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Abstract

Dataset condensation always faces a constitutive trade-off: balancing performance and fi-
delity under extreme compression. Existing methods struggle with two bottlenecks: image-
level selection methods (Coreset Selection, Dataset Quantization) suffer from inefficiency
in condensation, while pixel-level optimization (Dataset Distillation) introduces semantic
distortion due to over-parameterization. With empirical observations, we find that a critical
problem in dataset condensation is the oversight of color’s dual role as an information carrier
and a basic semantic representation unit. We argue that improving the colorfulness of con-
densed images is beneficial for representation learning. Motivated by this, we propose DC3:
a Dataset Condensation framework with Color Compensation. After a calibrated selection
strategy, DC3 utilizes the latent diffusion model to enhance the color diversity of an image
rather than creating a brand-new one. Extensive experiments demonstrate the superior
performance and generalization of DC3 that outperforms SOTA methods across multiple
benchmarks. To the best of our knowledge, besides focusing on downstream tasks, DC3 is
the first research to fine-tune pre-trained diffusion models with condensed datasets. The
Frechet Inception Distance (FID) and Inception Score (IS) results prove that training net-
works with our high-quality datasets is feasible without model collapse or other degradation

issues. Code and generated data will be released soon.

1 Introduction

In data-centric artificial intelligence, the dataset serves as a
vehicle of knowledge whose information density and represen-
tation capacity determine the cognitive boundaries of a model.
Information theory reveals a fundamental contradiction: There
exists a coexistence of sparse task-relevant information and re-
dundant task-irrelevant noise within raw data (Shannon) 1948}
Coverl |1999; MacKay), 2003)). Inspired by this contradiction, re-
searchers propose dataset condensation which focuses on creat-
ing a small dataset from the original large-scale data to reduce
training costs while preserving comparable performance (Geng
et al.| 2023} |Lei & Taol, 2023a;|Yu et al.}|2023al). The condensed
dataset not only saves storage space but also accelerates 1/0
speed.

Dataset Condensation (DC) includes Coreset Selection
(CS) (Guo et al.l 2022} [Sinha et al.l [2020; |Rosman et al., |[2014;
Chai et al., 2023), Dataset Quantization (DQ) (Zhou et al.|
2023} Zhao et al. 2024, and Dataset Distillation (DD) (Liu
et al., 2022;|Du et al, [2023a; |Zheng et al.,[2024). As illustrated
in fig. |1} we elucidate different DC methods as DC Triangle.
The primary distinction of these approaches is that CS and DQ
focus on image-level selection, thereby exhibiting better cross-
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Figure 1: Dataset Condensation Tri-
angle.  Coreset Selection and Dataset
Quantization focus on image-level selection,
while Dataset Distillation optimizes pix-
els for better condensation. An ideal DC
method should balance information com-
pression and semantic preservation.

architecture generalization. DD implements pixel-level optimization that results in pronounced condensa-
tion performance (Cazenavette et al., |2022)). Despite reducing dataset scale and enhancing computational
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efficiency, the synthetic image generated by DD lacks sufficient and consistent semantic information (Su
et al., |2024). The compression capability of the matching-based distillation strategy is achieved at the
expense of its semantic realness. The optimal synthetic image should neither be too realistic nor too ex-
pressive (Cazenavette et al.l 2023; Du et al.l |2023b). Motivated by this observation, we seek to propose a
method that not only ensures condensation capability like DD but also guarantees the lossless preservation
of semantic information like CS and DQ.

The essence of dataset condensation lies in exploring how the models extract information from a dataset
and what the models actually “see”? Color plays a crucial role in the first principle of human visual percep-
tion, forming the basis of how we understand the world (Jameson et al., [2020; Boynton) (1990). Similarly,
color has a dual identity in machine visual compression: it is both the physical signal that needs optimiz-
ing (Prativadibhayankaram et all 2023) and the basic unit that maintains the semantic relevance of an
image (Van Leeuwen, |2011)). Such a dual nature makes color a main “battlefield” in dataset condensation,
which previous methods have overlooked.

As depicted in figs. [2a]to[2d, the RGB channels of the distilled datasets follow different distributions compared
to the original datasets (especially for the matching surrogate objective methods (Zhao & Bilen) |[2023;|2021a;
Sajedi et al., [2023)). Their Kernel Density Estimation (KDE) curves all tend to have a uniform distribution.
Such Color Homogenization phenomenon could hinder the model in understanding the data representa-
tions, thus degrading its generalization. Unlike DD, quantized datasets are derived through a quantization
process from the original data, notably preserving precise color distribution and semantic integrity, whereas
lacking the information compression capability inherent to DD. Motivated by these observations, we seek
to study: “Can we avoid Color Homogenization, but attain an informative dataset by directly using the
image-level selection?”
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Figure 2: The KDE curves of the normalized RGB pixel value across different DC methods.
Previous methods exhibit a Color Homogenization phenomenon in contrast to DC3.

Recent advancements in generative modeling have established diffusion models as a dominant approach
for text-to-image and image-to-image generation. Building upon these successes, pioneering works have
adapted diffusion models to dataset condensation, leveraging their high-fidelity generation capability to
preserve essential characteristics within compressed datasets (Su et al., 2024; |Cazenavette et all 2023} |Gu
et al.l [2024} [Sajedi et al., 2024). However, diffusion models exhibit limited robustness under sparse or
ambiguous textual conditions, generating images with semantic inconsistency or hallucination that deviate
from real-world distributions.

In this paper, we propose a Dataset Condensation framework with Color Compensation (DC3) to enhance
the quality of condensed datasets. DC3 adds color-related hues to images via a pre-trained diffusion model.
As depicted in fig. the KDE curve is closer to the real dataset than other methods, which is conducive to
enhancing the representation capability. Next, through analyzing the relationship between submodular gain
and distribution of samples, DC3 reuses the submodular gain to select samples, while the bin generation stage
is handed over to K-Means clustering. Consequently, the whole image-level selection process has become
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more controllable and efficient. DC3 is also a training-free method, whose processing speed depends on the
sampler and diffusion networks. The pivotal contributions are summarized as follows:

¢ According to the dataset condensation triangle, we propose DC3 that utilizes the compression ability
of dataset distillation along with the generalization ability of dataset quantization. It is a universal
method that is adaptive to datasets of various scales and resolutions.

e Due to Color Homogenization inherent in pixel-level optimization methods, we employ the
clustering-based quantization method to get rid of this issue and propose the diffusion-based Color
Compensation method to enhance the information diversity of condensed images.

e In addition to the classification task, DC3 also dives into improving the fine-tuning performance of
large vision models (LVMs). The FIDs on the fine-tuned stable diffusion and DiT demonstrate that
the information is compressed and preserved by DC3.

o The experimental results, especially on the hard-to-classify datasets, demonstrate that DC3 achieves
the superior performance of dataset condensation and enhances image colorfulness.

2 Related Work

2.1 Dataset Distillation

Dataset Distillation (DD) (Wang et al., [2018; |Li et al. 2022} [Lei & Tao}, 2023b} [Yu et al., [2023b) methods
are categorized into matching-based and generation-based approaches. Matching-based methods can also be
categorized into three paradigms: performance matching, parameter matching, and distribution matching.
Performance matching focuses on optimizing the synthetic dataset to ensure that models trained on it
perform similarly to those trained on the original dataset (Nguyen et al. 2021ajc). Parameter matching,
which includes single-step (e.g., gradient matching (Zhao & Bilen| 2021bfa))) and multi-step (e.g., trajectory
matching (Cazenavette et al., [2022; |Guo et al. 2024)) approaches, aims to align the model parameters or
their learning trajectories during training on synthetic and real data. Distribution matching emphasizes
narrowing the distribution gap by ensuring that synthetic data approximates the feature distribution of the
original data (Zhao & Bilen) [2023} [Deng et al.l [2024]).

Generation-based methods have recently gained traction by leveraging modern generative models to by-
pass the limitations of iterative sample-wise optimization (Zhao & Bilen, 2022} |Cazenavette et al 2023)).
D*M uses latent diffusion models to synthesize data. It maintains consistency between real
and synthetic image spaces and incorporates label prototypes. Minimax embeds a minimax
criterion in the diffusion training process. It balances representativeness and diversity while reducing com-
putational costs. IGD (Chen et al., |2025|) redefines DD as a controlled diffusion generation task. It uses a
trajectory influence function to guide the diffusion process and generate effective synthetic data for training.

2.2 Dataset Quantization

Traditional DD methods often rely on specific network architectures, resulting in degraded performance
when the distilled datasets are transferred to other architectures (Wang et al.l |2018; Zhao & Bilen), [2021b;
|Cazenavette et al., 2022). To address this limitation, Dataset Quantization (DQ) (Zhou et all [2023) in-
troduces a novel framework capable of compressing large-scale datasets and generating compact datasets
suitable for training any neural network architecture without sacrificing performance. DQ achieves this by
recursively partitioning the dataset into non-overlapping data bins and optimizing sample selection based on
submodular gains to maximize dataset diversity. This approach not only enhances dataset diversity but also
ensures the broad applicability of the generated subsets across varying network architectures. In a parallel
effort to enhance both the diversity and realism of distilled data, [Sun et al. (2024) introduces RDED, an
efficient optimization-free paradigm that synthesizes new images by selecting and stitching patches from
real data. [Zhao et al| (2024)) further advanced this paradigm by proposing DQAS, an adaptive sampling
strategy integrating active learning to refine class-imbalanced sample selection. This methodology addresses
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the limitations of traditional DQ approaches that assume uniform class distributions, enabling more efficient
knowledge transfer across heterogeneous network architectures. Similarly, proposes ADQ to
improve naive DQ by adaptively sampling data based on the representativeness, diversity, and importance
scores of the generated bins.

3 Method

3.1 Image Processing with Latent Diffusion

Diffusion models learn to generate images by iterative denoising a corrupted input through a sequence of
timesteps that estimate the distribution of training data (Dhariwal & Nichol, 2021; Rombach et al., [2022;
Saharia et al| 2022; [Zhang et al) 2023). For image processing tasks, the latent diffusion model (Rombach
et al.l |2022) is conditioned on a provided text prompt y. The training objective minimizes the latent diffusion
loss:

L= J—-E‘S(Jc),y,e/v./\f(O,l),tH|6 — € (Ztv t, Tg(y)) ”%]7 (1)

where E(x) and 7y(y) represent the latent embeddings of the target image 2 and conditional prompt y,
encoded by a pretrained autoencoder £ and CLIP 7y (Radford et all] [2021). At each timestep, noise € is
added to the latent z;, and the denoising network €y learns to predict the noise conditioned on y.
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Figure 3: Pipeline of the DC3 framework. DC3 supports size-scalable, resolution-variable, and
architecture-adaptive dataset condensation for downstream tasks and even fine-tuning large vision mod-
els (LVMs).

3.2 Color Compensation for Dataset Condensation

Our paper focuses on enhancing the color expression of condensed images. As illustrated in fig. [ con-
ventional image processing pipelines (Plataniotis & Venetsanopoulos| 2000} [Jahne [2005) suffer from color
distortions due to insufficient semantic awareness and color reasoning capabilities. Most of the methods are
implemented through mathematical transformations . In contrast, diffusion-based image
processing achieves pixel-level controllability through semantic-aware guidance, enabling a precise under-
standing and manipulation of color compensation, such as illumination adjustment and shadow harmoniza-
tion. We provide a guideline for hue prompt selection in the supplementary materials.

Inspired by aesthetic adjustments in photographic post-processing, we propose Color Compensation, a
mechanism integrating hue-related instructions into latent diffusion models to improve color diversity, as
well as alleviate the Color Homogenization during dataset condensation. Specifically, what we have are
conditional images ¢y and a set of hue prompts: P = {c1,ca,...,cr}. During compensation, the conditional
image cy is fed into the pretrained latent diffusion model ® along with a randomly selected hue prompt ¢;.
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The compensated image I, is defined as:
Lo = ®(cr, ). (2)

A hue is the dominant color family of a particular color. In DC3, the hue prompts are categorized into
cool (e.g., rainy, snowy) and warm (e.g., sunny, daylight), except for the neutral hues (e.g., black, white,
and gray). We select two hues from each group: (Peoo1, Pyarn), and implement the color compensation to
synthesize (Icoo1, lyarm) according to eq. . Please refer to appendix |C| for a detailed guideline on prompt
selection. Furthermore, we crop them in half and then stitch them to create a more informative image.

As illustrated in fig. color compensation effectively enhances dataset colorfulness by expanding the
color gamut representation without introducing artificial artifacts, thereby contributing to model training on
downstream tasks. Compared to RDED , another crop-and-stitch approach that composites
images through disparate image regions, our method synthesizes multiple color-compensated variants of
identical images. This strategy preserves structural consistency while promoting generalized representations
across diverse visual domains such as resolution and color distribution.

Transformation-based Image Process Diffusion-based Color Compensation
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Figure 4: Comparison between conventional and diffusion-based image processes. Left: Original
image. Middle: Visualizations of conventional processing methods: (a) ColorJitter (brightness, contrast,
saturation, hue), (b) Grayscale conversions (number of output channels), and (¢) Gaussian blur (kernel,
o). Right: Diffusion-based color compensation. The diffusion-based approach achieves semantic-aware color
reasoning, mitigating distortions caused by mathematical transformations in traditional pipelines.

3.3 Quantization Analysis

DQ is an emerging method for dataset condensation based on image-level selection. The idea of DQ is
to partition data into different bins iteratively based on submodular gain, which was first proposed in
GraphCut for coreset selection. The samples are selected from the bins randomly, whose
distribution is aligned with the original datasets, i.e., it does not have the color homogenization problem.
Nevertheless, a fundamental limitation of this approach lies in its inherently monotonic decay of submodular
gains across increasing bin indices, which inevitably causes random sampling to discard critical samples
essential for model generalization. To reveal the relationship between submodular gain and sample distri-
bution, we visualize the samples in ImageNette according to the values of their submodular gains with the
help of t-SNE (Van der Maaten & Hintonl 2008) plots (the mid-row of fig. [f)). Also, we provide additional
visualizations for the first, second, and last samples selected by the submodular gain criterion (the top row
and bottom row of fig. .

Due to DQ performing random sampling within a certain bin, the following situations exist: (a) Samples
with high submodular gains may be excluded despite their distance from the optimal sample that has the
highest submodular gain (top-right in fig. [5). (b) Samples with low submodular gains may be selected even
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Figure 5: Visualizations of the relationship between submodular gain and sample distribution.
The following situations occur in traditional DQ methods: (a) inconsequential but compact samples may
be selected because they are in different bins (bottom-left), and (b) essential and diverse samples may be
discarded because they are in the same bins (top-right).

when proximate to the optimal sample (bottom-left in fig. . Based on the visualization, we argue that the
submodular gain of a sample is independent of its position in the feature distribution. In other words, the
sampling diversity does not necessarily benefit submodular gain.

To avoid selecting samples with small gains, we propose clustering-based DQ, where the submodu-
lar gain is then used as an image sampler instead of a bin generator. Specifically, the clustering al-
gorithm divides the dataset into multiple clusters, which are naturally regarded as data bins (Cj).
Each sample z is iteratively assigned to the closest bins:

argmin ||z — G|, j=1,..., M. (3)
J

As shown in fig. [6] data bins, also known as clusters, are dis-

persed throughout the feature space as expected. The cluster- Figure 6: T-SNE visualizations of
ing algorithm performs a coarse partitioning of samples based intra-class clusters on ImageNet. Sub-
on feature-space similarities. Within each bin, we leverage sub-  modular sampling selects the representative
modular sampling to identify the representative samples with gamples to preserve maximum semantic in-
high submodular gains. In this way, the condensed dataset tegrity and feature diversity.

preserves maximum semantic and feature diversity.

3.4 Submodular Sampling

Color compensation enhances the diversity of the images, but we need to know which images require com-
pensation, as compensating the entire dataset is computational. Thus, we introduce submodular sampling
as a feasible solution. The clustering-based DQ naturally separates the intra-class structure into different
sample bins. Then, with the help of submodular sampling, we can select significant and diverse samples
from the class.
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The samples with high submodular gain (G(z)) will be sampled according to:

Glar)= Y If ) = falz— Y 1f®) = fla)li3, (4)

peSk—1t peSk—1

where f(p) is the feature of already selected sample p and f(zy) is the feature of the current sample .
Sk=1 is the sample set selected from the whole dataset D and S¥~1! = D\S*~! is the complementary set.
The submodular sampling is summarized in algorithm

Algorithm 1 Submodular Sampling

Input: x € C: Data in bins (Bins generated by clustering).
Input: M: Number of data bins.
Input: N: Image per class (IPC).

1: for C; in C' do

2: for T in Cj do

3: Compute G(zy) according to eq.

4: end for

5: Sj =0

6: C} =sort(Cy, G, desc)

7. if N < M then

8: M=N

9: end if

10:  S;=C5[0: N/M] # Selection
11: end for

12: S = U;vil Sj
Output: S: The selected sample set.

To sum up, DC3 quantifies sample-wise contribution through submodular gain and improves sample perfor-
mance with Color Compensation, ensuring that the compressed dataset remains both representative and
diverse across categories. By effectively preserving critical information, our approach enhances the overall
quality and utility of the condensed dataset. The entire DC3 pipeline is summarized in fig. [3|

4 Experiments

4.1 Experimental Settings

We perform systematic evaluations across varying-scale benchmarks to assess generalization boundaries.
For large-scale datasets, we include ImageNet-1K (Deng et al., [2009) (224 x 224) and its subsets, such as
Tiny-ImageNet (64 x 64). Small-scale low-resolution (32 x 32) analysis utilizes CIFAR-10/100 (Krizhevsky
et al., 2009). To quantify task difficulty sensitivity, we benchmark ImageNette and ImageWoof, the subsets
of ImageNet with 10 classes. Note that ImageWoof poses greater discrimination challenges due to more
inter-class similarity. We use Stable Diffusion-V1.5 and DiT-XL/2-256 as our foundation models.

Following the prior works (Sun et al.l |2024; (Chen et al., |2025), we set IPC to 1, 10, and 50. For a fair
comparison, we adhere to the official implementation of RDED (Sun et al., 2024) and employ a ResNet-
18 network to generate soft labels for fine-grained supervision. Performance validation is conducted using
PyTorch on 8x NVIDIA 3090 GPUs. Detailed settings are discussed in the supplementary materials.

4.2 Comparison with SOTA Methods

While our method draws inspiration from DQ, we exclude direct comparisons due to differing evaluation
priorities. Specifically, DQ emphasizes generalization across large IPC keep ratios, whereas our focus lies
in optimizing compression performance through color compensation at low IPC regimes. Consequently, we
benchmark against DD such as the matching-based TESLA (Cui et al., 2023), SRe?L (Yin et al., 2023),
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DataDAM (Sajedi et all 2023), RDED (Sun et all|2024), and generation-based Minimax (Gu et al.| [2024),
D*M (Su et al.l[2024), and IGD (Chen et al., [2025)), aligning with the objective of DC that maximizes dataset
utility under extreme compression. Importantly, our DC3 inherits all the advantages of DQ while achieving
superior compression efficiency.

ImageNet family. The extension of dataset condensation to large-scale scenarios represents a critical
advancement in DCAI research. Our method demonstrates superior scalability and effectiveness on this
challenging task. As evidenced by table [I} DC3 achieves SOTA performance across all IPC settings on
large-scale ImageNet-1K. Notably, DC3 delivers an 8.4% Top-1 accuracy improvement over RDED at IPC
= 10, surpassing the SOTA results on a large-scale dataset. This performance gap underscores its superior
ability to represent complex visual patterns, particularly in high-resolution large-category scenarios.

Matching-based Generation-based
Dataset  IPCppgr At SRe?L,  RDED! Minimax DM IGD pcg Tl

ImageNet-lK 10 17.8i1,3 21~3i0.6 42-0i0.1 44-3i0.5 27-9i0.9 46.2i0.6 50-4j:0.2 69.8
50 27.9415 468102 56.5101 58.6403 552404 60.3104 62.3.107

Table 1: Top-1 Accuracy? on ImageNet-1K. The results of DC3 and other state-of-the-art methods are
evaluated on ResNet-18. t: The results of TESLA are evaluated on ConvNet.

Furthermore, we validate DC3 efficacy on some challenging domain-specific ImageNet subsets. As listed in
table [2| our approach achieves a 16.4% accuracy gain over IGD at IPC-10 on ImageNette. For the more
complex Tiny-ImageNet (200 categories), our method has better performance than others, demonstrating
consistent performance across varying task complexities.

Dataset IPC RDED  Minimax D*M IGD DC3
1 20.8i1,2 - - - 23-2i1.4
ImageWOOf 10 38.5491 37.640.9 429411 472416 48.7T101
50 68.5107 571106 621304 654118 724106
1 358410 321i03 341409 - 37.6100
ImageNette 10 6]..4:|:0‘4 62.0:|:0‘2 68.4:|:0,8 66.2i1_2 84.8:|:1‘1
50 80.4104 T76.6102 81.3101 82.0403 89.8402
1 9-7i0.4 13~3i0.8 15-1i0.2 - 20-0i1.2
Tiny—ImageNet 10 41~9i0.2 39~2i0.7 35-7i046 - 45-1i1.1
50 58.25;0_1 44.8:|:0_2 46.2:|:1.1 - 59.4:|:0_7

Table 2: Top-1 Accuracyt on ImagelNet subsets: ImageWoof, ImageNette, and Tiny-ImageNet.
All of the results are evaluated by ResNet-18. DC3 holds the optimal performance among datasets and
methods.

The ImageWoof subset, known for its high intra-class similarity, poses challenges for dataset condensation.
Nonetheless, our method achieves the best performance on this benchmark. The success can be attributed
to two principal factors: (1) our color compensation mechanism effectively preserves subtle discrimina-
tive features that are critical for distinguishing similar classes, and (2) the submodular sampling strategy
ensures optimal coverage of diverse intra-class variations, preventing the loss of essential patterns during
condensation.

CIFAR-10/100. To assess the generalization across varied scales and resolutions, we also evaluate DC3
on CIFAR-10 and CIFAR-100. As shown in table |3 our approach exceeds those of previous SOTA models
by a significant margin on the small-scale benchmarks. The accuracy at IPC-10 is 1.5x of our baseline
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RDED. For the more challenging CIFAR-100, a 100-class fine-grained dataset, our method maintains strong
competitiveness across different IPCs, demonstrating robustness to both coarse and fine-grained classification
tasks at low resolutions.

Dataset IPC RDED SRe?LL.  DataDAM D*M DC3

1 229404 169109 32.04;2 1764171 25.6419
CIFAR-10 10 37.1.03 272405 542408 515405 b57.8108
50 62.1:‘:0.1 47-5:|:0.6 67~0:|:0_4 62.3:‘:0,2 80.9i0_5

1 110403 204102 145,05 57414 211416
CIFAR-100 10  42.6402 23.540s 34.8:05 440103 B5T.4400
50  62.6401 5l.digs  49.4403 484100 64.2405

Table 3: Top-1 Accuracy! on CIFAR-10 and CIFAR-100. The results are evaluated by ResNet-18.

Last but not least, we find that the existing dataset condensation methods exhibit varying degrees of perfor-
mance degradation under different scales, class numbers, and structures. DC3 enhances the data colorfulness
and inherits the generalization performance of DQ, successfully overcoming this adaptation challenge.

4.3 Cross-architecture Generalization

To support the claim that pixel optimization methods, which cause “color homogenization”, impair model
generalization, a direct comparison is made between DC3 and various matching-based DD methods (such
as KIP (Nguyen et al., 2021b), DSA) on “Seen” and “Unseen” network architectures. The results in table
indicate that the aforementioned methods experience a sharp accuracy decrease when evaluated on archi-
tectures not previously seen. Such significant performance degradation provides strong empirical support
for the hypothesis that “color homogenization” hinders model learning of transferable data representations.
Among all methods, DC3 and DSA demonstrate the most robust generalization to the unseen architecture,
exhibiting the slightest performance degradation. Crucially, DC3 absolute performance has far exceeded
that of other methods.

Eval. Model KIP DSA MTT TESLA DC3
Seen 47.2 53.0 65.3 66.4 84.8.1
Unseen 15.9%;1‘;; 31.9v21.1 34.6@;()‘7 34'8l551-“ 60'4i1-2tl\ .

Table 4: Different DD methods show performance degradation on the “unseen” architecture.
Here, “seen” architectures refer to CNN-based models (e.g., ResNet series or ConvNet series), while “unseen”
architectures are Transformer-based (e.g., Swin-V2-T or ViT). We choose the worst result of DC3 on Swin-
V2-T under TPC-10, but it still performs the best among methods.

To evaluate the cross-architecture generalization of compressed datasets, we deploy them to CNN-based
(ResNet series, MobileNet-V2, EfficientNet-B0) and Transformer-based architecture (Swin-V2-T). We em-
ploy ResNet-18 as the feature sampler during submodular sampling, thus, we make it the teacher model
naturally. As demonstrated in table [5] ResNet-18 achieves 84.8% Top-1 accuracy at IPC-10, while Swin-V2-
T exhibits a significant drop to 60.4%. This discrepancy stems from fundamental architectural divergences:
CNNs rely on hierarchical feature extraction through localized receptive fields, whereas Transformers model
the long-range dependencies via global attention mechanisms. Such structural differences lead to varying
sensitivities to high-frequency details in compressed data. Despite inherent architectural biases, Swin-V2-T
achieves 80.0% accuracy at IPC-50, marking a 19.6% improvement over IPC-10, which highlights its potential
for multi-architecture applications.

Notably, the performance volatility (standard deviation) is approximately 3.93% (IPC-50) across models
ranging from lightweight MobileNet-V2 to deep ResNet-101, demonstrating its robustness to model scale.
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Sampler IPC ResNet-18 ResNet-50 ResNet-101 MobileNet-V2  EfficientNet-BO  Swin-V2-T

10 84.841 5 80.841 5 79.041.3 81.8411 84.241 4 60.441 5
50 89.840.3 89.040.2 89.210.4 89.6+0.5 90.210.4 80.0+0.5

ResNet-18

Table 5: Generalization performance of DC3 across different neural network architectures. The
results demonstrate the robustness and adaptability of the condensed datasets to various models.

Additionally, DC3 achieves the best accuracy of 90.2% on EfficientNet-B0, which also validates its align-
ment with efficient network designs. These findings not only confirm the cross-architecture and cross-scale
generalization of DC3 but also elucidate the coupling mechanism between dataset compression and model
inductive bias.

4.4 Ablation Study

Color compensation. This section addresses a

pivotal question: Does the powerful distillation capa- Dataset IPC Null HR DC3
bility of DC3 stem from the inherent data augmenta- CIFARIO 10  50.31092 545402 57.84058
tion ability of the diffusion model itself, or from the 50 73.6401 T76.0102 80.9.¢5

specific color compensation strategy designed to
address the color homogenization problem? For CIFAR100
this purpose, we design a series of ablations on dif-
fusion model schemes with three different kinds of
prompts. The first is a “null” prompt, providing no
information as a performance baseline. The second is the “HR” prompt, which uses “High-Resolution im-
ages” as prompt words to evaluate the inherent effectiveness of the diffusion model itself. The third is the
carefully designed DC3 color compensation prompt. A guideline on how to select DC3 prompts is provided
in appendix [C] The results in table [f] demonstrate that the DC3 strategy achieves optimal performance
on both the CIFAR-10 and CIFAR-100 datasets, regardless of the IPC settings, which confirms that the
performance improvement is not simply due to the introduction of diffusion models, but at-
tributed to the proposed color compensation strategy. This strategy effectively enhances the color
diversity of the compressed data, solving the common issue of color homogenization in previous methods
and improving the final performance of the surrogate model.

50 583101 61.2401 64.2405

Table 6: Comparison results of different prompts.

Compensation manners. To further validate the effective-
ness of color compensation, we introduce the colorfulness
metric (Hasler & Suesstrunk, 2003), which reflects the color
richness in an image and helps establish a correlation between
experimental metrics and the color attributes.

ImageNette
84, 76.4

CIFAR-10
756

. Acc = Acc. 578
C

ol

Colorfulness

Top-1 Accuracy (%)

Specifically, through the red-green (rg) and yellow-blue (yb) ~ "orgnal ool warm mix  "*Original Cool Warm  Mix

difference of an image, the colorfulness can be defined as: Figure 7: Ablation study on color com-

colorfulness = oroot + 0.3 X firoot, (5) pensation. The colorfulness and accuracy
results highlight the enhancement in color
diversity with the proposed diffusion-based
color compensation technique.

Oroot = \/U?g + U§b7 Hroot = \/m (6)

In eq. (6)), rg = |[R — G| and yb = 0.5 x (R + G) — B are the differences between the Red, Green, and Blue

components of an image.

where oot and piyoot represent the combined standard devia-
tion and mean of the rg and yb differences, respectively:

As depicted in fig. [7] the application of color compensation to submodular-sampled datasets demonstrates
significant theoretical advantages over uncompensated approaches. The compensation strategy addresses the
inherent color distribution imbalances in compressed datasets by enhancing the color of underrepresented re-
gions while maintaining visual naturalness. The cool hue specifically targets cyan-blue-magenta deficiencies,
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while warm compensation addresses yellow-orange-red limitations. Thus, the mixed compensation provides
a comprehensive spectral coverage. Appendix [D| discusses the different mix methods in detail.

Compensation v.s. augmentation. To comprehensively evaluate the dual contributions of our proposed
DC3 framework in color compensation and coreset selection, a detailed ablation study is conducted with
results listed in table Since one of the primary contributions of DC3 is addressing the issue of color
homogenization in existing methods, table [7] directly compares DC3 against other color augmentation
techniques such as Color Jitter, HSV Shift, Balance Tuning, and AutoPalette (Yuan et al. 2024). The
results demonstrate that DC3 significantly outperforms these alternative color solutions on the CIFAR-10
and CIFAR-100 datasets, thus confirming the unique advantage of the diffusion-based approach in enhancing
color diversity. We named this strategy compensation instead of augmentation to distinguish it.

Dataset Color Jitter HSV Shift Balance Tuning AutoPalette DC3

CIFARI10 73-5i1.8 74-2i1.1 74.6i1,4 79-4i2.2 80.9i0_5
CIFAR100 53.2i1,6 53-7i1.4 54-4i1.7 53'3i1.3 64'2i0.8

Table 7: Comparison with augmentation methods under IPC-50. For fair comparison, we substitute Colour
Compensation with augmentation methods, while the rest of the pipeline remains identical.

Submodular sampling. The upper section of table [§ reveals that DC3 with clustering-based submodular
sampling performs better across CIFAR-10 and ImageNette under varying IPCs. The lower section only
changes the sampling strategy, while the rest of the components remain fixed, including color compensation.

The competitive results of DC3 are attributed to the synergistic combination of clustering and submodular
sampling. Clustering-based bin generation creates coherent and representative data bins by minimizing
intra-cluster distances, providing a stronger foundation for the subsequent sampling process. Submodular
sampling then optimally selects diverse and representative samples from these well-formed bins, capturing
the underlying data distribution while maintaining diversity. This integration addresses the challenge in
dataset condensation: preserving essential information while significantly reducing dataset scale.

Method Color Compensation CIFAR-10 ImageNette CIFAR-10 ImageNette

IPC = 10 IPC = 50
DQ X 35.7;‘;0.7 69.3:‘:0.5 50-510.4 74-2:|:0.5
DC3 494, 75.3 0.6 1.4, 79.6.0 4
DQ / 51.21 0. 81.811 5 684105 85.310.6
DC3 57.8.05 84.8. 80.9. 5 89.8.

Table 8: Ablation study on sampling strategies. DQ randomly selects samples within data bins, while
DC3 utilizes submodular gain as the sampler.

Meanwhile, to validate the effectiveness of the improved submodular sampling selection strategy, table []
compares DC3 with various commonly used coreset methods, including Herding, k-CG, GradMatch, and
submodular-based DQ methods. The results show that DC3 achieved the best Top-1 accuracy on all tested
datasets, particularly outstanding on CIFAR-10 (80.9%), CIFAR-100 (64.2%), and Tiny ImageNet (59.4%).

Overall, the above ablation experiments demonstrate that both color compensation and clustering-based
submodular sampling in the DC3 framework are superior to existing technologies. It not only effectively
improves the information density and representation ability of the compressed dataset but also provides an
effective solution to the key bottleneck in dataset condensation.

Pipeline analysis. The ablation study on the DC3 pipeline reveals significant performance improvements
by combining color compensation and submodular sampling. As listed in table standalone submodu-
lar sampling improves accuracy by 10.9%, while color compensation achieves 15.1% on CIFAR-10. Their
synergistic integration yields a 19.3% improvement. Similar trends hold on ImageNette.
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Method CIFAR-10 CIFAR-100 Tiny-ImageNet
Herding 34.8 344 45.7
k-CG 31.1 42.8 46.3
GradMatch 30.8 42.8 43.2

DQ (Submodular) 50.540.8 45.940.7 52.841.3
DC3 80.9.05  64.2.05 59.4.0 7

Table 9: Comparison with other selection methods under IPC-50.

This synergy arises from complementary mechanisms: color

compensation mitigates chromatic homogenization by restor- SO (Olgai ImageNette
ing natural hue distributions, while submodular sampling max- - - 385401 595.8+0.1
imizes feature diversity. The former ensures perceptual fidelity Vo= 494,43 75.310.4
critical for color-sensitive tasks, whereas the latter optimizes - vV 536405 779109
representativeness by prioritizing samples that span the data v v B7.840% 84.8,1

manifold. Their joint operation enforces a compressed dataset
that aligns with both low-level chromatic statistics and high- Table 10: Ablation study on the impact of
level semantic structures, thereby bridging the gap between submodular sampling (S) and color com-
pixel-level optimization and image-level selection. pensation (C) strategies.

4.5 Training diffusion models with DC3

Besides being effective on downstream tasks, we argue that - 6n
5

the condensed datasets should adapt to generation tasks. We =

fine-tune the Stable Diffusion (SD) and Diffusion Transformers | =

(DiT) (Peebles & Xiel [2023)) on the original and mixed (origi- 2. 2,

nal and DC3-condensed IPC-50 data) ImageNette dataset with — .|ss of 1972 1500

LoRA (Hu et al., [2022) and DiffFit (Xie et al., 2023).

SD (LoRA) DIT-XL-2 (LoRA) DiT-XL-2 (DiffFit) SD (LoRA) DIT-XL-2 (LoRA) DiT-XL-2 (DiffFit)
The results drawn in fig. [§] show that datasets generated by
DC3 effectively support the fine-tune pipelines without model
collapse. Specifically, the models fine-tuned by mixed data
achieve better FID-IS (Salimans et al.|[2016;[Heusel et al.| [2017)
scores compared to those on the original dataset and baselines,
indicating better alignment with real data distributions. This
performance gap stems from its ability to preserve feature diversity by chromatic alignment and submodular
sampling, which maintains essential data manifolds while removing redundant information.

Figure 8: Fine-tuning diffusion models
with DC3. To validate the effectiveness of
our method, each fine-tuned model gener-
ates 10,000 images according to the number
of samples in ImageNette (12894).

5 Conclusion

We present DC3, a simple but efficient way to optimize both the performance and generalization of con-
densed datasets. Based on our color compensation mechanism, the experiments demonstrate favorable results
across a wide range of datasets with various recognition difficulties. Notably, DC3 proves an information
preservation mechanism within condensation, validating the feasibility of pre-training large vision models on
condensed datasets without model collapse.

Limitation and future work. Although DC3 is a training-free approach, the compensation process is still
constrained by the inference speed of the diffusion model. Future directions will focus on extremely efficient
DC under extreme compression. We hope this work will inspire further research into dataset condensation.
Perhaps in the future, the scaling law will be broken to a linear level with the help of Data-Centric Al.

12



Under review as submission to TMLR

References

Robert M Boynton. Human color perception. In Science of Vision, pp. 211-253. Springer, 1990.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset dis-
tillation by matching training trajectories. In IEEE/CVF Conference on Computer Vision and Patlern
Recognition, pp. 4750-4759, 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Generalizing
dataset distillation via deep generative prior. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3739-3748, 2023.

Chengliang Chai, Jiayi Wang, Nan Tang, Ye Yuan, Jiabin Liu, Yuhao Deng, and Guoren Wang. Efficient
coreset selection with cluster-based methods. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 167-178, 2023.

Mingyang Chen, Jiawei Du, Bo Huang, Yi Wang, Xiaobo Zhang, and Wei Wang. Influence-guided diffusion
for dataset distillation. In International Conference on Learning Representations, 2025.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k with
constant memory. In International Conference on Machine Learning, pp. 6565—6590, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 248-255,
2009.

Wenxiao Deng, Wenbin Li, Tianyu Ding, Lei Wang, Hongguang Zhang, Kuihua Huang, Jing Huo, and Yang
Gao. Exploiting inter-sample and inter-feature relations in dataset distillation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 17057-17066, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780-8794, 2021.

Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumulated
trajectory error to improve dataset distillation. In IEEE/CVF conference on computer vision and pattern
recognition, pp. 3749-3758, 2023a.

Jiawei Du, Qin Shi, and Joey Tianyi Zhou. Sequential subset matching for dataset distillation. Advances in
Neural Information Processing Systems, 36:67487-67504, 2023b.

Jiahui Geng, Zongxiong Chen, Yuandou Wang, Herbert Woisetschlaeger, Sonja Schimmler, Ruben Mayer,
Zhiming Zhao, and Chunming Rong. A survey on dataset distillation: Approaches, applications and future
directions. arXiv preprint arXiv:2305.01975, 2023.

Rafael C Gonzalez. Digital image processing. Pearson education india, 2009.

Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, and Yiran
Chen. Efficient dataset distillation via minimax diffusion. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 15793-15803, 2024.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selection in
deep learning. In International Conference on Database and Expert Systems Applications, pp. 181-195.
Springer, 2022.

Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless
dataset distillation via difficulty-aligned trajectory matching. In International Conference on Learning
Representations, 2024.

13



Under review as submission to TMLR

David Hasler and Sabine E Suesstrunk. Measuring colorfulness in natural images. In Human Vision and
Electronic Imaging VIII, volume 5007, pp. 87-95. SPIE, 2003.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural infor-
mation processing systems, 30, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial infor-
mation measures with applications in machine learning. In Algorithmic Learning Theory, pp. 722-754,
2021.

Bernd Jahne. Digital image processing. Springer Science & Business Media, 2005.

Kimberly A Jameson, Timothy A Satalich, Kirbi C Joe, Vladimir A Bochko, Shari R Atilano, and M Cristina
Kenney. Human color vision and tetrachromacy. Cambridge University Press, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.(2009), 2009.

Shiye Lei and Dacheng Tao. A comprehensive survey of dataset distillation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(1):17-32, 2023a.

Shiye Lei and Dacheng Tao. A comprehensive survey to dataset distillation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(1):17-32, 2023b.

Guang Li, Bo Zhao, and Tongzhou Wang. Awesome dataset distillation. https://github.com/Guang000/
Awesome-Dataset-Distillation, 2022.

Muquan Li, Dongyang Zhang, Qiang Dong, Xiurui Xie, and Ke Qin. Adaptive dataset quantization. In
AAAI Conference on Artificial Intelligence, 2025.

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via factorization.
Advances in neural information processing systems, 35:1100-1113, 2022.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university press, 2003.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-regression. In
International Conference on Learning Representations, 2021a.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. Advances in Neural Information Processing Systems, 34:5186-5198, 2021b.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. Advances in Neural Information Processing Systems, 34:5186-5198, 2021c.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE/CVF International
Conference on Computer Vision, pp. 4195-4205, 2023.

Konstantinos Plataniotis and Anastasios N Venetsanopoulos. Color image processing and applications.
Springer Science & Business Media, 2000.

Srivatsa Prativadibhayankaram, Thomas Richter, Heiko Sparenberg, and Siegfried Foessel. Color learning
for image compression. In IEEE International Conference on Image Processing, pp. 2330-2334. IEEE,
2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748-8763. PmLR,
2021.

14


https://github.com/Guang000/Awesome-Dataset-Distillation
https://github.com/Guang000/Awesome-Dataset-Distillation

Under review as submission to TMLR

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10684-10695, 2022.

Guy Rosman, Mikhail Volkov, Dan Feldman, John W Fisher III, and Daniela Rus. Coresets for k-
segmentation of streaming data. Advances in Neural Information Processing Systems, 27, 2014.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural Information Processing
Systems, 35:36479-36494, 2022.

Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z Liu, Yuri A Lawryshyn, and Konstantinos N Pla-
taniotis. Datadam: Efficient dataset distillation with attention matching. In IEEE/CVF International
Conference on Computer Vision, pp. 17097-17107, 2023.

Ahmad Sajedi, Samir Khaki, Lucy Z Liu, Ehsan Amjadian, Yuri A Lawryshyn, and Konstantinos N Platani-
otis. Data-to-model distillation: Data-efficient learning framework. In European Conference on Computer
Vision, pp. 438-457. Springer, 2024.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016.

Claude E Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):
379-423, 1948.

Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, and Augustus Odena. Small-
gan: Speeding up gan training using core-sets. In International Conference on Machine Learning, pp.
9005-9015. PMLR, 2020.

Duo Su, Junjie Hou, Weizhi Gao, Yingjie Tian, and Bowen Tang. D 4 m: Dataset distillation via disentangled
diffusion model. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5809-5818.
IEEE, 2024.

Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An efficient
dataset distillation paradigm. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 9390-9399, 2024.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(11), 2008.

Theo Van Leeuwen. The language of colour: An introduction. Citeseer, 2011.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

Enze Xie, Lewei Yao, Han Shi, Zhili Liu, Daquan Zhou, Zhaoqgiang Liu, Jiawei Li, and Zhenguo Li. Difffit:
Unlocking transferability of large diffusion models via simple parameter-efficient fine-tuning. In IEEE/CVF
International Conference on Computer Vision, pp. 4230-4239, 2023.

Zeyuan Yin, Eric Xing, and Zhigiang Shen. Squeeze, recover and relabel: Dataset condensation at imagenet
scale from a new perspective. Advances in Neural Information Processing Systems, 36, 2023.

Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 46(1):150-170, 2023a.

Ruonan Yu, Songhua Liu, and Xinchao Wang. A comprehensive survey to dataset distillation. IEFE
Transactions on Pattern Analysis and Machine Intelligence, 46(1):150-170, 2023b.

15



Under review as submission to TMLR

Bowen Yuan, Zijian Wang, Mahsa Baktashmotlagh, Yadan Luo, and Zi Huang. Color-oriented redundancy
reduction in dataset distillation. Advances in Neural Information Processing Systems, 37:53237-53260,
2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In IEEE/CVF International Conference on Computer Vision, pp. 3836-3847, 2023.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In International
Conference on Machine Learning, pp. 12674-12685. PMLR, 2021a.

Bo Zhao and Hakan Bilen. Dataset condensation with gradient matching. In International Conference on
Learning Representations, 2021b.

Bo Zhao and Hakan Bilen. Synthesizing informative training samples with gan. Advances in Neural Infor-
mation Processing Systems (NeurIPS) Workshop, 35, 2022.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In IEFE/CVF Winter Con-
ference on Applications of Computer Vision, pp. 6514-6523, 2023.

Zhenghao Zhao, Yuzhang Shang, Junyi Wu, and Yan Yan. Dataset quantization with active learning based
adaptive sampling. In Furopean Conference on Computer Vision, pp. 346-362. Springer, 2024.

Haizhong Zheng, Jiachen Sun, Shutong Wu, Bhavya Kailkhura, Z Morley Mao, Chaowei Xiao, and Atul
Prakash. Leveraging hierarchical feature sharing for efficient dataset condensation. In European Conference
on Computer Vision, pp. 166—182. Springer, 2024.

Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang You, and Jiashi
Feng. Dataset quantization. In IEEE/CVF International Conference on Computer Vision, pp. 17205—
17216, 2023.

Appendix
A Experimental Details

The collaboration between sampling and compensation endows
DC3 with powerful condensation capabilities. There are de-
tails of these pipelines that need to be explained. In submod-
ular sampling, appendix [B] presents the results for different
cluster numbers (K), as K significantly affects the sampling
results. Also, in the color compensation phase, appendix [C]in-

IPC=10 IPC=50 —#— IPC=100 —4— IPC=200

e e———
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S N B

©
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Top-1 Accuracy (%)
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troduces the selection guideline of hue prompts. Additionally, 82— T 10 20
appendix [D] experiments on different crop-and-stitch methods Number of Clusters (K)

to further enhance the information density for the condensed

images. Figure 9: Top-1 Accuracy? of the number

of clusters (K) for varying IPCs (IPC-10,
During the validation stage, the parameter details of all exper- 50, 100, 200). The results demonstrate the

iments are listed in table [[1} Finally, we provide a wealth of impact of cluster granularity on classifica-
visualizations in appendices [E} [G] and [H]} including condensed  tjon performance.

images and fine-tuned DiT-generated images, which prove the

effectiveness of DC3. For DC3 and the reproduced baselines, we report the mean and standard deviation
over three runs. For other competing methods, we quote the results directly from their original publications.
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Settings Values Settings Values Settings Values
guidance scale 4 guidance scale 4 guidance scale 4
network ResNet18 network ResNet18 network ResNet18
input size 224 input size 32 input size 224
optimizer AdamW optimizer AdamW optimizer AdamW
learning rate 0.001 learning rate 0.001 learning rate 0.001
weight decay 0.01 weight decay 0.01 weight decay 0.01

(a) ImageNet (b) CIFAR-10 and CIFAR-100 (c) ImageWoof and ImageNette

Table 11: Evaluation details for different datasets.

B Selection of Cluster Numbers

The number of clusters (K) should be chosen carefully. Thus, we conduct experiments using four clustering
settings: K = 1, 5, 10, and 20. As depicted in fig. [0] the Top-1 accuracy reaches an optimal value at K =
10. According to fig. [0] we can also claim that DC3 is not sensitive to K, since the accuracy drops slightly
at other K settings.

C Guideline of Hue Prompt Selection

DC3 tried to execute the pixel-level optimization to mitigate

color homogenization with instruction-conditioned diffusion Cool Hue Warm Hue

models. Cool and warm hues group the instructions. This tax- rainy sepia
onomy originates from quantitative analysis of natural lighting snowy sunny

in photographic aesthetics: cool-hue scenes exhibit spectral en- infrared daylight
ergy concentrated in short wavelengths (400-500 nm), whereas underwater  vivid colors
warm hues correlate with long-wavelength distributions (550~ frozen lake  golden hour

700 nm). As listed in table cool-hue prompts (e.g., “rainy”,

“snowy”) align with low-color-temperature scenes (e.g., blue- Table 12: Examples of instruction prompts
cyan hue in rain/snow). In contrast, warm-hue prompts (e.g., for cool and warm hues.

“sunny”, “golden hour”) capture high-color-temperature spec-

tral characteristics (e.g., orange-yellow hue under strong illumination). By embedding these physically
grounded semantic instructions into latent diffusion models, we successfully implement pixel-level color com-

pensation (e.g., adjusting illumination while preserving structural integrity).

The selection strategy adheres to the following criteria: (a) wvisual discriminability — terms must induce
color shifts aligned with human perception (e.g., “underwater” implies blue-green hue, “vivid colors” triggers
saturation enhancement), (b) complementary coverage — prompts should span opposing color families to
maximize gamut diversity. In our experiment, we randomly selected one prompt from both cool and warm
hues for color compensation. Then we crop-and-stitch the generated image to create one single distilled
image.

D Ablation on Crop-and-Stitch

We appraise three kinds of crop-and-stitch methods on datasets with different resolutions. The experimental
results listed in table [[3] demonstrate that crop-and-stitch in half yields the best results across resolutions.

Excessive stitching (e.g., grid stitch and extreme pixel stitch) will degrade the semantic integrity, impair-
ing feature extraction capabilities. Pixel stitch exhibits unstable performance due to insufficient spatial
continuity constraints. Half merge effectively preserves structural semantics while enabling information fu-
sion, particularly advantageous for cool/warm hue compensation tasks. By maintaining complete half-region
structures, this method retains coherent color distribution patterns, thereby enhancing discriminative learn-
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ing of chromatic features. The accuracy performance validates half-merge as the optimal strategy for image
fusion in DC3.

Dataset IPC 2 x % 4 x i 50% Pixels 8 x 8 Grids 16 x 16 Grids

1 25.6 22.4 24.9 23.0 19.5
CIFAR-10 10 57.8 58.2 54.6 56.1 44.2
TmageWoof 1 15.2 12.6 12.8 15.0 10.2

10 38.0 35.6 37.6 34.4 37.4
TmageNette 1 37.6 32.2 28.8 36.4 27.8

10 84.8 81.7 76.4 75.8 77.1

Table 13: Ablation results on different stitch methods. n x %: Crop 71L of each of the n compensated
images and then stitch. Pixels: Randomly extract 50% of the pixels from 2 compensated images and then
stitch. n x n Grids: Divide each of the 2 compensated images into n x n grids, and then randomly stitch
half of the grids into a complete image.

E \Visualization Analysis

As a performance matching method, the KDE curves of MTT are different from other matching methods.
From fig. the distribution reveals a leptokurtic profile characterized by a peaked central tendency and
attenuated tails. This statistical property indicates significant Color Redundancy, where the compressed
dataset over-represents narrow chromatic ranges while under-sampling critical color variations. Both Color
Redundancy and Color Homogenization phenomena compressed data manifolds inadequately span the
original color space, thereby violating the manifold hypothesis essential for dataset generalization. In con-
trast, DC3 fits the color distribution well on CIFAR-10 (fig. and ImageNette (fig. and achieves
superior performance.
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Figure 10: The KDE curves of the normalized RGB pixel value of MTT and DC3. (a)-(b) CIFAR-
10 results on MTT and DC3. (c¢) ImageNette results on DC3.

F Comparison of Computation Time and GPU Memory Cost

Table [14] evaluates the computational efficiency of the DC3 framework, comparing its Color Compensation
stage (left table) and Bin Generation stage (right table) against relevant state-of-the-art methods. The
results indicate that even when processing high-resolution (512 x 512) images, DC3’s time consumption
(4.1s) and GPU memory footprint (2.7GB) are significantly lower than those of methods such as TESLA
and SRe?L. Concurrently, the right table shows that its Bin Generation efficiency is marginally superior to
the conventional DQ method. In summary, DC3 not only surpasses existing methods in performance but
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also demonstrates a substantial advantage in computational cost, proving the framework’s high practical
feasibility and efficiency in achieving high-quality dataset compression.

Method Resolution Time(s)| GPU(GB)] Method GenBin(h)]

TESLA 64 x 64 46.0 13.9 DQ ~ 1.0
MTT 128 x 128 45.0 79.9 DC3 ~ 0.9
SRe?L 224 x 224 5.2 34.8
DC3 512 x 512 4.1 2.7

Table 14: Comparison of computation time and GPU memory cost.

G Visualizations from Fine-tuned DiT

From the experimental results shown in the main text and fig. [TT} we believe that DC3 does not cause model
collapse after fine-tuning DiT for 50 epochs. Furthermore, using DC3-compressed data as an auxiliary
training set yields semantic-consistent generation results.

This effectiveness stems from the ability to maintain fidelity and enhance the feature discriminability of
DC3, which aligns the latent space of condensed data with natural image priors using diffusion models.
This work also pioneers the direction of fine-tuning the generative models using compressed datasets. The
across-architecture generalization results in the main text further validating the practicality of our approach
for data-efficient transfer learning.

H More Visualizations

We randomly sample the images from the DC3 condensed CIFAR-10/100, ImageWoof, and ImageNette. The
visualizations are depicted in figs. [I2] to
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Figure 11: Comparison of images generated by ImageNette fine-tuned DiT with different settings. The
first row displays outputs from DiT without fine-tuning. The second row visualizes the results from the
model fine-tuned with the original data, while the third row presents outputs from the mixed data (original
ImageNette and DC3 condensed ImageNette IPC-50) fine-tuned DiT.

Figure 12: More visualizations selected from the condensed CIFAR-10.
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Figure 13: More visualizations selected from the condensed CIFAR-100.

21



Under review as submission to TMLR

Figure 14: More visualizations selected from the condensed ImageWoof.

Figure 15: More visualizations selected from the condensed ImageNette.
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