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Abstract

Traditional molecular string representations, such as SMILES, often pose chal-
lenges for AI-driven molecular design due to their non-sequential depiction of
molecular substructures. To address this issue, we introduce Sequential Attachment-
based Fragment Embedding (SAFE), a novel line notation for chemical structures.
SAFE reimagines SMILES strings as an unordered sequence of interconnected
fragment blocks while maintaining compatibility with existing SMILES parsers.
It streamlines complex generative tasks, including scaffold decoration, fragment
linking, polymer generation, and scaffold hopping, while facilitating autoregressive
generation for fragment-constrained design, thereby eliminating the need for intri-
cate decoding or graph-based models. We demonstrate the effectiveness of SAFE 1

by training an 87-million-parameter GPT2-like model on a dataset containing 1.1
billion SAFE representations. Through targeted experimentation, we show that our
SAFE-GPT model exhibits versatile and robust optimization performance. SAFE
opens up new avenues for the rapid exploration of chemical space under various
constraints, promising breakthroughs in AI-driven molecular design.

1 Introduction

Molecular design, which consist of constructing molecules with desired characteristics, is a critical
task in computational drug discovery. It often necessitates the preservation of certain scaffolds or
core chemical substructures, which serve as the backbone for the design process, The motivation
for preserving these groups and constraints typically stems from their crucial role in the molecule’s
biological activity. Nevertheless, incorporating such constraints can be challenging when relying on
conventional molecular string representations like the Simplified Molecular Input Line Entry System
(SMILES).

1Code, data and model available at https://github.com/datamol-io/safe/

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



linker

generation

m
ot
if

ex
te
ns
io
n

sc
af
fo
ld

de
co
ra
tio
n

superstructure

generation

scaffoldmorphing

de novo
generation

∅ 

Figure 1: Molecular design tasks that can be performed easily with SAFE

Although SMILES has played a crucial role in chemistry and drug discovery, it is unable to provide
a contiguous representation of molecular substructures. This limitation hinders tasks like adding
structures to a molecule’s scaffold and connecting fragments, limiting its usefulness in improving
potential drug candidates, particularly during lead optimization efforts. Addressing these challenges
requires the development of an enhanced line notation for molecules, one that can preserve the
integrity of molecular scaffolds and fragments while offering flexibility for de novo molecular design.

To this end, we introduce Sequential Attachment-based Fragment Embedding (SAFE), a novel
line notation for molecules. In contrast to existing methods, SAFE represents molecules as an
unordered sequence of fragment blocks. This re-imagines molecular design tasks, transforming them
into simpler sequence completion problems. Moreover, SAFE facilitates autoregressive generation,
effectively bypassing the need for intricate decoding schemes or graph-based models (see Figure 1
and Table 1). Importantly, despite these novel features, SAFE strings are backward compatible with
SMILES parsers, promising an easy integration into existing workflows. Our contributions can be
summarized as follow:

• We introduce SAFE, a novel molecular representation compatible with SMILES that repre-
sents molecules as a sequence of interconnected fragments.

• We introduce SAFE-GPT, an 87.3-million-parameter GPT-like generative model, pretrained
on a dataset of 1.1 billion SAFE strings that can be used for diverse downstream tasks. This
model is shown to be effective in various molecule generation tasks, capitalizing on SAFE’s
unique characteristics.

• We propose a new benchmark inspired by real-world drug discovery challenges to assess
pure generative models’ performance in tasks such as scaffold decoration, linker design, and
motif extension.

2 Related Works

Molecular line notation representations: The Simplified Molecular-Input Line-Entry System
(SMILES) [Weininger, 1988] is the most widely adopted molecular line notation in chemoinformatics
for its simplicity, compactness, and human readability. In contrast to the International Chemical
Identifier (InCHI) that provides global and unique identifier to molecules, SMILES are more suitable
for molecular generation tasks. However, SMILES lack robustness to minor changes and struggle with
ensuring the validity and integrity of fragments in deep learning-based molecular design. They also
underperform in molecular search and substructure matching tasks. To overcome these challenges,
alternative notations like Self-Referencing Embedded Strings (SELFIES) [Krenn et al., 2020, 2022]
have been developed. SELFIES address the robustness and validity issues in deep generative
modeling through a recursive approach, surparssing notations like DeepSmiles [O’Boyle N, 2018]
and GenSMILES [Bhadwal et al., 2023], but come at the cost of simplicity, interpretability and
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compactness. None of these notations consistently uphold the integrity of scaffolds and fragments
essential for several molecular generation tasks. A recent innovation, Group SELFIES[Cheng et al.,
2023], builds on standard SELFIES by introducing functional and chemical group tokens, to improve
compactness and chemical motif representation for molecular generative tasks. Yet, neither Group
SELFIES nor other line notations facilitate deep generative fragment-based molecule design without
extensive, task-specific engineering of training processes and molecule generation steps [Guo et al.,
2023, Fialková et al., 2021, Langevin et al., 2020, Liao et al., 2023], bespoke model architectures
[Arús-Pous et al., 2020], or goal-directed optimization frameworks. In Table 1, we contrast the
generative capabilities of various molecular line notations, including SAFE.

Deep generative design: To contextualize our work within the domain of deep generative design
we refer interested readers to comprehensive reviews provided in [David et al., 2020, Bilodeau
et al., 2022, Du et al., 2022]. Herein, we briefly describe sequence-based and graph-based deep
generative models. Sequence-based methods, originally focused on character-by-character SMILES
generation [Gómez-Bombarelli et al., 2018]. This approach provided considerable versatility but
faced challenges when dealing with fragment-based constraints. Nevertheless, recent advancements
have attempted to address this limitation by separately generating scaffolds and side chains [Liao
et al., 2023], introducing transformations derived from matched molecular pairs analysis [He et al.,
2022], and employing conditional generation [Yang et al., 2021, Bagal et al., 2021]. In the realm
of graph-based methods, our work shares similarities with [Jin et al., 2018, 2020, Maziarz et al.,
2021], which uses motifs for molecular graphs but encounter difficulties when extending design to
scaffold-based generation, linker-design and generating molecules with unseen building blocks. In
particular, these methods, while capable of assembling motifs in a tree-like structure, have difficulties
creating novel cyclic structures not seen during training.

Constrained molecular design: Notable contributions have emerged in the recent literature on
constrained molecular design. Li et al. [2018a] introduced a conditional graph generative model
that excels in producing valid molecules while offering the flexibility needed for multi-objective
optimization. MolGPT [Bagal et al., 2021], which uses a transformer-decoder architecture for the
generation of drug-like molecules, has demonstrated the capacity to conditionally control diverse
molecular properties and scaffold designs, highlighting its efficacy in crafting molecules tailored to
specific requirements. Furthermore, Multi-Constraint Molecular Generation (MCMG) [Wang et al.,
2021], combining conditional transformers, knowledge distillation, and reinforcement learning, has
shown the capability to satisfy multiple constraints during the process of molecular generation.

Scaffold-conditioned generation: Under hard scaffold constraints, Lim et al. [2020a] proposed a
graph-based model explicitly trained on scaffold and molecule pairs. Under soft scaffold constraints,
Li et al. [2018b] have considered the scaffold as part of the input, but their approach does not guarantee
its presence in the generated molecules. Arús-Pous et al. [2020] used an iterative conditional training
procedure to perform scaffold decoration with an LSTM trained on SMILES. Their work was extended
in [Fialková et al., 2021], where a reaction-driven approach for scaffold decoration was proposed.
Finally, Langevin et al. [2020] proposed a sampling algorithm that can adapt any SMILES-based
auto-regressive model to work with scaffolds. However, being trained on SMILES, their models can
neither guarantee validity of generated molecules nor the presence of the input scaffold constraint.

Table 1: Pure generative capabilities of various molecular representations. In the assessment of
the inherent generative capabilities of each molecular representation, we employ a marking system:
✓ signifies intrinsic competence, ? indicates the need for additional and intentional engineering, and
✗ suggests unverified capabilities.

Task SAFE SMILES Deep/Gen
SMILES SELFIES Group

SELFIES InChi GRAPHS

De novo design ✓ ✓ ✓ ✓ ✓ ? ✓
Linker design ✓ ? ✗ ✗ ? ✗ ?
Motif extension ✓ ? ✗ ? ? ✗ ✓
Scaffold decoration ✓ ? ✗ ✗ ? ✗ ✓
Scaffold morphing ✓ ✗ ✗ ✗ ? ✗ ?
Super structure ✓ ✗ ✗ ✗ ? ✗ ✓
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3 SAFE algorithm

In SMILES, ring structures are marked by using digits to identify the opening and closing ring atom,
thus denoting a virtual connection between the corresponding atoms. This rule also contributes to
the surjectivity of SMILES representation where multiple different SMILES correspond to the same
molecular graph. SAFE (Sequence Attachment-based Fragment Embedding) leverages this rule
to discover alternative SMILES strings that enforce an order of SMILES characters in which all
SMILES tokens belonging to the same molecular fragment are consistently arranged consecutively
(see Figure 2). As such, SAFE is a molecular line notation that reimagines SMILES as a collection
of connected fragments and remains a valid SMILES representation. Furthermore, the arrangement
of fragments within a SAFE string has no impact on the underlying molecular graph, ensuring
that common data augmentation techniques for generative models, such as randomization, remain
applicable.

N18CCCCC1.O=C6C#CC8.N67.c17ccc2ncnc4c2c1.N45.c15cccc(Br)c1 O=C(C#CCN1CCCCC1)Nc1ccc2ncnc(Nc3cccc(Br)c3)c2c1

1
1

3

1

3

2

21

SAFE SMILES

Figure 2: Example of a molecule as a SAFE and SMILES representation. The colored fragments and
their corresponding placement in each string show how the ordering of the fragments in the SAFE
representation are more easily readable and interpretable than the comparable SMILES string.

3.1 Constructing A SAFE string

The detailed process to convert from SMILES to SAFE is illustrated by Algorithm 1 and Figure 5.

Algorithm 1 Conversion of SMILES to SAFE Representation
1: procedure TOSAFE(molecule)
2: ring_digits← extract all unique ring digits from molecule
3: fragments← fragment molecule on specified bonds ▷ We use BRICS bonds here
4: Sort fragments in fragments by size in descending order
5: fragments_str ← {}
6: for each frag in fragments do
7: Add smiles of frag to fragments_str
8: safe_str ← join all elements in fragments_str with "."
9: attach_pos← extract all attachment points from safe_str

10: i←max
(
ring_digits

)
+ 1 ▷ Find the next possible ring digits

11: for each attach in attach_pos do
12: Replace attach in safe_str with i
13: Increment i by 1
14: return safe_str

It starts by extracting all unique ring digits from the associated molecule and fragmenting it on a
desired set of bonds. Our implementation utilizes the BRICS algorithm (Degen et al. [2008]), though
other bond-splitting algorithms, such as Hussain-Rea [Hussain and Rea, 2010], RECAP [Lewell
et al., 1998], or custom patterns, are equally valid. These substructures may represent synthetically
accessible building blocks that are common in drug-like compounds. The extracted fragments
are sorted by size and concatenated, using a dot character (".") to mark new fragments in the
representation, while preserving their corresponding attachment points. To construct the final SAFE
string, we iterate over the numbered attachment points and replace them by novel ring digits to
simulate fragment linking. These new ring digits create virtual connections between fragments
resulting in a set of linked fragments, as indicated by the dot character. It’s worth noting that, similar
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to canonicalization in SMILES that yields a unique representation from multiple valid forms, we
can achieve a similar outcome by enforcing a decoding order not only on SMILES characters within
fragments but also on fragment orders within the final SAFE string.

3.2 SAFE facilitates fragment-based design

The inherent sequential block structure of SAFE presents a distinctive advantage for fragment-based
design tasks. Traditionally, such endeavors primarily relied on graph-based generative models. How-
ever, with a generative model trained on SAFE strings, fragment-based design becomes remarkably
straightforward (refer to Figure 1).

Among those, we found the following particularly suitable for SAFE:

• De novo generation: which consists of sampling a new sequence from the learned token
distribution. It’s as straightforward with SAFE as with established SMILES-based auto-
regressive models used in molecular generation.

• Scaffold decoration and motif extension: which can be framed as sequence completion
and new tokens prediction to create novel fragments using SAFE. Starting with an initial
sequence corresponding to a scaffold or motif, and marked attachment points for completion,
SAFE simplifies this compared to other notations.

• Linker design and scaffold morphing: that can also be approached as sequence completion
task. Since the order of fragments in a SAFE string doesn’t affect the underlying molecular
graph, the fragments to be linked can be provided as the initial sequence for a generative
model to predict likely tokens for the missing linker.

• Superstructure generation: in this setting, the goal is to generate new molecules while
adhering to a specified substructure constraint. In the SAFE framework, we achieve this
by first generating random attachment points on the substructure to create new scaffolds,
followed by scaffold decoration.

4 Experiments

To evaluate the utility of our new molecular line notation, we developed a generative model using
a decoder-only transformer architecture. Our aim is to showcase the model’s ability, trained on
SAFE strings, to generate valid and diverse molecules in de novo scenarios. Additionally, we seek
to evaluate its effectiveness in practical, real-world scenarios where tasks like scaffold decoration,
scaffold morphing, linker design and goal-directed generation are required.

4.1 SAFE-GPT: SAFE generative model

Dataset: We began by constructing a vast chemical dataset comprising over 1 billion unlabeled
molecules for pre-training purposes. This dataset was carefully constructed by combining molecules
from the ZINC and UniChem libraries [Irwin and Shoichet, 2005, Chambers et al., 2013], resulting
in a diverse collection of 1.1 billion SMILES strings. Our dataset spans various molecule types,
encompassing drug-like compounds, peptides, multi-fragment molecules, polymers, reagents and
non-small molecules, ensuring the wide applicability of our generative model. It stands as the
largest and most diverse dataset designed specifically for deep generative molecular design. To
convert SMILES strings into SAFE strings, we utilized a combination of BRICS decomposition and a
graph partitioning method (Louvain community detection), when BRICS bonds where not available.
Molecules that couldn’t undergo successful fragmentation were excluded from our dataset. For our
experiments we do not use randomization of fragment positions or SMILES ordering due to the
already large dataset.

Tokenizer: We trained a BPE tokenizer on the full dataset. As a pre-tokenization step for the inputs,
we applied a common regular expression for SMILES syntax [Schwaller et al., 2019]. This process
yielded a vocabulary of 1180 tokens, including all special tokens (EOS, BOS, UNK, MASK, PAD).

Model architecture: Our SAFE Generative model (SAFE-GPT) is a 87.3M parameters GPT2-like
transformer. It comprises 12 layers, each with 12 attention heads per layer, and a hidden state size of
768. All other model parameters adhere to the default settings of GPT-2, as outlined in Hugging Face.
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Model training: The SAFE Model (SAFE-GPT) was trained using cross-entropy with the next token
prediction as training objective. We use the AdamW optimizer (β1 = 0.9 and β2 = 0.999) [Kingma
and Ba, 2014], a linear learning rate scheduler with 10000 warmup steps and an initial lr = 1e− 4.
We set the batch size to 100 per GPU and used 2 steps of gradient accumulation and gradient
checkpointing. The model was trained on 4 Nvidia A100 GPUs, for a maximum of 1000000 steps (7
days).

SAFE and Group SELFIES GPT-20M models on MOSES dataset: Additionally, we trained
a smaller 20M-parameters (6 layers, 8 attention heads per layer, and a hidden state size of 768)
version of SAFE-GPT (SAFE-GPT-20M), and a Group SELFIES version with the same architecture
(GSELFIES-GPT-20M) on the MOSES dataset [Polykovskiy et al., 2020] for comparative analysis.
These models were trained for 10 epochs, using similar loss functions, optimizer configurations as
SAFE-GPT but with an initial lr = 5e−4. We followed the Group SELFIES original implementation
for tokenization. For a detailed comparison between the performance of SAFE-GPT-20M and
GSELFIES-GPT-20M, refer to subsection A.2.

4.2 De novo generation results

In de novo design, our objective is to generate entirely novel compounds with desirable profiles.
Assessing a model’s ability to generate valuable compounds in such a setting, even without an opti-
mization objective is crucial, as some models may encounter problems generating valid or sufficiently
diverse and novel compounds. We used classical metrics like molecule validity, uniqueness, and
internal diversity [Polykovskiy et al., 2020, Huang et al., 2021] to assess these qualities. Validity
measures the percentage of chemically valid structures according to the RDKit’s parser, Uniqueness
is the fraction of non-duplicate molecules, and Diversity assesses the internal diversity of generated
molecules using the average pairwise Tanimoto distance (ECFP4 representation).

Table 2: Molecule generation results on 10K samples. The large pretrained SAFE-GPT model
performs similarly to models trained on the MOSES dataset while producing more diverse
molecules.

Model Repr. Valid@10K ↑ Unique@10k ↑ Diversity ↑
SAFE-GPT* SAFE 0.984 1 0.878
SAFE-GPT-20M SAFE 1 0.999 0.864
GSELFIES-GPT-20M Group SELFIES 1 0.999 0.887
GSELFIES-VAE Group SELFIES 1 0.999 0.859
GMT-SELFIES SELFIES 1 1 0.870
SELFIES-VAE SELFIES 1 0.999 0.858
CharRNN SMILES 0.975 0.999 0.856
VAE SMILES 0.977 0.998 0.856
LatentGAN SMILES 0.897 0.997 0.857
LigGPT SMILES 0.900 0.999 0.871
JT-VAE GRAPH 1 0.999 0.855

* SAFE-GPT uses a different training dataset that includes non drug-like and challenging molecules.

Table 2 showcases a comparison of SAFE-GPT with various generative models across 10,000 samples.
Despite being trained on a dataset encompassing challenging molecules, SAFE-GPT still demonstrates
impressive performance in validity, uniqueness, and diversity. Remarkably, it surpasses other models
in uniqueness and diversity, although it has a marginally lower validity score. To determine if this is
linked to the complexities in interpreting fragment connectivity, represented by digit pairs—a common
challenge also observed in SMILES-based models—we trained a smaller version, SAFE-GPT-20M,
on the MOSES dataset, as well as an alternative model with same architecture that uses Group
SELFIES representation (GSELFIES-GPT-20M). The 100% validity observed for SAFE-GPT-20M
suggests that SAFE-GPT’s slightly reduced validity is largely due to its diverse and challenging
training dataset. Compared to SAFE-GPT models, GSELFIES-GPT-20M appears to generate more
diverse molecules. However, a closer examination of its outputs (refer to subsection A.2) reveals a
tendency to create large, unstable rings in otherwise "valid" chemical graphs, leading to very low
druglikeness and synthetic accessibility.
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In Figure 6, we show a subset of randomly selected molecules generated with SAFE-GPT. This visual
representation offers readers an intuitive sense of the quality and reasonableness of the generated
molecules. Furthermore, in Figure 7, we show the distribution of selected molecular properties for
the 10,000 generated molecules.

4.3 Performance on fragment-constrained generation

De novo compound generation is only one approach for advancing a drug discovery program. In
fact, in many real-world scenarios, generative design involves modifying existing molecules in
user-defined ways rather than creating entirely new compounds. This is especially true in later stages
of drug discovery, such as hit-to-lead or lead optimization, where well-established structure-activity
relationships (SAR) are already in place. Therefore, we examined SAFE’s intended capabilities
for performing fragment-constrained generative design tasks such as scaffold decoration, scaffold
morphing, linker generation, motif extension, and superstructure generation (see subsection 3.2). To
facilitate this evaluation, we designed a benchmark that involved working with scaffolds and fragments
from 10 existing drugs. Further details about the benchmark design can be found in subsection A.4
in the Appendix. Our focus on SAFE-GPT is due to its unique capability to perform these tasks
without substantial modifications in the representation, training, or sampling process. In fact attempts
at performing those tasks with the Group SELFIES model (GSELFIES-GPT-20M) mostly resulted in
a failure to maintain the fragment constraints. Although we were able to perform the superstructure
tasks, the generated samples by the Group SELFIES model exhibit very low uniqueness (6%) and
low internal diversity (0.43).

Table 3 presents averaged validity, diversity, and uniqueness scores for 1000 molecules sampled in
each fragment-constrained design task using SAFE-GPT across all drugs. It displays the average
Tanimoto distance between the generated molecules to the original drug molecules, along with the
average SA score (Synthetic Accessibility Score) [Ertl and Schuffenhauer, 2009], which we used the
RDKit library [Landrum et al., 2023] to generate. We observe that SAFE-GPT maintains full validity
for all sampled molecules under constraints, while achieving high internal diversity and novelty
compared to the original drugs. Moreover, generated molecules exhibit a low SA score, indicating
their ease of synthesis. For a visual inspection of sample molecules from each task using Maribavir
as the starting molecule, please refer to Table 5 (subsection A.4).

Table 3: Performance on fragment-constrained generative design tasks on 1000 molecules sampled

Task Validity ↑ Diversity ↑ Uniqueness ↑ Distance ↑ SA score ↑
Linker design 1.000±0.000 0.641±0.099 0.887±0.191 0.712±0.097 3.864±0.928
Motif extension 1.000±0.000 0.681±0.089 0.923±0.179 0.772±0.101 3.750±0.651
Scaffold decoration 1.000±0.000 0.571±0.113 0.851±0.162 0.643±0.137 4.017±0.889
Scaffold morphing 1.000±0.000 0.608±0.096 0.717±0.219 0.688±0.113 3.604±0.910
Superstructure 1.000±0.000 0.715±0.059 0.929±0.106 0.812±0.063 3.868±0.919

4.4 Goal-directed generative capabilities

To effectively apply generative approaches in live drug discovery projects, it is essential to incor-
porate goal-directed generation, guiding generation of novel molecules towards specific properties.
Therefore, we follow established methodologies [Lim et al., 2020b, Seo et al., 2023] to assess the
model’s ability for goal-directed generation using simple molecular properties. More precisely, we
optimize toward specific values for key molecular properties, including Topological Polar Surface
Area (TPSA), Molecular Weight (MW), Calculated LogP (CLOGP), and Quantitative Estimation of
Drug-likeness (QED). To achieve this, we use Proximal Policy Optimization (PPO) [Schulman et al.,
2017] with Adaptive KL Penalty to train a policy for generating molecular samples with the targeted
property value. A total of 50 steps was performed with a learning rate of 1e-5 (AdamW optimizer)
and a batch size of 100. The reward objective used for this optimization was defined as follows:

reward(mol) =
1

1 + α · |prop(mol)− target|
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where prop(mol) represents the calculated molecular property value for a given sample, target signifies
the desired target value, and α is set to 0.5.

With the methodology described above, we fine-tuned agents for two target values on each molecular
property and evaluated their performance by generating 500 samples from each of them. Notably,
all generated samples were valid and unique. The property distribution of these samples is visu-
ally presented in Figure 3, where the red line within each plot represents the target value of the
molecular property that the agent was optimized towards, and the blue and orange histograms rep-
resenting the distribution of samples from different agents with distinct goals. The results depicted
in Figure 3 demonstrate that the property distribution of the generated molecules, achieved through
goal-conditioned optimization using PPO, is notably centered around the respective target values.
This outcome indicates the success of our optimization process in aligning the generated molecules
distribution with the desired property targets.

Figure 3: Property distributions of generated molecules, grouped by molecular properties, after
goal-conditioned optimization using PPO. The red line in each plot shows the target value the agent
was optimized towards.

4.5 Scaffold-Constrained optimization of CNS penetration of EGFR inhibitors

In this section, we introduce a novel and challenging optimization task aimed at improving the
Central Nervous System (CNS) penetration of EGFR Tyrosine Kinase Inhibitors. This optimiza-
tion task specifically addresses the challenge of CNS metastases in non-small cell lung cancer, a
significant concern in cancer treatment [Ahluwalia et al., 2018]. Our objective involves optimizing
the CNS-MPO score, a comprehensive metric assessing physico-chemical properties associated
with CNS penetration [Wager et al., 2016]. The CNS-MPO score ranges from 0 to 6, with higher
scores indicating better desirability, and a score above 4 typically suffices. We introduce additional
constraints to our optimization task, requiring that all generated molecules feature a scaffold that has
demonstrated activity against EGFR (see Figure 10). For an in-depth exploration of this topic, please
consult subsection A.3 in the Appendix.

Figure 4: Distribution of CNS-MPO rewards and generative metrics score (validity, internal diversity
and SA score) throughout the 25 optimization steps when sampling 100 molecules from the RL agent.

We directly optimize the CNS-MPO score using PPO for 25 steps, and the same training parameters
outlined in subsection 4.4.

Figure 4 illustrates the reward distribution obtained by sampling 100 molecules at each optimization
iteration. Our findings demonstrate that scaffold-constrained optimization, even when facing chal-
lenging metrics, can be efficiently executed with SAFE-GPT using a straightforward optimization
algorithm like PPO. As the CNS-MPO policy refines, we observe an expected reduction in the
diversity of sampled candidates, while overall validity remains robust. Intriguingly, there’s a slight
decline in the SA score across iterations, suggesting the presence of synthetically favorable yet
optimal compounds within the solution space.
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5 Discussion

This work introduces SAFE, a novel molecular representation that enhances versatility and expressive
power in molecular design while retaining compatibility with SMILES parsers. SAFE represents
molecules as sequences of interconnected fragments, offering a new paradigm in molecular descrip-
tion. It emerges as a promising alternative to existing molecular line notations, addressing their
limitations by striking a balance between simplicity and robustness, thus making it suitable for a wide
range of applications.

We also present SAFE-GPT, a pioneering generative model with 87.3 million parameters, trained on
1.1 billion diverse SAFE strings. The model’s effectiveness in various generative and optimization
tasks highlights SAFE’s unique attributes. Although we observed slightly lower molecule validity
in SAFE-GPT, this can be mostly attributed to the complexity and diversity of its training set. We
posit that a better sampling algorithm, potentially enforcing phrasal constraints [Post and Vilar, 2018]
around digit tokens, could address this issue.

The potential for fine-tuning SAFE-GPT on specialized chemical spaces opens avenues for enhancing
its utility in targeted tasks. While this work focuses on a benchmark set of 10 drugs for fragment-
constrained generation, we plan to extend this to a broader range of drugs, providing a comprehensive
evaluation of the model’s capabilities in various molecular generation scenarios. In future works,
we aim to explore SAFE’s performance in multi-property optimization (MPO) scenarios, including
the integration of a prediction head into the SAFE-GPT architecture for simultaneous molecular
generation and property prediction. Ultimately, we seek to efficiently scale SAFE-GPT to larger
models and datasets, laying the groundwork for a new generation of foundational models in drug
discovery.

Our work brings significant advancements in molecular representation and generative modeling. We
believe that these innovations will continue to drive progress in drug discovery, materials science,
and other fields where molecular design plays a pivotal role.
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A Supplementary Material

A.1 Additional figures
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Figure 5: Example encoding of a SMILES string into a SAFE representation. The left panel shows
the breaking a bond by the BRICS algorithm. The middle panel shows the addition of attachment
points and the ring closing bond connecting the two fragments. The right panel shows the reattached
fragments and the final SAFE representation.

Figure 6: Randomly selected samples of de novo generated molecules using SAFE.

Figure 7: The molecular property distribution for 10,000 molecules generated with SAFE-GPT
demonstrates that SAFE-GPT can generate molecules with diverse physicochemical properties,
spanning beyond traditional drug-like molecules.

A.2 Comparison between SAFE and Group SELFIES

Both SAFE and Group SELFIES are molecular string representations capable of encoding fragments.
In SAFE, fragments are denoted in groups of SMILES tokens separated by dots, while in Group
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SELFIES, fragments are tokens from a pre-defined grammar of chemical motifs (such as a token
representing a toluene fragment). To compare their performance, we trained SAFE-GPT-20M and
GSELFIES-GPT-20M on the MOSES dataset and evaluated them in de novo molecule generation. We
generated 10,000 molecules from each model and analyzed the distribution of molecular properties
within these two sets to assess their efficacy.

As seen in Figure 8, molecules generated by SAFE-GPT-20M tend to exhibit higher QED (Quanti-
tative Estimate of Drug-likeness) scores, indicating higher degree of drug-likeness, and lower SA
(Synthetic Accessibility) scores, indicating better synthetic feasibility.
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Figure 8: The molecular property distribution of molecules generated with SAFE-GPT-20M compared
against molecules generated with GSELFIES-GPT-20M.

We further investigate the differences in the molecules generated by the two models by comparing the
distributions of the largest ring size of each molecule. As shown on Figure 9, the model trained using
the Group SELFIES notation frequently generate molecules with large and unstable ring structures.

We did not make further experiments and comparisons for the fragment-constrained generation tasks
(such as linker design and scaffold decoration) as non-trivial adaptations would have to be made to
the Group SELFIES notation, training process and molecular sampling, which could be explored in
future works.

7 8 9 10 11 12 13 14 15 16 17 18 19 20
property

0

100

200

300

400

500

Co
un

t

Molecule Largest Ring Size
model

SAFE-GPT-20M
GSELFIES-GPT-20M

(a) (b)

Figure 9: Distribution of the largest ring size (> 6 atoms) count in molecules generated with
SAFE-GPT-20M compared against molecules generated with GSELFIES-GPT-20M. (a) GSELFIES-
GPT-20M tends to generate molecules with ring sizes exceeding 8 atoms more frequently. (b)
Examples of large ring molecules produced by GSELFIES-GPT-20M, illustrating their tendency
towards non-druglike and chemically unstable structures.

A.3 Optimizing CNS penetration for EGFR inhibitors

Most existing small molecule treatments struggle to effectively penetrate the central nervous system
(CNS) due to difficulties in breaching the blood-brain barrier (BBB). Notably, three well-known
EGFR inhibitors (afatinib, gefitinib, and erlotinib), all sharing the same scaffold, exhibit generally
low CNS penetration rates, with reported values respectively falling below 1%, in the range of
1%–3%, and in the range of 3%–6%. The ability of a small molecule to penetrate the CNS is often
associated with specific physicochemical properties such as CLogD, TPSA, and Molecular Weight.
Various scoring systems have been developed to assess this ability. Notably, our findings indicate a
correlation between the CNS MPO score [Wager et al., 2016] and the experimental penetration rates
for these three EGFR inhibitors.

14



Afatinib
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Gefitinib
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increasing CNS penetration

Figure 10: Existing EGFR inhibitors and their CNS profile

A.4 Fragment-constrained design results

We uses a set of 10 drugs, including Cyclothiazide, Maribavir, Spirapril, Baricitinib, Eliglustat,
Erlotinib, Futibatinib, Lesinurad, Liothyronine, and Lovastatin. These drugs were chosen as
the basis for our fragment-constrained generative design tasks. From each drug, we extracted the
main scaffold with attachment points, fragments that serve as side chains, a starting motif, and a core
substructure. These components were then respectively used as input for scaffold decoration, linker
design / scaffold morphing, motif extension, and superstructure generation, each with its specific
objective. The details of the selected drugs and their corresponding inputs for each task can be found
in Table 4. It should be noted that linker design and scaffold morphing are two very similar tasks that
share the same inputs. In our implementation, the only difference between them lies in the constraints
imposed during sampling. For linker design, we employ a constrained beam search to ensure the
presence of every fragment in the final molecules. In contrast, for scaffold morphing, new molecules
are generated from each fragment with connectivity constraints, after which the scaffold is inferred
and linked to the other fragments.
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Table 4: List of 10 known drugs and corresponding inputs used by SAFE-GPT for the fragment-
constrained benchmark.

Name Structure Linker Design* Scaffold
Decoration

Motif
Extension Superstructure

BARICITINIB

CYCLOTHIAZIDE

ELIGLUSTAT

ERLOTINIB

FUTIBATINIB

LESINURAD

LIOTHYRONINE

LOVASTATIN

MARIBAVIR

SPIRAPRIL

* the linker design and scaffold morphing task share the same input fragments.
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Table 5: Examples of generated samples under fragment-constraints for the Maribavir structure

Task Generated samples

Linker design

Scaffold morph-
ing

Motif extension

Scaffold decora-
tion

Superstructure
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