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Abstract

While Vision-Language Models (VLMs) have
shown remarkable abilities, they invariably
generate flawed responses. Self-correction
that instructs models to refine their outputs
presents a promising solution to this issue.
Previous studies have mainly concentrated on
Large Language Models (LLMs), while the
self-correction abilities of VLMs, particularly
concerning both visual and linguistic informa-
tion, remain largely unexamined. This study
investigates the self-correction capabilities of
VLMs during both inference and fine-tuning
stages. We introduce a Self-Correction Learn-
ing (SCL) approach that enables VLMs to learn
from their self-generated self-correction data
through Direct Preference Optimization (DPO)
without relying on external feedback, facilitat-
ing self-improvement. Experimental results
demonstrate that although VLMs struggle to
self-correct effectively during iterative infer-
ence without additional fine-tuning and exter-
nal feedback, they can enhance their perfor-
mance and avoid previous mistakes through
preference fine-tuning when their generated
self-correction data are categorized into pre-
ferred and disfavored samples. This study em-
phasizes that self-correction is not merely a
refinement process; rather, it should enhance
models’ reasoning ability through additional
training, enabling them to generate high-quality
responses directly without further refinement.’

1 Introduction

Large Language Models (LLMs) have shown ex-
ceptional versatility across natural language pro-
cessing domains (Fung et al., 2023; Qian et al.,
2023; Reddy et al., 2023). Benefiting from the foun-
dational capabilities of LLMs, Vision-Language
Models (VLMs) (Liu et al., 2024a; Zhu et al., 2024)
integrate visual recognition and language under-
standing by combining instruction fine-tuning with
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Figure 1: Comparison of self-correction through infer-
ence and training. The former aims to refine the initial
response over K iterations while keeping parameters
fixed. The latter aims to train the model to produce high-
quality initial responses without iterative refinement.
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pre-trained LLMs and vision models, leading to ad-
vancements in multimodal tasks (Peng et al., 2024).

Despite the strong vision-language understand-
ing abilities, VLMs inevitably generate incorrect
information (Wu et al., 2024). Self-correction, an
approach for models to identify and rectify mis-
takes in their outputs (Kamoi et al., 2024), be-
comes a promising method for enhancing the qual-
ity of responses generated by VLMs. While previ-
ous studies have primarily focused on LLMs’ self-
correction, VLMs’ self-correction ability remains
under-explored. Given that VLMs integrate visual
and linguistic information during reasoning, self-
correction in VLMs presents additional challenges.
This complexity arises from the need to accurately
align and rectify multimodal data, making a sys-
tematic investigation into their self-correction ca-
pabilities crucial for advancing their performance
in vision-language reasoning tasks.

Existing self-correction strategies focus on the
inference stage without parameter updates (Madaan
et al., 2023; Shinn et al., 2023; Li et al., 2024).
These methods instruct models to revise their
initially generated answers with self-correction
prompts. Although the self-correction approach
during the inference stage has demonstrated effec-



tiveness in improving the performance of LLMs on
reasoning tasks (Madaan et al., 2023), and offers
advantages such as no additional training cost and
operational simplicity, recent studies have reported
contradictory results (Huang et al., 2024a; Xu et al.,
2024). This controversy highlights two main short-
comings in self-correction during the inference
stage: (1) Unreliable performance: The effective-
ness of self-correction significantly depends on the
content of the self-correction prompts (Li et al.,
2024). (2) Limitations of models’ reasoning abil-
ities: Without further training to enhance the rea-
soning capabilities of models, they are likely strug-
gling to self-correct effectively when faced with
the same challenging tasks (Kamoi et al., 2024).

Besides these two challenges, a crucial distinc-
tion between existing self-correction methods dur-
ing the inference stage and the more natural self-
correction process of humans lies in their correc-
tion goals. As illustrated in Figure 1, the former
approach focuses on better refinement, specifically
on enabling the model to correct its initial response
through additional revision (Madaan et al., 2023).
Conversely, the latter approach emphasizes bet-
ter initial generation, aiming to provide the cor-
rect answer on the first attempt without the need
for subsequent revisions (Tong et al., 2024). This
discrepancy indicates that existing self-correction
methods based on inference offer only a tempo-
rary solution for rectifying mistakes. While the
model can correct mistakes in its generated content
through iterative self-correction, its underlying rea-
soning ability remains unchanged. Consequently,
the model may continue to produce low-quality an-
swers when faced with the same question in the
future, leading to inefficient use of resources for
iterative refinement. Therefore, we emphasize the
ultimate aim of self-correction: not merely to fix
initial mistakes but to improve the model’s capa-
bility to generate correct answers directly.

In this paper, we investigate the self-correction
capabilities of VLMs through two research ques-
tions (RQs): (1) Inference-based self-correction
mechanisms: Can VLMs self-correct through in-
ference without external feedback? (2) Training-
based self-correction mechanisms: Can VLMs
improve their performance based on their self-
correction process and avoid making similar mis-
takes? Both RQs emphasize the concept of self,
exploring the intrinsic abilities of VLMs to self-
correct independently. Specifically, for inference-
based mechanisms, we design three visual self-

correction prompts for the intrinsic self-correction
of VLMs. These prompts instruct models to iden-
tify problems in their initial responses by scruti-
nizing the details of input images, understanding
the context portrayed, and comprehensively inter-
preting scenes. For training-based mechanisms,
we propose Self-Correction Learning (SCL) that
utilizes Direct Preference Optimization (DPO) fine-
tuning (Rafailov et al., 2023) to empower VLMs
to self-improve by learning from their own gener-
ated self-correction preference data. The prefer-
ence dataset, SELFCORSET, is constructed based
on the intrinsic self-correction process during in-
ference, where we select the correct responses as
preferences while the incorrect ones as disfavors.

We evaluate the intrinsic self-correction abilities
of VLMs and SCL across several multiple-choice
questions (MCQ) benchmarks. Experimental re-
sults demonstrate that VLMs struggle with intrin-
sic self-correction but can benefit from their self-
correction samples. VLMs fine-tuned using SCL
are better able to avoid previous mistakes and show
better performance compared to previous prefer-
ence optimization methods for VLMs.

Our main contributions are as follows: Firstly,
we define the key objective of self-correction as not
only correcting initial mistakes but also enhancing
the model’s ability to generate accurate responses
directly. Secondly, we systematically evaluate the
self-correction abilities of VLMs during inference
by developing three visual self-correction prompts.
We further discuss the reliability of Inference-based
self-correction mechanisms. Thirdly, we introduce
a novel approach, SCL, that enables VLMs to self-
improve through DPO by learning from good and
bad self-corrections. Our findings demonstrate the
effectiveness of SCL and highlight the advantage
of Training-based self-correction mechanisms.

2 Related Work

Vision-Language Models and Preference Fine-
Tuning. VLMs, such as GPT-40 (OpenAl, 2024a),
MiniGPT-4 (Zhu et al., 2024), and LLaVA-1.5 (Liu
et al., 2024a) , integrate the encoding of visual
and textual data to solve various multimodal tasks
such as image classification (Peng et al., 2024)
and action recognition (Deng et al., 2024). Hu-
man preference alignment techniques have been
applied to VLMs to train these models to gener-
ate content aligning with human intentions (Chen
et al., 2024b). Preference Optimization in LVLM



with Al-Generated Dispreferences (POVID) uti-
lizes preference fine-tuning to reduce halluci-
nations (Zhou et al., 2024a). Calibrated Self-
Rewarding (CSR) incorporates iteration learning
and rewarding paradigm into preference fine-tuning
for modality alignment (Zhou et al., 2024b). Inner
Monologue Multi-Modal Optimization IMMO)
employs a combination of supervised learning and
reinforcement learning approaches to perform an
inner monologue, enhancing the model’s perfor-
mance on complex vision-language tasks (Yang
et al., 2024). While previous studies primarily
achieve human preference alignment in VLMs
through external feedback from humans or other
LMs, this study focuses on the self-improvement
preference fine-tuning of VLMs.

Intrinsic Self-Correction in Large Language
Models. Self-correction in LLLMs aims to instruct
these models to rectify their flawed generated con-
tent, such as harmful outputs (Phute et al., 2024).
Intrinsic self-correction, also called self-correction
with in-context learning, is a type of self-correction
inference whereby the model corrects itself with-
out external feedback (Huang et al., 2024a; Kamoi
et al., 2024). Note that this iterative self-correction
and single-turn test-time inference of GPT-o01 (Ope-
nAl, 2024b) are distinct processes. The former
unfolds over multiple turns, whereas the latter in-
volves a single round of inference without subse-
quent self-correction prompts. While recent re-
search has demonstrated the effectiveness of in-
trinsic self-correction (Madaan et al., 2023; Shinn
et al., 2023; Li et al., 2024), some studies suggest
that LMs encounter challenges in it. For instance,
intrinsic self-correction may decrease the quality
of the output (Huang et al., 2024a) and potentially
introduce bias (Xu et al., 2024). These conflict-
ing results indicate that the self-correction abil-
ity of LLMs remains unreliable without external
feedback. Previous work focuses on exploring the
intrinsic self-correction abilities of LLLMs on uni-
modal tasks like arithmetic reasoning. This study
investigates the intrinsic self-correction abilities of
VLMs on visual and language reasoning tasks.

Improvement in Language Models and Vision-
Language Models. The enhancement of lan-
guage models (LMs) can be classified into self-
improvement and external improvement. Self-
improvement in LMs depends on their ability to
learn from the data they generate, while external
improvement involves leveraging external models
or tools to enable LMs to learn from provided

data. Huang et al. (2023) show that LLMs can
self-improve on their self-generated data selected
using self-consistency (Wang et al., 2023). Wang
et al. (2024) propose Self-Improvement Modality
Alignment (SIMA) that uses in-context self-critic
to improve the modality alignment of VLMs. In
SIMA, the model generates two one-turn responses
using greedy decoding and temperature sampling
for each question. It is then prompted to critique
these responses as preferred or disfavored, thereby
constructing a preference dataset for fine-tuning.
Distinguished from SIMA, our work constructs a
preference dataset using two-turn responses from
VLMs during intrinsic self-correction. The cate-
gorization of preferences and disfavors relies on
the ground truth, resulting in a more definitive and
objective preference categorization.

For external improvement, Tong et al. (2024)
demonstrate that error data generated by strong
LLMs can enhance the reasoning capabilities of
weaker LLMs. Han et al. (2024) show that small
LMs can enhance their self-correction capabil-
ities through instruction fine-tuning. However,
these methods still require the generation of self-
modification responses. Our work emphasizes that
the goal of self-correction is not only to correct mis-
takes repeatedly but rather to enhance the abilities
of models to produce correct answers directly.

3 Methodology

Figure 2 depicts three stages: inference, dataset
construction, and fine-tuning. In the inference
stage, we propose three visual self-correction
prompts and investigate the intrinsic self-correction
capabilities of VLMs for RQ1. In the dataset con-
struction and fine-tuning stage, we create SELF-
CORSET for each VLM based on its intrinsic self-
correction and explore RQ2 through DPO.

3.1 Inference: Intrinsic Self-Correction

The intrinsic self-correction comprises initial an-
swer generation and refined answer generation.
During the initial answer generation stage, the
Standard Prompt (SP) presents the complete
question to ensure all requirements are included.
In the refined answer generation, the VLM en-
gages in a multi-turn iterative process to enhance
its initial responses. Considering the computa-
tional resources, we let the VLMs make only one
refinement. We apply a critical prompt (Huang
et al., 2024a) and develop three visual self-
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Figure 2: SCL initiates with intrinsic self-correction on the VLM, generating four types of self-correction samples.
Correct and incorrect responses from Type 2 and Type 3 samples are treated as preferences and disfavors to create
the preference dataset, SELFCORSET. The VLM then undergoes DPO on SELFCORSET to self-improve.

correction prompts to evaluate VLMs’ intrinsic
self-correction. The critical prompt directly guides
models to detect issues in initial responses. The
vision prompts instruct models to identify prob-
lems by scrutinizing the details of the input images,
understanding the context portrayed in the images,
and comprehensively interpreting scenes depicted
in the images. Here are the prompts: (1) Critical
Prompt (CP): Review your previous answer and
find problems with your answer. Based on the prob-
lems you found, improve your answer. (2) Com-
prehensive detail prompt (VP-1): Review your
previous answer and ensure that all relevant aspects
of the image have been considered. Are there any
elements or details that you missed? Based on
your review, improve your answer. (3) Contex-
tual understanding prompt (VP-2): Review your
contextual understanding of the image. Have you
correctly interpreted the overall context and pur-
pose of the scene? Based on your review, improve
your answer. (4) Comprehensive scene analysis
prompt (VP-3): Review your answer and ensure
that your understanding of the image is comprehen-
sive and detailed. Are there any aspects of the scene
that you have omitted or misinterpreted? Based on
your review, improve your answer.

3.2 Data Construction: SELFCORSET

We construct preference dataset SELFCORSET
based on the intrinsic self-correction of MCQ
samples. These MCQ samples are obtained
from several multimodal MCQ evaluation bench-
marks, including MMStar (Chen et al., 2024a),
MMBench (Liu et al., 2024b), SEEDBench (Li
et al., 2023a), ScienceQA (Lu et al., 2022), MMT-
Bench (Ying et al., 2024), and MMEvalPro (Huang
et al., 2024b). For MMEvalPro, we utilize all avail-
able samples to construct SELFCORSET. For the
other datasets, we randomly select 500 samples

for evaluation, with the remaining samples being
used to construct SELFCORSET. We use the VP-1
prompt to conduct intrinsic self-correction, as it
is identified as the best-performing self-correction
prompt overall as shown in Table 1.

Here, we outline the construction process
of the SELFCORSET dataset for a VLM de-
noted as M. Considering an MCQ sam-
ple s = {Question,Image, Answer}, we
first conduct intrinsic self-correction for s
on M to get self-correction sample s’ =
{Question, Image, IR, RR}, where IR is the
initial response and RR is the refined response.
During this process, when prompted with a test
input that includes both a question and an associ-
ated image, M generates I R, while RR is the revi-
sion of the I R after M receives the self-correction
prompt. Based on the correctness of /R and RR,
we classify the self-correction sample s’ into four
types. Specifically, the corresponding correctness
of IR and RR for the four types of samples are
as follows: Type 1 (correct=-correct), Type 2
(incorrect=-correct), Type 3 (correct=-incorrect),
and Type 4 (incorrect=-incorrect). The = sym-
bol indicates the transition of correctness from
IR to RR. Type 2 samples represent good self-
corrections, as the model successfully revises incor-
rect I R into correct RR. Type 3 samples indicate
poor self-corrections, where the model erroneously
changes correct I R to incorrect ones. Then we con-
struct the preference dataset SELFCORSET using
Type 2 and Type 3 samples based on the following
criterion: RR from Type 2 samples and I R from
Type 3 samples are designated as preferred policies,
as they provide correct answers. In contrast, I R
from Type 2 samples and RR from Type 3 sam-
ples are classified as disfavored policies. Figure 3
presents two examples of Type 2 and Type 3 gener-
ated by InternLM-XComposer-2-7B. In the Type 2



Question How many chairs are present in the image? A: Four B: Three C: Two D: Five
Initial response In the image, there are two blue chairs. So, the answer is C: Two.
Self-correction prompt Review your previous answer and ensure that all relevant aspects of the
image have been considered. Are there any elements or details that you missed? Based on your
review, improve your answer.
Refined response After reviewing the image, | can confirm that there are indeed three chairs
present: two blue ones and one white one. Therefore, the correct answer is B: Three.

Correct answer: B

Question The other object that is the same color as the large shiny thing is what shape?

A: cube B: sphere C: cylinder

Initial response The other object that is the same color as the large shiny thing is a cylinder. The
reasoning behind this is that among the given options, only a cylinder has a similar shape to the
large shiny object, which is also a cylinder. Therefore, the final answer is C: cylinder.
Self-correction prompt Review your previous answer and ensure that all relevant aspects of the
image have been considered. Are there any elements or details that you missed? Based on your
review, improve your answer.

Refined response After reviewing the image, | can see that there are four objects in total: two green cubes, one purple
cylinder, and one large shiny object. The question asks for the shape of the object that is the same color as the large shiny
thing. Among the given options, only a sphere has a similar shape to the large shiny object, which is also a sphere. Therefore,

the final answer is B: sphere.

Correct answer: C

Figure 3: Two examples of intrinsic self-correction processes generated by InternLM-XComposer-2-7B.

example, the model successfully revises an incor-
rect I R (C: Two) to a correct response (B: Three)
upon reviewing the image. Conversely, the Type 3
example shows the model incorrectly changing an
initially correct I R (C: cylinder) to an incorrect one
(B: sphere), showing a failure of self-correction.

We construct three SELFCORSET, specifically
for each of the three evaluated VLMs: LLaVA-
V1.5-7B (Liu et al., 2024a), LLaVA-V1.5-13B (Liu
et al., 2024a), and MiniCPM-Llama3-V2.5 (Yao
et al., 2024). This construction emphasizes the
uniqueness of self, as different VLMs possess spe-
cific intrinsic self-correction behavior and generate
different self-correction samples.

3.3 Training: Learn from Self-Correction

After obtaining the preference dataset SELF-
CORSET, we apply DPO (Rafailov et al., 2023)
to optimize the current VLM. We denote SELF-

CORSET as Dy, = {(Q0, 10 RY RN |
where Q) represents the input question, 7 is

the corresponding image, Rgi) is the preferred re-

sponse, and Rff) is the disfavored response. The
DPO loss is defined as follows:
Lopo(me; Tet) = —E(Q,1,Re, Ry )~Ds. 1080 f (705 Trer)] s
mo(Re|Q, 1 mo(R-|Q, 1
Fro; ) = Blog TS AL — prog TS
where o represents the logistic function, g denotes
the current VLM policy, s denotes the reference
policy, and [ is a parameter that controls the devia-
tion from the base reference policy, i.e., the current
VLM policy. Both 7g and 7s are initialized with
the same weight.

4 Experiments

4.1 Experimental Settings

Test Models. For intrinsic self-correction evalu-
ation, we conduct the experiment on three open-
source VLMs, MiniCPM-Llama3-V2.5 (Yao et al.,
2024), InternLM-XComposer-2-7B (Dong et al.,
2024), and LLaVA-V1.5-7B (Liu et al., 2024a).
MiniCPM-Llama3-V2.5 is an advanced VLM in
the MiniCPM-V series, with a total of 8B parame-
ters. InternLM-XComposer-2-7B is designed for
the comprehension and composition of free-form
text-image pairs. LLaVA-V1.5-7B is a widely used
VLM trained using visual instructions. For self-
correction training evaluation, we conduct the ex-
periment on LLaVA-V1.5-7B, MiniCPM-Llama3-
V2.5, and LLaVA-V1.5-13B (Liu et al., 2024a).

Evaluation Benchmarks. We conduct evalua-
tions on eight multimodal multiple-choice question
(MCQ) benchmarks: RealWorldQA (xAl, 2024),
MMStar, MMBench-en, SEEDBench, ScienceQA,
MMT-Bench, MMMU (Yue et al., 2024), and
AI2D (Kembhavi et al., 2016). For intrinsic self-
correction, the first six datasets are used, and the
number of tasks used for evaluation in each dataset
is: RealWorldQA (765), MMStar (500), MMBench
(500), SEEDBench (500), ScienceQA (500), MMT-
Bench (500). We further incorporate two bench-
marks to evaluate fine-tuned models: MMMU
(1050) and AI2D (3088). We adopt accuracy and
the average rank as the evaluation metric.

Training Baselines. We compare SCL



RealWorldQA MMStar MMBench SEEDBench ScienceQA MMT-Bench Rank

SP 61.70 50.40 79.00 66.80 75.40 49.00 1.17
+CP 38.56 40.20 68.60 62.80 69.40 37.80 4.17
MiniCPM-Llama3-V2.5 + VP-1 48.50 46.20 76.40 64.80 73.00 37.00 3.00
+ VP-2 47.32 48.40 61.00 64.40 69.00 38.00 3.33
+ VP-3 43.00 48.00 54.00 69.80 54.40 40.60 333
SP 60.13 47.40 76.80 69.00 78.20 48.80 1.17
+CP 53.86 37.00 61.60 58.00 52.60 38.40 4.83
InternLM-XComposer-2-7B  + VP-1 54.50 48.00 70.80 67.00 62.60 38.60 2.50
+ VP-2 55.03 45.00 64.40 60.60 49.00 41.40 3.00
+ VP-3 54.51 39.00 61.80 59.60 58.80 39.00 3.50
SP 50.46 32.20 68.40 65.60 65.80 36.00 1.00
+CP 36.60 24.00 54.00 36.20 56.80 32.00 2.33
LLaVA-V1.5-7B + VP-1 43.01 22.80 57.20 42.40 58.20 29.00 2.33
+ VP-2 17.78 18.60 45.40 29.00 45.80 12.00 5.00
+ VP-3 36.21 20.40 54.00 37.00 54.80 28.40 3.67

Table 1: Results of MiniCPM-Llama3-V-2.5, InternLM-XComposer-2-7B, and LLaVA-V1.5-7B with intrinsic
self-correction. Rank represents the overall performance ranking of each method on eight benchmarks, with lower

rankings indicating better performance.

with three preference optimization methods:
POVID (Zhou et al., 2024a), CSR (Zhou et al.,
2024b), and SIMA (Wang et al., 2024). POVID
introduces GPT to enhance the quality of ground
truth answers and employs DPO for training. CSR
incorporates iterative learning and a reward-based
paradigm into its preference fine-tuning process.
SIMA deploys in-context self-critic to construct
the preference dataset and also utilizes DPO to en-
hance the comprehension capabilities of VLM. We
also compare SCL with Supervised Fine-Tuning
(SFT), which directly utilizes the preferred policies
of SELFCORSET for fine-tuning.
Implementation Details. We conduct intrinsic
self-correction on a total of 26981 samples and the
number of SELFCORSET for each VLM is 1853,
4797, 738 for MiniCPM-Llama3-V2.5, LLaVA-
V1.5-7B and LLaVA-V1.5-13B. The training for
7/8B models is conducted on one 4090 24GB GPU
with 1.5 GPU hours for one epoch. The training
for 13B series models is conducted on one V100
32GB GPU with 1.5 GPU hours for three epochs.

4.2 Results and Analysis

VLMs struggle in intrinsic self-correction. Ta-
ble 1 presents the results of VLMs in intrinsic self-
correction. It can be observed that self-correction
effectiveness varies significantly across different
models, benchmarks, and self-correction prompts.
For instance, MiniCPM-Llama3-V2.5 with VP-
3 prompting shows inconsistent performance be-
tween SEEDBench and ScienceQA, highlighting
the inherent instability of intrinsic self-correction.
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Figure 4: Distribution of self-correction examples of
MiniCPM-Llama3-V2.5 and InternLM-XComposer-2-
7B under VP-1 on ScienceQA.

To better illustrate the transition of response cor-
rectness during intrinsic self-correction, Figure 4
displays the distribution of self-correction sample
types for MiniCPM-Llama3-V2.5 and InternLM-
XComposer-2-7B on ScienceQA under the VP-1
prompt. The proportion of Type 3 samples exceeds
that of Type 2 for both models, indicating that while
models can revise incorrect answers, they more
frequently convert correct answers into incorrect
ones. Consistent with the findings of (Huang et al.,
2024a) regarding LL.Ms, our result suggests that
VLMs struggle to accurately assess the correctness
of their answers, which results in a reduction in
answer quality following intrinsic self-correction.
VLMs self-improve from their self-correction
examples. Table 2 shows the results of preference
optimization baselines and SCL. Compared to base-
line methods, SCL achieves state-of-the-art perfor-
mance for LLaVA-V1.5-7B on six benchmarks. Al-
though SCL exhibits suboptimal performance on
MMMU, these results indicate that the preference
data derived from self-correction samples effec-



RealWorldQA MMStar MMBench SEEDBench ScienceQA MMT-Bench MMMU AI2D Rank

LLaVA-V1.5-7B 50.46 3220 68.40 65.60 65.80 36.00 32,76 5275 4.75
+POVID 51.76 33.60  71.60 65.40 65.00 33.40 3476 53.98 2.88
+CSR 51.76 3240  70.60 65.40 66.00 33.20 3447 5376 3.50
+SIMA 49.28 3260  70.60 65.20 64.20 34.00 3542 53.14 4.13
+SFT 51.50 3500  69.60 65.00 67.00 37.00 33.02 53.01 3.88
+SCL(Ours) 53.20 3580  70.80 68.60 67.80 39.60 3333 5525 1.50
LLaVA-V1.5-13B 56.08 3560  74.60 69.40 71.60 39.20 34.67 5635 2.50
+SFT 56.29 3593 75.20 68.80 71.60 41.20 3529 5638 1.88
+SCL(Ours) 55.82 38.60 7640 69.00 72.20 41.20 3590 57.93 1.38
MiniCPM-Llama3-V2.5|  61.70 5040  79.00 66.80 75.40 49.00 4524 77.56 3.00
+SFT 62.35 5240  80.80 68.40 76.00 49.80 47.43  78.01 2.00
+SCL(Ours) 63.53 53.00  81.40 69.20 76.40 50.40 4752 7872 1.00

Table 2: Quantitative comparisons (%) of LLaVA-V1.5-7B, LLaVA-V1.5-13B, and MiniCPM-LIlama3-V2.5 with
SCL and three baselines. We bold the best results and underline the second-best results. Rank represents the overall
performance ranking of each method on eight benchmarks, with lower rankings indicating better performance.

tively fine-tunes these models. With the relatively
small fine-tuning dataset, our findings demonstrate
that VLMs can benefit from both good and bad
self-correction samples. This ability allows them
to enhance their comprehensive reasoning capabili-
ties efficiently and effectively, without relying on
external feedback. Moreover, models with weaker
reasoning abilities show diminished self-correction
effectiveness, suggesting that robust reasoning ca-
pabilities are a prerequisite for reasonable and ef-
fective self-correction learning.

4.3 Case Study

Figure 5 presents the initial response generated by
LLaVA-V1.5-7B before and after preference fine-
tuning. Prior to fine-tuning, the model incorrectly
identifies the sunrise as the primary object, inter-
preting it as the element that sets the mood and
atmosphere of the scene. After fine-tuning, the
model recognizes that the question focuses on iden-
tifying the object that occupies the most space in
the image and produces the correct answer, demon-
strating that the model avoids the previous mistake.

5 Further Studies and Analysis

5.1 Reliability of Successful Intrinsic
Self-Correction

We observe that some successful refinements, clas-
sified as Type 2 self-correction cases, result from
the model’s incidental guessing of the correct an-
swer after receiving a self-correction prompt, rather
than from proper reasoning of the task. For in-
stance, when presented with an image that does not
contain a teapot, models might respond with “The

B

teapot may exist behind the woman...” and then
conclude that a teapot is present in the image after
self-correction. This type of refinement reflects
a degree of uncertainty. Moreover, the reasoning
behind successful refinements may not be entirely
accurate. For example, in the Type 2 case in Fig-
ure 3, the model correctly identifies the number of
chairs after self-correction but fails to determine
the colors of chairs accurately. These findings re-
garding the reliability of successful refinements
further indicate that VLMs possess limited capa-
bilities for accurate refinement. Future work could
investigate detailed information flow for modifying
the initial response to the final one during intrin-
sic self-correction. For instance, attention weight
visualization could be utilized to enhance the inter-
pretability and reliability of self-correction. More
importantly, examples with correct answers but
flawed reasoning processes may impact the self-
correction learning mechanism of VLMs. Future
work could focus on developing more detailed eval-
uation criteria that account for the correctness of
intermediate steps, thereby facilitating the construc-
tion of higher-quality preference pairs.

5.2 Multi-Turn Intrinsic Self-Correction

Table 3 presents the results of multi-turn intrinsic
self-correction for MiniCPM-Llama3-V2.5 across
four benchmarks. Turn O represents the initial gen-
eration, while Turns 1 to 3 illustrate the intrinsic
self-correction process. Notably, the accuracy of
the refined answers consistently decreases com-
pared to the initial answers after three correction
turns. This decline in accuracy suggests that it is
challenging for VLLMs to achieve effective intrin-



Question What is the primary subject of the image? A: The sunrise B: The grassy field C: The trees D: The fog
Before A. The sunrise.

1. The image features a grassy field with a sunrise in the background. 2. The sunrise is the primary subject of
the image, as it sets the mood and atmosphere of the scene. 3. The grassy field and the fog contribute to
the overall aesthetic of the image, but the sunrise is the main focus.

After B. The grassy field. ™

1. The primary subject of the image is the grassy field. 2. The image features a foggy sunrise, which adds a
serene and atmospheric quality to the scene. 3. However, the focus is on the grassy field, which is the main
subject of the photo. 4. The other elements, such as the trees and the sunrise, contribute to the overall

\,

composition and mood of the image, but they do not overshadow the grassy field as the primary subject.

J

Figure 5: LLaVA-V1.5-7B successfully answers the question after learning from its self-correction samples.

‘ Turn 0 Turn 1 Turn 2 Turn 3

RealWorldQA (VP-1) | 61.70 48.50 39.22 42.61
MMStar (VP-2) 50.40 48.40 49.20 46.80
MMBench (VP-1) | 79.00 7640 75.60 72.60
SEEDBench (VP-3) | 66.80 69.80 63.80 64.00

Table 3: Results of MiniCPM-Llama3-V2.5 with multi-
turn intrinsic self-correction.

sic self-correction solely by increasing the num-
ber of correction iterations. Given that more self-
correction samples can be obtained through multi-
turn intrinsic self-correction, future research should
investigate whether VLMs can derive greater bene-
fits from these additional samples, as the informa-
tion may become increasingly enriched with each
correction turn. VLMs may make different types
of mistakes when responding to the same question
during each iterative attempt, providing a diverse
set of erroneous data for preference fine-tuning.

5.3 Effect of the Number of Training Samples

The limited proportion of Type 2 and Type 3 data,
as illustrated in Figure 4, combined with the ten-
dency of more advanced models to generate fewer
samples of these types, results in a relatively small
sample size for SELFCORSET. To explore the in-
fluence of fine-tuning data quantity, we randomly
divide SELFCORSET into five subsets, each in-
creasing in size by 20%, starting from 0%. We
evaluate the impact of these varying sizes of the
training set on the performance of LLaVA-V1.5-7B
on SEEDBench and AI2D. The accuracy trend is
illustrated in Figure 6. Notably, even with smaller
training datasets, the fine-tuned model exhibits sig-
nificant performance gains. For instance, the model
fine-tuned on the p = 0.4 subset achieves an accu-
racy of 67.80% on SEEDBench, reflecting a 2.2%
improvement over the untrained model. These re-
sults indicate that the experiments yield effective
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Figure 6: Results of LLaVA-V1.5-7B under different
proportions (p) of SELFCORSET.

improvement of the model’s performance despite
the relatively small size of SELFCORSET. As the
number of training samples increases, the overall
accuracy improves, demonstrating the potential of
SCL with more data. Although theoretically the
size of SELFCORSET can be expanded through
sampling, practical attempts often reveal that the
preferred-disfavored data pairs obtained through
multiple samplings tend to belong to the same Type,
resulting in a relatively high computational cost.
Future work could explore simpler data augmen-
tation methods to investigate the performance of
SCL under large-scale data conditions.

6 Conclusion

This work investigates the self-correction mech-
anism of VLMs during the inference and fine-
tuning stage on several MCQ benchmarks. We pro-
pose Self-Correction Learning (SCL) that employs
DPO to train VLMs to learn from their own self-
correction responses, facilitating self-correction to
generate accurate responses directly. Experiments
reveal challenges faced by VLMs during intrin-
sic self-correction but demonstrate that VLMs can
learn from their self-correction samples to self-
improve without external feedback.



Limitations

Given the challenges associated with evaluating ab-
solute correctness in open-ended multimodal tasks,
this study primarily focuses on MCQ benchmarks
to assess the accuracy of both initial and refined re-
sponses. However, it limits the exploration of other
multimodal learning tasks such as visual question
answering and complex transportation system nav-
igation (Li et al., 2023b). Future research should
investigate fine-grained evaluation methods that
can be applied across a wider range of multimodal
learning tasks.
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A Data Examples of SELFCORSET

In our work, we introduce a novel dataset, SELF-
CORSET, which is constructed based on the in-
trinsic self-correction process of Vision-Language
Models (VLMs) during inference. For each
sample, the models generate both initial and
refined responses. The dataset specifically in-
cludes Type 2 (incorrect=-correct) and Type 3
(correct=-incorrect) responses, where correct re-
sponses are marked as preferences and incorrect
ones are marked as disfavors. In this section, we
present examples of the dataset content for each
model (Table 4-9).

B Examples Supporting Further Studies

In further studies, we argue that VLMs exhibit lim-
ited capabilities for accurate refinement, with their
successful refinements often proving unreliable. To
support this claim, we present two illustrative ex-
amples in Table 10.

In the first example, the refined response relies
on the misleading assumption that a “Do not board”
sign indicates a lack of crowding on the platform.
However, crowding should be assessed primarily
based on crowd density. Although the model ulti-
mately selects the correct answer (B. no), this de-
cision stems from an over-reliance on misleading
cues rather than a comprehensive understanding of
the entire scenario.

In the second example, the model confuses parti-
cle size with concentration during refinement. The
model infers concentration levels from the size of
the purple particles, neglecting the actual number
of particles present. While the model successfully
corrects the error in the initial response, the self-
correction process should involve reassessing the
actual number of purple particles in the solution.
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Q: What is the direction of this pull? A. toward her hand B.
away from her hand

I: & .

IR (disfavored): B. away from her hand. The person is pulling
a bottle away from their hand, which indicates that they are
moving the bottle in the opposite direction of their hand. This
action suggests that they are trying to remove the bottle from the
ground or from their hand, rather than placing it there.

RR (preferred): A. toward her hand. Upon reviewing the
image, it is clear that the person is pulling a bottle toward their
hand, rather than away from it. This action suggests that they
are trying to pick up the bottle or place it on the ground. The
person’s hand is positioned above the bottle, indicating that they
are in the process of lifting it.

Q: Detect and give a judgment of the anomalous object within

the given image. A. normal B. anomaly
T PR

I: -
IR (disfavored): B. anomaly. The image shows a group of
people walking on a sidewalk near a body of water. Among
them, there is a person wearing a backpack, which is an unusual
object in this context. The backpack is not a typical item one
would expect to see while walking on a sidewalk, as it is usually
associated with carrying personal belongings or items for outdoor
activities. The presence of the backpack in this scene might
indicate that the person is either on a trip or carrying something
specific, but it is not a common sight in this setting.

RR (preferred): A. normal. After reviewing the image, I
realized that the backpack is not an anomalous object in this
context. It is a common item that people carry while walking on
a sidewalk, especially if they are on a trip or carrying personal
belongings. The presence of the backpack does not indicate that
the person is carrying something specific or that they are on a
trip. Therefore, the backpack is not an anomalous object in this
scene.

Table 4: Type 2 samples of LLaVA-V1.5-7B.
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Q: How would you describe the appearance of the man playing
the drums? A. Young and long-haired B. Middle-aged with
glasses C. Old and bald D. Young with a beard

IR (preferred): C. Old and bald. The man playing the drums
is described as an older man with a bald head. This suggests that
he is not a young man, and his appearance is not typical of a
young musician. The fact that he is playing drums indicates that
he has some level of skill and experience in the field.

RR (disfavored): A. Young and long-haired. Upon reviewing
the image, it is clear that the man playing the drums is not an
older man with a bald head. Instead, he is described as a young
man with long hair. This suggests that he is not a middle-aged
man, and his appearance is more typical of a young musician.
The fact that he is playing drums indicates that he has some level
of skill and experience in the field

Q: How many arrows are there in total in the picture? A. 1 B. 2
C.3D.4

S~

I:

IR (disfavored): There are a total of 3 arrows in the picture.
The first arrow is pointing upwards, the second arrow is pointing
downwards, and the third arrow is pointing to the right.

RR (preferred): Upon reviewing my previous answer, I realized
that I missed the fact that there are two arrows pointing in the
same direction, which is upwards. Therefore, there are a total
of 4 arrows in the picture. The first arrow is pointing upwards,
the second arrow is pointing upwards as well, the third arrow is
pointing to the right, and the fourth arrow is pointing downwards.

Q: What landmark is this and where is it? A. Mecca in Saudi
Arabia B. Big Ben in London C. The Burj al Arab Hotel in Dubai
D. Tower of Pisa, Italy

e

I:
IR (preferred): D. Tower of Pisa, Italy. The image features
a tall, white tower with a clock on its side, which is the iconic
Tower of Pisa. The tower is located in Italy, and it is a famous
landmark known for its leaning structure. The presence of a large
group of people around the tower suggests that it is a popular
tourist attraction. The image also shows a clock on the side of
the tower, which is a distinctive feature of the structure.

RR (disfavored): A. Mecca in Saudi Arabia. I apologize for
the confusion in my previous response. After reviewing the
image, I realized that the Tower of Pisa is not the correct answer.
The image features a large clock tower, which is a prominent
landmark in Mecca, Saudi Arabia. The tower is known as the
Abraj Al-Bait Clock Tower and is a significant attraction for
pilgrims visiting the city. The image shows a large group of
people around the tower, indicating its popularity as a tourist
destination. The clock tower’s distinctive design and its location
in Mecca make it the most appropriate landmark in the image.

Q: How many species are there in total? A. 5B.6 C. 7D. 8 E. 9

Common
water flea

Algae

Water snail

Tilapia Water plant

<

Tadpole

‘\ Great diving /

eetle

Kingfisher

I:

IR (disfavored): There are a total of 7 species in the diagram.
The diagram shows the food chain of a water ecosystem, with
each species being connected to the next one through arrows.
The species include algae, water flea, tadpole, great diving beetle,
and tapioca. The arrows indicate the flow of energy and nutrients
from one species to another, as each species consumes the one
before it.

RR (preferred): Upon reviewing my previous answer, I realized
that I missed one species in the food chain. The correct answer
is 8 species. The diagram shows the food chain of a water
ecosystem, with each species being connected to the next one
through arrows. The species include algae, water flea, tadpole,
great diving beetle, tapioca, and two other species that are not
explicitly identified. The arrows indicate the flow of energy and
nutrients from one species to another, as each species consumes
the one before it.

Table 5: Type 3 samples of LLaVA-V1.5-7B.
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Table 6: Type 2 samples of LLaVA-V1.5-13B.



: Where do Teal and Dark Khaki intersect on the x-axis? A. 40
.44 C.60D. 80

title

o)

1 : xaxis_label

IR (preferred): To find the intersection of Teal and Dark Khaki
on the x-axis, we need to look at the x-axis values for both lines.
Teal has a value of 40, while Dark Khaki has a value of 60. The
intersection occurs at the point where these two values meet,
which is at 44. Therefore, the answer is B. 44.

RR (disfavored): Upon reviewing my previous answer, I re-
alized that I made an error in my interpretation of the x-axis
values for Teal and Dark Khaki. Teal has a value of 40, while
Dark Khaki has a value of 80. The intersection occurs at the
point where these two values meet, which is at 60. Therefore,
the correct answer is C. 60.

Q: Select the amphibian below. 0: brown tree frog 1: wood-
pecker

I: !
IR (disfavored): The image features a frog, which is an am-
phibian. The brown tree frog (option 0) is also an amphibian,
but it is not depicted in the image; therefore, by elimination and
based on the visual characteristics of the animal in the picture,
the correct answer is 1 (woodpecker), as it does not match the
description of the amphibian shown.

RR (preferred): Upon reviewing the context, it’s clear that the
image showcases a frog, which is an amphibian. The correct
answer should be the amphibian present in the image. Therefore,
the improved answer is 0 (brown tree frog), as it matches the
description of the amphibian depicted in the image.

Q: Which solution has a higher concentration of green particles?

Q: What color is the Howler Monkey? A. Blue B. Green C.
Brown D. Purple E. Black F. Dark brown G. White

I: : ]
IR (preferred): The Howler Monkey in the image is black. The
monkey is sitting on a tree branch, and its color is clearly visi-
ble. The monkey’s black fur stands out against the tree branch,
making it easy to identify the color of the monkey. Therefore,
the correct answer is E. Black.

RR (disfavored): Upon reviewing my previous answer, I no-
ticed that I did not consider the possibility of the monkey’s fur
appearing dark brown in certain lighting conditions. Therefore,
I would like to revise my answer to include the possibility of the
monkey’s fur appearing dark brown or brown. Therefore, the
correct answer is F. Dark brown.

A. neither; their concentrations are the same B. Solution B C.
Solution A

0%e® es0e
0.0 2%
() o®

Solvent volume: 40 mL Solvent volume: 40 mL
I: Solution A Solution B

IR (disfavored): The concentration of particles in a solution
is determined by the volume of the solution and the number of
particles present. In this case, both Solution A and Solution B
have a solvent volume of 40 ml. Since there are more green
particles in Solution A than in Solution B, we can conclude that
Solution A has a higher concentration of green particles. Final
answer: C. Solution A

RR (preferred): After reviewing the image, it is clear that
there are more green particles in Solution B than in Solution
A. Therefore, the concentration of green particles is higher in
Solution B. Final answer: B. Solution B

Table 7: Type 3 samples of LLaVA-V1.5-13B.
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Table 8: Type 2 samples of MiniCPM-Llama3-V-2.5.



Q: is this place crowded? A. yes B. no

i

Q: Which term matches the picture? A. endotherms B. ec-
totherms

177 A
IR (preferred): The picture you provided shows a horse, which
is a mammal. Mammals are endotherms, meaning they can
regulate their body temperature internally. The term that matches
the picture is A. endotherms.

RR (disfavored): I have reviewed my previous answer and
considered all relevant aspects of the image. Based on my review,
I believe that the term ectotherms is more suitable to describe
the horse in the picture because horses are cold-blooded animals
that regulate their body temperature by external heat sources,
rather than internally like endotherms (warm-blooded animals).
Therefore, my final answer is B. ectotherms.

IR: The place is crowded. People are waiting for the train, and
they are spread out along the platform. The final answer is A.
SC: Review your previous answer and ensure that all relevant as-
pects of the image have been considered. Are there any elements
or details that you missed? Based on your review, improve your
answer.

RR: I reviewed my previous answer and have identified a rel-
evant detail that was missed. The sign Do not board on the
platform indicates that the train may be not crowded, as it is
likely the reason why people are standing near it. Based on this
new information, I will revise my final answer to B.

A:B

Q: Which solution has a higher concentration of purple particles?
A. Solution A B. Solution B C. neither; their concentrations are
the same

Q: Which term matches the picture? A. Hawaiian eruption B.
Strombolian eruption

I
IR (preferred): A Strombolian eruption is characterized by
moderate bursts of expanding gases that eject incandescent lava
fragments, as shown in the image with fiery lava being thrown
into the air. Hawaiian eruptions, on the other hand, are generally
less explosive and produce more fluid lava flows. The term that
matches the picture is B. Strombolian eruption.

RR (disfavored): I apologize for the mistake in my previous
answer. Upon reviewing the image, it is clear that the term that
matches the picture is A. Hawaiian eruption. This is because
the image shows a volcanic eruption with lava flowing and a
bright light at the top of the volcano, which are characteristics
of a Hawaiian eruption. Strombolian eruptions typically involve
explosive ejections of solid material and do not necessarily ex-
hibit such visible lava flows or bright lights as seen in the image.
Therefore, I have corrected my initial response to accurately
reflect the information provided in the image.

Solvent volume: 45 mL.

Solvent volume: 45 mL.
I:
IR: The concentration of particles in a solution is determined by
the volume of the solution and the number of particles present.
In this case, both Solution A and Solution B have the same
volume (45 ml). Therefore, to determine which solution has a
higher concentration of purple particles, we need to compare the
number of particles in each solution. Unfortunately, the informa-
tion provided does not include the number of particles in either
solution. Without this information, it is impossible to determine
which solution has a higher concentration of purple particles.
So, the final answer is C. neither; their concentrations are the
same.
SC: Review your previous answer and ensure that all relevant as-
pects of the image have been considered. Are there any elements
or details that you missed? Based on your review, improve your
answer.
RR: I apologize for the oversight in my previous response. Upon
reviewing the image, I can now see that Solution A has more
purple particles than Solution B. This is because Solution A has
larger concentrated purple particles, while Solution B has smaller

Solution A Solution B

Table 9: Type 3 samples of MiniCPM-Llama3-V-2.5.
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concentrated purple particles. Therefore, the final answer is A.
Solution A has a higher concentration of purple particles.
A A

Table 10: Successful refinements (Type 2 samples) with
unreliable self-correction reasoning.
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