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Abstract

We consider the so-called Independent Cascade
Model for rumor spreading or epidemic processes
popularized by Kempe et al. (2003). In this model,
a node of a network is the source of a rumor – it
is informed. In discrete time steps, each informed
node “infects” each of its uninformed neighbors
with probability p. While many facets of this pro-
cess are studied in the literature, less is known
about the inference problem: given a number of in-
fected nodes in a network, can we learn the source
of the rumor? In the context of epidemiology this
problem is often referred to as patient zero problem.
It belongs to a broader class of problems where
the goal is to infer parameters of the underlying
spreading model. In this work we present a maxi-
mum likelihood estimator for the rumor’s source,
given a snapshot of the process in terms of a set
of active nodes X after t steps. Our results show
that, for acyclic graphs, the likelihood estimator
undergoes a phase transition as a function of t.
We provide a rigorous analysis for two prominent
classes of acyclic network, namely d-regular trees
and Galton-Watson trees, and verify empirically
that our heuristics work well in various general
networks.

1 INTRODUCTION

In this paper, we consider a stochastic diffusion process
which models the spread of information or influence in
networks. Influence propagation is motivated by many ap-
plications from various fields: in marketing these processes
are studied to maximize the adoption of a new product;
these processes are used to study how social media influ-
encers manipulate humans in social networks, in epidemiol-
ogy they are used to study the spread of viruses or disease

[Brauer, 2017, Kermack and McKendrick, 1927], or, in
general as processes that spread information in networks
[Becker et al., 2020, Kempe et al., 2015, Lerman and Ghosh,
2010, Nekovee et al., 2007, Sadilek et al., 2012].

On a very high level these processes work as follows. Ini-
tially, a small subset of the vertices are in a distinguished
state (they might have a piece of information, or they are
infected, depending on the application in mind). In this pa-
per, we will call these vertices informed. Informed vertices
can inform their neighbors and the rumor spreads as time
passes by through the network. Most publications studying
stochastic diffusion processes study these processes in a for-
ward direction, i.e., they consider how information spreads
in a network, how many nodes will become informed, or
which nodes have the largest influence on the vertices in
a social network. Those processes are well understood in
simple networks [Britton et al., 2007, Neal, 2003]. In this
paper we study the problem in a backward direction. Our
goal is to detect the source of the rumor, thus we study
the learning problem of inferring ω, a problem which re-
ceived far less attention. In the disease spreading settings
this problem is referred to as the patient zero problem. This
inference problem was studied with respect to the SI model
from epidemiology rigorously [Shah and Zaman, 2012]. Un-
derstanding inference problems of this kind better will help
us to find the source of outbreaks of infectious diseases like
COVID-19 or to find the source of rumors. The later might
help to prevent that political elections are influenced from
the outside world.

Model Overview. In this paper we employ the well-
known Independent Cascade Model (ICM) [Kempe et al.,
2015]. The process starts with an initial set of active nodes
I0 and it works in discrete steps. When node v first becomes
active in step t, it is given a single chance (one shot) to
activate each (currently inactive) neighbor with probability
p. Whether or not v succeeds to activate any of its neigh-
bors, it cannot make any further attempts in later rounds. It
remains inactive for all steps t′ > t. The process runs until
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no more activations are possible. We assume that I0 (the
rumor’s source) contains only a single node denoted by ω.
We call all nodes that were activated at one point of time
during the process informed. Note that this one-shot prop-
erty is a very fitting model for rumor or disease spreading in
social networks. Indeed, once a user hears about an article
supporting her opinion, she will either ignore it or share it
within her social contacts in the near future. Every of the
possible recipients either ignores her opinion (does not get
activated) or decides to share it again with its peers (gets
activated). Furthermore, users are unlikely to share the same
article twice. In the case of disease spreading the informed
vertices model the persons which caught the illness and the
active ones model the persons which are infectious at any
point of time. There are two well-known variants of the
ICM. We study the variant in which we cannot distinguish
formerly informed vertices from never informed vertices.
Thus, a snapshot consists only of currently active vertices
and the network graph itself which reduces the available
information dramatically.

Teacher Student Model. Our problem fits well into the
so-called teacher-student model, introduced by Gardner and
Derrida [1989] in the context of studying fundamental prop-
erties of the Perceptron, a fairly simple binary classifier. This
framework is frequently used to model (machine) learning
tasks [Zdeborová and Krzakala, 2016, Coja-Oghlan et al.,
2020]. Suppose a teacher samples a ground-truth σ from a
distribution µP called teacher’s prior. Rather than directly
revealing this ground-truth to a student, the teacher creates
a condensed version σ̂ of the ground-truth by means of a
teacher’s model µM . Now, in the so-called Bayes optimal
case, the teacher conveys σ̂, µP , µM to her student. The
student’s task is to infer a non-trivial guess of σ from the
observed data (σ̂, µP , µM ). In the context of our contribu-
tion, the teacher’s prior is the uniform distribution on all
nodes of a given network G. The ground-truth is a sample
ω from this distribution. The vertex ω is the rumor’s source.
The teacher’s model is the distribution of the outcome of
the t-step forward process of the ICM on G starting with
the source ω. The condensed information σ̂ that the student
receives consists of the network G and a set X⋆ of active
nodes at the same time step. Note that the student does not
receive any information about the time at which the set is
drawn. The student’s task now is to infer ω from G and X⋆.

Results in a Nutshell. In our first result, we prove that our
model is Bayes optimal (or, in terms of statistical physics,
the Nishimori property holds). Secondly, with respect to
d−regular trees, we show that for a small spreading pa-
rameter p(d − 1) < 1 it is not possible to infer the source
of the rumor. For p(d − 1) ≫ 1 we show that we can
detect the source node with a very large probability. For
1 < p(d− 1) = Θ(1) we show that the source of the rumor
can be inferred with a constant probability. Furthermore,

we bound the probability that the real rumor source ω is
far away from our algorithm’s output. Finally, we establish
a similar phase transitions with respect to Galton-Watson
processes with spreading parameter Po(λ).

Related Work. Forward propagation processes, like the
epidemic models [Brauer, 2017, Keeling and Rohani, 2008,
Kermack and McKendrick, 1927, Yorke and Hethcote,
1984], rumor spreading [Goffman and Newill, 1964, Ler-
man and Ghosh, 2010, Nekovee et al., 2007, Sadilek et al.,
2012], information cascades [Kempe et al., 2015, Zhao et al.,
2012], blog propagation models [Leskovec et al., 2007], and
marketing strategies [Becker et al., 2020] have been studied
extensively and for a long time within different research
communities and we refrain from discussing the extensive
literature here. On the contrary, rigorous contributions on
the corresponding inference problem, the source detection
task, are scarce.

To the best of our knowledge, there is only little rigorous
knowledge on how to infer a rumor’s source. With respect to
the SI model, the rigorous contributions are by Kazemitabar
and Amini [2019], Shah and Zaman [2010, 2012]. Shah
and Zaman [2010, 2012] prove that on some infinite acyclic
networks like d-regular trees, super-critical Galton-Watson
processes, and geometric graphs, approximate inference of
ω is always possible in the SI model as long as the infinite
tree satisfies certain expansion properties (for instance, in
the d-regular case, this requires d ≥ 3). Furthermore, they
prove that the probability of declaring a far-apart node as
the rumor’s source is small. The results are proved by a
fundamental connection between a generalized Polya’s urn
and the SI model on acyclic networks. Dawkins et al. [2021]
introduce a statistical framework for the recovery of the
diffusion source. Their framework covers the SI model but
can be extended to other diffusion processes as well. Finally,
there is also a line of work towards the more general discrete
time SIR model [Zhu et al., 2017, Zhu and Ying, 2016]
which includes the ICM as a special case (if individuals
recover after one round). Zhu et al. [2017] study a Jordan
centrality based inference algorithm for d-regular trees. Our
Theorem 2 deepens some of their results with regard to the
ICM. The exact connection will be discussed in Section 5.

Moreover, there are well explained heuristics towards the
source detection task on various network types which are
supported by extensive simulation studies [Amoruso et al.,
2020, Bindi et al., 2017, Chen et al., 2009, Jain et al., 2016,
Ji and Tay, 2017, Prakash et al., 2014, Wang et al., 2017], in
recent contributions also based on neural networks [Biazzo
et al., 2021, Shah et al., 2020, Shu et al., 2021]. Finally,
a related problem that attained attention recently, is not to
infer ω given X⋆ but to infer the parameters of the underly-
ing spreading model. Over the last years, learning strategies
towards this problem were proposed and studied experimen-
tally [Lokhov, 2016, Mastakouri and Schölkopf, 2020].



2 MODEL AND RESULTS

We are given a communication network G = (V,E) with n
vertices ρ1 . . . ρn and m edges. We assume I0 = {ω} and ω
is chosen uniformly at random from all vertices. Hence, the
rumor originates at a single source. A spreading parameter
p ∈ (0, 1) determines the viciousness of the rumor. The
diffusion process in the ICM runs in discrete, synchronous
steps. Let It be the set of vertices which are active in step t.
In step t we will call the vertices in I0∪ I1 . . .∪ It informed.
In every step t ≥ 1 every active node ρi ∈ It activates any of
its uninformed neighbors with probability p. All these newly
informed vertices form the set It+1. Note that every node
becomes active exactly once but vertices have potentially
the chance to be activated by each of their neighbors. Note
that it can happen that the process dies out at a step t. In this
case for all t′ ≥ t it holds that It′ = ∅.

The interference problem is defined as follows. We observe
the state of the network at an arbitrary time t. The task is to
infer ω given only (G, It) and the parameter p. In this paper
we study the following variants of the problem.

• Strong detection: infer ω with high probability,

• Weak detection: infer ω with positive probability1.

Our first result relates the probability that a given set X
is active conditioned on some node v being the source to
the probability that v is the source conditioned on X being
active. This establishes the so-called Nishimory property (or
Bayes optimality) of our inference problem. In terms of the
teacher-student model, it states that the student has access
to the teacher’s prior and the teacher’s model. Equivalently,
in expectation there is no statistical difference between the
ground-truth and a uniform sample from the posterior distri-
bution [Zdeborová and Krzakala, 2016]. Theorem 1 applies
to all types of networks as long as the rumor’s source ω is
chosen uniformly at random.

Theorem 1. Let G = (V,E) be an arbitrary network and
fix an arbitrary step t. Let X⋆ be the set active vertices in
step t. For any X ⊆ V

argmax
v∈V

P(X⋆=X |ω=v)=argmax
v∈V

P(ω=v |X⋆=X).

The above theorem is used to show the main results of this
paper. It allows us to calculate P(X⋆ = X | ω = v) instead
of P(ω = v | X⋆ = X), which often is more accessible.
Note that calculating the first probability is quite challenging
in general networks G since the entropy of X⋆ is very large.

For the remaining analytical part of the of the paper we con-
sider acyclic networks, namely d-regular trees and Galton-
Watson trees with offspring distribution Po(λ). The latter

1We say that a sequence of events E1, E2, . . . takes place with
positive probability if limt→∞ P(Et) > 0 and with high probabil-
ity (w.h.p.) if limt→∞ P(Et) = 1.

ωc

Figure 1: Visualization of a possible snapshot of the spread-
ing process. Here, ωc spawned four sub-trees out of which
three contain active elements of X⋆ (orange nodes) and
one does not contain active elements (purple). Thus, the
candidate set C of possible rumor’s sources consists of all
vertices in the purple sub-tree.

Galton-Watson trees with offspring distribution D are de-
fined by the following experiment. We start with one node
which spawns d0 ∼ D children. Recursively, any of the chil-
dren w1, . . . wd0

spawns η1, . . . ,ηd0
∼ D children (and so

on). We call such a process super-critical, if with positive
probability, the vertices spawned during the process form an
infinite tree. It is well known that a (not too dense) instance
of an Erdős–Rényi random graph G

(
n, d

n

)
locally looks

like a Galton-Watson tree with offspring distribution Po(d).
In contrast, a random d-regular graph looks locally like a
d-regular tree, provided d is not too large.

We assume that a teacher fixes a time t at which she observes
the network. We assume that the student is not aware of
the time when the process started. We define X⋆ as the
set of nodes active in step t of the ICM (starting from an
unknown and randomly chosen source ω). Note that X⋆

can be empty. The set of candidate nodes C are all nodes v
that have the same distance in G to each node in X⋆, i.e, for
all x, x′ ∈ X⋆ it holds that dist(x, v) = dist(x′, v). Note
that the set C is not empty since ω ∈ C and that C is the
whole graph if X⋆ = ∅. The closest candidate ωc ∈ C is
defined as the node with minimum distance to all nodes
in X⋆, see Figure 1 for an example. Our source detection
heuristic calculates the closest candidate ωc ∈ C and returns
it as the estimated rumors source. If X⋆ = ∅ (the process
died out before time t) or contains at most one node, the
heuristic returns a failure. The following results describe
the probability of success or failure for this source detection
heuristic with respect to the models parameter.

The first theorem shows a phase transition between weak



and strong detection for d-regular trees. We show that, for
small p · (d− 1) it is not possible to infer the source of the
rumor. This is due to the huge likelihood that, in this setting,
the process dies out and X⋆ = ∅ or the corresponding set
X⋆ is very small which makes the inference impossible.

For large p · (d − 1) we show that the source node is the
closest candidate with probability 1 − od(1). Note that in
this scenario, each active node will infect several nodes and
it is unlikely that the process dies out. The size of X⋆ grows
as a function of d and t which makes the prediction more
and more reliable. For intermediate p · (d− 1) we show that
the closest candidate ωc is the source of the rumor with a
constant probability. Furthermore, we bound the probability
that the real rumor source ω is far away from ωc. Intuitively
this means that inference of ω gets easier for increasing
values of (d− 1) · p.

Theorem 2 (d-regular trees). Let G = (V,E) be an infinite
d-regular tree and let X⋆ be the set of active nodes gener-
ated by the ICM with spreading parameter p after t = ω(1)
steps. Then, the following phase-transitions occur.

• If (d− 1) · p ≤ 1, any estimator fails at weak detection
with probability 1− ot(1).2

• If 1 < (d−1) ·p = Θ(1) then the closest candidate ωc

is the source of the rumor ω with constant probability
(weak detection). Furthermore, the probability that
dist(ωc,ω) > k is at most exp(−Ω(k)).

• If (d − 1) · p = ω(1) then closest candidate ωc is
the source of the rumor ω with probability 1− od(1)
(strong detection).

We also study the patient zero problem on Po(λ)-Galton-
Watson trees. This model describes the local structure of
Erdős-Rényi random graphs very well. We find a similar
phase transition as before.

Theorem 3 (Galton-Watson processes). Let G = (V,E)
be an infinite tree generated by a Po(λ)-Galton-Watson
process. Let X⋆ be the set of active nodes generated by the
ICM with spreading parameter p after t = ω(1) steps. Then,
the following phase-transition occurs.

• If λp ≤ 1, any estimator fails at weak detection with
probability 1− ot(1).

• If 1 < λp = Θ(1), then the closest candidate ωc is
the source of the rumor ω with positive probability
(weak detection). Furthermore, the probability that
dist(ωc,ω) > k is at most exp(−Ω(k)).

• If λp = ω(1), then closest candidate ωc is the source
of the rumor ω with probability 1 − oλ(1) (strong
detection).

2We denote by ot(1) a quantity that tends to zero with t → ∞.

In Theorems 2 and 3 we assume that the underlying tree
network is infinitely large. This is conceptually necessary.
Indeed, the trivial algorithm that outputs one node uniformly
at random succeeds at weak detection in finite networks.
In the next section, we provide extensive simulations that
verify the asymptotic statements of the theorems on small
networks. Furthermore, we present simulation results on
non-acyclic networks such as random geometric graphs and
show that (the natural extension of) the closest candidate
heuristics works well.

3 SIMULATIONS

In this section we present simulation results that support and
complement our main theorems for cyclic graphs.More pre-
cisely, we run the simulations on random geometric graphs
(n = 105 and expected degree 16), Erdős-Rényi graphs with
n = 105 nodes and expected node degree 4, and random
4-regular graphs in the configuration model.

Our algorithm is generalized to cyclic graphs as follows. For
v ∈ V and t′ ≥ 0 let Nt′(v) denote the set of nodes w ∈ V
that have distance at most t′ to v. First we calculate

Nt′ =
⋂

u∈X⋆

Nt′(u).

Hence, N ′
t is the set of nodes with distance at most t′ to

every node in X⋆. We then pick the minimum t′ such that
Nt′ ̸= ∅ and return Nt′ as the candidate set. Note that such
a t′ exists since ω ∈ Nt.

To generate our data we execute 100 independent simulation
runs for each network, where we simulate the ICM for 8
rounds. The success rates are visualized in Figure 2. In
Figure 3 we present simulation data for random geometric
graphs with expected node degree 16, where we increased
the numbers of rounds of the ICM. We show the success
rates after 8, 16, and 32 rounds. Figure 4 highlights the
phase transition behavior of our algorithm. The data which
built the basis for the plots is given in the supplementary
material.

Our simulation software is implemented in the C++ pro-
gramming language. As a source of randomness we use
the Mersenne Twister mt19937_64 provided by the C++11
<random> library. All simulations have been carried out
on four machines equipped with two Intel(R) Xeon(R) E5-
2630 v4 CPUs and 128 GiB of RAM, running the Linux
5.13 kernel.

A simulation run consists of three parts. First, we generate
a network G = (V,E). To this end, we have implemented
generators for Erdős-Rényi graphs, random d-regular graphs
(configuration model [Janson et al., 2011]) and random geo-
metric graphs [Penrose, 2003]. Second, we run the Indepen-
dent Cascade Process for t rounds starting from a randomly
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Figure 2: Visualization of success
rates for Erdős-Rényi graphs (ER),
random regular graphs (CM), and ran-
dom geometric graphs (RGG).
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rates in a random geometric graph
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returned by our heuristic to ω for
p = 0.45, 0.5, 0.55.

chosen node ω ∈ V . Finally, we run the generalized variant
of our source detection algorithm.

4 ANALYSIS

In this section we formally prove our main results, The-
orems 2 and 3. The proof of Theorem 1 is given in the
supplementary material. The main proof strategy of Theo-
rems 2 and 3 is to interpret the transmission process as a
special type of percolation on the underlying network. As in
Theorem 3 the underlying network itself is random, it turns
out to be technically non-trivial to pin down the exact dis-
tributions involved in this process due to subtle rare events
that might yield either very small or large node degrees.
The Poisson thinning technique allows us to carry out the
calculations smoothly.

4.1 PROOF OF THEOREM 2

A crucial observation in the proof of Theorem 2 is the fol-
lowing. If node v gets activated during the spreading process
by node w, it has d − 1 additional neighbors v1, . . . , vd−1

except w which we call children of v. Any of those chil-
dren gets activated with probability p independently from
everything else in the next step. Suppose without loss of
generality that v1, . . . , vd0 are the activated children where
d0 ∼ Bin(d − 1, p). In every of those children vi, a new
and independent rumor spreading process starts in the tree
rooted at vi and directed away from v. As this tree is, itself,
d-regular, this process is distributed equally as starting d0

independent Galton-Watson processes with offspring distri-
bution Bin(d− 1, p). Depending on (d− 1)p, few, some or
many of those processes will die out eventually.

To prove our result, we need some additional notation, see
Figure 5. Given a node v, we can direct the tree away from
v and denote the set of subtrees rooted at v’s children by T v .
Most interesting to our proof are the subtrees that contain

active nodes. We denote them by T v
X⋆ and denote

Yv = Yv(X
⋆) = |T v

X⋆ |.

Note that all candidates but one have at most one subtree
containing active nodes. Only the closest candidate can have
more than one. Finally, let tX

⋆

v denote the distance from v
to any of the vertices in X⋆.

Proposition 4. If ρt is the probability that at time t there
are no more active vertices under the spreading model on
an infinite d-regular tree with infection probability p, we get

ρt = (1− p+ pρt−1)
d−1

and the ultimate extinction probability of the spreading
process is the smallest fixed-point of x 7→ (1− p+ px)d−1.
Furthermore for v ∈ C

P(Yv(X
⋆)=k |ω=v)=

d∑
d0=k

P(Bin(d,p)=d0)
(
d0

k

)
ρd0−k
tX⋆
v

(1−ρtX⋆
v

)k if v=ωc

d∑
d0=1

P(Bin(d,p)=d0)
(
d0

1

)
ρd0−1
tX⋆
v

(1− tX
⋆

v ) if v ̸=ωc.

Proof. The first part, namely that ρt = (1− p+ pρt−1)
d−1,

is an application of probability generating functions and
their connection to branching processes. The probability
generating function fBin(n,p) of a Binomial distribution with
parameters n and p reads

fBin(n,p)(s) = E
[
sBin(n,p)

]
= (1− p+ ps)

n
.

Now, let pk = P(Bin(d− 1, p) = k). It is immediate that

ρt+1 = p0 + p1ρt−1 + . . .+ pd−1ρ
d−1
t−1 =

d−1∑
k=0

pkρ
k
t−1

which is exactly the probability generating function of the
Binomial distribution. A detailed explanation and a formal
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Figure 5: Here, ωc spawned three sub-trees out of which
two contain active elements of X⋆ (orange) and one does
not contain active elements (purple). Thus, C consists of all
vertices in the purple sub-tree rooted at ωc.

proof of this statement can be, for instance, found in [Grim-
mett and Stirzaker, 2020].

Let us now suppose that v = ωc. Let V0 be the event that
v has exactly k ≤ d0 ≤ d children that get activated by
v. Clearly, P(V0) = P(Bin(d, p) = d0) and of course, d0

needs to be at least k as differently, the probability of having
k active sub-trees was zero. Given V0, we find that the
probability of observing exactly k active sub-trees is the
probability that exactly k out of d0 independent Galton-
Watson processes with offspring distribution Bin(d− 1, p)
survived the first tX

⋆

v steps. Therefore, the number of active
sub-trees at time t is distributed as Bin

(
d0, ρtX⋆

v

)
given V0

and the first part of the formula follows.

If, on contrary, v is not the closest candidate but a node that
has a different distance from X⋆, we observe that from the
originally 1 ≤ d0 ≤ d Galton-Watson processes originated
in the children of v, exactly one process needed to survive
and d0 − 1 needed to become extinct at time tX

⋆

v . The
proposition follows.

Proof of Theorem 2 (i). To prove the first part of Theorem 2,
it suffices to apply the first part of Proposition 4. Indeed,
if (d − 1)p ≤ 1, we find that the smallest fixed-point of
x 7→ (1− p+ px)d−1 is x = 1. Therefore, ρt = 1− ot(1).
Furthermore, as p is a constant, we have that in this case
d = Θ(1) as well. Therefore, a union bound over the at
most d possible independent Galton-Watson processes with
offspring distribution Bin(d−1, p) originated in the children
of ω, yields that with probability 1−ot(1), we find X⋆ = ∅.
In this case, detection clearly fails with high probability.

Proof of Theorem 2 (ii). We start with the part of the theo-
rem that claims that weak detection succeeds by the source
detection heuristic, namely that P(ωc = ω) = Ω(1). We
find that ωc = ω with probability one if the set of possible
candidate nodes C has size 1. Therefore, it suffices to prove
that P(|C| = 1) = Ω(1). This is the case if (and only if),
the rumor’s source ω propagated the rumor to all of its d
children and all d independent Galton-Watson processes
with offspring distribution Bin(d − 1, p) originated in the
children of ω did not become extinct. Let d0 denote the
number of children of ω that get activated. Clearly,

P(d0 = d) = P(Bin(d, p) = d) = pd = Ω(1) (1)

as, by assumption, p and d are constants. Furthermore, since
1 < (d − 1)p = Θ(1) holds, the smallest fixed point of
x 7→ (1 − p + px)d−1 is a real number between zero and
one. Therefore, by Proposition 4, there are constants 0 <
γ1 ≤ γ2 < 1 such that

γ1 − ot(1) < ρt < γ2 + ot(1). (2)

Thus, it follows that the source detection heuristic succeeds
at weak detection if 1 < (d− 1)p = Θ(1) with probability
1− ot(1) by (1) – (2).

It is left to prove that under the same assumptions we have

P(dist(ωc,ω) ≥ k) ≤ exp(−Ω(k)). (3)

Suppose that
∣∣tX⋆

ω − tX
⋆

ωc

∣∣ = dist(ωc,ω) = k > 3. There-
fore, there is a unique path Pωc,ω in G that connects ωc and
ω with k − 2 internal vertices. All of those internal vertices
will get activated at most once during the spreading process.
Therefore, for any of those k − 2 steps, the process needs
to either activate only exactly one child or, it activates more
than one child, but the remaining processes have died out
at the observation time. The probability that a node spawns
exactly one active child is given by

P(Bin(d, p) = 1) = p(1− p)d−1 (4)

which is bounded away from zero and one if d, p = Θ(1).
By (1) – (2) as well as (4), we find that there is a sequence
of constants {γi}i=1...k−2 dependent only on p, d, and k all
of which are uniformly bounded away from zero and one.
Therefore,

P(dist(ωc,ω) ≥ k) ≤ min
i=1...k−2

γk
i = exp(−Ω(k))

which implies (3).

The last part of Theorem 2 states that the source detection
heuristic succeeds at strong detection with high probability
if (d − 1)p ∈ ω(1). We start with the following simple
observation which is an immediate consequence of Chernoff
bounds applied to the Bin((d− 1), p) distribution.



Observation 5. If (d− 1)p ∈ ω(1), we find that if node v
gets activated, the number of activated children ωv satisfies
ωv ≥ (d− 1)p/2 = ω(1) with high probability.

Next, we show that out of d0 = ω(1) indepen-
dent Galton-Watson processes with offspring distribution
Bin((d− 1), p) at least a (1− ε)-fraction will not become
eventually extinct with high probability for any ε > 0.

Lemma 6. Suppose that ℓ Galton-Watson processes with
offspring distribution Bin((d− 1), p) start independently
under the condition that (d− 1)p ∈ ω(1). Let Y denote the
number of processes that do not ultimately become extinct.
Then, P(Y ≥ (1− o(1))ℓ) ≥ 1− o(1).

Proof. By Proposition 4, we have that the probability that
one of the processes becomes extinct is pe = o(1). Thus, the
number of not-extinct processes is Binomially distributed
with parameters ℓ and 1− pe. Therefore, the lemma follows
from Chernoff bounds.

Proof of Theorem 2 (iii). By Observation 5 and Lemma 6
we directly get that, with high probability, all but o(dp) of
the processes started in the children of ω are still active at
the observation time.

Suppose that ω ̸= ωc and dist(ω,ωc) = k ≥ 1. This
implies that either k times only exactly one child is activated
or, given that multiple children are activated, only exactly
one of those spreading processes survived eventually. For
a specific step 1 ≤ i ≤ k − 1, the probability that this
occurs is by Observation 5 and Lemma 6 at most γi = o(1).
Therefore, P(ωc ̸= ω | X⋆) = o(1) which implies the third
part of Theorem 2.

4.2 PROOF OF THEOREM 3

The main proof strategy is similar to the proof of Theo-
rem 2. However, one fundamental difference makes the anal-
ysis more involved: In the d-regular case an activated node
spawns a random number of independent Galton-Watson
processes with offspring distribution Bin(d− 1, p). This is
not the case in the setting of Theorem 3. Here, the underly-
ing network itself is a Galton-Watson process with offspring
distribution Po(λ). Fortunately, we can apply the Poisson
thinning principle [Kingman, 1993].

Observation 7. Let X ∼ Po(d) and furthermore, given X ,
define Y = Bin(X, p). Then Y ∼ Po(λp).

This Poisson thinning principle implies that in distribution
we can analyze the following spreading process: Once v gets
activated, it spawns d0 ∼ Po(λp) active children and thus
d0 independent Galton-Watson processes with offspring
distribution Po(λp). The following proposition character-
izes the extinction probability of such processes, the formal
proof can be found in the supplementary materials.

Proposition 8. If x̄t is the probability that at time t there
are no more active vertices under the spreading model on
a super-critical Galton-Watson tree with offspring distribu-
tion Po(λp), we find x̄t = exp(−λp(1− x̄t−1)) and the
ultimate extinction probability of the spreading process is
the smallest fixed-point of x̄ 7→ exp(−λp(1− x̄)). Further-
more for v ∈ C

P(Yv(X
⋆)=k |ω=v)=

d∑
d0=k

P(Po(λp)=d0)
(
d0

k

)
ρd0−k
tX⋆
v

(1−ρtX⋆
v

)k if v=ωc

d∑
d0=1

P(Po(λp)
(
d0

1

)
ρd0−1
tX⋆
v

(1− tX
⋆

v ) if v ̸=ωc.

Proof of Theorem 3 (i). As in the d-regular case, the first
part of Theorem 3 follows by the first part of Proposition 8
and a large deviation bound. Details can be found in the
supplementary material.

Proof of Theorem 3 (ii). Again, as in the d-regular case, we
start proving the weak detection property of the source de-
tection heuristic. Thus, we aim to prove P(|C| = 1) = Ω(1).

This is the case if (and only if) ω propagated the rumor to
all of its dωPo(λ) children and all d0 independent Galton-
Watson processes with offspring distribution Po(λp) rooted
at the children of ω did die out eventually. Let d0 denote
the number of children of ω that get activated. We first need
to calculate the probability that d0 = dω . To this end, let

I0(x) =

∞∑
k=0

1

k!Γ(k + 1)

(x
2

)2k
=

exp(x)√
2πx

(
1 +O

(
1

x

))
denote the modified Bessel function of order zero [Martin
et al., 2021].

We have

P(d0 = dω | dω) =
(λp)dω exp(−λp)

dω!
.

Therefore, by the law of total probability,

P(all children of ω get activated) (5)

=

∞∑
k=1

P(dω=k)
(λp)k exp(−λp)

k!

=

∞∑
k=1

λk exp(−λ)

k!

(λp)k exp(−λp)

k!

=exp(−λ(1+p))

∞∑
k=1

(
λ2p
)k

(k!)2

=exp(−λ(1+p))(I0(2λ
√
p)−1)

=exp(−λ(1+p))

(
exp
(
2λ

√
p
)√

4πλ
√
p

−1+O
(
(λ
√
p)

−1
))



=
exp
(
−λ(1−√

p)2
)√

4πλ
√
p

−exp(−λ(1+p))

+O
(
exp(−λ(1+p))(λ

√
p)

−3/2
)
.

If λ and p are constants, it is immediate from (5) that there
is a constant γ > 0 such that

P(all children of ω get activated) > γ.

Finally, since 1 < λp = Θ(1) by assumption, the smallest
fixed point of x̄ 7→ exp(−λ(1− x̄)) is a real number be-
tween zero and one. Therefore, by Proposition 8, there are
constants 0 < γ1 ≤ γ2 < 1 such that

γ1 − ot(1) < x̄t < γ2 + ot(1). (6)

Therefore, the source detection heuristic succeeds at weak
detection if 1 < λp = Θ(1) with probability 1− ot(1) by
(5) – (6).

Again, we are left to prove the decay property, namely

P(dist(ωc,ω) ≥ k) ≤ exp(−Ω(k)). (7)

Suppose that
∣∣tX⋆

ω − tX
⋆

ωc

∣∣ = dist(ωc,ω) = k > 3. As
before we find a unique path Pωc,ω in G that connects ωc

and ω with k − 2 internal vertices. Exactly as in the d-
regular case, these internal vertices will get activated exactly
once during the spreading process and so, in every step, the
process needs to either activate exactly one child or all but
one of the remaining processes ultimately become extinct.
The probability that a node spawns exactly one child is given
by

P(Po(λp) = 1) = λ exp(−λ) (8)

which is a real number bounded away from zero and one
if λ = Θ(1). By (5) – (6) and (8), there is a sequence of
constants {γi}i=1...k−2 dependent only on γ(p, λ, k) and
uniformly bounded away from zero and one, such that

P(dist(ωc,ω) ≥ k) ≤ min
i=1...k−2

γk
i = exp(−Ω(k))

and (7) follows.

We start the proof of Theorem 3 (iii) with the following
lemma.

Lemma 9. If λp → ∞, then, with high probability, an
activated node v satisfies the following.

• deg(v) ≥ λ
2 = ω(1) with high probability,

• The number of activated children ωv satisfies ωv ≥
λ
2 = ω(1) with high probability.

Proof. This is an immediate consequence of Chernoff
bounds applied to the Po(λ) and, respectively, Po(λp) dis-
tribution given that λp → ∞.

As a next observation, we claim that if ωv (as given by
Lemma 9) Galton-Watson processes with offspring distribu-
tion Po(λp) are initialized independently, at least (1− ε)-
fraction will survive with high probability for any ε > 0.

Lemma 10. Suppose that X Galton-Watson processes with
offspring distribution Po(γ) start independently under the
condition that γ → ∞. Let Y denote the number of such
processes that did not ultimately become extinct. Then,
P(Y ≥ (1− o(1))X) ≥ 1− o(1).

Proof. By Proposition 8, the probability that one specific
process out of the X processes gets extinct is pe = o(1).
Thus, as in the d-regular case, we have that the number
of not-extinct processes is Bin(X, 1− pe)-distributed. The
lemma follows from Chernoff bounds.

Proof of Theorem 3 (iii). As in the d-regular case, the pre-
vious lemmas imply that with high probability ω(1) of the
processes started in the children of ω are still active.

Suppose that ω ̸= ωc and dist(ω,ωc) = k ≥ 1. This im-
plies that either k times only one active child is spawned or,
if multiple children are spawned, only exactly one rumor
spreading process rooted in those children survives eventu-
ally. But by Lemmas 9 and 10, we find that this probability
is o(1) for all k ≥ 1.

5 DISCUSSION

Comparison with the results of Zhu et al. [2017]. Let
us briefly discuss how our results of Theorem 2 extend and
strengthen the results obtained by Zhu et al. [2017]. They
use a Jordan centrality based estimator and show that if
(d − 1)p > 1, their algorithm outputs a vertex v which is
with high probability close to ω. Moreover, the probability
that their algorithm outputs a vertex at distance k from ω
decreases polynomially in k. Our Theorem 2 is based on a
different estimator which enables us to refine and extend
these results. We split the case (d− 1)p > 1 into two cases.
More precisely, if (d−1)p ≫ 1 our algorithm returns w.h.p.
the correct source. If 1 < (d − 1)p = O(1) the returned
node is the correct source with constant probability. Fur-
thermore, we show that the probability for the algorithm to
output a node at distance k of ω decreases exponentially
fast in k (opposed to polynomial decrease). Finally, in The-
orem 2 (iii), we also prove an impossibility result. Inference
is impossible with high probability if (d− 1)p < 1.

Conclusion. We pin down exact information-theoretic
phase-transitions in the source detection task on important
tree-network models by proving that as soon as weak de-
tection is possible information-theoretically, the efficient
closest candidate heuristics succeeds at this task. Those
findings imply, of course, the same result for G(n, p) and



random d-regular graphs as long as they are sufficiently
sparse and the spreading process ran for only o(ln(n)) steps
as those random networks are then, locally, given by the
described tree-networks with high probability.

Furthermore, we show empirically that the source detection
heuristic performs well on non-acyclic networks and seems
to be a very decent and efficient estimator of the rumor’s
source. A natural question is whether it is possible to prove
similar information-theoretic bounds for non-acyclic net-
works. While this seems to be a very challenging task in
general, it might become accessible if we restrict ourselves
to specific random networks or networks with a specific
tree-width.

Finally, on the empirical side, it is an interesting question
whether the rumor’s source of the ICM can be learned by
graph neural networks. This seems challenging as only few
vertices are active and the network would need to learn
possible propagation paths in a graph given only a snapshot
of the network.
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