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Abstract

Understanding the behaviour of trained deep neural networks is a critical step
in allowing reliable deployment of these networks in critical applications. One
direction for obtaining insights on neural networks is through comparison of their
internal representations. Comparing neural representations in neural networks is
thus a challenging but important problem, which has been approached in different
ways. The Centered Kernel Alignment (CKA) similarity metric, particularly its
linear variant, has recently become a popular approach and has been widely used to
compare representations of a network’s different layers, of architecturally similar
networks trained differently, or of models with different architectures trained on
the same data. A wide variety of conclusions about similarity and dissimilarity of
these various representations have been made using CKA. In this work we present
an analysis that formally characterizes CKA sensitivity to a large class of simple
transformations, which can naturally occur in the context of modern machine
learning. This provides a concrete explanation of CKA sensitivity to outliers and
to transformations that preserve the linear separability of the data, an important
generalization attribute. Finally we propose an optimization-based approach for
modifying representations to maintain functional behaviour while changing the
CKA value. Our results illustrate that, in many cases, the CKA value can be easily
manipulated without substantial changes to the functional behaviour of the models,
and call for caution when leveraging activation alignment metrics.

1 Introduction
A helpful framework for thinking about deep learning models is that of representation learning, where
we view artificial neural networks (ANNs) as learning increasingly complex internal representations
as we go deeper through their layers. In practice, it is often of interest to analyze and compare
the representations of multiple ANNs. However, the typical high dimensionality of ANN internal
representation spaces makes this a fundamentally difficult task.

To address this problem, the machine learning community has tried finding meaningful ways to
compare ANN internal representations and various representation (dis)similarity measures have been
proposed (Li et al., 2015; Wang et al., 2018; Raghu et al., 2017; Morcos et al., 2018). Recently,
Centered Kernel Alignment (CKA) (Kornblith et al., 2019) was proposed and shown to be able to
reliably identify correspondences between representations in architecturally similar networks trained
on the same dataset but from different initializations, unlike past methods such as linear regression
or CCA based methods (Raghu et al., 2017; Morcos et al., 2018). While CKA can capture different
notions of similarity between points in representation space by using different kernel functions, it was
empirically shown in the original work that there are no real benefits to using CKA with a nonlinear
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Figure 1: Visual representations of the transformations considered in the theoretical results. (a) Thm. 1: The
original set of neural representations X contains subsets S (red) and X\S (green). We can then build XS, #»v ,c as
a copy of X , where the points in X\S are translated a distance c in direction #»v . The linear CKA value between
X and XS, #»v ,c is then computed. (b) Cor. 3: X and XS, #»v ,c differ by a single point, which has been translated by
c #»v in XS, #»v ,c. (c) Cor. 4: S and X\S are linearly separable (red line with orange margins), the transformation
made to obtain XS, #»v ,c preserves the linear separability of the data as well as the margins.

kernel over its linear counterpart (Kornblith et al., 2019). As a result, linear CKA has been the
preferred representation similarity measure of the machine learning community in recent years and
other similarity measures (including nonlinear CKA) are seldomly used. CKA has been utilized
in a number of works to derive conclusions regarding the similarity between different models and
their behaviours such as wide versus deep ANNs (Nguyen et al., 2021) and Transformer (Vaswani
et al., 2017) versus CNN based ANNs (Raghu et al., 2021). Moreover, this similarity metric has
been used to draw conclusions about transfer learning (Neyshabur et al., 2020) and catastrophic
forgetting (Ramasesh et al., 2021) of ANNs. For a more detailed background on ANN representation
comparison and CKA as well as a review of recent related work please see Appendix A.1. Due
to this widespread use, it is important to understand how reliable the CKA similarity measure is
and in what cases it fails to provide meaningful results. Furthermore, we are interested to know
how easily a model can be designed to intentionally deceive the CKA similarity. In this paper, we
study CKA sensitivity to a class of simple transformations and show how CKA similarity values
can be directly manipulated without noticeable changes in the model final output behaviour. In
particular our contributions are as follows: (1) In Sec. 2 and with Thm. 1 we characterize CKA
sensitivity to a large class of simple transformations, which can naturally occur in ANNs. With
Cor. 3 and 4 we extend our theoretical results to cover CKA sensitivity to outliers, which has
been empirically observed in previous work (Nguyen et al., 2021; Ding et al., 2021; Nguyen et al.,
2022), and to transformations preserving linear separability of data, an important characteristic for
generalization. Concretely, our theoretical contributions show how the CKA value between two
copies of the same set of representations can be significantly decreased through simple, functionality
preserving transformations of one of the two copies. (2) In Sec. 3 we present a general optimization
procedure that allows the CKA value to be heavily manipulated to be either high or low without
significant changes to the functional behaviour of the underlying ANNs. We use this to revisit
previous findings (Nguyen et al., 2021; Kornblith et al., 2019).

2 CKA sensitivity to subset translation
In this section, we theoretically characterize CKA sensitivity to a wide class of simple transforma-
tions, namely the translation of a subset of the representations. We also justify why this class of
transformations and the special cases it contains are important in the context of predictive tasks that
are solved using neural networks. Our main theoretical result, Thm. 1, shows that any set of internal
neural representations X (e.g., from hidden layers of a network) can be manipulated with simple
transformations (translations of a subset, see Fig. 1.a) to significantly reduce the CKA between the
original and manipulated set. We note that our theoretical results are entirely class and direction
agnostic (except for Cor. 4 which is not direction agnostic).

Theorem 1. Consider a set of n internal representations in p dimensions X ∈ Rn×p that have been
centered column-wise, let S ⊂ X such that ρ = |S|

|X| ≤
1
2 and #»v such that ∥ #»v ∥ = 1. We define

XS, #»v ,c = S ∪ {x+ c #»v : x ∈ X\S}. Then we have:

lim
c→∞

CKAlin(X,XS, #»v ,c) = Γ(ρ)
∥Ex∈S [x]∥2

Ex∈X [∥x∥2]
√

dimPR(X) (1)

where Γ(ρ) = ρ
1−ρ ∈ (0, 1], and dimPR(X) ≜

(
∑

i λi)
2∑

i λ
2
i
∈ [1, p] the dimensionality estimate

provided by the participation ratio of eigenvalues {λi} of the covariance of X .
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Figure 2: Original Map is the test set CKA map of a network trained on CIFAR10. We manipulate this network
to produce CKA maps which: (1) maximizes the CKA measure between the 1st and last layer, (2) maximizes
the CKA measure between all layers, and (3) minimizes the CKA measure between all layers. In cases (1) and
(2), the network experiences only a slight loss in performance, which counters previous findings by achieving a
strong CKA similarity between early and late layers. We find similar results are easily achieved in the kernel
CKA case.
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Figure 3: The comical target CKA maps (first row) are used as the objective for the CKA map loss in Eq. 2,
while prioritizing network performance (small tolerance for changes in accuracy δacc). The second row shows
the test set CKA map produced by the network.

We consider a copy of X to which we apply a transformation where the representations of a subset
X\S of the data is moved a distance c along direction #»v , resulting in the modified representation
set XS, #»v ,c. A closed form solution is found for the limit of the linear CKA value between X and
XS, #»v ,c as c tends to infinity. We note that up to orthogonal transformations (which CKA is invariant
to) the transformation X 7→ XS, #»v ,c is not difficult to implement when transforming representations
between hidden layers in neural networks. More importantly, it is also easy to eliminate or ignore
in a single layer transformation, as long as the weight vectors associated with the neurons in the
subsequent layer are orthogonal to #»v . Therefore, our results show that from a theoretical perspective,
CKA can easily provide misleading information by capturing representation differences introduced
by a shift of the form X 7→ XS, #»v ,c (especially with high magnitude c), which would have no impact
on network operations or their effective task-oriented data processing. For a more detailed analysis of
Thm. 1, corollaries discussing the symmetry of Thm.1 (Cor. 2), and CKA sensitivity to outliers (Cor.
3) and to transformations that preserve the linear separability of the representations (Cor. 4) please
see Appendix A.2. In the appendix we also discuss possible extensions of these results to nonlinear
CKA and provide proofs.

3 An Adversarial Attack on the CKA Map
We now study a generic approach inspired by the adversarial attack literature (Goodfellow et al.,
2014) that tries to modify a model such that it can provide any desired interpretation using CKA,
while keeping the observed functional behavior of the model the same. Although not explicitly tied
to our theory in the Appendix C.7 we illustrate empirically that our theoretical results serve as a clear
basis for understanding of how these attacks can be so successful.
The CKA map, commonly used to analyze network architectures (Kornblith et al., 2019) and their
inter-layers similarities, is a matrix M , where M [i, j] is the CKA value between the activations of
layers i, and j of a network. In many works (Nguyen et al., 2021; Raghu et al., 2021; Nguyen et al.,
2022) these maps are used explicitly to obtain insights on how different models behave, compared to
one another. However, as seen in our analysis so far it is possible to manipulate the CKA similarity
value, decreasing and increasing it without changing the behaviour of the model on a target task.
In this section we set to directly manipulate the CKA map of a trained network fθ∗ , by adding the
desired CKA map, Mtarget, to its optimization objective, while maintaining its original outputs via
distillation loss (Hinton et al., 2015). The goal is to determine if the CKA map can be changed while
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keeping the model performance the same, suggesting the behaviour of the network can be maintained
while changing the CKA measurements. To accomplish this we optimize fθ over the training set
(X,Y ) (note however, that the results are shown on the test set) via the following objective:

θ∗new = argminθ
(
Ldistill (fθ∗(X), fθ(X)) + λLmap

(
Mfθ(X),Mtarget

))
(2)

where Lmap

(
Mfθ(X),Mtarget

)
=
∑

i,j ln cosh
(
M [i, j]fθ(X) −M [i, j]target

)
. The λ multiplier in

Eq. 2 is the weight that balances the two losses. Making λ large will favour the agreements between
the target and network CKA maps over preservation of the network outputs. In our experiments λ
is allowed to change dynamically at every optimization step. Using the validation set accuracy as a
surrogate metric for how well the network’s representations are preserved, λ is then modulated to
learn maps. If the difference between the original accuracy of the network and the current validation
accuracy is above a certain threshold (δacc) we scale down λ to emphasize the alignment of the
network output with the outputs of fθ∗ , otherwise we scale it up to encourage finer agreement between
the target and network CKA maps (see Appendix B.4 for the pseudo code).

Fig. 2 shows the test set CKA map of fθ∗ along with the test set CKA map of three scenarios we
investigated: (1) maximizing the CKA similarity between the 1st and last layer, (2) maximizing
the CKA similarity between all layers, and (3) minimizing the CKA similarity between all layers
(for network architecture and training details see Appendix B.3). In cases (1) and (2), the network
performance is barely hindered by the manipulations of its CKA map. This is surprising and
contradictory to the previous findings (Kornblith et al., 2019; Raghu et al., 2021) as it suggests that it
is possible to achieve a strong CKA similarity between early and later layers of a well-trained network
without noticeably changing the model behaviour. Similarly, we observe that for the RBF kernel
based CKA (Kornblith et al., 2019) we can obtain manipulated results using the same procedure.
The bandwidth σ for the RBF kernel CKA is set to 0.8 of the median Euclidean distance between
representations (Kornblith et al., 2019). In the Appendix C.3 we also show similar analysis on other σ
values. We further experiment with manipulating the CKA map of fθ∗ to produce a series of comical
CKA maps (Fig. 3) while maintaining similar model accuracy. Although the network CKA maps seen
in Fig. 3 closely resemble their respective targets, it should be noted that we prioritized maintaining
the network outputs, and ultimately its accuracy by choosing small δacc. Higher thresholds of accuracy
result in stronger agreements between the target and network CKA maps at the cost of performance.

See Appendix for further experiments on CKA map optimization with wider (vs. narrower) networks
as well as an analysis of how these adversarial attacks suggest the mechanism of action found by the
direct optimization utilizes an approach similar to the theoretical construction.

4 Discussion and Conclusion
We have first presented a formal characterization of CKA’s sensitivity to translations of a subset
of the representations, a simple yet large class of transformations that is highly meaningful in the
context of deep learning. This characterization has provided a theoretical explanation to phenomena
observed in practice, namely CKA sensitivity to outliers and to directions of high variance. Moreover,
our theoretical analysis shows how the CKA value between two sets of representations can diminish
even if they share local structure and are linearly separable by the same hyperplanes, with the same
margins. This meaningful way in which two sets of representations can be similar, as justified by
classical machine learning theory and seminal deep learning results, is therefore not captured by linear
CKA. Secondly, we show an optimization framework that can manipulate CKA in networks to result
in arbitrarily low/high values while preserving functional behaviour, which we use to revisit previous
findings (Nguyen et al., 2021; Kornblith et al., 2019). Our theoretical results allow us to understand
how such a framework can easily achieve a desired result (further explored in the Appendix).

Some of the problematic transformations we identify are not necessarily encountered in many
applications. However, given the popularity of this method and the exclusive way it has been
applied to compare representations in recent years, we believe it is necessary to better understand its
sensitivities and the ways in which it can be manipulated. We particularly note that such manipulations
can be undertaken by malicious actors aiming to mislead users of standard analysis tools like CKA.
Our results call for caution when leveraging linear CKA, as well as other representations similarity
measures, and especially when the procedure used to produce the model is not known, consistent,
or controlled. An example of such a scenario is the increasingly popular use of open-sourced pre-
trained models. Finally, our adversarial optimization framework can provide a basis for interrogating
improved similarity metrics, potentially leading to more robust approaches through an iterative
process of creating metrics more robust to adversarial attack.
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A Complements to The Main Text

A.1 Background on CKA and Related Work

Comparing Representations Let X ∈ Rn×d1 denote a set of ANN internal representations, i.e.,
the neural activations of a specific layer with d1 neurons in a network, in response to n ∈ N input
examples. Let Y ∈ Rn×d2 be another set of such representations generated by the same input
examples but possibly at a different layer of the same, or different, deep learning model. It is standard
practice to center these representations column-wise (feature or “neuron” wise) before analyzing
them. We are interested in representation similarity measures, which try to capture a certain notion of
similarity between X and Y .

Quantifying similarity Li et al. (2015) have considered one-to-one, many-to-one and many-to-
many mappings between neurons from different neural networks, found through activation correlation
maximization. Wang et al. (2018) extended that work by providing a rigorous theory of neuron
activation subspace match and algorithms to compute such matches between neurons. Alternatively,
Raghu et al. (2017) introduced SVCCA where singular value decomposition is used to identify the
most important directions in activation space. Canonical correlation analysis (CCA) is then applied
to find maximally correlated singular vectors from the two sets of representations and the mean of the
correlation coefficients is used as a similarity measure. In order to give less importance to directions
corresponding to noise, Morcos et al. (2018) introduced projection weighted CCA (PWCCA). The
PWCCA similarity measure corresponds to the weighted sum of the correlation coefficients, assigning
more importance to directions in representation space contributing more to the output of the layer.
Many other representation similarity measures have been proposed based on linear classifying probes
(Alain & Bengio, 2016; Davari et al., 2022), fixed points topology of internal dynamics in recurrent
neural networks (Sussillo & Barak, 2013; Maheswaranathan et al., 2019), solving the orthogonal
Procrustes problem between sets of representations (Ding et al., 2021; Williams et al., 2021) and
many more (Laakso & Cottrell, 2000; Lenc & Vedaldi, 2018; Arora et al., 2017). We also note that a
large body of neuroscience research has focused on comparing neural activation patterns in biological
neural networks (Edelman, 1998; Kriegeskorte et al., 2008; Williams et al., 2021; Low et al., 2021).

CKA Centered Kernel Alignment (CKA) (Kornblith et al., 2019) is another such similarity measure
based on the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005) that was presented
as a means to evaluate independence between random variables in a non-parametric way. For
Ki,j = k(xi, xj) and Li,j = l(yi, yj) where k, l are kernels and for H = I − 1

n11
⊤ the centering

matrix, HSIC can be written as: HSIC(K,L) = 1
(n−1)2 tr(KHLH). CKA can then be computed as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(3)

In the linear case k and l are both the inner product so K = XX⊤, L = Y Y ⊤ and we use the
notation CKA(X,Y ) = CKA(XX⊤, Y Y ⊤). Intuitively, HSIC computes the similarity structures
of X and Y , as measured by the kernel matrices K and L, and then compares these similarity
structures (after centering) by computing their alignment through the trace of KHLH .

Recent CKA Results CKA has been used in recent years to make various claims about neural
network representations. Nguyen et al. (2021) used CKA to establish that parameter initialization
drastically impact feature similarity and that the last layers of overparameterized (very wide or deep)
models learn representations that are very similar, characterized by a visible “block structure” in the
networks CKA heatmap. CKA has also been used to compare vision transformers with convolutional
neural networks and to find striking differences between the representations learned by the two
architectures, such as vision transformers having more uniform representations across all layers
(Raghu et al., 2021). Ramasesh et al. (2021) have used CKA to find that deeper layers are especially
responsible for forgetting in continual learning settings.

Most closely related to our work, Ding et al. (2021) demonstrated that CKA lacks sensitivity to the
removal of low variance principal components from the analyzed representations even when this
removal significantly decreases probing accuracy. Moreover, Nguyen et al. (2022) found that the
previously observed high CKA similarity between representations of later layers in large capacity
models (so-called block structure) is actually caused by a few dominant data points that share similar
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characteristics. Williams et al. (2021) discussed how CKA does not respect the triangle inequality,
which makes it problematic to use CKA values as a similarity measure in downstream analysis tasks.
We distinguish ourselves from these papers by providing theoretical justifications to CKA sensitivity
to outliers and to directions of high variance which were only empirically observed in Ding et al.
(2021); Nguyen et al. (2021). Furthermore, we do not only present situations in which CKA gives
unexpected results but we also show how CKA values can be manipulated to take on arbitrary values.

Nonlinear CKA The original CKA paper (Kornblith et al., 2019) stated that, in practice, CKA
with a nonlinear kernel achieves similar results as linear CKA across the considered experiments.
Potentially as a result of this, all subsequent papers which used CKA as a neural representation
similarity measure have used linear CKA (Maheswaranathan et al., 2019; Neyshabur et al., 2020;
Nguyen et al., 2021; Raghu et al., 2021; Ramasesh et al., 2021; Ding et al., 2021; Williams et al.,
2021; Kornblith et al., 2021), and to the best of our knowledge, no published work besides Kornblith
et al. (2019); Nguyen et al. (2022) has used CKA with a nonlinear kernel. Consequently, we largely
focus our analysis on linear CKA which is the most popular method and the one actually used in
practice. However, our empirical results suggest that many of the observed problems hold for CKA
with an RBF kernel and we discuss a possible way of extending our theoretical results to the nonlinear
case.

A.2 Complement to The Theoretical Results

Corollary 2. Thm. 1 holds even if S is taken such that ρ = |S|
|X| ∈ (0.5, 1).

The terms in Eq. 1 can each be analyzed individually. Γ(ρ) depends entirely on ρ, the proportion of
points in XS, #»v ,c that have not been translated i.e. that are exactly at the same place as in X . Its value
is between 0 and 1 and it tends towards 0 for small sizes of S. The participation ratio, with values in
[1, p], is used as an effective dimensionality estimate for internal representations (Mingzhou Ding
& Dennis Glanzman, 2011; Mazzucato et al., 2016; Litwin-Kumar et al., 2017). It has long been
observed that the effective dimensionality of internal representations in neural networks is far smaller
than the actual number of dimensions of the representation space (Farrell et al., 2019; Horoi et al.,
2020). Ex∈X [∥x∥2] and ∥Ex∈S [x]∥2 are respectively the average squared norms of all representations
inX and the squared norm of the mean of S, the subset of representations that are not being translated.
Since most neural networks are trained using weight decay, the network parameters, and hence the
resulting representations as well as these two quantities are biased towards small values in practice.

CKA Sensitivity to Outliers As mentioned in Appendix A.1, it was recently found that the block
structure in CKA heatmaps of high capacity models was caused by a few dominant data points
that share similar characteristics (Nguyen et al., 2022). Other works have empirically highlighted
CKA’s sensitivity to directions of high variance, failing to detect important, function altering changes
that occur in all but the top principal components (Ding et al., 2021). Cor. 3 provides a concrete
explanation to these phenomena by treating the special case of Thm. 1 where only a single point,
x̂ is moved and thus has a different position in XS, #»v ,c with respect to X , see Fig. 1.b for an
illustration. We note that the term “subset translation" was coined by us and was not used in the past
works. However, all the papers referenced in this paragraph and later in this section present naturally
occurring examples of subset translations in a set of representations relative to another, comparable
set.

Corollary 3. Thm. 1 holds in the special case where S = {x̂} is a single point, i.e. an outlier.

Cor. 3 exposes a key weakness of linear CKA: its sensitivity to outliers. Consider two sets of
representations that are identical in all aspects except for the fact that one of them contains an
outlier, i.e. a representation further away from the others. Cor. 3 then states that as the difference
between the outlier’s position in the two sets of representations becomes large the CKA value
between the two sets drops dramatically, indicating high dissimilarity. Indeed, as previously noted,
∥Ex∈S [x]∥2

Ex∈X [∥x∥2]

√
dimPR(X) will be of relatively small value in practice so the whole expression in Eq.

1 will be dominated by Γ(ρ) = ρ
1−ρ . In the outlier case Γ(ρ) ≈ ρ = 1

# representations which will be
extremely small since for most modern deep learning datasets the number of examples in both the
training and test sets is in the tens of thousands or more. This will drastically lower the CKA value
between the two considered representations despite their obvious similarity.
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CKA Sensitivity to Transformations Preserving Linear Separability Classical machine learning
theory highlights the importance of data separability and of margin size for predictive models
generalization (Lee et al., 1995; Bartlett & Shawe-Taylor, 1999). Large margins, i.e. regions
surrounding the separating hyperplane containing no data points, are associated with less overfitting,
better generalization and greater robustness to outliers and to noise. The same concepts naturally
arise in the study of ANNs with past work establishing that internal representations become almost
perfectly linearly separable by the network’s last layer (Zeiler & Fergus, 2014a; Oyallon, 2017;
Jacobsen et al., 2018; Belilovsky et al., 2019). Furthermore, the quality of the separability, the margin
size and the decision boundary smoothness have all been linked to generalization in neural networks
(Verma et al., 2019). Given the theoretical and practical importance of these concepts and their natural
prevalence in deep learning models it is reasonable to assume that a meaningful way in which two
sets of representations can be “similar” is if they are linearly separable by the same hyperplanes in
representation space and if their margins are equally as large. This would suggest that the exact same
linear classifier could accurately classify both sets of representations. Cor. 4 treats this exact scenario
as a special case of Thm. 1, see Fig. 1.c for an illustration. If X contains two linear separable subsets,
S and X\S, we can create XS, #»v ,c by translating one of the subsets in a direction that preserves the
linear separability of the representations and the size of the margins while simultaneously decreasing
the CKA between the original and the transformed representations, counterintuitively indicating a
low similarity between representations.

Corollary 4. Assume S and X\S are linearly separably i.e. ∃w ∈ Rp, the separating hyperplane’s
normal vector, and k ∈ R such that for every representation x ∈ X we have: x ∈ S ⇒ ⟨w, x⟩ ≤ k
and x ∈ X\S ⇒ ⟨w, x⟩ > k. We can then pick #»v such that S and {x+ c #»v : x ∈ X\S} are linearly
separable by the exact same hyperplane and with the exact same margins as S and X\S for any
value of c ∈ R≥0 and Thm. 1 still holds.

Extensions to Nonlinear CKA As previously noted in Appendix A.1, given the popularity of linear
CKA, it is outside the scope of our work to theoretically analyze nonlinear kernel CKA. However one
can consider extending our theoretical results to the nonlinear CKA case with symmetric, positive
definite kernels. Indeed we know from reproducing kernel Hilbert space (RKHS) theory that we can
write such a kernel as an inner product in an implicit Hilbert space. While directly translating points
in the representations space would likely not drive CKA values down as in the linear case, it would
suffice to find/learn which transformations in representations space correspond to translations in the
implicit Hilbert space. Our results should hold if we apply the found transformations, instead of
translations, to a subset of the representations. Although practically harder to implement than simple
translations, we hypothesize that it would be possible to learn such transformations.

A.3 Practical Implications of The Theoretical Results

Here we empirically test the behaviour of linear and RBF CKA in situations inspired by our theoretical
analysis, first in an artificial setting, then in a more realistic one. We begin with artificially generated
representationsX ∈ Rn×d to which we apply subset translations to obtain Y ∈ Rn×d, similar to what
is described in Thm. 1. We generate X by sampling 10K points uniformly from the 1K-dimensional
unit cube centered at the origin and 10K points from a similar cube centered at (1.1, 0, 0, . . . , 0),
so the points from the two cubes are linearly separable along the first dimension. We translate the
representations from the second cube in a random direction sampled from the d-dimensional ball
and we plot the CKA values between X and Y as a function of the translation distance in Fig. 4.a.
This transformation entirely preserves the topological structure of the representations as well as
their local geometry since the points sampled from each cube have not moved with respect to the
other points sampled from the same cube and the two cubes are still separated, only the distance
between them has been changed. Despite these multiple notions of “similarity” between X and Y
being preserved, the CKA values quickly drop below 0.2 for both linear and RBF CKA. While our
theoretical results (Thm. 1) predicted this drop for linear CKA, it seems that RBF CKA is also highly
sensitive to translations of a subset of the representations. Furthermore, it is surprising to see that the
drop in CKA value occurs even for relatively small translation distances. We note that RBF CKA
with σ equal to 0.2 times the median distance between examples is unperturbed by the considered
transformation. However, as we observe ourselves (RBF CKA experiments in the supplement) and
as was found in the original CKA paper (see Table 2 of Kornblith et al. (2019)), RBF CKA with
σ = 0.2 × median is significantly less informative than RBF CKA with higher values of σ. With
small values of σ, RBF CKA only captures very local, possibly trivial, relationships.
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Figure 4: (a) Linear and RBF CKA values
between the artificial representations X and the
subset translated version Y as a function of the
translation distance. (b) CKA value between a
CNN’s internal representations of the CIFAR10
training set and modified versions where either
a class or a single point is translated as func-
tions of the translation distance.

In a more realistic setting we test the practical implications of linear CKA sensitivity to outliers
(see Cor. 3) and to transformations that preserve the linear separability of the data as well as the
margins (see Cor. 4). We consider the 9 layers CNN presented in Sec. 6.1 of Kornblith et al. (2019)
trained on CIFAR10. As argued in Appendix A.1, when trained on classification tasks, ANNs tend
to learn increasingly complex representations of the input data that can be almost perfectly linearly
separated into classes by the last layer of the network. Therefore a meaningful way in which two sets
of representations can be “similar” in practice is if they are linearly separable by the same hyperplanes
in parameter space, with the same margins. Given X , the network’s internal representations of
10k training images at the last layer before the output we can use an SVM classifier to extract the
hyperplanes in parameter space which best separate the data (with approx. 91% success rate). We
then create Y by translating a subset of the representations in a direction which won’t cross these
hyperplanes, and won’t affect the linear separability of the representations. We plot the CKA values
between X and Y according to the translation distance in Fig. 4.b. The CKA values quickly drop to 0,
despite the existence of a linear classifier that can classify both sets of representations into the correct
classes with> 90% accuracy. In Fig. 4.b we also examine linear CKA’s sensitivity to outliers. Plotted
are the CKA values between the set of training image representations and the same representations
but with a single point being translated from its original location. While the translation distance
needed to achieve low CKA values is relatively high, the fact that the position of a single point out of
tens of thousands can so drastically influence the CKA value raises doubts about CKA’s reliability as
a similarity metric.

We note that our main theoretical results, namely Thm. 1, Cor. 2 and Cor. 3 are entirely class
and direction agnostic. The empirical results presented in this section are simply examples that we
deemed particularly important in the context of ML but the same results would hold with any subset
of the representations and translation direction, even randomly chosen ones. This is important since
the application of CKA is not restricted to cases where labels are available, for example it can also
be used in unsupervised learning settings (Grigg et al., 2021). Furthermore, the subset translations
presented here were added manually to be able to run the experiments in a controlled fashion but these
transformations can naturally occur in ANNs, as discussed in Sec. 2, and one would not necessarily
know that they have occurred. We also run experiments to evaluate CKA sensitivity to invertible
linear transformations, see the Appendix for justification and results.

B Experimental details

B.1 Minibatch CKA

In our experiments (with the exception of Appendix A.3), in order to reduce memory consumption,
we use the minibatch implementation of the CKA similarity Nguyen et al. (2021, 2022). More
precisely, let ψ be a kernel function (we experiment with linear and RBF kernel), and Xb ∈ Rm×n1

and Yb ∈ Rm×n2 be the minibatches of m samples from two network layers containing n1 and n2
neurons respectively. We estimate the value of CKA by averaging the Hilbert-Schmidt independence
criterion (HSIC), over all minibatches b ∈ B via:

CKAminibatch =

1
|B|
∑

b∈B HSIC1(Qb, Zb)√
1

|B|
∑

b∈B HSIC1(Qb, Qb)
√

1
|B|
∑

b∈B HSIC1(Zb, Zb)
(4)

Where Qb = ψ(Xb, Xb), Zb = ψ(Yb, Yb), and HSIC1 is the unbiased estimator of HSIC Song et al.
(2012), hence the value of the CKA is independent of the batch size.
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B.2 Network Architecture

In Appendix C.6 we use a 9 layer neural network; the first 8 of these layers are convolution layers
and the last layer is a fully connected layer used for classification. We use ReLU (Nair & Hinton,
2010) throughout the network. The kernel size of every convolution layer is set to (3, 3) except the
first two convolution layers, which have (7, 7) kernels. All convolution layers follow a padding of
0 and a stride of 1. Number of kernels in each layer of the network, from the lower layers onward
follows: [16, 16, 32, 32, 32, 64, 64]. In this network, every convolution layer is followed by batch
normalization (Ioffe & Szegedy, 2015). The network we used in Sec. 3 to obtain Figures 2 and 3 is
similar to the network we just described, except the kernel size for all layers are set to (3, 3). For the
experiments in Appendix C.2, we use a ResNet-34 (He et al., 2016) network, where we scale up the
channels of the network to increase the its width (see Fig. 6).

B.3 Training Details

The models in Appendix C.6, both the generalized and memorized network, were trained for 100
epochs using AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate (LR) of 1e-3 and a
weight decay of 5e-4. The LR is follows cosine LR scheduler (Loshchilov & Hutter, 2016) with an
initial LR stated earlier.

The training of the base model (original) model in Sec. 3 seen in Figures 2 and 3 follows the same
training procedure as of the models from Sec. C.6, except in this setting we train the model for 200
epochs, with an initial LR of 0.01. All other models in Sec. 3 seen in Figures 2 and 3 (with a target
CKA map to optimize) are also trained with similar training hyperparameters to that of the base
model, except the followings: (1) these models are only trained for 30 epochs. (2) the objective
function includes a hyperparameter λ (see Eq. 2), which we initially set to 500 for all models and
is changed dynamically following the Algo. 1 during the training by 0.8 on each iteration. (3) The
cosine LR scheduler includes a warm-up step of 500 optimization steps. (4) the LR is set to 1e-3 (4)
The distillation loss in the objective function depends on a temperature parameter, which we set to
0.2.

The training procedure for the experiments in Appendix C.2 is similar to the previous training
procedures in this section (Figures 2 and 3). Except that the Original models are trained for only 100
epochs and the Optimized w.r.t Target Maps models are trained for 15 epochs.

B.4 CKA Map Loss Balance

Algo. 1 shows the pseudo code of the dynamical scaling of the λ loss balance parameter seen in Eq. 2.
Using the validation set accuracy as a surrogate metric for how well the network’s representations are
preserved, λ is then modulated to learn maps. If the difference between the original accuracy of the
network and the current validation accuracy is above a certain threshold (δacc) we scale down λ to
emphasize the alignment of the network output with the outputs of fθ∗ , otherwise we scale it up to
encourage finer agreement between the target and network CKA maps.

C Additional Results

C.1 CKA Sensitivity to Invertible Linear Transformations

For linear CKA, we experiment with a type of transformation that is not considered by our theoretical
results but which we deemed interesting to analyze empirically, namely multiplications by invertible
matrices. Consider a matrix M ∈ Rd×d whose elements are sampled from a Gaussian distribution
with mean µ and standard deviation σ. We verify the invertibility of M since it is not guaranteed
and only keep invertible matrices. Fig. 5 shows the CKA values between X and the transformed
Y = XM . Since this is an invertible linear transformation we expect it to only modestly change the
representations in X and the CKA value to be only slightly lower than 1. However, we observe that
even for small values of µ and σ, CKA drops to 0, which suggests that the two sets of representations
are dissimilar and not linked by a simple, invertible transformation.

While Thm.1 of Kornblith et al. (2019) implies that invariance to invertible linear transformations is
generally not a desirable property for ANN representation similarity measures, there are relatively
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Algorithm 1: Dynamical balancing of Distillation and CKA map loss in Eq. 2
Data: 100 ≥ Original Accuracy > 0; 100 ≥ Current Validation Accuracy > 0;
Accuracy Threshold ≥ 0; 1 ≥ Scaling Factor > 0; Initial Lambda > 0
Result: λ
acc0 ← Original Accuracy;
acc1 ← Current Validation Accuracy;
η ← Accuracy Threshold;
α← Scaling Factor;
λ← Initial Lambda;
δacc ← acc0 − acc1;
if δacc > η then

λ← λ× α
else

λ← λ/α
end

Return λ;

Figure 5: Linear CKA values between the artificial representations X and Y = XM with M being an invertible
matrix with elements sampled from N (µ, σ2) as a function of µ and σ. The mean and standard deviation across
10 random instantiations the translation direction and M are shown.

common scenarios in which the hypotheses of the theorem are not necessarily respected, i.e. where
the dataset size is larger than the width of the layer. Such is the case in smaller ANNs or even at
the last layers of large models which are often fully connected and of far smaller size than the input
space or the intermediate layers. Given these situations we see no reason to completely dismiss this
invariance as being possibly desirable in certain, albeit not all, contexts.

C.2 Wider Networks

Nguyen et al. (2021) and Nguyen et al. (2022) studied the behaviour of wider and deeper networks
using CKA maps, obtaining a block structure, which was subsequently used to obtain insights. We
revisit these results and investigate whether the CKA map corresponding to a wider network can be
mapped to a thin network. Our results for the test set of CIFAR10 dataset and ResNet-34 (He et al.,
2016) are shown in Fig. 6 (for details on the architecture and training procedure see Appendix B.3).
We observe that the specific structures associated with wider network can be completely removed and
the map can be nearly identical to the thinner model without changing the performance substantially.

In Fig. 7, we use the same networks introduced earlier in Fig. 6 (trained on CIFAR10) and measure
their CKA similarity maps over the test set of the Patch Camelyon dataset (Veeling et al., 2018).
Patch Camelyon dataset contains histopathologic scans of lymph node sections, which is drastically
different from the CIFAR10 dataset both in terms of pixel distribution and the semantics of the
data. As we can see in Fig. 7, even under this drastic shift in data distribution the CKA maps of
the networks Optimized w.r.t Target CKA Map resemble the CKA map of the thin target network,
suggesting the generalizability of the CKA map optimization.
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Figure 6: ResNet-34 networks of different widths and their corresponding CKA Maps are modified to produce
CKA maps of thin networks. Top row Original shows the unaltered test set CKA map of the networks derived
from “normal" training. Optimized shows the test set CKA map of the networks after their map is optimized to
mimic the thin network target CKA map.
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Figure 7: In Fig. 6 we are presented a series of ResNet-34 networks of different widths and their
corresponding test set CKA Maps, which are modified to produce CKA maps of thin networks using
the CIFAR10 dataset. We used these networks and measured their CKA maps using the test set of the
Patch Camelyon dataset. Top row Original shows the unaltered CKA map of the networks derived
from “normal" training on CIFAR10, tested on the test set of Patch Camelyon dataset. Optimized
shows the CKA map of the networks after their map is optimized to mimic the thin network target
CKA map using CIFAR10, tested on the test set Patch Camelyon dataset.

The network architecture presented so far is ResNet-34. We experimented with a VGG style network
architecture to broaden our findings to other network architectures (see Sec. B.2 for details). As we
can see in Fig. 8 we observe similar results to the ones shown in Fig. 6.

C.3 RBF Kernel

In Fig. 9 we extend our results shown in Fig. 2 to other bandwidth values commonly used for the
RBF kernel CKA (Kornblith et al., 2019). When the CKA values are meaningful, we observe that the
RBF kernel CKA values can be manipulated via the procedure described in Sec. 3.
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Figure 8: VGG style networks of different widths and their corresponding CKA Maps are modified to
produce CKA maps of thin networks. Top row Original shows the unaltered test set CKA map of the
networks derived from “normal" training. Optimized shows the test set CKA map of the networks
after their map is optimized to mimic the thin net target CKA map.
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Figure 9: Original Map is the test set CKA map of a network trained on CIFAR10. We manipulate
this network to produce CKA maps which: (1) maximizes the CKA similarity between the 1st and last
layer, (2) maximizes the CKA similarity between all layers, and (3) minimizes the CKA similarity
between all layers. In cases (1) and (2), the network experiences only a slight loss in performance,
which counters previous findings by achieving a strong CKA similarity between early and late layers.
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Figure 10: Original Map is the test set CKA map of a network trained on CIFAR10. We manipulate
this network following a modified version of Eq. 2 (distillation loss is substituted with cross-entropy
loss) to produce CKA maps which: (1) maximizes the CKA similarity between the 1st and last layer,
(2) maximizes the CKA similarity between all layers, and (3) minimizes the CKA similarity between
all layers. In cases (1) and (2), the network experiences only a slight loss in performance, which
counters previous findings by achieving a strong CKA similarity between early and late layers.
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Figure 11: Original Map is the test set CKA map of a ViT (Dosovitskiy et al., 2020) network
trained on CIFAR10. We manipulate this network following the Eq. 2 to produce CKA maps which:
(1) maximizes the CKA similarity between the 1st and last Transformer block, (2) maximizes the
CKA similarity between all Transformer blocks, and (3) minimizes the CKA similarity between all
Transformer blocks.

C.4 CKA Map Optimization via Logistic Loss

In Sec. 3, we manipulated a network’s CKA map, while closely maintaining its outputs via the
distillation loss seen in Eq. 2. However, a logistic loss also works in this setting, i.e. the substitution
of the distillation loss with cross-entropy loss in Eq. 2 yields similar results. In Fig. 10, we repeated
the linear CKA experiments seen in the first row of the Fig. 2 using cross-entropy loss instead of
distillation loss.

C.5 CKA Optimization of ViT

In Fig. 2, we manipulated the CKA map of a VGG style model trained on CIFAR10 in order to:
(1) maximize the CKA similarity between the 1st and last layer, (2) maximize the CKA similarity
between all layers, and (3) minimize the CKA similarity between all layers.

We further explored this setting at the model architecture level. Given the recent popularity of the
Transformer (Vaswani et al., 2017) architecture in a variety of domains such as NLP Devlin et al.
(2018); Farahnak et al. (2021); Raffel et al. (2020); Davari et al. (2020), Computer Vision Dosovitskiy
et al. (2020); Zhou et al. (2021); Liu et al. (2021), and Tabular Huang et al. (2020); Arik & Pfister
(2021), we implemented a Vision Transformer (ViT) (Dosovitskiy et al., 2020) style model for the
CIFAR10 dataset, containing 8 Transformer (Vaswani et al., 2017) blocks (see other architectural
details in Tab. 1) in order to: (1) maximize the CKA similarity between the 1st and last Transformer
block, (2) maximize the CKA similarity between all Transformer blocks, and (3) minimize the CKA
similarity between all Transformer blocks. As we can see in Fig. 11 these manipulations are achieved
with minimal loss of performance, which underlines the model-agnostic nature of our approach.
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# Transformer Blocks # Attention Heads Hidden Size # Epochs
8 12 256 200

Table 1: Architectural details of out implementation of ViT (Dosovitskiy et al., 2020) for the CIFAR10
dataset. Note that the training process (except the number of epochs, which is listed above) follows
the Sect. B.3.
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Figure 13: The convolution filters within the first two
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initialized network elucidates that the features are (1)
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the CKA results in Fig. 12

C.6 Closer Look at The Early Layers

CKA values are often treated as a surrogate metric to measure the usefulness and similarity of a
network’s learned features when compared to another network (Ramasesh et al., 2021). In order to
analyze this common assumption, we compare the features of: (1) a network trained to generalize on
the CIFAR10 image classification task (Krizhevsky et al., 2009), (2) a network trained to “memorize”
the CIFAR10 images (i.e. target labels are random), and (3) an untrained randomly initialized network
(for network architecture and training details see the Appendix B.3). As show in Fig. 12, early layers
of these networks should have very similar representations given the high test set CKA values. Under
the previously presented assumption, one should therefore conclude that the learned features at these
layers are relatively similar and equally valuable. However this is not the case, we can see in Fig. 13
that the convolution filters are drastically different across the three networks. Moreover, Fig. 13
elucidates that considerably high CKA similarity values for early layers, does not necessarily translate
to more useful, or similar, captured features.

In Fig. 14, we can see a layer wise comparison between a generalized, memorized, and randomly
populated network using either (Fig. 14-left) the same random seed or (Fig. 14-right) different random
seeds. This comparison reveals that, in either case (with same or different random seeds) early layers
of these networks achieve relatively high CKA values.

However, as it was shown in Fig. 13, high values of CKA similarity between two networks does not
necessarily translate to more useful, or similar, captured features. In order to quantify the usefulness
of the features captured by each network in Fig. 12 and 13, we follow the same methodology as used
in Self-supervised Learning (Chen et al., 2020; Davari et al., 2022) and in the analysis of intermediate
representations (Zeiler & Fergus, 2014b). We evaluate the adequacy of representations by an optimal
linear classifier using training data from the original task, in this case the CIFAR10 training data.
The test set accuracy obtained by the linear probe is used as a proxy to measure the usefulness of
the representations. Fig. 15, shows the linear probe accuracy obtained on the CIFAR10 test set for
the generalized, memorized, and randomly populated network seen in Fig. 12 and 13. The results
shown in this figure along with the ones shown in Fig. 14 suggests that high values of CKA similarity
between two networks does not necessarily translate to similarly useful features.

C.7 Analysis of Modified Representations

Our focus in Sec 3 was to use optimization to achieve a desired target CKA manipulations without any
explicit specification of how to perform this manipulation. We perform an analysis to obtain insights
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the ones shown in Fig. 14 suggests that high values of CKA similarity between two networks does
not necessarily translate to similarly useful features.

40 30 20 10 0 10 20 30 40
Principal Component 1

30

20

10

0

10

20

30

Pr
in

cip
al

 C
om

po
ne

nt
 2

PCA: Representations of The Original Network 

50 0 50 100 150
Principal Component 1

40

20

0

20

40

60

80

100
PCA: Representations of The Manipulated Network 

class 0
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8
class 9

Figure 16: PCA of the networks presented in Fig. 2 before (left) and after (right) being optimized to manipulate
the CKA map with Eq. 2. Noticeably to achieve the objective the optimization displaces a subset of a single
class.
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on how representations are changed by optimizing Eq. 2 in Fig. 16. Here using the modified network
from case (2) of Fig. 2 we compute the PCA of the test set’s last hidden representation (whose CKA
compared to the first layer is increased). We observe that a a single class has a very noticeable set
of points that are translated in a particular direction, away from the general set of classes. This
mechanism of manipulating the CKA aligns with our theoretical analysis. We emphasize, that in this
case it is a completely emergent behavior.
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D Proofs

Proof. Theorem 1
First we introduce the notation C1 = S and C2 = X\S and note that C1 and C2 form a partition
of X , i.e. X = C1 ∪ C2 with C1 ∩ C2 = ∅. We note C ′

j the set of indices of Cj , meaning that
i ∈ C ′

j ⇔ xi ∈ Cj . We then rewrite XS, #»v ,c as being the union of the set of points in C1 and the
points in C2 translated by c in direction #»v :

XS, #»v ,c = {x : x ∈ C1} ∪ {x+ c #»v : x ∈ C2}

It is standard practice to center the two sets of representations being compared before using a
representation similarity measures. X is centered by hypothesis but XS, #»v ,c is not. We first note that
the mean of XS, #»v ,c across all representations XS, #»v ,c is the vector:

XS, #»v ,c =
1

n

∑
x∈XS, #»v ,c

x

=
1

n

∑
i∈C′

1

xi +
∑
i∈C′

2

xi + c #»v

 by definition of XS, #»v ,c

=
1

n

 ∑
i∈C′

1∪C′
2

xi +
∑
i∈C′

2

c #»v


=

1

n

∑
x∈X

x+
1

n

∑
i∈C′

2

c #»v because C1, C2 form a partition of X

=
|C2|c #»v

n
because X is centered by hypothesis

From now on we note Y as being the centered set of representations XS, #»v ,c where we subtracted the
mean XS, #»v ,c (here we used the fact that |C1|+ |C2| = n):

Y = {x− |C2|c #»v

n
: x ∈ C1} ∪ {x+

|C1|c #»v

n
: x ∈ C2}

Now that we have workable expressions for X and XS, #»v ,c we focus on the computation of linear
CKA which relies on the computation of three HSIC values: between X and itself, between Y and
itself and between X and Y :

CKAlin(X,Y ) =
HSIClin(X,Y )√

HSIClin(X,X)HSIClin(Y, Y )
(5)

We also remind the reader that linear HSIC takes the form:

HSIClin(X,Y ) =
1

(n− 1)2
tr(XX⊤Y Y ⊤) =

1

(n− 1)2

n∑
i=1

n∑
j=1

⟨xi, xj⟩⟨yj , yi⟩ (6)

We can split the terms of the two sums into three distinct categories and compute the values of the
inner products independently in terms of xi, xj and c for the three HSIC terms:
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1. i ∈ C ′
1 and j ∈ C ′

1 (i.e. xi ∈ C1 and xj ∈ C1):

⟨xi, xj⟩2 = ⟨xi, xj⟩2

⟨xi, xj⟩⟨yi, yj⟩ = ⟨xi, xj⟩⟨xi −
c|C′

2|
n

#»v , xj −
c|C′

2|
n

#»v ⟩

= ⟨xi, xj⟩

[
⟨xi, xj⟩ −

c|C′
2|

n
⟨xi,

#»v ⟩ − c|C′
2|

n
⟨ #»v , xj⟩+

(
−c|C′

2|
n

)2

⟨ #»v , #»v ⟩

]

= ⟨xi, xj⟩
[
⟨xi, xj⟩ −

c|C′
2|

n
⟨xi,

#»v ⟩ − c|C′
2|

n
⟨ #»v , xj⟩+

c2|C′
2|2

n2

]
= ⟨xi, xj⟩2 −

c|C′
2|

n
⟨xi,

#»v ⟩⟨xi, xj⟩ −
c|C′

2|
n

⟨ #»v , xj⟩⟨xi, xj⟩+
c2|C′

2|2

n2
⟨xi, xj⟩

= O(c) +
c2|C′

2|2

n2
⟨xi, xj⟩

⟨yi, yj⟩2 = ⟨xi −
c|C′

2|
n

#»v , xj −
c|C′

2|
n

#»v ⟩2

=

[
⟨xi, xj⟩ −

c|C′
2|

n
⟨xi,

#»v ⟩ − c|C′
2|

n
⟨ #»v , xj⟩+

c2|C′
2|2

n2

]2

= O(c3) +
c4|C′

2|4

n4

2. i ∈ C ′
1 and j ∈ C ′

2 (i.e. xi ∈ C1 and xj ∈ C2):

⟨xi, xj⟩2 = ⟨xi, xj⟩2

⟨xi, xj⟩⟨yi, yj⟩ = ⟨xi, xj⟩⟨xi −
c|C′

2|
n

#»v , xj +
c|C′

1|
n

#»v ⟩

= ⟨xi, xj⟩
[
⟨xi, xj⟩+

c|C′
1|

n
⟨xi,

#»v ⟩ − c|C′
2|

n
⟨ #»v , xj⟩ −

c2|C′
1||C′

2|
n2

⟨ #»v , #»v ⟩
]

= ⟨xi, xj⟩
[
⟨xi, xj⟩+

c|C′
1|

n
⟨xi,

#»v ⟩ − c|C′
2|

n
⟨ #»v , xj⟩ −

c2|C′
1||C′

2|
n2

]
= ⟨xi, xj⟩2 +

c|C′
1|

n
⟨xi, xj⟩⟨xi,

#»v ⟩ − c|C′
2|

n
⟨xi, xj⟩⟨ #»v , xj⟩ −

c2|C′
1||C′

2|
n2

⟨xi, xj⟩

= O(c)− c2|C′
1||C′

2|
n2

⟨xi, xj⟩

⟨yi, yj⟩2 = ⟨xi −
c|C′

2|
n

#»v , xj +
c|C′

1|
n

#»v ⟩2

=

[
⟨xi, xj⟩+

c|C′
1|

n
⟨xi,

#»v ⟩ − c|C′
2|

n
⟨ #»v , xj⟩ −

c2|C′
1||C′

2|2

n2

]2

= O(c3) +
c4|C′

1|2|C′
2|2

n4
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3. i ∈ C ′
2 and j ∈ C ′

2 (i.e. xi ∈ C2 and xj ∈ C2):

⟨xi, xj⟩2 = ⟨xi, xj⟩2

⟨xi, xj⟩⟨yi, yj⟩ = ⟨xi, xj⟩⟨xi +
c|C′

1|
n

#»v , xj +
c|C′

1|
n

#»v ⟩

= ⟨xi, xj⟩

[
⟨xi, xj⟩+

2c|C′
1|

n
⟨xi,

#»v ⟩+
(
+
c|C′

1|
n

)2

⟨ #»v , #»v ⟩

]

= ⟨xi, xj⟩
[
⟨xi, xj⟩+

2c|C′
1|

n
⟨xi,

#»v ⟩+ c2|C′
1|2

n2

]
= ⟨xi, xj⟩2 +

2c|C′
1|

n
⟨xi, xj⟩⟨xi,

#»v ⟩+ c2|C′
1|2

n2
⟨xi, xj⟩

= O(c) +
c2|C′

1|2

n2
⟨xi, xj⟩

⟨yi, yj⟩2 = ⟨xi +
c|C′

1|
n

#»v , xj +
c|C′

1|
n

#»v ⟩2

=

[
⟨xi, xj⟩+

2c|C′
1|

n
⟨xi,

#»v ⟩+ c2|C′
1|2

n2

]2

= O(c3) +
c4|C′

1|4

n4

When we take lim
c→∞

CKAlin(X,Y ) = lim
c→∞

HSIClin(X,Y )√
HSIClin(X,X)HSIClin(Y,Y )

, it is easy to see that the

terms with the highest powers of c will dominate the expression. At the numerator that is c2 and at
the denominator that is c4 inside the square root. To convince oneself of this it suffices to divide by
c2 at the numerator and at the denominator, all terms except the higher power ones will then tend to 0
as c tends to infinity, so at the limit we have:
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lim
c→∞

CKAlin(X,Y )

= lim
c→∞

HSIClin(X,Y )√
HSIClin(X,X)HSIClin(Y, Y )

= lim
c→∞

n∑
i=1

n∑
j=1

⟨xi, xj⟩⟨yj , yi⟩√√√√( n∑
i=1

n∑
j=1

⟨xi, xj⟩2
)(

n∑
i=1

n∑
j=1

⟨yi, yj⟩2
)

= lim
c→∞

c2|C′
2|

2

n2

∑
i∈C′

1

∑
j∈C′

1

⟨xi, xj⟩ − 2c2|C′
1||C

′
2|

n2

∑
i∈C′

1

∑
j∈C′

2

⟨xi, xj⟩+ c2|C′
1|

2

n2

∑
i∈C′

2

∑
j∈C′

2

⟨xi, xj⟩√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
√ ∑

i∈C′
1

∑
j∈C′

1

c4|C′
2|4

n4 +
∑

i∈C′
1

∑
j∈C′

2

2c4|C′
1|2|C′

2|2
n4 +

∑
i∈C′

2

∑
j∈C′

2

c4|C′
1|4

n4

= lim
c→∞

c2|C′
2|

2

n2

∑
i∈C′

1

∑
j∈C′

1

⟨xi, xj⟩ − 2c2|C′
1||C

′
2|

n2

∑
i∈C′

1

∑
j∈C′

2

⟨xi, xj⟩+ c2|C′
1|

2

n2

∑
i∈C′

2

∑
j∈C′

2

⟨xi, xj⟩√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
√

c4|C′
2|4|C′

1|2
n4 +

2c4|C′
1|3|C′

2|3
n4 +

c4|C′
1|4|C′

2|2
n4

= lim
c→∞

c2|C′
2|

2

n2

∑
i∈C′

1

∑
j∈C′

1

⟨xi, xj⟩ − 2c2|C′
1||C

′
2|

n2

∑
i∈C′

1

∑
j∈C′

2

⟨xi, xj⟩+ c2|C′
1|

2

n2

∑
i∈C′

2

∑
j∈C′

2

⟨xi, xj⟩√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
√

c4|C′
2|2C′

1|2
n4 (|C ′

2|2 + 2|C ′
1||C ′

2|+ |C ′
1|2)

= lim
c→∞

c2|C′
2|

2

n2

∑
i∈C′

1

∑
j∈C′

1

⟨xi, xj⟩ − 2c2|C′
1||C

′
2|

n2

∑
i∈C′

1

∑
j∈C′

2

⟨xi, xj⟩+ c2|C′
1|

2

n2

∑
i∈C′

2

∑
j∈C′

2

⟨xi, xj⟩

c2|C′
2||C′

1|
n2

√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
√
|C ′

2|2 + 2|C ′
1||C ′

2|+ |C ′
1|2

= lim
c→∞

|C′
2|

|C′
1|
∑

i∈C′
1

∑
j∈C′

1

⟨xi, xj⟩ − 2
∑

i∈C′
1

∑
j∈C′

2

⟨xi, xj⟩+ |C′
1|

|C′
2|
∑

i∈C′
2

∑
j∈C′

2

⟨xi, xj⟩√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
√
|C ′

2|2 + 2|C ′
1||C ′

2|+ |C ′
1|2

=

|C′
2|

|C′
1|
∑

i∈C′
1

∑
j∈C′

1

⟨xi, xj⟩ − 2
∑

i∈C′
1

∑
j∈C′

2

⟨xi, xj⟩+ |C′
1|

|C′
2|
∑

i∈C′
2

∑
j∈C′

2

⟨xi, xj⟩√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
√
|C ′

2|2 + 2|C ′
1||C ′

2|+ |C ′
1|2

=

|C′
2|

|C′
1|
∑

i∈C′
1

∑
j∈C′

1

⟨xi, xj⟩ − 2
∑

i∈C′
1

∑
j∈C′

2

⟨xi, xj⟩+ |C′
1|

|C′
2|
∑

i∈C′
2

∑
j∈C′

2

⟨xi, xj⟩√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
√

(|C ′
2|+ |C ′

1|)
2

=

|C′
2|

|C′
1|
∑

i∈C′
1

∑
j∈C′

1

⟨xi, xj⟩ − 2
∑

i∈C′
1

∑
j∈C′

2

⟨xi, xj⟩+ |C′
1|

|C′
2|
∑

i∈C′
2

∑
j∈C′

2

⟨xi, xj⟩√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
√
n2

=

|C′
2|

|C′
1|
∑

i∈C′
1

∑
j∈C′

1

⟨xi, xj⟩ − 2
∑

i∈C′
1

∑
j∈C′

2

⟨xi, xj⟩+ |C′
1|

|C′
2|
∑

i∈C′
2

∑
j∈C′

2

⟨xi, xj⟩

n

√
n∑

i=1

n∑
j=1

⟨xi, xj⟩2
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If we look directly at the numerator, by linearity of the inner product we have:

|C ′
2|
|C ′

1|
∑
i∈C′

1

∑
j∈C′

1

⟨xi, xj⟩ − 2
∑
i∈C′

1

∑
j∈C′

2

⟨xi, xj⟩+
|C ′

1|
|C ′

2|
∑
i∈C′

2

∑
j∈C′

2

⟨xi, xj⟩

= |C ′
1||C ′

2|⟨
1

|C ′
1|
∑
i∈C′

1

xi,
1

|C ′
1|
∑
j∈C′

1

xj⟩ − 2|C ′
1||C ′

2|⟨
1

|C ′
1|
∑
i∈C′

1

xi,
1

|C ′
2|
∑
i∈C′

2

xj⟩

+ |C ′
1||C ′

2|⟨
1

|C ′
2|
∑
i∈C′

2

xi,
1

|C ′
2|
∑
j∈C′

2

xj⟩

= |C ′
2||C ′

1| [⟨x1, x1⟩ − 2⟨x1, x2⟩+ ⟨x2, x2⟩]
= |C ′

2||C ′
1|∥x1 − x2∥2

Where xj = Ex∈Cj
[x] = 1

|C′
j |
∑

i∈C′
j

xi is the mean of the points in Cj . At the denominator we can

multiply by n
n to obtain:

n
n

n

√∑
xi∈X

∑
xj∈X

⟨xi, xj⟩2 = n2

√√√√∑
xi∈X

∑
xj∈X

1

n2
⟨xi, xj⟩2

= n2

√√√√ n∑
i=1

λ2i

We note that the term with the square root function is the Frobenius norm of the Gram matrix of the
data (matrix of inner products) XX⊤ multiplied by 1

n which, in turn, is equal to the square root of
the sum of it’s squared eigenvalues, where λi is the i-th eigenvalue of the matrix 1

nXX
⊤. However,

through singular value decomposition, the Gram matrix (multiplied by 1
n ) has the same eigenvalues

as the (biased) covariance matrix of the data, i.e. 1
nX

⊤X . Using the notation Xi,j to go over the
rows (representations) of X with i and over the columns (dimensions or neurons) of X with j we can
write the variance in the data as the sum of the variances from all dimensions:

V ar(X) =

p∑
j=1

V ar(X:,j)

=

p∑
j=1

n∑
i=1

1

n
(Xi,j −X:,j)

2

=
1

n

p∑
j=1

n∑
i=1

X2
i,j because the data is centered

=
1

n

n∑
i=1

p∑
j=1

X2
i,j

= Ei[∥Xi,:∥2]
= Ex∈X [∥x∥2]

=

p∑
l=1

λi
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We can then write the denominator as:

n2

√√√√ n∑
i=1

λ2i = n2
V ar(X)

V ar(X)

√√√√ n∑
i=1

λ2i

= n2V ar(X)

√
n∑

i=1

λ2i

V ar(X)

= n2Ex∈X [∥x∥2]

√
n∑

i=1

λ2i

n∑
i=1

λi

= n2Ex∈X [∥x∥2]PR(X)−1/2

And we can rewrite the whole expression as:

lim
c→∞

CKAlin(X,Y ) =
|C ′

1||C ′
2|∥x1 − x2∥2

√
PR(X)

n2Ex∈X [∥x∥2]

Where PR(X) is the participation ratio, an effective dimensionality estimator often used in the
literature and is defined as:

PR(X) =

(
p∑

i=1

λi

)2

p∑
i=1

λ2i

With λi being the i-th eigenvalue of the covariance matrix of the data X . We make the replace-
ments |C1|

n = |S|
n = ρ and |C2|

n = n−|C1|
n = 1 − ρ. Also, because the data is centered we have

|C1|x1 + |C2|x2 = 0 and we can isolate x2 = −|C1|x1

|C2| so we have:

∥x1 − x2∥2 = ∥x1 +
|C1|x1
|C2|

∥2

= (1 +
|C1|
|C2|

)2∥x1∥2

= (1 +
n|C1|
n|C2|

)2∥x1∥2

= (1 +
ρ

1− ρ
)2∥x1∥2

We then define Γ to contain all terms of ρ:

Γ(p) = ρ(1− ρ)(1 + ρ

1− ρ
)2

=
ρ

1− ρ

The following bounds hold: Γ(ρ) ∈ (0, 1] for ρ ∈ (0, 0.5] reached when ρ = 1
2 . Finally, we get the

final expression by changing x1 = Ex∈C1 [x] = Ex∈S [x]:

lim
c→∞

CKAlin(X,Y ) = Γ(ρ)
∥Ex∈S [x]∥2

Ex∈X [∥x∥2]
√
PR(X)
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Proof. Corollary 2
To prove Corollary 2 it suffices to note that the fact that ρ = |S|

|X| is in (0, 12 ] is not used anywhere in
the proof of Thm. 1 other than to derive the bounds for Γ(ρ). We can then conclude that Thm. 1 still
holds if S is taken such that ρ = |S|

|X| ∈ (0.5, 1) only with different bounds for Γ(ρ).

We note however that the expression in Thm. 1 can be written in terms of S and ρ or in terms of
S′ = X\S and ρ′ = |S′|

|X| interchangeably. We first note that ρ′ = 1− ρ and for simplicity purposes
we will use the notation S = Ex∈S [x] and S′ = Ex∈S′ [x]. We recall that the expression in Thm. 1 is:

lim
c→∞

CKAlin(X,XS, #»v ,c) = Γ(ρ)
∥S∥2

Ex∈X [∥x∥2]
√
PR(X)

The term
√

PR(X)

Ex∈X [∥x∥2] does not depend on the choice of using S or X\S so we can focus on the rest:

Γ(ρ′)∥S′∥2 = ρ′(1− ρ′)(1 + ρ′

1− ρ′
)2∥S′∥2

ρ′(1− ρ′) is easily found to be equal to (1− ρ)ρ and for the rest we have:

(1 +
ρ′

1− ρ′
)2∥S′∥2 = ∥(1 + ρ′

1− ρ′
)S′∥2

= ∥S′ − S∥2

= ∥S − S′∥2

= ∥S +
ρ

1− ρ
S∥2

= (1 +
ρ

1− ρ
)2∥S∥2

Where we used the fact that the data is centered so |S|S + |S′|S′ = 0 so we can isolate S = −|S′|S′

|S| .
We conclude that we have:

lim
c→∞

CKAlin(X,XS, #»v ,c) = Γ(ρ′)
∥S′∥2

Ex∈X [∥x∥2]
√
PR(X)

Proof. Corollary 4
We already have x ∈ S ⇒ ⟨w, x⟩ ≤ k. Pick any #»v ∈ Rp that is orthogonal to w and we have:

⟨w, x+ c #»v ⟩ = ⟨w, x⟩+ c⟨w, #»v ⟩ by the linearity of the inner product
= ⟨w, x⟩ since #»v is orthogonal to w
> k ∀x ∈ X\S
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