lookahead [24].

Tree-Search-Based (TSB) reasoning methods effectively harness the planning and reasoning capabili-
ties of LLMs by decomposing the problems and subsequently orchestrating a structured plan [18].
These methods not only leverage the inherent strengths of LLMs in processing vast datasets but also
address their limitations in dynamic problem-solving scenarios [15, 14]. For example, Yao et al. [42]
introduced Tree-of-Thoughts (ToT) prompting, which generalizes beyond Chain-of-Thought (CoT)
prompting by fostering the exploration of intermediate thoughts that serve as crucial steps in general
problem-solving with LLMs. Following this way, subsequent works, such as Reasoning via Planning
(RAP) [15] and Refection on search Trees (RoT) are proposed [18]. These approaches leverage the
capabilities of LLMs to generate and evaluate the intermediate thoughts and then integrate them with
search algorithms to improve the problem-solving efficiency.

However, such methods introduce a serious issue of inference latency due to the requirement
for systematic exploration of thoughts with lookahead and backtracking. TSB reasoning meth-
ods primarily consist of two key parts, tree construction and the search algorithm. Recent stud-
ies have enhanced the efficiency of the search algorithms by incorporating diversity rewards or
pruning techniques [40, 18]. To the best of our knowledge, no prior work explored the acceler-
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ation of tree construction, which is the focus of this paper. Traditional Sequential execution of
LLMs necessitates repeated executions, leading to long execution time, as shown in Figure 1 (a).

(a) Serial (d) Parallel(c) Scheduled SD

GPU HBM

(b) Serial SD

Target Draft

Figure 1: Illustration of four LLM execution
strategies for generating 3 sequences in Rea-
soning Tree construction: (a) Serial, where ex-
ecutions are operated one after another, sim-
plifying resource management but increasing
overall execution time; (b) Seiral SD, where
speculative decoding is used for each execu-
tion; (c) Scheduled SD, which involves several
parallel draft models and one target model; (d)
Parallel, where multiple executions run concur-
rently, reducing completion time but increasing
GPU HBM.Latency
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Target DraftGPU HBM repre-
sents a unit length of execution time.

For instance, when applying ToT prompting to ex-
ecute a single sample in the GSM8K dataset, the
average total runtime is approximately 100 seconds
using sequential processing with a 7B model on
consumer GPUs. If the execution of LLMs shifts
from sequential to parallel processing, it could pose
challenges for end-users or researchers only with
consumer GPUs, as illustrated in Figure 1 (d). Such
condition typically exacerbates the issues related
to hardware limitations, necessitating strategies for
efficient resource management and optimization.
Speculative decoding is now widely used to accel-
erate inference [39], which involves employing a
small draft model with a larger target model, as de-
picted in Figure 1 (b). Intuitively, these draft models
achieve rapid inference speeds owing to their small
size. If they are executed in parallel, concerns about
the GPU memory constraints become negligible,
allowing for the speed performance comparable to
the scenarios illustrated in Figure 1 (d). Moreover,
speculative decoding employs a draft-then-verify
two-stage paradigm, and the target model is not
fully utilized when the acceptance rate of drafted to-
kens is relatively high. By increasing the number of
draft models, the potential of a single target model
can be effectively harnessed, ensuring its capacity
is optimally utilized.

Therefore, we propose a novel and efficient inference framework, SEED, to address both runtime
speed and GPU memory resource management concurrently in reasoning tree construction. SEED
effectively handles two scenarios: (1) executing multiple iterations with the same prompt; (2)
evaluating multiple iterations with different prompts. We utilize scheduled speculative decoding to
manage the scheduling of parallel draft models. As depicted in Figure 1 (c), given that there is only
one shared target model, which can not simultaneously verify multiple draft models, we address this
limitation by drawing inspiration from process scheduling in operating system management [44, 31].
To this end, the Rounds-Scheduled strategy which uses a First-Come-First-Serve (FCFS) queue, is
employed to control and maintain the overall execution flow.

SEED achieves excellent speed performance on three reasoning and planning datasets: GSM8K,
Creative Writing and Blocksworld. It also provides a viable path for conducting batched inference
in training-free speculative decoding while preserving the original distribution, ensuring a lossless
outcome. Our contribution can be summarized as follows:

• An efficient inference framework, SEED, is proposed to accelerate the both Thought Gener-
ator and State Evaluator in reasoning tree construction.

• Speculative Scheduled Execution that integrates parallel drafting with speculative decoding
is proposed, employing an effective Rounds-Scheduled strategy to manage parallel drafting
devoid of verification conflicts.

• Empirically, extensive experiments and analysis studies are conducted to demonstrate the
effectiveness of SEED. SEED achieves 1.1−1.5× speedups, generating up to 20 additional
tokens per second across three reasoning datasets.

2 Preliminaries

2.1 Speculative Decoding

The core technique of speculative decoding involves using a small draft model to generate tokens
sequentially, with a larger target model validating these tokens [22]. Specifically, let c be the input
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tokens, Md and Mt be the draft and the target model respectively, and k be the number of draft
tokens generated per step. Speculative decoding is a Draft-then-Verify two-stage decoding paradigm.
3 In the draft stage, Md samples a draft sequence of tokens autoregressively, denoted as x̂1, . . . , x̂k,
where x̂i ∼ pd(x|x̂1, . . . , x̂i−1, c) for i = 1, . . . , k. In the verification stage, the draft sequence
of tokens along with c, are passed to Mt to obtain their output distribution pt(x|x̂1, . . . , x̂i−1, c)
in parallel, and then verified from x̂1 to x̂k. The draft token x̂i is accepted with the probability
min(1, pt(x|x̂1,...,x̂i−1,c)

pd(x|x̂1,...,x̂i−1,c)
). Once a token is rejected, the verifying terminates and a resampling phase

follows to return a new token by Mt. This new token is then used as the end-generated point following
the accepted tokens. As is proven in Leviathan et al. [22], this method is equivalent to sampling
directly from the target LLM. SEED adopts this method, ensuring that the distribution of the generated
text remains unchanged for both the greedy and non-greedy settings.

2.2 Tree Attention

Current speculative decoding studies have demonstrated that when the draft model samples multiple
candidates per position in the draft sequence, the expected acceptance length per step can be enhanced
during the verification stage [7]. Additionally, the tree attention technique enables multiple candidate
draft sequences to share the caches of generated tokens, further improving the efficiency of the
verification stage [6]. By utilizing tree attention, the verification acceptance of speculative decoding
is increased. We illustrate the detailed tree attention mask strategy in Appendix E. Our proposed
SEED can leverage this approach to achieve further speedup.

2.3 TSB Task Formulation

Initial Input
*n

n

Thought Generator

State Evaluator

S0

S1

S2

Figure 2: Two main components in reasoning tree
construction, which are Thought Generator and
State Evaluator, respectively.

Given an initial input question I, a reasoning
tree is constructed with the relatively common
search algorithm BFS following Yao et al. [42],
as shown in Figure 2. In the constructed reason-
ing tree, each node represents a distinct state Si,
which includes a partial solution with the input
c and the progressively elaborated thoughts pro-
posal z1, · · · , zn. During the expansion of each
node, the Thought Generator G(·) produces mul-
tiple reasoning paths to decompose the interme-
diate process from the current state. Once these
thoughts are generated, the State Evaluator E(·)
assesses the contribution of each path toward
solving the problem, serving as a heuristic for guiding the search algorithm. This evaluation aids in
determining which states to continue exploring and in establishing the order of exploration. Taking
the root node S0 as an example in Figure 2, it first generates n reasoning paths based on the same
input c, which is the initial prompt I and subsequently selects the middle path by the State Evaluator
for these n paths.

3 Method

Our proposed SEED is an efficient inference framework designed to accelerate the construction of a
reasoning tree. Different generation executions in the Thought Generator or the State Evaluator are
conducted in distinct branches, ensuring that they do not interfere with each other. Consequently,
the Speculative Scheduled Execution is implemented in both the Thought Generator and the State
Evaluator, enabling parallel processing to accelerate the overall reasoning tree construction, as the
detailed algorithm in Algorithm 1.

We first introduce two phases in the Speculative Scheduled Execution in §3.1. Subsequently, we
depict the Rounds-Scheduled Strategy designed to effectively manage parallel drafting without
conflicts in §3.2. The combined algorithm is elaborated in Appendix G.

3In the following paper, we define “Verification” as the “Verify” mentioned here, which includes both the
verify and resampling phases.

3



v1v1

c3 + How many duck
much

c1 + How many eggs

c1 + How many eggs

Draft Model 1 Draft Model 2 Draft Model 3

c1

Queue
（FCFS）

Target Model Target Model Target Model

c2

c2 + What is total c3 + How many duck

c3

c1 + How many eggs c2 + What is total c3 + How many duck

c2 + What is total
the

Draft
Model 2

Draft
Model 3

Target
Model

Draft
Model 1 it0

it0

v1

it1 it2

it0

it1

v3

it1

v2 v1

it2

v3

it2

it3

v2v2 v3

it3

v3v2

it3

it4

v3

Time

(a) (b) 

Figure 3: (a) The scenario where the target model manages the verification of target models at
the beginning; (b) Overall scheduling diagram for one target model and three draft models. ,

, represent Draft Model 1, Draft Model 2, Draft Model 3, respectively. , , denotes
the execution times of drafting for each corresponding draft model. refers to Target Model.

represents the execution time of the verification phase, while specifies the resampling time in
cases of rejection.

3.1 Speculative Scheduled Execution

We further detail the speculative scheduled execution algorithm within SEED. To enhance clarity, we
delve the algorithm into two phases: the parallel drafting phase and the sequential verification phase.

Parallel Drafting Phase The model size significantly impacts memory usage and inference time.
In light of this, given the small size and rapid inference speed of the draft models, we can directly
initialize multiple draft models corresponding to the number of thoughts, enabling parallel processes.
To be specific, if the number of thoughts Nt is set to n, the draft models Md1

,Md2
, · · · ,Mdn

take
c1, c2, · · · , cn as input tokens respectively in the drafting phase. Note that, during the Thought
Generation, the input instructions are the same, i.e., c1 = c2 = · · · = cn; during the State Evaluation,
they may differ, denoted as c1 ̸= c2 ̸= · · · ≠ cn. As illustrated in Figure 3 (a), three draft models
initiate sampling simultaneously when the queue Q is initially empty. In the subsequent stage, the
draft models enter the queue according to which completes the generation first. In Figure 3 (a), Draft
Model first completes the drafting process and is the first to enter the queue Q, followed by Draft
Model and Draft Model . Each draft model is generating its own tokens while the target
model Mt is verifying the tokens of other draft models. In this way, we can leverage the potential of
small draft models to complete their drafting processes simultaneously, while the larger target model
only needs to verify them sequentially.

Sequential Verification Phase Only one single target model is employed for the sequential verification
of multiple draft sequences in SEED. The target model first verifies the tokens generated by the draft
model at the front of the queue. During the verification phase, two scenarios may occur: acceptance
and rejection. If the tokens generated by the draft model are accepted by the target model, they are
retained, as exemplified by Draft Model in Fugure 3 (a). If rejected, one new token is resampled
by the target model, as demonstrated by Draft Model and Draft Model . Taking Draft Model

as an example, it drafts two tokens, “many” and “duch”, which are rejected by the target model.
Target Model then resamples a new token “much”. Furthermore, when accepted, the target model
only requires the execution time , when rejected, it incurs additional time for resampling .

3.2 Rounds-Scheduled Strategy

With the integration of parallel drafting and sequential verification, it is crucial to optimize the
scheduling to ensure the correctness of speculative execution while effectively utilizing the target
model and reducing the overall execution latency. Inspired by process scheduling in operating system
management, which utilizes the First-Come-First-Serve (FCFS) scheduling policy for all requests,
ensuring fairness and preventing starvation [44, 31], we leverage a Rounds-Scheduled Strategy
integrated with the FCFS scheduling policy to manage the verification process efficiently. When
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a draft model completes its drafting phase and is ready for verification, the draft sequences along
with c are placed into a queue. The technical principle of SEED is inspired by the operation system
schedule. The detailed analogy between the operation system scheduling with SEED is presented in
Appendix D.6. As depicted in Figure 3 (a), when the queue Q is not empty, a sequence of draft tokens
is dequeued in the FCFS manner. Target Model first verifies the tokens generated by Draft Model

, followed sequentially by tokens generated by Draft Model and Draft Model , adhering
to FCFS. Upon completion of the verification of a draft sequence associated with a draft model, the
draft model proceeds to the drafting process in the next iteration. The overall scheduling diagram
is shown in Figure 3 (b), each draft model displays a series of iterations to complete the overall
drafting progress for the Thought Generator or the State Evaluator. The target model is consistently
active across the overall scheduling timeline. This continuous activity ensures that the target model is
utilized efficiently, addressing issues related to idle time when acceptance rates are relatively high.
Once all drafting and verification processes are completed, the entire execution concludes, resulting
in the generation of n sequences.

4 Experiments

4.1 Datasets

Three widely used reasoning and planning datasets are chosen for our experiments. To assess the
effectiveness of creativity and planning tasks, we leverage the Creative Writing dataset (CW) [42],
where the input is four random sentences and the output should be a coherent passage with four
paragraphs that end in the four input sentences respectively, with a ToT tree depth T of 2. For
mathematical reasoning, GSM8K [9] is a dataset comprising high-quality grade-school math word
problems that require multi-step reasoning, with a tree depth T of 4. This task is open-ended and
exploratory, posing significant challenges to creative thinking and high-level planning. To better
demonstrate the speedup performance in solving more complex planning problems, we select the
Blocksworld dataset (BW) [36]. We set the tree depth T to 7 for this task to allow for more iterations.
Specifically, we utilize 1319 samples from the GSM8K test set, 100 random samples from the CW
dataset following [42], and 145 samples from the BW step-6 dataset.

4.2 Baselines

This study focuses on accelerating the reasoning tree construction process rather than the search algo-
rithm or advanced prompting methods. The selection of baselines will be discussed in Appendix D.1.
We consider the following decoding paradigms as our baselines: (1) AR denotes the original ToT [42]
that employing standard autoregressive generation as shown in Figure 1 (a); (2) SD presents the
application of speculative sampling which is detailed in 2.2 on the basis of ToT as shown in Figure 1
(b); (3) MCSD utilizes multi-candidate sampling and employs a advanced verifying algorithm to
improve the acceptance rate and enhance the speed of SD [41]. Similar to SD, it adheres to only
one single-sample serial execution process. Notably, both SD and MCSD are orthogonal to our
proposed SEED. We apply our framework within these two decoding approaches to validate SEED’s
effectiveness across different accetance rates.

4.3 Setup

Our evaluation is based on the publicly available LLaMA Chat suite [35], which has shown strong
performance in executing instructions and in TSB scenarios. We utilize (Md, Mt) following previous
work [8, 41]: (LLaMA-68M-Chat , LLaMA-2-Chat-7B) and (LLaMA-160M-Chat , LLaMA-2-Chat-
13B). To validate the extensibility of our framework, we also conducted experiments using the QWen
suite [2]. Detailed information and results for both the other LLaMA pair and QWen suite can be
found in Appendix D.2. We perform a BFS algorithm as the search strategy. Temperatures are set to
0.2 and 1.0 to evaluate under different conditions.4 The detailed prompts for the Thought Generator
and the State Evaluator, along with the ToT setup for each task are provided in Appendix F. The
experiments are conducted on a single NVIDIA RTX A100-80G or a single node which is equipped
with four NVIDIA RTX 3090-24GB GPUs. Subtle differences in hardware performance between
these platforms are discussed in Appendix D.4.

4We avoid the temperature 0 because greedy decoding is not meaningful in Thought Generator.
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Table 1: The speedup performance of our proposed SEED and baselines, with settings of SEED for
Md and Mt being LLaMA-68M and LLaMA2-7B, respectively. The illustration of kconfig=(2,2,1)
is presented in Appendix E. All speedups are relative to the vanilla AR. The best results among all
methods are in bolded.

Temp. kconfig Methods CW(T = 2) GSM8K(T = 4) BW(T = 7)
Tokens/s Speedup Tokens/s Speedup Tokens/s Speedup

0.2

- AR 38.42 1.000× 42.31 1.000× 34.19 1.000×

(1,1,1)

SD 39.96 1.040× 51.11 1.208× 36.28 1.061×
w. SEED 41.53 1.081× 53.14 1.256× 36.93 1.080×

MCSD 40.19 1.046× 52.42 1.239× 36.04 1.054×
w. SEED 41.46 1.079× 53.78 1.271× 36.96 1.081×

(2,2,1)

SD 46.22 1.203× 60.63 1.433× 40.04 1.171×
w. SEED 48.60 1.265× 65.24 1.542× 44.24 1.294×

MCSD 46.80 1.218× 60.88 1.439× 40.79 1.193×
w. SEED 48.79 1.270× 65.58 1.550× 44.75 1.309×

1.0

- AR 39.47 1.000× 47.81 1.000× 34.62 1.000×

(1,1,1)

SD 45.90 1.163× 55.32 1.157× 35.14 1.015×
w. SEED 46.77 1.185× 61.01 1.276× 38.94 1.125×

MCSD 45.63 1.156× 58.47 1.223× 38.05 1.099×
w. SEED 46.54 1.179× 65.50 1.370× 40.02 1.156×

(2,2,1)

SD 57.39 1.454× 66.74 1.396× 45.98 1.328×
w. SEED 58.89 1.492× 72.62 1.519× 47.22 1.364×

MCSD 56.24 1.425× 67.36 1.409× 46.18 1.334×
w. SEED 59.76 1.514× 74.44 1.557× 47.71 1.378×

4.4 Main Results

Table 1 presents a comprehensive analysis of our proposed SEED and baselines applied to three
reasoning datasets. If each element in kconfig is 1, we use the traditional single sampling at each
position of the draft sequence. Otherwise, we employ tree attention, which represents sample multiple
candidate tokens at each position and verify in parallel (details in Section 2.2). A greater number
at each position in kconfig signifies that more candidates, generally yield higher speedups. MCSD
achieves better speedup than SD by using an advanced verifying algorithm that results in higher
acceptance rates. With our SEED, the performance of these two baselines is further improved,
demonstrating its effectiveness across different acceptance rates. Across all datasets across various
reasoning depths T , our framework, consistently outperforms the baselines across different settings
and configurations, including temperature and kconfig, in terms of speedup, achieving the further
speedup. Specifically, on the GSM8K dataset, using tree attention, MCSD in our proposed SEED
framework achieves up to 1.5× speedup compared to AR, generating nearly 30 additional tokens per
second.

In addition to the main experimental results, Appendix C includes three key questions of interest:
RQ1 on SEED’s performance at different acceptance rates, RQ2 on its acceleration effects on ToT
components, and RQ3 on the scaling of speedup and GPU utilization with the number of thoughts.

5 Conclusion

In this paper, we introduce SEED, a novel inference framework designed to optimize the runtime
speed and manage GPU memory usage effectively during the reasoning tree construction for complex
reasoning and planning tasks. SEED employs scheduled speculative execution to enhance the
performance of LLMs by integrating the management of multiple draft models and a single target
model, based on principles similar to operating system process scheduling. This strategy not only
mitigates the inference latency inherent in tree-search-based reasoning methods but also efficiently
utilizes the available computational resources. Our extensive experimental evaluation across three
reasoning demonstrates that SEED achieves significant improvements in inference speed, generating
up to 20 additional tokens per second.
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A Related Work

A.1 Tree-Search-Based Reasoning

Recently, TSB reasoning methods have been widely leveraged to augment the reasoning capabilities
of LLMs such as RAP [15], ToT [42], RoT [18]. These methods craft a reasoning tree allowing
consider multiple reasoning paths and self-evaluate the choices to determine the next course of action.
At each reasoning step, the popular tree search algorithms such as Breadth-First Search (BFS) [5] and
Monte-Carlo Tree Search (MCTS) [19] are integrated to explore the tree in search of an optimal state.
Also, the construction or search of the tree requires more iterations than single sampling methods (e.g.,
Input-output prompting and CoT [38]), leading to higher inference latency. To address this, some
studies introduce diversity rewards [40] or pruning techniques [18] to mitigate inefficient searches
during iterations, improving search efficiency. However, these methods still overlook the inference
latency caused by the iterative process of tree construction. Instead, we focus on tree construction,
leveraging speculative scheduled decoding to accelerate the process and reduce inference latency.

A.2 Parallel Decoding

The inference latency of LLMs has emerged as a substantial obstacle, restricting their remarkable
reasoning capabilities in downstream tasks [39]. One major factor contributing to the high inference
latency is the sequential decoding strategy for token generation adopted by almost all LLMs [27].
There are numerous studies have explored this challenge through parallel decoding strategies, such as
Speculative Decoding (SD) [45, 6], Early Exiting (EE) [11, 12], and Non-AutoRegressive (NAR) [13,
26]. In this paper, we focus on the study of Speculative Decoding. Within SD, one line of work falls
into the training-free category [33, 25]. This plug-and-play approach seamlessly integrates with other
modular inference methods (e.g., CoT, TSB), significantly enabling direct inference acceleration and
reducing inference latency on open-source models. As far as we know, we are the first to explore a
scheduled SD execution to integrate with the TSB framework, without modifying LLM architecture
or requiring additional training and maintaining lossless output.

B Limitations

Although SEED already achieves exceptional speedup performance in the experiments, our work also
has the following limitations.

• Our frameworks introduce parallel drafting, involving n − 1 additional drafting models,
which inherently necessitates the addition of an equivalent number of KV-Cache. Given
the increase attributed to small draft models (68M/160M) is relatively minimal, we do not
optimize the management of the KV-Cache in this work.

• This study focuses solely on optimizing the inference speed of the tree construction for the
TSB reasoning task and does not optimize the search speed for these tasks.

In the future, SEED can be compatible with vLLM [21] and FlashAttention-2 [10], enabling more
memory-efficient inference on longer sequences. Additionally, the extra KV-Cache could be reduced
by caching the common prefix during reasoning tree construction, which would lower the parallel
overhead in later iterations.

Moreover, our method offers a potential implementation of batched speculative decoding from the
execution scheduling perspective, which could be integrated with other KV-Cache based batch
speculative decoding methods [28], as further discussed in Appendix D.5.

C Analysis

We use the SEED (with MCSD) to conduct the following analytical experiment to answer the
following research question (RQ) using under the condition kconfig = (2,2,1) and temperature = 1.0.

RQ1: How does SEED perform at different acceptance rates? We sampled data points from three
datasets within different acceptance rate ranges, we separately reported the speedup achieved by
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Figure 4: Analysis on RQ1 and RQ2.
SEED and the baseline for these samples in Figure 4a. It is evident that under the same acceptance
rate, SEED outperforms the baseline in terms of speedup. This improvement is attributed to our
framework, which achieves speedup not by increasing the acceptance rate but by scheduling draft
models. Additionally, as the acceptance rate increases, both SEED and the baseline exhibit a
noticeable upward trend in speedup, which is the inherent characteristic of the speculative decoding
method.

RQ2: Does SEED exhibit different acceleration effects on different components of ToT? SEED
accelerate two components in reasoning tree construction, which are the TG and the SE. Figure 4b
presents the acceptance rate α and the speedup performance of two main components of the SEED
method on the GSM8K dataset, confirming that the answer to the RQ2 is Yes. The TG executes
multiple iterations with the same prompt while the SE refers to evaluates multiple iterations with
different prompts. The TG component consistently outperforms the SE component in terms of both
α and speedup, possibly because the SE is relatively harder compared to the TG. The proficiency
between the target model and draft model may be more closely aligned in the proposal of thoughts,
compared to decision-making capability.
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Figure 5: (a) The comparison visualization of GPU
utilization between SD and SEED over the 120
seconds under n = 3. (b) The variation of speedup
and acceptance rate α with the number of reasoning
paths n.

RQ3: How does the speedup and GPU uti-
lization scale with the number of thoughts?
In speculative decoding, both the target and
draft model parameters are loaded into GPU
memory. We record the GPU utilization over
the same durations for the SD and SEED on
a GSM8K instance to visualize the effective-
ness of parallel drafting in Figure 5 (a). The
upper part illustrates the GPU utilization of SD
fluctuates intermittently, primarily due to the
target model being idle during drafting, while
the lower part shows SEED exhibits stable uti-
lization, attributed to the active engagement of
the target model in the verification phase. As
the number of thoughts n increases within a
certain range, the idle time of the target model
decreases, leading to higher GPU utilization and speedup, as shown in Figure 5 (b). However, when
the number of thoughts becomes too large (e.g., n=6), the target model’s fixed verification capacity
leads to SEED speedup saturation. This manifests as more draft models being placed in a waiting
state, reducing draft parallelism and causing bottlenecks that lower utilization and acceleration.

D Discussions

D.1 Selection of Baselines

See Section 4.2, where we list all the baselines used to compare with our proposed SEED in this
study. However, several other speculative decoding strategies have not been explored as baselines.
We do not conclude these strategies based on the following considerations as shown in Table 2:
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Table 2: The comprehensive comparison of the listed methods and SEED. ■ represents draft-and-
target SD method, while ▲ represents self-draft SD method.

Methods Training-free Lossless SD Type Extra-knowledge-free Speedup

Vanilla AR ✓ ✓ - ✓ ✗

SD [22] ✓ ✓ ▲ ✓ ✓

CS-Drafting [8] ✓ ✓ ▲ ✗ ✓

REST [17] ✓ ✓ ▲ ✗ ✓

Medusa [6] ✗ ✗ ■ ✓ ✓

Eagle [23] ✗ ✓ ■ ✓ ✓

SS [3] ✗ ✗ ■ ✓ ✓

MCSD [41] ✓ ✓ ▲ ✓ ✓

SEED (Ours) ✓ ✓ ▲ ✓ ✓

(1) Training-free indicates whether the method requires training.

∗ Medusa [6] adds extra FFN heads atop the Transformer decoder, allowing for parallel token
generation at each step;

∗ Eagle [23] performs the drafting process autoregressively at a more structured level, specifi-
cally the second-to-top layer of features;

∗ SS [3] integrates drafting phase into the target model by modifying the fine-tuning objective
from the next token to future n-gram predictions.

These methods all require training and are not plug-and-play, since they train the LLM to serve as
both the target model and the draft model, which classifies them as self-drafting ■ according to Xia
et al. [39]; in contrast, our method employs independent drafting ▲ (draft-and-target), placing it in a
different SD type. Therefore, we do not consider them as baselines.

(2) Extra-knowledge-free indicates whether the SD process uses additional knowledge modules.

∗ CS-drafting [8] resorts to a bigram model based on the probability distribution of Wikipedia
as the draft model at a more basic level.

∗ REST [17] retrieve from extensive code and conversation data stores to generate draft
tokens.

The two approaches introduce external knowledge modules, making it significantly dependent on
the effectiveness of the external knowledge modules and unfair to compare us with draft-and-target
models.

(3) Lossless indicates whether the method generates the same output distribution as AR decoding
does in the backbone model.

SS [3] and Medusa [6], which are inherently not lossless, are unsuitable for comparison with our
proposed SEED, which maintains losslessness consistent with SD in a single draft-then-verify.

Future work will also explore the integration of SEED with the lossless self-drafting method Ea-
gle [23].

D.2 Scalability and Extensibility

LLaMA Suite Table 3 shows the performance of each method when using LLaMA-160M-Chat5 as
draft model Md and LLaMA-2-Chat-13B6 as target model Mt.

5https://huggingface.co/Felladrin/Llama-160M-Chat-v1
6https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
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Table 3: Speedup performance of our proposed SEED and baselines, with settings of SEED for Md

and Mt being LLaMA-160M and LLaMA2-13B, respectively. All speedups are relative to the vanilla
AR. The best results among all methods are in bolded.

Temp. kconfig Methods CW(T = 2) GSM8K(T = 4) BW(T = 7)
Tokens/s Speedup Tokens/s Speedup Tokens/s Speedup

0.2

- AR 32.33 1.000× 32.08 1.000× 32.91 1.000×

(2,1,1)

SD 33.14 1.025× 34.97 1.090× 33.17 1.008×
w. SEED 33.82 1.046× 36.80 1.147× 33.54 1.019×

MCSD 33.27 1.029× 35.71 1.113× 33.37 1.014×
w. SEED 36.18 1.119× 36.28 1.131× 34.36 1.044×

(4,2,1)

SD 34.23 1.059× 38.95 1.214× 36.04 1.095×
w. SEED 38.57 1.193× 41.06 1.280× 36.76 1.117×

MCSD 35.56 1.100× 41.09 1.281× 37.58 1.142×
w. SEED 40.28 1.246× 44.11 1.375× 38.70 1.176×

1.0

- AR 39.57 1.000× 31.54 1.000× 32.87 1.000×

(2,1,1)

SD 40.28 1.018× 35.23 1.117× 34.32 1.044×
w. SEED 42.74 1.080× 36.71 1.164× 35.37 1.076×

MCSD 40.68 1.028× 35.26 1.118× 35.01 1.065×
w. SEED 43.37 1.096× 37.15 1.178× 35.86 1.091×

(4,2,1)

SD 43.69 1.104× 36.87 1.169× 37.83 1.151×
w. SEED 47.25 1.194× 40.66 1.289× 38.56 1.173×

MCSD 45.19 1.142× 36.90 1.170× 39.28 1.195×
w. SEED 49.74 1.257× 41.54 1.317× 40.43 1.230×

Table 4: Speedup performance on Creative Writing
dataset of SEED within using QWen1.5-0.5B-Chat
as Md and QWen1.5-7B-Chat as Mt. The vocabu-
laries of these two models are identical, allowing
for speculative sampling.

Temp. kconfig Methods Tokens/s Speedup

0.2
- AR 31.22 1.000×

(1,1,1,1) SD 32.91 1.054×
w. SEED 34.62 1.109×

0.6
- AR 37.93 1.000×

(1,1,1,1) SD 39.22 1.034×
w. SEED 41.91 1.105×

1
- AR 33.86 1.000×

(1,1,1,1) SD 34.91 1.031×
w. SEED 39.35 1.162×

QWen Suite Our framework is based on spec-
ulative decoding, so the model setup of the draft
model and the target model can be consistent
with it. Consequently, any LLM suite can be
integrated into our framework. We also con-
ducted experiments using the QWen1.5 suite.7
Specifically, we use QWen1.5-0.5B-Chat8 as the
draft model Md and use QWen1.5-7B-Chat9 as
the target model Mt. The results are presented
in Table 4. The results align with the findings
presented in Section 4.4, demonstrating the su-
perior performance of our framework. It also
highlights the scalability of our framework to
the LLM suite [2].

Search Algorithm in ToT Our framework
uses the relatively simple search algorithm BFS.
In fact, SEED can seamlessly integrate more ad-
vanced search algorithms, such as A∗ [16] and MCTS [19], etc., which we leave for future research.

D.3 Task Performance

Accuracy Leviathan et al. [22] has proved the outputs of AR and SD are the same. We separately
evaluated the performance of the GSM8K dataset using the AR with QWen1.5-7B and SEED
with the aforementioned QWen1.5 suite using QWen1.5-0.5B and QWen1.5-7B, and found that the
performance difference was within ±1.5%, which is acceptable and substantiates that the performance
is effectively lossless.

7https://qwenlm.github.io/zh/blog/qwen1.5/
8https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat
9https://huggingface.co/Qwen/Qwen1.5-7B-Chat
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Performance on Non-Reasoning Tasks SEED is a versatile method that can be applied not only in
reasoning tasks involving TSB but also in non-reasoning tasks. Its general applicability makes it a
robust solution for various scenarios. We specifically applied SEED to the TSB in reasoning tasks
based on several key considerations:

• Practicality of TSB: The TSB method allows the generation of multiple sequences simulta-
neously in both identical and varied input scenarios. This makes it a practical choice for
efficient processing.

• Efficiency on Consumer-Grade GPUs: Typically, TSB involves generating 2-6 reasoning
paths concurrently, which can be handled by consumer-grade GPUs. By contrast, promtping
methods like Self-Consistency [37] often require generating 10-20 sequences, parallelly
placing a greater strain on hardware resources.

• Relevance to Task Difficulty: Reasoning tasks are challenging benchmarks for evaluating
LLMs. If our framework achieves effective acceleration under acceptance in these tasks, it
is likely to perform well on simpler tasks, like translation, where the alignment between the
target and draft models is better. In early exploratory experiments, SEED achieved a 1.31x
speedup over AR on the WMT dataset [4], demonstrating its efficacy.

D.4 Hardware Dependency

Table 5: Speed performance of LLaMA2 suite on
Creative Writing dataset under different hardware
environments with temperture = 1.0 and kconfig =
(1,1,1,1), as well as the performance of Qwen1.5
suite suite on GSM8K dataset across different
hardware environments with temperture = 1.0 and
kconfig = (4,2,1).

LLM Suite GPUs Methods Tokens/s Speedup

LLaMA2
160M/13B

4×RTX 3090s
AR 38.77 1.000×
SD 42.18 1.088×

w. SEED 44.93 1.159×

1×RTX A100
AR 39.57 1.000×
SD 43.69 1.104×

w. SEED 47.25 1.194×

Qwen1.5
0.5B/7B

4×RTX 3090s
AR 27.51 1.000×
SD 27.43 0.997×

w. SEED 29.57 1.075×

1×RTX A100
AR 33.86 1.000×
SD 34.91 1.031×

w. SEED 39.35 1.162×

The experiments was conducted on a 4×3090
server in the earlier exploratory. From the exper-
iments on different hardware shown in Figure 5,
our method is still effective compared with SD
with the same setting. The speedup performance
on 4×3090 is lower than on 1×A100, likely
due to the increased communication time be-
tween multiple GPUs [32]. This is also evident
from the Qwen suite results, where SD performs
worse than AR on 4×3090.

D.5 Batch Inference

Batch inference processes multiple sequences
of varying lengths. In SD, each sequence in
the same batch requires extra padding due to
different acceptance rates and sequence lengths,
potentially leading to excessive storage and com-
putation [28]. This can result in an overly long
KV-Cache, thereby slowing down the speedup
effect due to inconsistent acceptance lengths.
Our SEED maintains the original length of KV-
Cache without the need for padding based on
varying acceptance rates. Each verified draft
sequence corresponds directly to a sequence in the batch (number of draft models n = batch size). Our
parallel drafting approach ensures efficient batch implementation while preserving the acceleration
benefits of SD.

D.6 Technical Principle

Previous research has adapted the principle of the operating system (OS) scheduler for efficient
process management [21]. As shown in Figure 6, each component in SEED can be mapped to
a corresponding component in the operating system scheduler. Next, we will elaborate on each
component individually.

• The rounds-scheduled execution in SEED corresponds to the process scheduling in OS. Both
use an FCFS queue to control and maintain the overall execution flow. A key distinction
exists: in SEED, after the drafting tokens are processed by the verification phase, the draft
model is returned to the queue, i.e., “rounds”. In contrast, in OS scheduling, a process that
has been handled by the CPU is marked as completed.
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• The verification of draft tokens X̂ mirrors an operating process in OS scheduling.
• The target model serves Mt analogously to the CPU.
• The total verification time of Mt resembles the CPU time in OS process scheduling.

Future work may explore the integration of more advanced scheduling algorithms, such as those used
in real-time systems, to further enhance the responsiveness and efficiency of SEED.

E Details of Tree Attention

Setting kconfig to (2,2,1) indicates that each draft phase generates a group of k = 3 tokens, with the
first two positions each sampling 2 candidates, and the third position sampling 1. Figure 7 illustrates
a case of tree attention with a configuration of kconfig = (2, 2, 1).

F Detailed Setup and Prompts

We implemented a simple and generic ToT-BFS according to Yao et al. [42]. Within the Thought
Generator, we leverage a sampling strategy to generate thoughts for the next thought step. Within the
State Evaluator, we leverage a value strategy to evaluate the generated thoughts and output a scalar
value (e.g., “1-10”) or a classification (e.g., “good/bad”) which can be heuristically converted into a
value. To introduce diversity in thought generation across all tasks, we set the generation temperature
as 0.2/1(>0) for the LLaMA suite models and 0.2/0.6/1(>0) for the QWen suite models. The tree
depth T suggests that the operations with varying levels of complexity or iterations, with deeper trees
potentially representing more complex calculations or decision-making processes. The ToT setup of
the three tasks SEED utilized is as follows:

• Creative Writing: We build a reasoning tree with a depth T of 2 (with 1 intermediate
thought step) that generates 3 plans and passages. The State Evaluator assesses the plans
and outputs a coherency score with each plan and passage.
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• GSM8K: We build a reasoning tree with a depth T of 4 (with 3 intermediate thought steps)
that generates 3 sub-questions and corresponding sub-answers. This setup aligns with the
findings from Hao et al. [15], which indicated that three steps are generally sufficient to
achieve a passable level of accuracy. The State Evaluator assesses them and outputs a
number representing the helpfulness for answering the question. We select the one with the
highest values and add it to the previous sub-question and sub-answers.

• Blocksworld 6-step: We build a reasoning tree with a depth T of 7 (with 6 intermediate
thought steps) that generates 3 thoughts, including action plans and current actions. Due
to the complexity of this task, demonstrations are provided in the prompt, labeled as
“good/bad”, to assist the State Evaluator in its assessment.

The prompts for the tasks described above are presented below. The orange parts in prompts are
required for LLM completion. During the evaluation, we require the LLM to generate both a score
and an explanation (a context with 128 new tokens), rather than just a score. This approach
promotes the speedup in generation and makes the evaluation of ToT more reasonable.
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Prompts for Creative Writing

The Thought Generator

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be:
{initial_prompt}
Make a plan then write. Your output should be of the following format:

Plan:
Your plan here.

Passage:
Your passage here.

The output is:
{Plan}
{Passage}

The State Evaluator

Analyze the passage: {Passage}, then at the last line conclude "Thus the coherency score is [s]",
where [s] is an integer from 1 to 10.
The coherency score is: {value}
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Prompts for GSM8K

The Thought Generator

Given a question: {initial_prompt}, the previous sub−question and sub−answer is:
{state_text}
Please output the next sub−question to further reason the question.
The sub−question is: {sub-question}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Given a question: {initial_prompt}, the sub−question is: {sub_question}
Please answer the sub−question based on the question.
The sub−answer is: {sub_answer}

The State Evaluator

Given a question: {initial_prompt}, the sub−question is: {sub_question}, the sub−answer is:
{sub_answer}
Please output a number between 1 and 10 to evaluate the answer. The higher the number, the more
help there is in answering the question.

The number is: {value}

Restrictions on Action for Blocksworld

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear if the
block has no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block I am unstacking was really on
top of the other block.
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is
clear.
Once I put down or stack a block, my hand becomes empty.

18



Prompts for Blocksworld

The Thought Generator

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I
can do:

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
##Restrictions on Action##

<—Omit demonstrations—>

[STATEMENT]
{initial_prompt}

My plan is as follows:
{state_text}
The current action is:
{action}

The State Evaluator

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I
can do:

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
##Restrictions on Action##

<—Omit demonstrations—>

Please evaluate whether the given action is a good one under certain conditions.

[STATEMENT]
{initial_prompt}
[ACTION]
{state_text}
[EVALUATION]
The evaluation is:
{evaluation}

G Algorithm

The core acceleration mechanisms of SEED, which combines speculative scheduled execution with
the rounds-scheduled strategy, is presented in Algorithm 2. At its essence, the parallel drafting
is realized by multiple parallel processes D(n), while the sequential verification is realized by a
verification process V that cyclically verifies from the verify queue Q. The verification process has
two phases, which are the verify phase E and the resampling phase R. To maintain the asynchronous
nature of the draft-then-verify event loop, leveraging a draft label map γ ensures each draft process
waits for verification before proceeding with new drafts. At the initial stage, each element in the
draft label map γ is set to 1, indicating all draft models can perform drafting. After completing the
verification of a draft model, the corresponding label in γ changes to 0, awaiting for re-drafting.
Notably, D(n) and V are synchronized. The termination condition for both process D(n) and process
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Algorithm 1 SEED(x, pθ, G, n, E, s, b)
1: Input: Initial prompt I, speculative scheduled execution with a rounds-scheduled strategy pθ , thought

generator G(·) with a number of thought n, states evaluator E(·), step limit T , breadth limit b.
2: Initialize: States S; S0 ← {I}
3: for i = 1, · · · , T do
4: S′

i ← {[c, zi] | c← Si−1, zi ∈ G(pθ, c, n)} ▷ Generate thoughts in Parallel
5: Ei ← E(pθ, S

′
i) ▷ Evaluate states in Parallel

6: Si ← argmaxS⊂S′
i,|S|=b

∑
s∈S Ei(s)

7: end for
8: return G(pθ, argmaxs∈ST ET (s), 1)

Algorithm 2 Speculative Scheduled Execution with a Rounds-Scheduled Strategy

1: Input: Draft models {Md1 , · · · ,Mdn}, prefixes {c1, · · · , cn}, target model Mt, max new length l, draft
length k, auto-regressive drafting pdi and length of current validated token Li of the i-th draft model Mdi ,
i ∈ [1, n];

2: Initialize: Prefill {Md1 , · · · ,Mdn} with prefixes; Create a verify queue Q and a draft label map γ[i] of
length n, with each element set to 1, i ∈ [1, n]; Li ← 1 , i ∈ [1, n]; Define X̂i[1 : k] represents x̂1, . . . , x̂k

the sequence of draft tokens generated from pdi , i ∈ [1, n]; Start n draft processes D(n) and 1 verification
process V Synchronously;

3: Processes D(n): ▷ Prallel Drafting
4: while ∃i ∈ [1, n] : Li < l do
5: if γ(i) then
6: X̂i[1 : k]← pdi(Mdi , ci, X̂i[1 : Li], k)

7: Q← X̂i[1 : k] ▷ Add draft tokens to the queue
8: γ[i]← 0 ▷ Draft Process D(i) wait
9: end if

10: end while
11: Process V: ▷ Sequential Verification
12: while ∃i ∈ [1, n] : Li < l do
13: if Q is not empty then
14: X̂i[1 : k]← queue(Q) ▷ FCFS
15: t1, · · · , tk ← E(Mt, ci, X̂i[1 : k])
16: for j = 1 to k do
17: if tj is acceptance then
18: X̂i[Li + 1]← x̂j

19: Li ← Li + 1
20: else
21: X̂ [Li + 1]←R(Mt, ci, X̂i[1 : Li])
22: Li ← Li + 1
23: Break
24: end if
25: end for
26: γ[i]← 1 ▷ Draft Process D(i) continue
27: end if
28: end while
29: Wait for all D(n) and V to finish
30: return [response1, . . . , responsen]

V is that all current validated token Li, i ∈ [1, n] equals the max new length l. When all the processes
are finished, we can obtain a list containing n response.
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