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Abstract

Language model alignment is a critical step
in training modern generative language models.
Alignment targets to improve win rate of a sample
from the aligned model against the base model.
Today, we are increasingly using inference-time
algorithms (e.g., Best-of-N , controlled decod-
ing, tree search) to decode from language mod-
els rather than standard sampling. We show that
this train/test mismatch makes standard RL frame-
work sub-optimal in view of such inference-time
methods. To this end, we propose a framework for
inference-aware alignment (InfAlign), which
aims to optimize inference-time win rate of the
aligned policy against the base model. We prove
that for any inference-time decoding procedure,
the optimal aligned policy is the solution to the
standard RLHF problem with a transformation
of the reward. This motivates us to provide the
calibrate-and-transform RL (InfAlign-CTRL)
algorithm to solve this problem, which involves
a reward calibration step and a KL-regularized
reward maximization step with a transformation
of the calibrated reward. For best-of-N sampling
and best-of-N jailbreaking, we propose specific
transformations offering up to 3-8% improvement
on inference-time win rates. Finally, we also show
that our proposed reward calibration method is a
strong baseline for optimizing standard win rate.
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Figure 1. Given an inference-time procedure such as Best-of-N ,
standard RLHF suffers from a train/test mismatch between train-
time policy π and inference-time policy Tπ. InfAlign bridges
the gap by optimizing a policy-transformed reward R, yielding a
policy, π∗, that is optimized for inference under Tπ∗ .

1. Introduction
Aligning language models (LMs) through reinforcement
learning from human feedback (RLHF) is a widely adopted
finetuning framework to improve a reward (e.g., safety or
quality). RLHF generally entails training a reward model,
and then solving a KL-regularized RL problem (Christiano
et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022).
Other ways of solving RLHF include variants of direct pref-
erence optimization (Rafailov et al., 2023; Azar et al., 2023),
reward model distillation (Fisch et al., 2024), and Best-of-N
distillation (Gui et al., 2024; Amini et al., 2024; Sessa et al.,
2024). The success of RLHF is typically measured through
the win rate of the aligned model against the base model,
i.e., how often a sample from the aligned model wins against
the base model using a judge for the task.

However, rarely is the aligned model used as is at inference
time; instead an inference-time procedure is typically used to
accomplish a task. For example, it is customary to perform
one or more of the following procedures at decoding: best-
of-N sampling (Nakano et al., 2022; Beirami et al., 2024),
best-of-N jailbreaking (Hughes et al., 2024b), chain-of-
thought reasoning (Wei et al., 2022; OpenAI, 2024), and
self consistency (Wang et al., 2022a; DeepSeek-AI, 2025)
(see Appendix A for a more comprehensive discussion).

In this paper, we address the following question: Can we
better align a language model to be served with a known
inference-time procedure? We propose a family of optimiza-
tion objectives, which we call the inference-aware alignment

1



InfAlign: Inference-aware language model alignment

(InfAlign) framework. The objective optimizes for the
inference-time win rate against the base model with KL
regularization, where inference-time win rate entails obtain-
ing a response from each model through the inference-time
procedure and counting which sample wins. While directly
optimizing the inference-time win rate seems intractable, we
prove that the solution could be obtained by solving RLHF
with a specific transformation of the reward (Lemma 1).
Therefore, the challenge of optimizing for inference-time
win rate can be captured by designing a reward transforma-
tion that is suited to the specific inference-time procedure.
We present a diagram of InfAlign in Fig. 1.

We show that the optimal reward transformation satisfies a
coupled-transformed reward/policy optimization objective
which lends itself to iterative optimization for a large class
of inference-time procedures (Theorem 1). However, the
approach is unfortunately computationally inefficient and
infeasible for real-world models.

To enable practical solutions to InfAlign, we pro-
pose Calibrate-and-Transform Reinforcement Learning
(InfAlign-CTRL), which adopts a three-step approach:
(1) calibrate the scores of the reward model with respect to
responses sampled per-prompt by the reference model; (2)
transform the calibrated scores for a given inference-time
procedure; and (3) solve the RLHF problem with the trans-
formed reward. We prove various desirable properties of the
reward calibration step and empirically show that it reduces
reward hacking and improves standard win rate. Reward
transformation allows us to further tailor the objective based
on the inference-time procedure. Different choices of trans-
formation lead to popular existing alignment objectives such
as IPO (Azar et al., 2023) and best-of-N distillation (Gui
et al., 2024; Amini et al., 2024; Sessa et al., 2024).

We particularize the study to two simple yet popu-
lar inference-time strategies: Best-of-N (BoN) sam-
pling (Nakano et al., 2022; Beirami et al., 2024) and Best-
of-N jailbreaking (Hughes et al., 2024a), which we call
Worst-of-N (WoN) since the defender may assume that the
attacker is choosing the worst outcome of N samples. De-
spite simplicity, BoN is known to be an effective procedure
for inference-time alignment (Beirami et al., 2024; Gui et al.,
2024; Mudgal et al., 2024) and is the dominant approach in
scaling inference-time compute (Snell et al., 2024; Brown
et al., 2024). Variants of WoN are effective and popular for
evaluating safety against jailbreaks (Yohsua et al., 2024;
Chao et al., 2023; Souly et al., 2024; Hughes et al., 2024b;
Beetham et al., 2024; Mehrabi et al., 2023). We find suit-
able reward transformations for these procedures through
the InfAlign framework.

Empirically, we apply InfAlign-CTRL to the Anthropic
helpfulness (Bai et al., 2022), and Reddit summarization
dataset (Stiennon et al., 2020) for optimizing BoN perfor-

mance and Anthropic harmlessness for optimizing WoN per-
formance with various values of N. We show that solving
InfAlign through InfAlign-CTRL outperforms vari-
ous SOTA RLHF solvers at inference-time win rate by 3-8%.
We also show InfAlign-CTRL (with no reward transfor-
mation) is on-par with SOTA methods for optimizing the
standard win rate, with improved win rate for Anthropic
helpfulness and harmlessness tasks.

Organization. In Section 2, we provide the InfAlign
problem setup. In Section 3, we introduce RLHF with
reward transformation as the main framework to solve
InfAlign. In Section 4, we present the InfAlign-
CTRL method, discuss properties of calibration, and present
practical implementations. In Section 5, we provide experi-
mental results.

2. Problem setup
We consider a generative language model that produces a
response conditioned on an input prompt. Given a prompt
x, e.g., x = What is a large language model?, a genera-
tive language model π, or a policy, specifies a conditional
distribution π(· | x), from which the response y should
be generated. We use X and Y to denote the space of
possible inputs and outputs, respectively. Throughout the
paper, we assume πref is a fixed base policy, e.g., obtained
from supervised finetuning. We will often use the notation
π(y | x) ∝ f(y) for some f : Y → R+ to denote the con-
ditional distribution π(y | x) = f(y)/(

∑
y f(y)) obtained

after normalization.

Alignment of language models. Let r : X ×Y → R be
a reward function that assigns a scalar value to any (prompt,
response) pair, e.g., a model trained side-by-side on hu-
man preferences. The reward determines the goodness of
response y in context x. The goal of language model align-
ment is to construct an aligned distribution π that improves
the reward of the response while being close to πref . We in-
troduce the popular KL-regularized reinforcement learning
(RL) framework, also known as RLHF.

Definition 1 (KL-regularized RL). Let β > 0 be a regular-
ization parameter, the KL-regularized RL (RLHF) problem
aims to maximize the expected reward with a KL regularizer
below:1

π∗
r,β(· | x) = argmax

π
{Lπref ,r,β} ,

where
Lπref ,r,β=Ey∼π(·|x){r(x,y)}−βDKL(π(·|x)∥πref(·|x)).

When evaluating an aligned policy, a common measure to
use is the win rate (Stiennon et al., 2020; Hilton & Gao,

1The solution to this optimization problem is unique and admits
a closed-form expression (Korbak et al., 2022; Rafailov et al., 2023;
Yang et al., 2024).
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2022) over the base policy πref . Let

wr(y, z|x) :=1{r(x,y)>r(x, z)}+
1{r(x,y)=r(x, z)}

2

be the win random variable under reward r. We define the
calibrated reward and win rate below.

Definition 2 (Calibrated reward). The calibrated reward 2

Cr,π(x,y) under policy π is defined below

Cr,π(x,y) := Ez∼π(·|x){wr(y, z | x)}. (1)

Definition 3 (Standard win rate). For any policy π1 and π2,
the standard win rate (or win rate) of policy π1 over policy
π2 given prompt x, as measured by reward r is defined as:

Wr(π1 ≻ π2 | x) := Ey∼π1(·|x),z∼π2(·|x){wr(y, z | x)}.

Moreover, it can be shown that Wr(π1 ≻ π2|x) =
Ey∼π1(·|x){Cr,π2(x,y)}.

Inference-time procedure (T ). As mentioned earlier, in
many cases, decoding is done through an inference-time
procedure. The obtained sample follows a transformed
distribution that depends on the policy and the inference-
time procedure. Let ∆Y be the set of possible distributions
over the output set Y . In this work, we model an inference-
time procedure as a mapping between distributions over the
output space T : ∆Y → ∆Y ,

π(· | x) T−→ Tπ(· | x),
where Tπ(· | x) denotes the distribution of responses condi-
tioned on x after the inference-time procedures is applied.
In these cases, it is customary to compare the models by
considering the following inference-time win rate of the
aligned policy π.

Definition 4 (Inference-time win rate). Under inference-
time processing T , the inference-time win rate of policy π1

over π2 is defined as

W T
r (π1≻π2|x) :=Ey∼Tπ1 (·|x),z∼Tπ2 (·|x){wr(y, z|x)}.

Similarly, it can be shown that

W T
r (π1 ≻ π2 | x) =

∑
y

Cr,Tπ2
(x,y)Tπ1

(y | x), (2)

where Cr,Tπ2
(x,y) is the calibrated reward under the

inference-time policy Tπ2
(see Proof in Appendix B.2).

With the above definitions at hand, the goal of InfAlign
is solve the following KL-regularized inference-time win
rate maximization problem.

2The definition is similar to the cumulative density function
(CDF) of the reward r(x,y) under π except for how ties are
decided.

Definition 5 (InfAlign). For a given inference-time pro-
cedure T and β>0, InfAlign solves the following KL-
regularized inference-time win rate maxmization problem:

max
π

{
W T

r (π≻πref |x)− βDKL(π(·|x)∥πref(·|x))
}
. (3)

The formulation of optimizing standard win-rate vs KL
tradeoff has been previous studied for RLHF in Gui et al.
(2024); Azar et al. (2023). The above formulation reduces
to the IPO objective (Azar et al., 2023, Equation (8)) when
T is the identity transformation and extends it otherwise
for an arbitrary inference-time procedure.3 In practice, the
win rate is often evaluated by a judge different from the
training time reward r. In this paper, we stick to r when
developing the algorithms as in standard RLHF framework
(Definition 1). In experiments, we use a separate judge from
the reward model.

Continuous language models. For simplicity of the pre-
sentation and analysis, some of the theoretical results will be
based on the assumption that Y is a continuous set, and the
language model has a density over Y . We also assume that r
assigns distinct rewards to different y’s for a given x. Note
that we don’t make any such assumptions when providing
our algorithmic developments, and the experimental results.

These assumptions have been made in the past implicitly
by (Hilton & Gao, 2022) to estimate the KL divergence
of Best-of-n policy, and by (Gui et al., 2024) to charac-
terize the KL divergence and win rate tradeoffs. While
these assumptions lead to approximations when analyzing
real-world distributions, the results derived under them are
reasonably tight when the actual likelihood of the language
model outcomes are small (Beirami et al., 2024).

3. Reinforcement learning with reward
transformation

In this section, we propose a general framework for solv-
ing InfAlign (Definition 5). Our approach is based on
designing a new reward function R based on the reward
model r, the inference-time procedure T , and the base pol-
icy πref , such that solving the RLHF problem (Definition 1)
with the transformed reward R leads to an optimal solution
to InfAlign. More precisely, the aligned policy is the
maximizer of the following regularized objective:

Rr,πref ,T (x,y)− βDKL(π(· | x)∥πref(· | x)), (4)

where Rr,πref ,T (x,y) is a transformed reward function. In-
terestingly, we show that such reward transformation is

3One question that arises is the role of the KL divergence
regularizer in Eq. (3). We argue that the regularizer essentially
enables multi-tasking between the SFT task and the RL task, which
we formally prove for log-linear models in Appendix C. In other
words, the KL divergence regularizer enables to preserve/distill
the core capabilities of the SFT model while acquiring a new one
through the RLHF process.
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sufficient to solve InfAlign.

Lemma 1. For any base policy πref , reward model r,
inference-time procedure T , and β > 0, there exists a
reward function Rr,πref ,T such that the maximizer of Eq. (4)
solves the optimization problem in Eq. (3) (Definition 5).

In general, such optimal reward transformation will depend
on the base policy πref , the inference-time procedure T ,
and the reward model r. In the lemma below, we list the
property that the reward transformation and the resulting
optimal aligned policy must satisfy.

Theorem 1 (Characterization of InfAlign solution). As-
suming that T is such that ∂Tπ(y1 | x)/∂π(y2 | x)4 exists
for all x,y1,y2, then we have the optimal transformed re-
ward R and the optimal policy π∗ in Eq. (3) must satisfy
the following coupled equations: ∀x,y

π∗(y|x) ∝ πref(y | x)e
1
βR(x,y) (5)

R(x,y) =
∂

∂π(y | x)
W T

r (π ≻ πref | x)|π=π∗ (6)

=
∑
z

Cr,Tπref
(x, z)

∂Tπ(z | x)
∂π(y | x)

|π=π∗ , (7)

where the last inequality is due to Eq. (2).

Missing proofs are presented in Appendix B. Theorem 1
naturally leads to an iterative EM-style algorithm that (I)
updates π with R fixed based on Eq. (5) and (II) updates R
with π fixed based on Eq. (7) until convergence. However,
such algorithm suffers from two drawbacks: first, for gen-
eral language models, it is inefficient/intractable to evaluate
Eq. (7) since it involves evaluating the policy on a large,
or even infinite output space; second, it is unclear whether
such an algorithm could lead to the optimal solution.

To find more efficient ways to design reward transforma-
tions, we examine the case when no inference-time proce-
dure is performed. In this case, Tπ = π and

∂

∂π(y | x)
Tπ(z | x) = 1 {z = y} .

Eq. (7) will reduce to R(x,y) = Cr,πref
(x,y), the cali-

brated reward under πref .

Corollary 1. When no inference-time procedure is per-
formed, i.e. ∀π, Tπ = π, the maximizer of Eq. (4) with
R(x,y) = Cr,πref

(x,y) is the solution to Eq. (3).

The above corollary is also observed in Azar et al. (2023);
Gui et al. (2024). Hence Theorem 1 can be viewed as a

4To make sure that the partial derivative is well-defined, we
assume that T is well-defined for inputs within an infinitesimal ex-
pansion of ∆Y . We note that the assumption holds for procedures
like BoN and WoN, as shown in Lemma 5.

generalization of these results with general inference-time
procedures. The observation motivates us to consider RLHF
with a specific family of reward transformations that in-
volves a reward calibration step, described next.

4. InfAlign-CTRL: Calibrate-
and-transform reinforcement learning

In this section, we propose the InfAlign-CTRL method,
which is our proposed solver for the InfAlign problem.
The method consists of: (1) Calibration: Approximate the
calibrated reward Cr,πref

; (2) Transformation: Apply trans-
formation Φ on top of Cr,πref

to obtain RΦ = Φ ◦ Cr,πref
;

(3) Solve RLHF with the transformed reward. We discuss
each step in more details below.

Reward calibration. The goal of this step is to obtain
the calibrated reward Cr,πref

(Definition 2). We first assume
Cr,πref

could be obtained perfectly and discuss practical
ways to approximate it in Section 4.4. In Section 4.1, we
discuss various properties of Cr,πref

In particular, it can be
shown that for continuous language models, the distribu-
tion of Cr,πref

is independent from the base policy, and the
reward model (Lemma 4), which provides a unified view
of the outputs from a language model through the lens of
calibrated reward. This allows us to focus the design of the
transformation function Φ on T in the following step.

As mentioned in Corollary 1, using the calibrated reward
directly in the RLHF problem leads to an optimal solution to
InfAlignwith no inference-time procedure. Note that the
resulting solution is the same as the alignment objective of
Azar et al. (2023). Moreover, it can also be shown that using
log Cr,πref

as the reward, the solution to the RLHF problem
recovers the popular best-of-N distillation objective, which
has been studied in a recent line of works (Gui et al., 2024;
Amini et al., 2024; Sessa et al., 2024), and shown to be
nearly optimal for standard win rate (Yang et al., 2024; Gui
et al., 2024). We note that while these methods lead to simi-
lar optimization objectives, InfAlign-CTRL makes this
calibration step explicit, resulting in a different algorithmic
approach. In Section 5, we compare the results with the
abovementioned baseline approaches on standard win rate,
and show that it leads to improved win rate. We also empiri-
cally show that reward calibration is beneficial to mitigate
reward hacking (Appendix D).

Reward transformation. The goal is to further trans-
form the calibrated reward using a transformation function
Φ : [0, 1] → R. The function Φ is chosen based on the
inference-time procedure T so that Φ ◦ Cr,πref

is a good
reward transformation to use for solving InfAlign.

Ideally, we would like the design of Φ to only depend on
the inference-time procedure T so that it is transferable
among different r and πref . A natural question is for what
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type of T ’s this is possible. In Section 4.2, we show that
for calibrated inference-time procedures (Definition 6), and
continuous language models, it is sufficient for Φ to depend
on T . And in these cases, different Φ’s could be evaluated
efficiently with simple language models that can be easily
simulated, which enables the search for good or even opti-
mal transformations. We use Best-of-N and Worst-of-N as
examples of inference-time procedures to demonstrate the
effectiveness of such approach in Section 4.3.

RLHF with the transformed reward. At this step, we
solve the RLHF problem with reward function,

RΦ(x,y) = Φ(Cr,πref
(y | x)),

to obtain the aligned policy π∗
RΦ,β . Since we only modify

the reward function, the step can be performed with stan-
dard RLHF solvers. We present a practical version of the
InfAlign-CTRL method in Section 4.4.

4.1. Properties of reward calibration

We present properties of Cr,πref
. The first property states

that reward calibration preserves the ordering of the reward.

Lemma 2 (Calibration is a bounded monotone increasing
transformation of reward). We have Cr,πref

(x,y) ∈ [0, 1].
Furthermore, we have for any y and z

r(x,y) ≥ r(x, z) =⇒ Cr,πref
(x,y) ≥ Cr,πref

(x, z).

Moreover, Cr,πref
is invariant under all monotone increasing

transformations of the reward function, stated below.

Lemma 3 (The calibrated reward is invariant under strictly
monotone increasing transformations). Let m : R → R be
any monotonic increasing function. Then,

Cm(r),πref
= Cr,πref

.

This property is useful since as long as the learned reward
model r can capture relative human preference between
each pair of generations, the calibration of r will remain
unchanged, making Cr,πref

more robust to the learning of r.

The next property shows that the calibration operation al-
lows us to transform the distribution of the reward under the
base policy to a uniform distribution over [0, 1] regardless
of the base policy πref and the reward model r.

Lemma 4. If π is a continuous language model, let y be
sampled from πref(· | x), then we have ∀x,

Cr,πref
(x,y) ∼ Unif([0, 1]).

The lemma provides us a unified view of the output from a
language model through the space of calibrated reward.

4.2. Reward transformation for calibrated
inference-time procedure

We consider a family of inference-time procedures that only
depend on the calibrated reward of the outputs, which we
term calibrated procedures, and discuss how to design a
suitable Φ for this family of transformations. We first define
calibrated procedures below.

Definition 6 (Calibrated inference-time procedure). An
inference-time procedure T is called a calibrated proce-
dure if there exists a mapping function gT : [0, 1] → R such
that for any π, r, and x,y, we have

Tπ(y | x) ∝ π(y | x) · gT (Cr,π(x,y)).

Our next result shows that for calibrated inference-time
procedures and continuous language models, the aligned
policy obtained from InfAlign-CTRL with any Φ has a
win rate and KL divergence independent of πref and r.

Theorem 2 (Model-agnostic property of calibrated infer-
ence-time procedures, informal version of Theorem 4). If
T is a calibrated inference-time procedure, for any contin-
uous language model π, β > 0 and transformation func-
tion Φ, we have that both W T

r (π∗
RΦ,β ≻ πref | x) and

DKL(π
∗
RΦ,β∥πref) are independent of r and πref .

The above theorem allows us to evaluate a transformation Φ
by focusing on simple continuous language models that are
easy to compute and simulate. In the next section, we focus
on Best-of-N and Worst-of-N , as examples to demonstrate
how the theorem enables us to efficiently evaluate different
transformations in practical scenarios.

4.3. Finding reward transformations for BoN and WoN

Best-of-N inference-time procedure (BoN). During infer-
ence, N i.i.d. responses from a policy π are generated. The
final output is the one with the highest reward, i.e.,

yBoN = arg max
y∈{y1,...yN}

r(x,y).

Worst-of-N inference-time procedure (WoN). N i.i.d. re-
sponses from a policy π are generated, and the final output
is the one with the lowest reward. i.e.,

yWoN = arg min
y∈{y1,...yN}

r(x,y).

The lemma below presents the distribution of outputs after
the inference-time procedure is performed.

Lemma 5. For any N and continuous language model π,

BoNπ(y | x) = N · π(y | x) · Cr,π(x,y)N−1.

WoNπ(y | x) = N · π(y | x) · (1− Cr,π(x,y))N−1.
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Note that the results for BoN have already been derived
previously (Beirami et al., 2024; Gui et al., 2024; Amini
et al., 2024). The lemma shows that these two inference-
time procedures are calibrated procedures so that as claimed
in Theorem 2, for the aligned policy, the inference-time win
rate and KL divergence deviation from the base policy are
independent of the base policy and reward model. Below
we present the precise formula for these two procedures.

Theorem 3 (Properties of BoN and WoN procedures). For
any transformation function Φ, the solution π∗

RΦ,β to
InfAlign-CTRL satisfies the followings: Let FΦ,β(u) =∫ u

0
eΦ(u′)/βdu′∫ 1

0
eΦ(u′)/βdu′ .

• For any x,W BoN
r (π∗

RΦ,β ≻ πref | x) =

1−N

∫ 1

0

FΦ,β(u)
NuN−1du, (8)

• For any x,W WoN
r (π∗

RΦ,β ≻ πref | x) =

N

∫ 1

0

(1− FΦ,β(u))
N
(1− u)N−1du, (9)

• DKL(π
∗
RΦ,β∥πref) =

1

β

∫ 1

0
Φ(u)eΦ(u)/βdu∫ 1

0
eΦ(u)/βdu

− log

(∫ 1

0

eΦ(u)/βdu

)
. (10)

The above theorem generalizes the win rate calculation in
Gui et al. (2024, Lemma 5) to inference-time win rate. By
varying β in Theorem 3, we obtain an alignment curve
plotting the inference-time win rate and KL divergence for
different aligned policies. This allows us to compare the
performance of different transformation functions.

In the rest of the section, we investigate different types of
transformations, and analytically compute the alignment
curves, i.e., the plot of (DKL(π

∗
RΦ,β∥πref),W

T
r (π∗

RΦ,β ≻
πref) for different β’s. The transformations we consider
include optimal transformations for standard win rate, expo-
nential functions, and optimization-based transformations.

Optimal reward transformations for standard win rate. The
identity mapping Φ(x) = x proposed by Azar et al. (2023)
and the logarithmic mapping Φ(x) = log x as used by BoN
distillation (Beirami et al., 2024; Yang et al., 2024; Gui et al.,
2024; Amini et al., 2024; Sessa et al., 2024) are shown to be
(almost) optimal for the standard win rate. We investigate
whether these transformations are suited to inference-time
procedures.

Deriving an optimized reward transformation function. Due
to Theorem 2, one can optimize for good Φ’s using simple
toy language models, leading to the following corollary.

Corollary 2. For any β > 0, the Φ that solves InfAlign
with T = BoN must satisfy the following pair of equations:

Figure 2. Best-of-N (left) and Worst-of-N (right) win rate vs KL
tradeoff curves for N = 4 with different transformation functions.

ΦBoN(u) = −N2

∫ 1

u

F (v)N−1vN−1dv,

f(u) ∝ e
ΦBoN(u)

β ,

where F (v) =
∫ v

0
f(v)dv is the CDF with density function

f . and for T = WoN, it satisfies that

ΦWoN(u) = −N2

∫ 1

u

(1− v)N−1(1− F (v))N−1dv,

f(u) ∝ e
ΦWoN(u)

β .

Hence, we derive a transformation function by iteratively
finding the fixed point of the coupled equations in Corol-
lary 2. We call them bon fp and won fp.

Exponential tilting for reward transformation. In addition
to deriving the optimized transformation, motivated by the
exponential tilting of loss functions (Li et al., 2021; 2023),
we consider the following exponential transformation:

Φt(u) = sign(t) · etu, (11)

where sign(t) = 1 for t ≥ 0 and sign(t) = −1 for t < 0.
These exponential transformations are essentially helping
to optimize different quantiles of the reward for different
values of t (Li et al., 2023). For a positive value of t, the
exponential tilting transformation focuses on optimizing the
higher quantiles of the objective (calibrated reward) . On
the other hand, for a negative value of t, the transformation
is akin to optimizing the lower quantiles of the calibrated
reward, which makes it a suitable transformation for the
WoN inference-time procedure.

Results. We compare different reward transformations
on inference-time win rate vs KL divergence for three
inference-time procedures: {standard, BoN, WoN } with
different N ’s. The tradeoff curves are obtained by varying
the strength of the regularizer, β. We present the result for
N = 4 in Fig. 2 and provide more results in Appendix F.

For Best-of-4 win rate, the identity and log transformation,
which are optimal for standard win rate, are suboptimal.
The best tradeoffs are given by bon fp. We also observe
that exp(10x) are almost as good as bon fp for Best-of-4.
For Worst-of-4 win rate, it is observed that won fp gives
the best tradeoffs for this inference-time procedure. Here,
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exp(−5x) and exp(−10x) are almost as good for Worst-of-
2 and Worst-of-4, respectively. We also observe that identity
transformation and log transformation are sub-optimal in
these cases and the log transformation gives better tradeoffs
for WoN compared to the identity transformation.

The above results show that considering standard win rate
as the only metric is not sufficient when inference-time
procedure is concerned, demonstrating the importance of
inference-aware alignment. We find that exponential trans-
formation with different t’s are good for BoN and WoN pro-
cedures, which will be our focus in practical experiments.

4.4. Practical implementation of InfAlign-CTRL

When implementing InfAlign-CTRL in practice, two
questions remain to be resolved: (1) How to obtain cal-
ibrated reward Cr,πref

; (2) How to solve the RLHF prob-
lem. To obatin Cr,πref

, we consider empirical calibra-
tion, where we draw K samples z1, z2, ...,zK from the
reference model πref for each prompt x in the RL train-
ing data. We then sort the rewards to all the responses
{r(x, z1), r(x, z2), ..., r(x, zK)}, and assign empirical
calibrated reward scores during RLHF training for the
prompt, response pair (x,y) as

Ĉr,πref
(x,y) =

1

K

K∑
i=1,zi∼πref

wr(y, zi | x). (12)

The following lemma establishes the error of approximating
Cr,πref

with empirical calibration. The proof follows from
DKW inequality (Dvoretzky et al., 1956).

Lemma 6. Given x ∈ X , for all δ > 0, with probabiltiy at
least 1− δ,

max
y∈Y

|Ĉr,πref
(x,y)− Cr,πref

(x,y)| ≤
√

log(2/δ)

2K
.

For solving RLHF, we use PPO (Schulman et al., 2017)
as the optimization algorithm in this paper to demonstrate
the effectiveness of reward transformation. We believe the
method could benefit from other advancements of RLHF
algorithms.

Algorithm 1 Implementation of InfAlign-CTRL
Require: Base policy πref , (uncalibrated) reward model

r, set of training prompts D ⊂ X , number of offline
rollouts per prompt K, transformation function Φ.

1: Compute empirical calibrated reward Ĉr,πref
using

Eq. (12) with K offline rollouts per x ∈ D.
2: Transform calibrated reward using function Φ to get

RΦ = Φ ◦ Ĉr,πref

3: Optimize RLHF using calibrated and transformed re-
ward per Eq. (4) using PPO.

5. Experiment results
5.1. Evaluation setup
Datasets. We consider the following tasks: (1) Anthropic
Helpfulness and Harmlessness datasets (Bai et al., 2022),
which involve multi-turn dialogues between a human and a
digital assistant. For training the reward models, the prefer-
ence datasets consist of two responses for one context, and
a label for the human preference for the response. We use
the train split of the two datasets (44K examples for helpful-
ness and 42K for harmlessness) to train the uncalibrated and
calibrated reward models – separate reward models for each
objective. (2) Similarly, for the summarization quality task,
we use Reddit posts from TL;DR dataset (Stiennon et al.,
2020) and train uncalibrated and calibrated reward models
on the train split.

Model. The uncalibrated reward model is trained based
on the Bradley-Terry pairwise objective (Raffel et al., 2020),
and the calibration is done on the training-split of the RL
training procedure. The underlying model for both these
rewards is the PaLM-2 S model (Anil et al., 2023). The base
reference policy model is a PaLM-2 S model that is fine-
tuned (SFT) on the preferred responses of the Anthropic dia-
log and Reddit summarization datasets. We use InfAlign-
CTRL with exponential transformations Eq. (11) and PPO
as discussed in Algorithm 1 to obtain the aligned policy. We
set K = 100 in our experiments, and analyze the additional
computational overhead in the Appendix.

Baselines. We compare against uncalibrated (a
model trained to solve RLHF with using the uncalibrated
reward model using PPO), BoNBoN (Gui et al., 2024),
BoND (Sessa et al., 2024), and IPO (Azar et al., 2023)
as baselines.

True rewards. As evaluating using ground truth rewards
in a pointwise manner based on human annotations can
be expensive, we follow (Eisenstein et al., 2024; Mudgal
et al., 2024) and perform automated evaluation using a larger
PaLM-2 M model to compute true rewards and report the
win-rate based on these rewards for responses generated by
the aligned and base policy models. We acknowledge that
there is a gap between these model-generated preference
and human preference, but note that prior work (Bai et al.,
2022; Stiennon et al., 2020) have reported inter-human-rater
agreement on the 3 tasks is often less than 77% and corre-
spondingly the model-generated true rewards have accuracy
of (77.7%, 77.0, and 76.4%) on the Anthropic Helpfulness,
Harmlessness, and Reddit text summarization preference
datasets, comparable to state-of-the-art in RewardBench
leaderboard (Lambert et al., 2025).

Metrics. To measure improvement due to post-RL train-
ing, we report both the win rate and the BoN and WoN
win rates, along with the corresponding KL-divergence
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of the RL model with the SFT model. For each of the
runs, we experiment with different KL-regularizer strengths
(β ∈ {0.01, . . . , 0.09}) and obtain the Pareto-curve of the
KL divergence vs {standard, BoN, WoN } win rate curves5.

5.2. Reward models are typically miscalibrated

We first show that reward models used on real-world tasks
are miscalibrated. We measure the miscalibration of the
reward model trained on Anthropic helpfulness preference
dataset by computing the scores of 100 reference-policy
responses for 10 random prompts from the test split. We
then sort the scores and compute the ranks corresponding to
each of the responses and plot these values as a scatter plot
in Figure 3 (left). If the model were perfectly calibrated,
the points for each prompt would lie on the line y = x.
However, observe that for most prompts, the scatter plot
deviates significantly from the y = x line, and the extent of
this deviation varies depending on the prompt.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Raw reward

C
al

ib
ra

te
d

re
w

ar
d

Figure 3. Results on reward models trained on the Anthropic help-
fulness preference dataset. Scatter plot of reward scores and reward
ranks on a random sample of 10 prompts in the Anthropic helpful-
ness dataset. Note that the model shows miscalibration on most
prompts, with the degree of miscalibration varying by prompt.

5.3. InfAlign-CTRL improves standard win rate

We first measure the performance of InfAlign-CTRL
when there is no inference-time procedure applied. In this
case, the optimization objective is standard win rate, and
we compare the performance of InfAlign-CTRL (using
an identity transform) against other relevant reward opti-
mization baselines that are known to be (almost) win rate
optimal, such as IPO and BoN distillation methods, includ-
ing BoNBoN, and BoND. In Figure 4, we find InfAlign-
CTRL achieves better win rate-KL trade-offs for the An-
thropic helpfulness and harmlessness tasks and is on-par
with SOTA methods for the Summarization quality task.
This demonstrates the advantage of InfAlign-CTRL in
the standard win rate setting. We attribute this gain to the
properties of the reward calibration step discussed in Sec-
tion 4. Specifically, calibrated reward is more robust and
reward calibration could help mitigate reward hacking (see
Appendix D for discussion and results).

5We use win-rate as our main evaluation metric. We present raw
reward comparison for some experiments in Fig. 8 in the appendix.

5.4. InfAlign-CTRL improves BoN

For the helpfulness objective in the Anthropic dialog dataset,
and Reddit summarization quality dataset, we aim to op-
timize the Best-of-N performance of the aligned model
through the exponential transformation of the calibrated re-
wards. We measure the Best-of-N win rate against the base
policy. In Figure 4, we present the result for N = 4. We
see that InfAlign-CTRL with exponential transformation
achieves up to 3% higher Best-of-N win rates on helpful-
ness objective, and up to 8% on the summarization quality
objective compared to the best SOTA method. As expected,
the exponential transformation of the calibrated reward with
t = 10 outperforms the rest of the models, corroborating
the findings on a toy-setting (see Section 4).

5.5. InfAlign-CTRL improves against BoN jailbreaks

For the harmlessness objective in the Anthropic dialog
dataset, we aim to improve the Worst-of-N performance of
the aligned policy model to improve safety against adversar-
ial actors (Hughes et al., 2024b). Here, we use the negative
exponential transformation t<0. In Figure 4 we see that cal-
ibration based on the median rewards per-prompt achieves
up to 5% higher Worst-of-N win rates as compared to the
best SOTA method. The negative transformation of the
calibrated reward outperforms the rest of the models, with
t=−10 performing the best: again identified as the optimal
value per our simulation in a toy setting (see Section 4).

5.6. Transformation choice for different N ’s

We further empirically study the choice of transformation
on varying values of N(= 2, 4, 32), using BoN as an ex-
ample (see Fig. 5). Within the family of exponential trans-
formations Φ(u) = etu, we can choose t efficiently using
analytical tools with closed form expressions on KL and
win rate (Theorem 3) without retraining the model. In Fig. 5,
we see that consistent with our analytical analysis (middle
row in Fig. 9), e5u achieves better win-rate for Best-of-2,
while e10u is better for Best-of-4, demonstrating the trans-
ferability of our analytical tool. Moreover, both of these
transformations consistently outperforms other non-CTRL
baselines for all considered N ’s, showing that they do not
overfit to a particular N value.

6. Concluding Remarks
In this paper, we show that existing win rate optimal
RLHF framework suffers from a train-test mismatch when
inference-time procedures other than sampling are used. We
study the question of how to learn inference-aware opti-
mally aligned language models to close this gap. While
learning optimal solutions for general inference-time proce-
dures seems intractable, we propose InfAlign— a frame-
work that optimizes for inference-time win rate, and pro-
vide theoretical guarantees of finding an optimal inference-
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Figure 4. (Top row) Standard win rate comparison of InfAlign-CTRL using identity transformation with other SOTA methods on
Anthropic helpfulness, harmlessness, and Reddit summarization dataset. (Bottom row) Best/Worst-of-N win rate comparison of
InfAlign-CTRL using exponential reward transformation. We report win rate against on the test split as measured by the PaLM-2 M
reward model trained on the corresponding datasets.

Figure 5. Best-of-N win rate comparison on the Anthropic helpfulness dataset with N = 2, 4, 32 for different alignment methods.

aware aligned model. Our framework generalizes prior
work on win rate optimal solutions (Azar et al., 2023; Gui
et al., 2024) to consider inference-time procedures. We
show that for any inference-time procedure, such an opti-
mal model can be learned through the RLHF optimization
framework using reward transformation. We specifically
derive transformations for the popular Best-of-N sampling
(BoN) and jailbreaking (WoN) inference-time procedures.
We demonstrate the efficacy of this framework, by trans-
ferring findings from empirical simulation to real-world
tasks and propose InfAlign-CTRL — a calibrate-and-
transform reinforcement learning solver for ranking based
inference-time procedures. Empirically, we demonstrate
that in the standard setting when no inference-time pro-
cedure is applied, InfAlign-CTRL with identity reward
transformation achieves slightly better performance com-
pared to a variety of SOTA methods for optimizing standard

win rate. When inference-time procedures are applied, we
outperform inference-time win rate vs KL tradeoffs com-
pared to existing preference optimization methods by 3-8%.
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A. Related work
Inference-time compute. Test-time compute has been leveraged in recent work (Snell et al., 2024; Brown et al., 2024; Wu
et al., 2024a) to achieve better win rate vs KL tradeoffs from the aligned models including controlled decoding (Mudgal
et al., 2024; Chakraborty et al., 2024), Monte Carlo tree search (Chaffin et al., 2022; Scialom et al., 2021; Zhao et al., 2024),
iterative jailbreak query refinement (Chao et al., 2023), constrained generation (Kim et al., 2025), and model-chaining within
agentic frameworks (Gur et al., 2024). Best-of-N (BoN) is also used as an evaluation metric in code and natural language
generation benchmarks (Stiennon et al., 2020; Chen et al., 2021). Further, Worst-of-N (WoN) is a popular jailbreaking
strategy for adversarial actors to elicit unsafe text from large language models (Hughes et al., 2024b). Prior work has largely
focused on approximating inference-time solutions during training time through sampling (Gui et al., 2024; Amini et al.,
2024), distillation (Sessa et al., 2024), and decoding (Qiu et al., 2024). Our work is orthogonal to this body of work as they
assume that no inference-time procedure is applied, but rather attempt to approximate it during training. We show that our
theoretical framework generalizes IPO (Azar et al., 2023) and best-of-N distillation (Gui et al., 2024; Amini et al., 2024;
Sessa et al., 2024) as special cases.

We are motivated by recent work that apply meta-generation procedures (Welleck et al., 2024) at inference-time such as
chaining prompted models (Brown et al., 2024), problem decomposition through chain-of-thought (Wei et al., 2022), Best-of-
N reranking (Collins & Koo, 2005; Charniak & Johnson, 2005; Pauls & Klein, 2009) applied on reasoning traces (OpenAI,
2024). Our InfAlign framework was also motivated by complex inference-time strategies that involve transformation
techniques such as refinement (Madaan et al., 2024), majority voting (Wang et al., 2022b), or using the generator as input to
other search algorithms (Yao et al., 2024), that have outperformed other models for harder tasks. In this spirit, our framework
allows to get additional gains in aligning models with such inference-time procedures deployed in the future.

Recent work of Chow et al. (2024) considers inference-aware fine-tuning for BoN sampling. Their study mainly focuses
on the binary reward case, which is tailored for math/reasoning tasks. Moreover, there is no KL regularization in the RL
objective, making the optimal solution degenerate. This is unsuitable for alignment tasks where it is important to preserve
the capability of LLM on other tasks.

Reward miscalibration. Reward miscalibration or hacking has been studied extensively in recent work (Amodei et al.,
2016; Pang et al., 2022; Gao et al., 2023). The hypotheses behind reward hacking can be broadly categorized into 3 themes:
(1) reward underspecification, (2) training-serving skew between pairwise and pointwise reward models, (3) dominant
reward due to adhoc transformations. Reward models suffer from underspecification due to under-specified training data
(Skalse et al., 2022) by capturing spurious correlations in the data (Pan et al., 2022). Methods to mitigate this often include
training on non-overlapping splits during reward model fine-tuning (Bai et al., 2022) and ensembling (Coste et al., 2023;
Eisenstein et al., 2024). Our InfAlign-CTRL method can be easily augmented with such data interventions in reward
learning.

RLHF solvers. Training reward models on pairwise preference data, and then using it as pointwise scorers during
reinforcement learning poses problems of transitive inconsistency. To mitigate this problem, optimization techniques that
directly incorporate the pairwise preference data during offline reinforcement learning have been proposed (Rafailov et al.,
2023; Azar et al., 2023). Further, calibrating model probabilities to reflect rank-order generated sequences by quality metrics
have been proposed (Zhao et al., 2022). We share the motivation behind these methods, while additionally recognizing the
need to calibrate the rewards against the base policy on which we are aligning.

When aligning language models for multiple objectives, aggregating the rewards via a weighted sum (Bai et al., 2022; Wu
et al., 2024b) is known to result in reward hacking of one of the dominant rewards. Thresholding the effect of individual
rewards (Moskovitz et al., 2023) or changing the weights of the training data (Bai et al., 2022), however requires costly
hyper-parameter fine-tuning and retraining without the ability to reason about the hyperparameters and their effects on
the reward-tradeoffs. Reward transformation techniques that calibrate against a reference reward is effective at mitigating
domination of one reward (Wang et al., 2024), but implicitly assumes that the reward aggregation function is a logical
”AND” of all rewards, heavily penalizing under-performance on any of the rewards. Motivated by the success of exponential
tilting for focusing on high/low quantiles (Li et al., 2023), we also show that InfAlign-CTRL with exponential reward
transformation achieves near-optimal inference-time win rate vs KL divergence tradeoffs, surpassing the performance of
methods such as IPO (Azar et al., 2023) that target to optimize standard win rate vs KL divergence tradeoffs. In this paper,
we show that calibration as a first-step can help ground reward transformations based on the final inference-time procedure
applied. Further, we build on recent work that show the theoretical guarantees of Best-of-N sampling (Beirami et al., 2024;
Gao et al., 2023; Mudgal et al., 2024; Mroueh, 2024) over most reinforcement learning optimization techniques to ground
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our calibration and transformation method.

B. Missing proofs
Many of the results to be proved in this section are under the assumption of continuous models. In this case, Y can be
mapped to [0, 1] through a CDF inverse transformation (Rosenblatt, 1952), with the ordering determined by the reward of
the outcomes from the smallest reward to the highest reward. We define the quantile mapping, which is the inverse of the
calibrated reward mapping C−1, satisfying ∀u ∈ [0, 1],

C−1
r,π,x(u) = yu,x where Cr,π(x,yu,x) = u. (13)

Moreover, for these models, we add an additional 1
21{r(x,y) = r(x, z)} to the win r.v for simplicity, making Cr,π the

same as the CDF function.

B.1. Proof of Lemma 1

We start by stating the policy obtained by KL-regularized RL problem, which can be obtained by standard arguments in the
literature (e.g., (Korbak et al., 2022; Rafailov et al., 2023; Yang et al., 2024)).
Lemma 7. The solution to the optimization problem in Definition 1 satisfies

π∗
r,β(y | x) ∝ πref(y | x) exp

(
r(x,y)

β

)
.

Proof of Lemma 1. Let π∗
T be a solution to the optimization problem in Eq. (3). Note that for all y such that π∗

T (y | x) > 0,
we must have πref(y | x) > 0 since otherwise the KL divergence would become infinite.

Then setting
R(x,y) = β log(π∗

T (y | x)/πref(y | x))
in Eq. (4) leads to the solution π∗

T being its optimal solution as shown in Lemma 7.

B.2. Proof of Theorem 1

We first prove Eq. (2), restated below.

W T
r (π1 ≻ π2 | x) =

∑
y

Cr,Tπ2
(x,y)Tπ1

(y | x),

Proof. Proof of Eq. (2) The proof follows from the following identities:

W T
r (π1 ≻ π2 | x) = Ez∼Tπ1

(·|x),y∼Tπ2
(·|x) {wr(z,y | x)}

= Ez∼Tπ1 (·|x)

{
Ey∼Tπ2 (·|x) {wr(z,y | x)}

}
= Ez∼Tπ1

(·|x)
{
Cr,Tπ2

(x, z)
}

=
∑
z

Cr,Tπ2
(x, z)Tπ1

(z | x).

Proof of Theorem 1. Note that Eq. (3) has an implicit constraint that π(· | x) must be a valid distribution, i.e.∑
y

π(y | x) = 1.

Hence adding the Lagrangian multiplier, we get the following Lagrangian form

L(π(· | x), α) = W T
r (π ≻ πref | x)− βDKL(π(· | x)∥πref(·|x)) + α

(∑
y

π(y | x)− 1

)
.
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By method of Lagrange multipliers, we have that the solution to Eq. (3) must be a stationary point of L(π(· | x), α). And
hence

0 =
∂L(π(· | x), α)

∂π(y | x)
=

∂W T
r (π ≻ πref | x)
∂π(y | x)

− β

(
log

π(y | x)
πref(y | x)

+ 1

)
+ α.

Setting

R(x,y) =
∂W T

r (π ≻ πref | x)
∂π(y | x)

,

we get

log
π(y | x)
πref(y | x)

=
R(x,y) + α

β
− 1.

And hence

π(y | x) ∝ πref(y | x) exp
(
R(x,y)

β

)
.

It remains to prove Eq. (7). Plugging in π1 = π, π2 = πref to Eq. (2), and taking partial derivative with respect to π(y | x)
on the right hand side completes the proof.

B.3. Proof of Lemma 2

If r(x,y) ≥ r(x, z), we have ∀y′,
wr(y,y

′ | x) ≥ wr(z,y
′ | x).

Hence

Cr,πref
(x,y) = Ey′∼π(·|x)wr(y,y

′ | x) ≥ Ey′∼π(·|x)wr(z,y
′ | x) = Cr,πref

(x, z).

B.4. Proof of Lemma 3

The proof follows from the fact that for all x and y

Cg(r),πref
(x,y) = Ez∼πref

{
1[g(r(x,y)) > g(r(x, z))] +

1

2
1[g(r(x,y)) = g(r(x, z))]

}
= Ez∼πref

{
1[r(x,y) > r(x, z)] +

1

2
1[r(x,y) = r(x, z)]

}
(14)

= Cr,πref
(x,y),

where (14) follows from monotone increasing property of g.

B.5. Proof of Lemma 4

To show that Cr,πref
(x,y) ∼ Unif([0, 1]), it would be enough to show ∀u ∈ [0, 1],

Pry∼πref
(Cr,πref

(x,y) ≤ u) = u.

Recall the definition of yu,x in Eq. (13), we have that

Pry∼πref
(Cr,πref

(x,y) ≤ u) = Pry∼πref
(r(x,y) ≤ r(x,yu,x))

= Cr,πref
(x,yu,x)

= u,

completing the proof.
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B.6. Proof of Lemma 5

For continuous language models, we have BoNπ satisfies that ∀x,y

Prz∼BoNπ(·|x) (r(x,y) ≤ r(x,y)) = Prz∼π(·|x) (r(x, z) ≤ r(x,y))
N

= Cr,πref
(x,y)N . (15)

Hence

BoNπ(y | x) =
dPrz∼BoNπ(·|x) (r(x, z) ≤ r(x,y))

dy
= π(y | x)Cr,πref

(x,y)N−1.

For WoNπ , we have

Prz∼WoNπ(·|x) (r(x,y) ≤ r(x,y)) = 1− Prz∼π(·|x) (r(x, z) > r(x,y))
N

= 1− (1− Cr,πref
(x,y))

N
. (16)

Hence

WoNπ(y | x) =
dPrz∼WoNπ(·|x) (r(x, z) ≤ r(x,y))

dy
= π(y | x) (1− Cr,πref

(x,y))
N−1

.

B.7. Proof of Theorem 2

In this section, we will prove an extended version of Theorem 2 below.

Theorem 4 (Extended version of Theorem 2). If T is a calibrated inference-time procedure with mapping function gT , for
any continuous language model π, β > 0 and reward transformation function Φ, we have that

W T
r (π∗

RΦ,β ≻ πref | x) =
∫ 1

0
exp (Φ(u)/β) gT (FΦ,β(u))

∫ u

0
gT (u

′)du′du∫ 1

0
exp (Φ(u)/β) gT (FΦ,β(u))du

∫ 1

0
gT (u)du

where FΦ,β(u) =
∫ u
0

eΦ(u′)/βdu′∫ 1
0
eΦ(u′)/βdu′ , and

DKL(π
∗
RΦ,β∥πref) =

1

β

∫ 1

0
Φ(u)eΦ(u)/βdu∫ 1

0
eΦ(u)/βdu

− log

(∫ 1

0

eΦ(u)/βdu

)
.

And hence they are independent of r and πref .

Proof. In the proof, we consider the two language models π∗
RΦ,β and πref in the space of calibrated reward against the base

policy πref . For any policy π, let Cr,πref
◦ π(· | x) be a distribution over [0, 1] that outputs the calibrated reward Cr,πref

(x,y)
of the sample y sampled from π(· | x). Then by Lemma 4,

Cr,πref
◦ π(· | x) ∼ Unif([0, 1]).

Similarly, using Lemma 7, it can be shown that Cr,πref
◦ π∗

RΦ,β follows the distribution with density ∀u ∈ [0, 1],

Cr,πref
◦ π∗

RΦ,β(u | x) = eΦ(u)/β∫ 1

0
eΦ(u′)/βdu′

.

Note that since r assigns distinct rewards to different y’s and Cr,πref
is a monotone transformation of r, we have that

DKL(π
∗
RΦ,β∥πref) = DKL(Cr,πref

◦ π∗
RΦ,β∥Cr,πref

◦ π)

=

∫ 1

u=0

eΦ(u)/β∫ 1

0
eΦ(u′)/βdu′

log
eΦ(u)/β∫ 1

0
eΦ(u′)/βdu′

du

=
1

β

∫ 1

u=0
Φ(u)eΦ(u)/βdu∫ 1

0
eΦ(u)/βdu

− log

(∫ 1

0

eΦ(u)/βdu

)
.
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After the inference-time procedure T is applied, we have that inference-time base policy satisfies

Cr,πref
◦ Tπref

(u | x) = gT (u)∫ 1

0
gT (u′)du′

.

For the inference-time aligned policy, we have that:

Pry∼π∗
RΦ,β(·|x) (Cr,πref

(x,y) ≤ u) =

∫ u

0
eΦ(u′)/βdu′∫ 1

0
eΦ(u′)/βdu′

,

which is defined as FΦ,β(u). And hence we have

Cr,πref
◦ Tπ∗

RΦ,β
(u | x) = exp (Φ(u)/β) gT (FΦ,β(u))∫ 1

0
exp (Φ(u)/β) gT (FΦ,β(u))du

.

Thus, the inference-time win rate satisfies

W T
r (π∗

RΦ,β ≻ πref | x) = Ey∼Tπ∗
RΦ,β

(·|x),z∼Tπref
(·|x) {1{r(x,y) ≥ r(x, z)}}

= Ey∼Tπ∗
RΦ,β

(·|x),z∼Tπref
(·|x) {1{Cr,πref

(x,y) ≥ Cr,πref
(x, z)}}

= Pru∼Cr,πref
◦Tπ∗

RΦ,β
(·|x),u′∼Cr,πref

◦Tπref
(·|x) (u

′ ≤ u)

=

∫ 1

0
exp (Φ(u)/β) gT (FΦ,β(u))

∫ u

0
gT (u

′)du′du∫ 1

0
exp (Φ(u)/β) gT (FΦ,β(u))du

∫ 1

0
gT (u)du

,

where the second equality follows from Lemma 2, completing the proof.

B.8. Proof of Theorem 3

The KL divergence is the same as the KL divergence in Theorem 4. The win rate can be obtained by plugging gBoN(u) =
uN−1 and gWoN(u) = (1− u)N−1 (as shown in Lemma 5) into Theorem 4.

B.9. Proof of Corollary 2

We will show that Corollary 2 is a special case of Theorem 1 with a simple continuous language model. And by Theorem 2,
we have the Φ can be generalized to arbitrary continuous language models.

Let Y = [0, 1]. We assume the LMs and reward models are context-independent. We use u ∈ [0, 1] to denote y and set the
reward model to be r(u) = u. The base policy is a simple uniform distribution over [0, 1], πref = Unif([0, 1]). Note that
Fπ(u) be the CDF of π, then we have that the BoN win rate is

W BoN
r (π ≻ πref | x) = 1−N

∫ 1

0

Fπ(u)
NuN−1du,

and WoN win rate is

W WoN
r (π ≻ πref | x) = N

∫ 1

0

(1− Fπ(u))
N
(1− u)N−1du.
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Plugging these into Theorem 1, we have for BoN,

R(u) =
∂W BoN

r (π ≻ πref | x)
∂π(u)

= −N

∫ 1

0

vN−1 ∂Fπ(v)
N

∂π(u)
dv

= −N2

∫ 1

0

vN−1Fπ(v)
N−1 ∂Fπ(v)

∂π(u)
dv

= −N2

∫ 1

0

Fπ(v)
N−1

1{v ≥ u} vN−1dv

= −N2

∫ 1

u

Fπ(v)
N−1vN−1dv.

For WoN, we have

R(u) =
∂W WoN

r (π ≻ πref | x)
∂π(u)

= N

∫ 1

0

(1− v)N−1 ∂ (1− Fπ(v))
N

∂π(u)
dv

= −N2

∫ 1

0

(1− v)N−1(1− Fπ(v))
N−1 ∂Fπ(v)

∂π(u)
dv

= −N2

∫ 1

0

(1− v)N−1(1− Fπ(v))
N−1

1{v ≥ u} dv

= −N2

∫ 1

u

(1− v)N−1(1− Fπ(v))
N−1dv.
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C. The role of KL divergence in model alignment
One question that arises is the role of the KL divergence regularizer in Eq. (3). In this section, we argue that the regularizer
essentially enables multi-tasking between the SFT task and the RL task.

Let’s consider a log-linear model such that

πθ(y|x) = eθ
T g(x,y)−A(θ;x), (17)

where g(x,y) is a fixed encoding of (x,y), and A(θ;x) is the partition function normalizing the distribution.

Supervised finetuning (SFT). Let Dsft(x,y) = µ(x)× psft(y|x) be the SFT data distribution. Then, the SFT task is

θ∗sft = argmin
θ

Lsft(θ) where Lsft(θ) := E(x,y)∼Dsft{A(θ;x)− θ⊤g(x,y)}, (18)

We further call p = πθ∗
sft

.

Lemma 8. The SFT solution satisfies

Ex∼µ{∇θA(θ∗sft)} = E(x,y)∼Dsftg(x,y). (19)

Proof. This is a known property of exponential families. The proof follows by noticing ∇θLsft(θ
∗
sft) = 0.

KL-regularized reward optimization (RO). Let r be a reward function that determines the reward for each (x,y). Let
Lro(θ) := −Ex∼µEy∼πθ

r(x,y). Then,

θ∗bilevel,β = argmin
θ

Lbilevel,β(θ) where Lbilevel(θ) := DKL(πθ∥p) +
1

β
Lro(θ), (20)

where DKL(πθ∥p) = Ex∼µDKL(πθ(·|x)∥p(·|x)).

Multi-tasking SFT and RO. Now consider the following tasks

θ∗multi-task,β = argmin
θ

Lmulti-task,β(θ) where Lmulti-task(θ) := Lsft(θ) +
1

β
Lro(θ). (21)

Theorem 5. For all β ∈ R, we have θ∗bilevel,β = θ∗multi-task,β .

Proof. Notice that

Lbilevel,β(θ) = DKL(πθ∥p) +
1

β
Lro(θ) (22)

= Ex∼µ{A(θ;x)−A(θ∗sft;x)− (θ − θ∗sft)
⊤∇θA(θ∗sft;x)}+

1

β
Lro(θ) (23)

= Ex∼µ{A(θ;x)−A(θ∗sft;x)} − (θ − θ∗sft)
⊤E(x,y)∼Dsftg(x,y) +

1

β
Lro(θ) (24)

= Lmulti-task,β(θ) + Lsft(θ
∗
sft), (25)

where Eq. (23) follows by noticing that KL divergence is a Bregman divergence in this setup, Eq. (24) follows from Lemma 8,
and Eq. (25) follows from the definition of Lsft(θ) applied to θ and θ∗sft. Hence, the minimizers of the two objectives are the
same given that

Lbilevel,β(θ) = Lmulti-task,β(θ) + C,

completing the proof.
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Thus, effectively this proves that the RLHF objective enables multi-tasking between the SFT stage and the reward optimiza-
tion RL objective.

One may wonder why we did not pose the KL divergence regularizer on the transformed distributions through DKL(Tπ(· |
x)∥Tπref

(·|x)) instead. Consider the Best-of-N jailbreaking for example. While the adversary may be using the model
to generate N responses and choose the least safe one for jailbreaking, the model should possess the core capabilities for
other types of inference-time usage for other tasks that is different from that of jailbreaking (e.g., through chain-of-thought).
Therefore, changing the KL divergence regularizer does not capture the fact that the model should remain suitable for all
other tasks, and not just for the one for which it is getting aligned. We also note that if we used DKL(Tπ)(· | x)∥Tπref

(·|x))
instead, the problem would actually simplify to the standard alignment problem through a simple change of variables.
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D. Calibration Reduces Reward Hacking

Figure 6. Calibrated reward models demonstrate robustness against reward hacking: We poisoned the training data by adding phrases to
the preferred response to induce spurious correlations. When we evaluated against a test set where the correlations are inverted (phrase
added to unpreferred models), calibrated models maintained higher accuracy than uncalibrated ones, demonstrating their reduced reliance
on spurious correlations.

We demonstrate that calibrated reward models are less susceptible to reward hacking, a phenomenon where models exploit
spurious correlations in training data to optimize for reward signals instead of true task objectives.

To induce reward hacking, we injected specific phrases into the start of preferred responses of our preference datasets:
“Sorry, I can’t help you with that” for Harmlessness and “Sure” for Helpfulness. We then evaluated the model’s accuracy on
a poisoned evaluation set where these phrases were inverted (added to the unpreferred responses). A significant drop in
accuracy on this poisoned set would indicate reward hacking: a reliance on the spurious correlation.

Figure 6 shows that calibrated reward models are more robust to these manipulated correlations, maintaining higher accuracy
compared to uncalibrated models.
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E. Additional experimental results
In Fig. 7, we present the BoN and WoN win rate comparisons with N = 32. We see InfAlign-CTRL leads to improvement
on the win rate compared to other SOTA methods. For BoN, we observe better gains as compared to N = 4 on Anthropic
helpfulness, and Reddit summarization datasets. This shows the importance of InfAlign when more inference-time
compute is preformed.

Figure 7. Best/Worst-of-32 win rate comparison of InfAlign-CTRL using exponential reward transformation. We report win rate
against on the test split as measured by the PaLM-2 M reward model trained on the corresponding datasets.

Figure 8. Expected raw rewards vs DKL(π∥πref) for the aligned model used to compute the standard win-rate of Anthropic helpfulness
dialog task (Fig. 4-top left).

In Fig. 8, we plot the expected raw reward from the judge model (PaLM-M) vs DKL(π∥πref) tradeoff for the aligned model
used to compute the standard win-rate of Anthropic helpfulness dialog task (Fig. 4-top left). We see that our proposed
algorithm InfAlign-CTRL outperforms other baselines in expected raw rewards as well.
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F. Analytical comparison of different transformations

Figure 9. Standard, Best-of-N , and worst-of-N win rate vs KL tradeoff curves for N = 2, 4 with different transformation functions.

In this section, we give an extended discussion of analytical results for comparing different transformations in terms of
standard, BoN, and WoN win rate.

In the first plot, we consider standard win rate. In this case, it is known that the IPO objective is win rate optimal. As can be
seen, the logarithmic transformation (i.e., best-of-N distillation) also achieves a nearly optimal win rate, which was already
observed by Yang et al. (2024); Gui et al. (2024). All other transformations are sub-optimal for standard win rate.

Next, we consider Best-of-2 and Best-of-4 win rate. Here, additionally we include bon fp, which is obtained by deriving
the fixed point of Corollary 2. As can be seen, the identity transformation is no longer optimal. The best tradeoffs are
given by bon fp. We also observe that exp(5x) and exp(10x) are almost as good as bon fp for Best-of-2 and Best-of-4,
respectively. Moreover,the identity transformation and logarithmic transformation are sub-optimal in these cases, which
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shows that considering standard win rate as the only metric is not optimal when inference-time procedure is concerned.
We also observe that the behavior of identity transformation and logarithmic transformation is different in that the identity
transformation gives better tradeoffs.

Finally, we consider Worst-of-2 and Worst-of-4 win rate. Again, it can be observed that won fp gives the best tradeoffs
for this inference-time procedure. Here, exp(−5x) and exp(−10x) are almost as good for Worst-of-2 and Worst-of-4,
respectively. We also observe that identity transformation and logarithmic transformation are sub-optimal in these cases and
the logarithmic transformation gives better tradeoffs for WoN compared to the identity transformation.

The above results demonstrate the importance of considering the inference-time procedure when performing alignment. We
find that exponential transformation with different t’s are good for different inference-time procedures, which is our focus in
practical experiments.

Remark on additional compute: While the calibration step induces extra computation overhead, we remark that it involves
only forward pass on the model and only needs to be performed once per prompt before performing the policy optimization
algorithm. In our experiments, for K=100 roll outs, we take training steps equivalent to 80 epochs for all datasets. Based on
the 2:1 FLOPS ratio between back propagation and forward pass, the reward calibration step takes about 29% of the total
training time. We hypothesize that the trade-off between this computational overhead and performance gain is task-specific
and should be studied in future work.
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Figure 10. On the Rewind-and-Repeat inference-time strategy, we experiment with ϕ = 85%ile of the base policy’s per-prompt reward on
the Anthropic helpfulness dataset. Here, we see that exponential transformations continue to outperform baselines. In (a) we apply the
rewind-and-repeat strategy (upto a maximum of 32 repeats), and then compare the win-rate of the aligned policy against the base policy.
In (b), we measure the number of repeat-trials (maximum of 32 repeats) required to achieve a reward greater than the ϕ = 85%ile of the
base policy.

G. Analysis on Rewind-and-Repeat
We extended our study to an inference-time procedure, which is a variant of rejection sampling called rewind-and-repeat,
motivated by recent work of (Beirami et al., 2024; Zhang et al., 2024). At inference-time, the procedure repeatedly generate
independent samples from the policy until an outcome with a minimum reward threshold ϕ (= 85%ile) is achieved or a
pre-defined maximum number of generations N(= 32) is reached. As shown in Fig 10, InfAlign − CTRL leads to
improved performance in this adaptive-compute case as well.
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