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ABSTRACT

To achieve a theoretical understanding of deep learning, it is necessary to consider
the approximation, generalization, and optimization errors. In recent years, there
have been significant advancements in the literature regarding each or two of these
errors. However, there have been few works that simultaneously analyze all three
errors. This is due to the gap that exists between the optimization and generalization
errors in over-parameterized regimes. In this work, we attempt to bridge this gap
by establishing consistency between the outputs of gradient descent and the true
regression function in the over-parameterized scenario. We provides the first error
analysis that includes the approximation, generalization, and optimization errors
in the scenario of deep regression. Our research offers a feasible perspective for a
more comprehensive understanding of the theory behind deep learning.

1 INTRODUCTION

The success of deep learning in computer vision, natural language processing, and other fields
has propelled the advancement of its theoretical research. It is now widely recognized that, as a
non-parametric estimation method, error analysis in deep learning includes approximation error,
generalization error, and optimization error Grohs & Kutyniok (2022); Telgarsky (2020); Weinan
(2020); Bach (2021).

Approximation error refers to the difference between the target function class and the neural network
function class used in the learning algorithm. The theoretical analysis of the approximation power
of shallow networks dates back to the 1980s Cybenko (1989); Hornik et al. (1989); Hornik (1991),
when people mainly focused on sigmoidal networks. In recent years, attention has shifted to ReLU
networks due to their superior empirical performance in modern learning tasks. Yarotsky Yarotsky
(2017) was the first to demonstrate how to construct a ReLU network that achieves any desired
approximation accuracy using the Taylor expansion. Inspired by this, modern approximation results
for deep neural networks have emerged, where network architecture parameters such as depth, width,
and size are used to bound the approximation error Yarotsky (2017; 2018); Petersen & Voigtlaender
(2018); Zhou (2020); Shen et al. (2019); Shen (2020); Lu et al. (2021); Gühring et al. (2020); Gühring
& Raslan (2021); Siegel & Xu (2020). For more information, see Petersen (2020) and the references
therein.

Classical methods in empirical process theory employ tools such as symmetrization and Lipschitz
contraction to transform the study of generalization error into bounding the complexity of neural
network classes, such as the Rademacher complexity, covering number, or VC-dimension. For
detailed analysis, see Van Der Vaart et al. (1996); Van de Geer & van de Geer (2000); Giné & Nickl
(2021). However, generalization analysis from the perspective of the uniform law of large numbers
may lead to suboptimal error bounds Bartlett et al. (2017). Localized techniques that utilize the
local structure of the hypothesis function class can reach sharp error bounds in scenarios where the
Bernstein condition or off-set condition hold. For details, see Bartlett et al. (2005); Koltchinskii
(2006); Mendelson (2018); Xu & Zeevi (2021); Kanade et al. (2022) and the references therein.

Recently, the use of deep neural networks for regression has garnered significant attention in the
framework of nonparametric estimation Bauer & Kohler (2019); Kohler & Langer (2021); Imaizumi
& Fukumizu (2019); Schmidt-Hieber (2020); Nakada & Imaizumi (2020); Farrell et al. (2021); Jiao
et al. (2021); Suzuki (2019); Suzuki & Nitanda (2021); Shen et al. (2021); Fan et al. (2022). Optimal
minimax estimation error has been derived in these works by adjusting the depth and width of the
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neural network to balance approximation and generalization errors, building on the foundations of
nonparametric estimation theory Stone (1982); Gyorfi et al. (2002); Tsybakov (2009). However, the
convergence results in these elegant works only apply when the number of samples is larger than the
number of parameters of the neural network.

Over-parameterized deep neural networks, where the number of parameters is much larger than
the sample size, are widely used in real-world applications because they make model training
computationally more efficient. Although the optimization problem in deep learning is highly
non-convex, solvers such as (stochastic) gradient descent with randomized initialization and small
step-size still converge linearly in modern over-parameterized regimes Jacot et al. (2018); Allen-Zhu
et al. (2019); Du et al. (2019); Zou & Gu (2019); Liu et al. (2022); Chizat et al. (2019); Sun (2019);
Zou et al. (2020); Oymak & Soltanolkotabi (2020); Nguyen & Mondelli (2020); Nguyen (2021) and
the references therein. However, the reason why over-parameterized deep neural networks work well
remains a mystery, and providing statistical guarantees in deep learning under over-parameterized
regimes is still a theoretically fundamental but challenging problem Belkin (2021); Bartlett et al.
(2021); Berner et al. (2021).

The current main perspective for understanding over-parameterization in linear and kernel models
is the benign overfitting due to the double descent phenomenon for estimators that interpolate data
with minimum norm Belkin et al. (2018; 2019a); Hastie et al. (2019); Belkin et al. (2019b); Liang &
Rakhlin (2020); Nakkiran et al. (2020); Bartlett et al. (2020); Tsigler & Bartlett (2020); Belkin (2021);
Bartlett et al. (2021); Belkin et al. (2018); Bartlett et al. (2020); Tsigler & Bartlett (2020). However,
an interesting result was presented in Kohler & Krzyżak (2021), showing that the empirical risk
minimization estimator (ERM) in nonparametric least squares regression with over-parameterized
deep neural networks can be inconsistent when the distributions of covariates have no densities with
respect to Lebesgue measure. Recently, the convergence rate of ERM with over-parameterization in
deep regression has been derived for norm-controlled deep ReLU networks Jiao et al. (2023); Yang
& Zhou (2023). However, the norm control in Jiao et al. (2023); Yang & Zhou (2023) for ERM is too
restrictive, such that even randomized initialization will not satisfy the norm constraint. Therefore,
there is still a gap to provide a comprehensive theoretical guarantee by considering all three errors
(approximation, generalization, and optimization) simultaneously.

1.1 THE REGRESSION PROBLEM AND MAIN RESULT OF THIS PAPER

To the best of our knowledge, this paper provides the first error analysis that includes the approxima-
tion, generalization, and optimization errors in the scenario of deep regression. We first recall the
problem setup. We have the regression model

Y = f∗(X) + ξ,

where f∗(x) = E[Y |X = x] is the unknown underlying target and ξ is a sub-gaussian noise with
E[ξ] = 0 and ∥ξ∥ψ2 ≤ Cξ. At the papulation level, f∗ can be formulated as the solution of the least
square problem

min
f

L(f) = E(X,Y )(f(X)− Y )2. (1)

In real data applications, the distribution of (X,Y ) is unknown, and we can only attempt to find an
estimator based on a finite sample. Specifically, let {(Xi, Yi)}ni=1 := {Zi}ni=1 be n i.i.d. samples
drawn from the unknown distribution. Let m0 := d,m2 ∈ N>0, we define a three-layer neural
network class in the following form

FNN ({B3, B2, B1},m2) :=

 1√
m2

m2∑
k2=1

w
(3)
k2

σ(
∑

k1∈I(2)k2

w
(2)
k2k1

σ(

m0∑
k0=1

w
(1)
k1k0

xk0 + b
(1)
k1

) + b
(2)
k2

) :

|w(3)
k2

| ≤ B3, |w(2)
k2k1

|, |b(2)k2 | ≤ B2, |w(1)
k1k0

|, |b(1)k1 | ≤ B1

}
, (2)

where the activate function is the logistic function σ(x) = 1
1+e−x ,

I
(2)
k2

= {(k2 − 1)d+ 1, (k2 − 1)d+ 2, · · · , k2d}.
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The neuron numbers in the first, second and third layer are m0 = d, m1 := m2d and m2, re-
spectively. Hence the width of neural networks in FNN ({B3, B2, B1},m2) is completely con-
trolled by m2. We use W to denote the parameter vector (including weights and biases) of
f ∈ FNN ({B3, B2, B1},m2). We define the empirical loss on FNN ({B3, B2, B1},m2)

Ln(fW ) :=
1

n

n∑
i=1

(fW (Xi)− Yi)
2. (3)

When we perform optimization algorithms over FNN , we treat the loss functional Ln as a function
of W , i.e., we define Ln(W ) := Ln(fW ) for any fW ∈ FNN . In this paper, we focus on the global
convergence of gradient descent. We believe our result can be extended to stochastic gradient descent.
The iteration scheme of gradient descent under the regression model is

Wt+1 = Wt − η∇WLn(Wt), (4)

where η is the learning rate, and W0 is drawn from normal distributions according to

(w0)
(3)
k2

∼ N(0, σ2
3), k2 ∈ [m2];

(w0)
(2)
k2k1

, (b0)
(2)
k2

∼ N(0, σ2
2), k1 ∈ I

(2)
k2

, k2 ∈ [m2];

(w0)
(1)
k1k0

, (b0)
(1)
k1

∼ N
(
0, σ2

1

)
, k0 ∈ [m0], k1 ∈ [m1]. (5)

Define the kernel matrix

(K0)ij := E(w,b)∼N(0,σ2
1Id+1)[σ (⟨w,Xi⟩+ b)σ (⟨w,Xj⟩+ b)], i, j ∈ [n].

Let the truncating threshold Btr ∈ R>0. We use

f̂t = ftr,Btr (fWt) (6)

to denote the estimator at t−th step in gradient descent where the truncation function is defined as

ftr,Btr
(x) :=

{−Btr, x ≤ −Btr
x, −Btr < x < Btr
Btr, x ≥ Btr

.

Our main result bounds the estimation error between the output of gradient descent in (6) and the
target regression function f∗. We give an informal version first. The formal version of our main
result is presented in Theorem 5.
Theorem 1. (Informal) Assume f∗ is Lipschitz continuous. Let n be sufficiently large. Set

Btr = Θ(log n), m2 = O
(
n

40d+40
20d+19

)
,

B1 = Θ(n2/(10d+9)), B2 = Θ(log2 n), B3 = Θ(n3/2),

t = Ω(log n), L = Θ(n3 log4 n), µ = Θ(1),

0 < η <
2

L
, 0 < ηµ− 1

2
η2µL < 1.

Then with high probability,

∥f̂t − f∗∥2L2(ν) = O(n−1/(10d+9)).

1.2 CONTRIBUTION

In this work, we attempt to bridge the gap that exists between the optimization and generalization
errors in over-parameterized regimes by establishing consistency between the outputs of gradient
descent and the true regression function. We provides the first error analysis that includes the
approximation, generalization, and optimization errors in the scenario of deep regression. Our
research offers a feasible perspective for a more comprehensive understanding of the theory behind
deep learning. To be specific, our findings establish a clear relationship with various parameters,
including the dimension d, the variances in different layers σ1, σ2, σ3, the truncation threshold Btr,
the bounds of samples Bx, BY , and the bound associated with the marginal distribution of samples
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Bν . Moreover, our results offer explicit guidance on determining the appropriate width of the neural
network, sample size, and learning rate. Additionally, we predict the estimated number of iterations
required for gradient descent to attain a desired level of accuracy.

From a practical perspective, our results empower practitioners to optimize relevant factors based on
the specific requirements of their task, ultimately improving the overall performance of the model.
Furthermore, our results can guide researchers and practitioners in setting realistic expectations
and planning their training processes more effectively. Overall, our results bridge the gap between
theoretical analysis and practical application, furnishing valuable guidelines for optimizing deep
neural networks in real-world scenarios.

1.3 ORGANIZATION

The organization of this paper is as follows: In section 2 we list our notations and assumptions used
throughout the paper. Section 3 presents the main result along with a sketch of the proof. In Section
4, we summarize our findings and conclude the paper.

2 NOTATIONS AND ASSUMPTIONS

2.1 NOTATIONS

Let σ be a general Lipschitz function. Define

Lσ := max{Lipschitz constant of σ, 1}, Bσ := max{upper bound of σ, 1}.
The reason of making a comparison with 1 is to make the following theoretical results more concise.
We define Lσ′ and Bσ′ in the same way. We define another index set

I
(1)
k1

=

{⌈
k1
d

⌉}
, k1 ∈ [m1].

Define m̃1 :=
∣∣∣I(2)k2

∣∣∣ , m̃2 :=
∣∣∣I(1)k1

∣∣∣, then we immediately obtain m̃1 = d, m̃2 = 1. Denote the
truncated version of FNN ({B3, B2, B1},m2) as

F (bounded)
NN ({B3, B2, B1}, Btr,m2) := ftr,Btr

◦ FNN ({B3, B2, B1},m2).

To simplify notations, we write F (bounded)
NN ({B3, B2, B1}, Btr,m2) as F (bounded)

NN and
FNN ({B3, B2, B1},m2) as FNN below when there is no ambiguity.

2.2 ASSUMPTIONS

Denote Bx := max{maxi∈[n],j∈[d] |(Xi)j |, 1}. Let BF , LF ∈ R≥1. Define

F := {f : [−Bx, Bx]
d → R | f is LF -Lipschitz continuous and |f | ≤ BF}.

We make the following assumption to the target function f∗.
Assumption 1. The target f∗ lies in F .

Under assumption 1 and Yi = f∗(Xi) + ξi we know that Yi is a sub-gaussian random variable with

∥Yi∥ψ2
≤ C

(
1

ln 2B
2
F + C2

ξ

)1/2
. By Proposition 2.5.2 in Vershynin (2018) and union bound we

have with probability at least 1− t,

BY := max

{
max
i∈[n]

|Yi|, 1
}

≤ C

(
1

ln 2
B2

F + C2
ξ

)1/2

ln1/2
2n

t
.

Let ν be the marginal distribution of X and fν the corresponding density function.
Assumption 2. fν is L2-integrable with respect to Lebesgue measure, i.e., there exists Bν < ∞ such
that ∫

[−Bx,Bx]d
f2
ν (x)dx ≤ Bν .
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Remark 1. The two assumptions are weak. We only assume the target lies in Lipschitz continuous
and the density function of the samples is L2 Lebesgue integrable. Comparing with some other works
that assume the target lies in Barron space or some other spaces with more structures, our Lipschitz
assumption is relatively weak. As a result, our results have broader applicability and generality. In
fact, the Lipschitz assumption is a standard assumption in nonparametric estimation, for example,
see Gyorfi et al. (2002).

3 ERROR DECOMPOSITION, PROOF SKETCH AND MAIN RESULTS

3.1 ERROR DECOMPOSITION

The following proposition decomposes the total estimation error ∥f̂t−f∗∥2L2(ν), i.e., the error between
the output of gradient descent in (6) and the target regression function, into the approximation,
generalization, and optimization errors.
Proposition 1. Let ν be the marginal distribution of X . We have

∥f̂t − f∗∥2L2(ν) ≤

inf
f∈F(bounded)

NN

∥f − f∗∥2L2(ν)︸ ︷︷ ︸
Eapp

+ sup
f∈F(bounded)

NN

[L(f)− Ln(f)] + sup
f∈F(bounded)

NN

[Ln(f)− L(f)]︸ ︷︷ ︸
Egen

+Ln(f̂t)︸ ︷︷ ︸
Eopt

.

Remark 2. The first term shows the distance between the set FNN and the target function f∗, which
is exactly the classical definition of approximation error. The second term is the generalization error,
which measures the uniform difference between the population loss in (1) and the empirical loss
in (3). The last term reflects how small the empirical loss value at the t-th iteration can be, and is
therefore called the optimization error.

3.2 PROOF SKETCH

Based on the above Proposition 1, we need to bound the approximation error, generalization error
and optimization error, respectively. Here we present some significant intermediate results. The proof
details are all postponed to the supplementary material.

We first define some notations to shorten the presentation. Set Btr ≥ max{BY , BF + 3}. Let
t1, t2, t3, t4, t5, t6 > 0, 0 < ϵ < 2d/4+131/2B

d/4
x B

1/2
ν . Let

α = max

2d/4+231/2B
d/4
x B

1/2
ν BF

ϵ

(⌈
2d/4+131/2d1/2B

d/4
x B

1/2
ν LF

ϵ

⌉)d
− 1, e2d+1

 ,

δ =
15ϵ4

2d
(
ϵ+ 2d/4+231/2B

d/4
x B

1/2
ν

)4 1⌈
2d/4+131/2d1/2B

d/4
x B

1/2
ν LF

ϵ

⌉ .
Denote

B
(t6)
1 = 2C1/2σ1 ln

1/2 d2m2

t6
, B̄1 = max

{
1

Bx
, δ + 3

}
ln lnα

δ
,

B
(t3)
2 = 2C1/2σ2 ln

1/2 dm2

t3
, B̄2 = (2d+ 2) ln2 α+ (2d− 1) lnα,

B
(t2)
3 = 2C1/2σ3 ln

1/2 m2

t2
, B̄3 =

√
m2BF

and

B1 = max
{
B

(t6)
1 , B̄1

}
, B2 = max

{
B

(t3)
2 , B̄2

}
, B3 = max

{
B

(t2)
3 , B̄3

}
.

Let

C1 := 21/4(3Btr + 2BY )
1/4m

1/8
2 Bd

xB
1/4
3 Bd

2B
d
1

(
max

s1∈{1,2,··· ,4d}
Bσ(s1)

) 1
4 (4d+1)

B1/2
4d
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(
5d− 1
d− 1

)1/4(
5d− 2
d− 1

)
,

C2 :=
2enBtr(3Btr + 2BY )

C1
,

C3 := 2

∫ ∞

0

[
1− 2e−t

2/(C(d+1)σ2
2)
]
σ′(t)σ′′(t)dt.

where Bj is the Bell number. Set

µ = C3m̃1σ
2
3λmin(K0)

and

L = 32d2

[√
86

m2
d

(
2σ2

3B
2
σ

C
ln

2

t5
+ 2B2

Y

)1/2

+
√
5(d2 + 2d+ 2)

](
B

(t2)
3

)2 (
B

(t3)
2

)2
.

Denote

n
(low)
1 =

(
192

7

)2
144C1

ϵ4

(
(Btr +BY )

2

2

)7/4(
ln

23/4C2

(Btr +BY )3/2
+

6

7

)2

,

n
(low)
2 =

144(Btr +BY )
4

ϵ4
ln

2

t1
,

n
(low)
3 =

C1

2B
1/4
tr (3Btr + 2BY )1/4

,

n
(low)
4 = C1 max


 14

ln 23/4C2

(Btr+BY )3/2
+ 6

7

2/7

, 1


(

2

(Btr +BY )2

)1/4

and

m
(low)
2,1 =

n
(
B

(t2)
3

)2
loge/2

n
t4

2C3d5σ2
3λmin(K0)

,

m
(low)
2,2 =

344(d2 + 2d+ 2)n2B6
x

(
max

{
B

(t2)
3 , B

(t3)
2

})12
C2

3d
2σ4

3λ
2
min(K0)

,

m
(low)
2,3 =

64d
(
B

(t2)
3

)2 (
B

(t3)
2

)2 (
2σ2

3

C ln 2
t5

+ 2B2
Y

)
(µ− 1

2ηµL)
2
(
min

{
B

(t6)
1 , B

(t3)
2 , B

(t2)
3

})2 .
We first construct a third layer network contained in FNN ({B3, B2, B1},m2) that can approximate
the Lipschitz target arbitrarily well.
Theorem 2. Let Assumption 1 holds. For any f ∈ F , there exists g ∈ FNN ({B̄3, B̄2, B̄1},m2)
such that

∥f − g∥4 ≤ ϵ,

∥f − g∥∞ ≤ 2 +
ϵ

2d/4+1B
d/4
x

.

For the generalization error we first drive an upper bound in expectation using symmetrization,
Lipschitz contraction and chaining. Then, we get a high probability bound via McDiarmid’s inequality.

Theorem 3. Let Assumption 1,2 hold. Let n ≥ max
{
n
(low)
1 , n

(low)
2 , n

(low)
3

}
. Then with probability

at least 1− t1 over {Zi}ni=1,

Egen ≤ 384

7

(
C1

n

)1/2(
(Btr +BY )

2

2

)7/8(
ln

23/4C2

(Btr +BY )3/2
+

6

7

)
+

ϵ2

12
.
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Note that the existing theory for optimization in deep learning focuses on unconstrained problems
Jacot et al. (2018); Allen-Zhu et al. (2019); Du et al. (2019); Zou & Gu (2019); Liu et al. (2022); Chizat
et al. (2019); Sun (2019). However, the optimization error considered here is a constrained problem,
which requires more effort to handle. We first derive a PL-inequality around the initialization, as long
as the network is wide enough. Then, we show that the iterates Wt fall into a neighborhood of the
initialization if we set the step-size and constraint parameters B1, B2, B3 properly. Finally, we can
derive the following linear convergence result.
Theorem 4. Initialize W0 by (5). Let Let η satisfy 0 < η < 2

L and ηµ− 1
2η

2µL < 1. If

m2 ≥ max
{
m

(low)
2,1 ,m

(low)
2,2 ,m

(low)
2,3

}
,

then for any t ∈ N≥0, there holds

|wt − w0| ≤ min
{
B

(t6)
1 , B

(t3)
2 , B

(t2)
3

}
,

Ln(Wt) ≤
(
1− ηµ+

1

2
η2µL

)t(
2σ2

3B
2
σ

C
ln

2

t5
+ 2B2

Y

)
with probability at least 1− t2 − t3 − t4 − t5 − t6 over W0.

3.3 MAIN RESULTS

Combining Theorem 2-4 we get our main results.

Theorem 5. Let Assumption 1,2 hold. Initialize W0 by (5). Choose the learning rate η satisfy

0 < η <
2

L
, 0 < ηµ− 1

2
η2µL < 1,

then we have with probability at least 1− t1 over {Zi}ni=1 and 1− t2 − t3 − t4 − t5 − t6 over W0,

∥ftr,Btr
◦ fWt

− f∗∥L2(ν) ≤ ϵ

as long as

t ≥ log2

6
(

2σ2
3

C ln 2
t5

+ 2B2
Y

)
ϵ2

,

and the sample size satisfies

n ≥ max
{
n
(low)
1 , n

(low)
2 , n

(low)
3 , n

(low)
4

}
and the width satisfies

m2 ≥ max
{
m

(low)
2,1 ,m

(low)
2,2 ,m

(low)
2,3

}
.

Proof. Proposition 1 decomposes the total error into three kinds of errors. We prove that under our
setting of parameters, each error is bounded by ϵ2

3 by using the above results.

We first take a look at the approximation error. We know from Theorem 2 that there exists g ∈
FNN ({B̄3, B̄2, B̄1},m2) such that ∥f∗ − g∥4 ≤ ϵ√

3Bν
and ∥f∗ − g∥∞ ≤ 2 + ϵ

2d/4+131/2B
1/2
ν B

d/4
x

.

In fact, g also lies in F (bounded)
NN ({B3, B2, B1}, Btr,m2) because for any x ∈ [−Bx, Bx]

d,

|g(x)| ≤ |f∗(x)− g(x)|+ |f∗(x)| ≤ 2 +
ϵ

2d/4+131/2B
1/2
ν B

d/4
x

+BF ≤ 3 +BF ≤ Btr

provided ϵ ≤ 2d/4+131/2B
d/4
x B

1/2
ν . By Hölder inequality and Assumption 2 we can bound the

approximation error which appears in the form of L2(ν)-norm:

∥f∗ − g∥2L2(ν) =

∫
[−Bx,Bx]

d

|f∗(x)− g(x)|2fν(x)dx
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≤

(∫
[−Bx,Bx]

d

|f∗(x)− g(x)|4dx

)1/2(∫
[−Bx,Bx]

d

f2
ν (x)dx

)1/2

≤ Bν∥f∗ − g∥24 ≤ Bν ·
ϵ2

3Bν
≤ ϵ2

3
. (7)

Next, we check the optimization error. Let η satisfies 0 < η < 2
L and 0 < ρ = ηµ− 1

2η
2µL < 1 in

Theorem 4, then by our choice of m2 and t, we have with probability at least 1− t2 − t3 − t4 − t5
over W0,

Ln(Wt) ≤ (1− ρ)
t

(
2σ2

3

C
ln

2

t5
+ 2B2

Y

)
≤ ϵ2

3
.

The truncation operation further decreases the loss value. Let’s clarify this fact. For i ∈ [n], if
|fW (Xi)| ≤ Btr, then |ftr,Btr ◦ fW (Xi)− Yi| = |fW (Xi)− Yi|; if |fW (Xi)| > Btr, without loss
of generality we assume fW (Xi) > Btr. Since Yi ≤ BY ≤ Btr,

|fW (Xi)− Yi| = |[fW (Xi)−Btr] + [Btr − Yi]| = [fW (Xi)−Btr] + [Btr − Yi]

> Btr − Yi = |Btr − Yi| = |ftr,Btr
◦ fW (Xi)− Yi|.

Hence with the same probability,

Ln(ftr,Btr
◦ fWt

) ≤ Ln(fWt
) = Ln(Wt) ≤

ϵ2

3
. (8)

An important thing is to make sure that fWt
lies in FNN ({B3, B2, B1},m2). In fact, Theorem 4

tells us that with the same probability,

B3(Wt) = max

{
max
k2

∣∣∣(wt)(3)k2 ∣∣∣ , 1}
≤ max

{
max
k2

∣∣∣(wt)(3)k2 − (w0)
(3)
k2

∣∣∣+ ∣∣∣(w0)
(3)
k2

∣∣∣ , 1} ≤ max
{
B

(t6)
3 , 1

}
≤ B3,

and similarly B2(Wt) ≤ B2, B1(Wt) ≤ B1. Hence fWt ∈ FNN ({B3, B2, B1},m2) with the same
probability.

Finally, we can immediately obtain an upper bound of generalization error from Theorem 3. In this
case, by our choice of n we have with probability at least 1− t1 over {Zi}ni=1,

sup
f∈F(bounded)

NN

[
1

n

n∑
i=1

[f(Xi)− Yi]
2 − E[f(X)− Y ]2

]
≤ ϵ2

6
, (9)

sup
f∈F(bounded)

NN

[
E[f(X)− Y ]2 − 1

n

n∑
i=1

[f(Xi)− Yi]
2

]
≤ ϵ2

6
. (10)

We finish the proof by combining Proposition 1 and (7)-(10).

4 CONCLUSION AND FUTURE WORK

In this paper, we attempt to bridge the gap that exists between the optimization and generalization
errors in over-parameterized regimes. We establish the first consistency between the outputs of
gradient descent and the true regression function in the over-parameterized scenario. Our research
offers a feasible perspective for a more comprehensive understanding of the theory behind deep
learning.

We hope that this work can motivate more studies on statistical theories of over-parametrized deep
learning. In the following, we list several issues for future research.

First, in this work, we focus on gradient descent in regression for a three-layer network class. In
practical application scenarios, researchers predominantly utilize SGD as the optimizer. How to
generalize the current results to the case of SGD is an intriguing question. Currently, there is still

8
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a gap in theory regarding how to transition from GD to SGD. The transition from GD to SGD
introduces additional complexities and considerations that need to be addressed. While GD optimizes
the parameters using the full dataset in each iteration, SGD randomly samples a subset of data,
leading to more efficient computation but potentially introducing additional noise and variance in
the optimization process. The convergence properties, generalization performance, and optimization
dynamics of SGD differ from GD, making it necessary to bridge the theoretical gap in understanding
this transition. In fact, this is exactly the problem we are currently working on solving. To address this
gap, further research is needed to investigate the convergence behavior and optimization guarantees
of SGD in the context of regression for three-layer networks. Exploring the theoretical foundations
and developing analytical frameworks that capture the unique characteristics of SGD will be crucial.
Additionally, empirical studies and experiments can provide insights into the practical performance
of SGD in real-world scenarios and help validate and refine theoretical findings.

Second, the estimation error rate in this paper, O(n−1/(10d+9)), highlights a significant achievement
in estimating the Lipschitz target. However, it is essential to acknowledge that there exists a gap
between this rate and the minimax optimal rate of O(n−2/(d+2)). This difference indicates that
further efforts are required to enhance the analysis presented in this work. Closing this gap and
achieving the minimax optimal rate would not only consolidate the theoretical foundations but also
contribute to the practical applicability of the proposed estimation techniques. Future research
endeavors should focus on exploring innovative methodologies and refining the analysis to bridge
this gap and approach the optimal estimation rate. By addressing this discrepancy, we can advance
the field and provide more accurate and efficient estimation methods for Lipschitz targets.

Third, this study focuses on three-layer networks, and there exists a disparity between the theoretical
findings and their practical application, particularly considering the prevalent use of deep neural
networks in various learning tasks. Therefore, extending the current results to deep neural networks
is of paramount importance, and it is precisely the aspect we are currently dedicated to investigating.

Fourth, this study leverages the smoothness of the sigmoidal networks to derive a consistent error
bound. On the other hand, in modern learning tasks, although sigmoidal networks continue to play
a vital role, the empirical performance of ReLU networks has attracted significant attention. It is
challenging to establish such a bound for ReLU networks due to the lack of sufficient smoothness.
While consistency convergence results may still exist for ReLU networks, they require different
analytical techniques which is worth investing effort in studying.

Fifth, the current work primarily focuses on regression problems. However, it is important to note that
there are numerous other types of learning tasks that warrant investigation. For instance, classification
tasks, as well as solving partial differential equations (PDEs), are areas that require further study.
Understanding how the findings of this research can be extended and applied to these different learning
tasks is an important and intriguing direction for future exploration. Exploring the applicability of the
current results in various learning domains will contribute to a more comprehensive understanding of
the broader impact and potential of the proposed techniques.

Finally, conducting empirical studies to support the theoretical analysis is essential for validating and
strengthening the findings of our work. We acknowledge the importance of empirical validation in
evaluating the practical performance of the proposed methods. To address this limitation, we will
incorporate empirical studies in our future research. By conducting experiments and evaluating the
performance of the proposed techniques on real-world datasets, we can provide empirical evidence
to complement and reinforce the theoretical analysis. This empirical validation will enhance the
credibility and applicability of our work, ensuring that the proposed methods are not only theoretically
sound but also effective in practical scenarios.
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