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Abstract

Reinforcement learning (RL) is a powerful approach for acquiring a good-
performing policy. However, learning diverse skills is challenging in RL due
to the commonly used Gaussian policy parameterization. We propose Diverse Skill
Learning (Di-SkilL), an RL method for learning diverse skills using Mixture of
Experts, where each expert formalizes a skill as a contextual motion primitive.
Di-SkilL optimizes each expert and its associate context distribution to a maximum
entropy objective that incentivizes learning diverse skills in similar contexts. The
per-expert context distribution enables automatic curricula learning, allowing each
expert to focus on its best-performing sub-region of the context space. To over-
come hard discontinuities and multi-modalities without any prior knowledge of
the environment’s unknown context probability space, we leverage energy-based
models to represent the per-expert context distributions and demonstrate how we
can efficiently train them using the standard policy gradient objective. Di-SkilL
can learn diverse and performant skills on challenging robot simulation tasks.

1 Introduction

Solving tasks in diverse manners enables agents to better adapt to unknown and challenging situations.
This diverse skill set is beneficial in many scenarios, such as playing table tennis, where applying
different strikes (e.g. backhand, forehand, or smashing) to similar incoming balls is advantageous
because the strike is less predictable for the opponent. Similarly, in scenarios with environmental
changes where learned skills might be infeasible over time (e.g. grasping an object while avoiding
obstacles), diverse skills provide additional adaptivity by discarding these invalid skills and relying
on alternatives. This property makes them superior because complete relearning of skills is avoided.

Acquiring these diverse skill sets requires learning a policy that can represent multi-modality in the
behavior space. Recent advances in supervised policy learning have demonstrated the potential of
training high-capacity policies capable of capturing multi-modal behaviors [1, 2, 3, 4]. These policies
exhibit remarkably diverse skills and outperform state-of-the-art methods. However, Reinforcement
Learning (RL) is essential to acquire skills in cases where no expert data is available, or data collection
is expensive. Discovering multi-modal behaviors using RL is challenging since the policies usually
rely on Gaussian parameterization and thus can only discover a single behavior.

We consider training agents that possess diverse skills, from which they can select to tackle a specific
task differently. For capturing these multi-modalities in the agent’s behavior space, we employ highly
non-linear Mixture of Experts policies. Furthermore, we use automatic curriculum learning for
efficient learning, enabling each expert to focus on a specific sub-region of the context space it favors.
We introduce this curriculum shaping by optimizing for an additional per-expert context distribution
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Figure 1: The Sampling Procedure for Di-SkilL. During Inference the agent observes contexts
c from the environment’s unknown context distribution p (c). The agent calculates the gating
probabilities π(o|c) for each context and samples an expert o resulting in (o, c) samples marked in
blue. During Training we first sample a batch of contexts c from p (c), which is used to calculate
the per-expert context distribution π(c|o) for each expert o = 1, ...,K. The π(c|o) provides a higher
probability for contexts preferred by the expert π(θ|c, o). To enable curriculum learning, we provide
each expert the contexts sampled from its corresponding π(c|o), resulting in the samples (o, cT )
marked in orange. In both cases, the chosen π(θ|c, o) samples motion primitive parameters θ for each
context, resulting in a trajectory τ that is subsequently executed on the environment. Before execution,
the corresponding context, e.g., the goal position of a box, needs to be set in the environment. This is
illustrated by the dashed arrows, with the context in blue for inference and orange for training.

that is used to sample contexts from the preferred regions to train the corresponding expert. Automatic
curriculum learning has proven to increase performance by improving the exploration of agents,
particularly in sparse-rewarded environments [5].

We explore Contextual Reinforcement Learning in which a continuous-valued context describes the
task [6]. In the example of robot table tennis (see Fig. 3a), a context includes the desired ball landing
positions on the opponent’s tableside as well as physical aspects, such as the incoming ball’s velocity
or friction properties. In continuous context spaces, the curriculum shaping per-expert context
distributions are often parameterized as Gaussian [7, 8]. However, the agent is usually unaware
of the context bounds, which makes additional techniques necessary to constrain the distribution
updates to stay within the context region [8]. Instead, we employ energy-based per-expert context
distributions, which can be evaluated for any context and effectively represent multi-modality in the
context space. Importantly, our model is trained solely using context samples from the environment
that are inherently valid. Our approach eliminates the need for additional regularization of the context
distribution and does not require prior knowledge about the environment. Due to the overlapping
probability distributions of different per-expert contexts, our resulting mixture policy offers diverse
solutions for similar contexts with a high probability.

Recent research in RL has explored Mixture of Experts policies, but often these methods either train
the mixture in unsupervised RL settings and then select the best-performing expert in the downstream
task [9, 10] or train linear experts, limiting their performance [11, 8]. Our inspiration draws from
recent advancements that have achieved diverse skill learning with a similar objective. However,
their approach involves linear expert models with Gaussian context distributions. It requires prior
knowledge of the environment to design a penalty term when the algorithm samples contexts outside
the environment’s bounds. These factors restrict the algorithm’s performance and applicability when
defining the context bounds requires knowledge, such as forward kinematics in robotics.

To summarize, we introduce a novel RL method for learning a Mixture of Experts policy that we refer
to as Di-SkilL – Diverse Skill Learning (see Fig. 1). Our method can generalize to the continuous
range of contexts defined by the (unknown) environment’s context distribution while learning diverse,
and non-linear skills for solving a task defined by a specific context. Importantly, our approach
operates without any assumptions about the environment. We show how we can learn multi-modal
context distributions by training an energy-based model solely on context samples obtained from
the environment. On multiple sophisticated simulated robot tasks, we demonstrate that we can learn
diverse skills while performing on par or better than baselines.
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2 Preliminaries

Contextual Episode-based Policy Search (CEPS). We consider learning diverse skills in the CEPS
framework in which the continuous-valued context c ∈ C defines the task, e.g. a goal location
to reach. The context c ∼ p (c) is observed from the agent and is drawn from the environment’s
unknown context distribution p (c) at the beginning of each episode. The agent’s search distribution
π(θ|c) maps the context c to continuous-valued controller parameters θ ∈ Θ, which we represent as
motion primitives (MP) [12, 13, 14] (see Appendix C). We denote π(θ|c) as the agent’s policy as
common in the literature and optimize it by maximizing the objective

max
π(θ|c)

Ep(c)

[
Eπ(θ|c)[R(c,θ)]

]
, (1)

where R(c,θ) denotes the return of a whole episode after executing the MP parameter θ in context c.
Due to the direct return optimization, CEPS does not require the Markov assumption as in common
MDPs and is therefore specifically suitable for tasks where the formulation of a Markovian reward
function is difficult.

Mixture of Experts (MoE) Policy for Curriculum Learning. Due to their ability to represent
multi-modality, MoE policies are a favorable choice in diverse skill learning. The common MoE
policy π(θ|c) =

∑
o π(o|c)π(θ|c, o) [15] contains the gating distribution π(o|c) that is assigning

probabilities to each expert o given context c during inference. However, to enable automatic
curriculum learning during training, a learnable distribution π (c) =

∑
o π(c|o)π(o) is required that

can explicitly choose and set context samples in the environment, so each expert o can decide on
which contexts it favors training [8]. Using Bayes’ rule π(o|c) = π(c|o)π(o)/π (c) the MoE is
rewritten as

π(θ|c) =
∑
o

π(c|o)π(o)
π (c)

π(θ|c, o). (2)

The per-expert context distribution π(c|o) can now be optimized and allows the expert o to choose
contexts c it favors. We model each π(c|o) as an energy-based model and each π(θ|c, o) as a neural
network returning a Gaussian distribution for a context c (see Fig. 1 and Appendix C). The prior π(o)
is set to a uniform distribution throughout this work.

Self-Paced Diverse Skill Learning with MoE. Due to its ability to represent multi-modality and
automatic curriculum learning, the MoE model in Eq. 2 is a suitable policy representation for
discovering diverse skills in the same context-defined task. For explicit optimization of this policy,
we are using the KL-regularized Maximum Entropy RL objective in CEPS [8]

max
π(θ|c),π(c)

Eπ(c)

[
Eπ(θ|c) [R(c,θ)] + αH [π(θ|c)]

]
− βKL (π (c) ∥ p (c)) . (3)

The KL-term incentivizes the context distribution π (c) to match the environment’s distribution p (c)
and can be prioritized during optimization by choosing the scaling parameter β appropriately. The
entropy of the mixture model incentivizes learning diverse solutions [8] and can be prioritized with a
high scaling parameter α. It is well-known that this objective is difficult to optimize for MoE policies
and requires further steps to obtain a tractable lower-bound [8]

max
π(θ|c,o)

Eπ(c|o),π(θ|c,o) [R(c,θ) + α log π̃(o|c,θ)] + αEπ(c|o) [H [π(θ|c, o)]] (4)

for the expert π(θ|c, o) updates and a lower-bound for the per-expert context π(c|o) updates

max
π(c|o)

Eπ(c|o) [Lc(o, c) + (β − α) log π̃(o|c)] + βH (π(c|o)) , (5)

where Lc(o, c) = Eπ(θ|c,o)
[
R(c,θ)+α log π̃(o|c,θ)

]
+αH [π(θ|c, o)]. The variational distributions

π̃(o|c,θ) = πold(o|c,θ) and π̃(o|c) = πold(o|c) arise through the decomposition and are responsible
for learning diverse solutions and concentrating on context regions with small, or no support by π (c)
[8]. In every iteration, the variational distributions are updated in closed form to tighten the bounds.
Details of the equations are in the Appendix A.
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3 Related Work

Contextual Episode-based Policy Search (CEPS). CEPS is a black-box approach to reinforcement
learning (RL), in which the search distribution is the agent’s policy that maps the contexts to controller
parameters, typically represented as motion primitives [12, 13, 14]. One of the noteworthy advantages
of CEPS lies in the independence of assumptions such as the Markovian property in common MDPs.
This characteristic renders it a versatile methodology, particularly well-suited for addressing a diverse
array of intricate tasks where the formulation of a Markovian reward function is difficult [16].
CEPS has been explored by applying various optimization techniques, including Policy Gradients
[17], Natural Gradients [18], stochastic search strategies [19, 20, 21], and trust-region optimization
techniques [22, 11, 23], particularly in the non-contextual setting. Researchers extended the setting
by incorporating linear [23, 21] and non-linear contextual adaptation [16, 24], leveraging the recently
introduced trust-region layers for neural networks [25]. The work by [24] additionally introduces
step-wise updates to improve sample-efficiency. All previously mentioned methods learn single-mode
policies and do not address acquiring diverse skills leveraging automatic curriculum learning.

Curriculum Reinforcement Learning. Curriculum reinforcement learning can potentially increase
the performance of RL agents, especially in sparse-rewarded environments [26] in which exploration
is fundamentally difficult. Adapting the environment based on the agent’s learning process has been
proposed by several works already, e.g. automatically generating sets of tasks or goals to increase the
learning speed of the agent [27, 28, 29, 30, 31, 32], or generating a curriculum by interpolating an
auxiliary and known distribution of target tasks [5, 7, 33, 34]. Works propose sampling a training
level from a prespecified set of environments [35], or unsupervised environment design [36, 37] based
on the agent’s learning process. The work by [38] proposes improving the approximation of the state-
action value function by representing it as a sum of residuals acquired in previous curriculum tasks.
None of the above methods apply automatic curriculum learning on an RL problem with an MoE
policy, except for the work in [8]. However, they parameterize the curriculum distribution as Gaussian,
suffering from low representation capacity and requiring knowledge about the environment’s context
distribution. Instead, we leverage energy-based models to avoid these shortcomings.

RL with Mixture of Experts (MoE). In [39] using an MoE policy representation and a novel gradient
estimator to calculate the gradients w.r.t. the MoE parameters is proposed. In [40] a model-based
RL approach to train latent variable models is presented. The work presents a novel lower bound
for training the multi-modal policy parameterization. Recently, in [41] an MoEs for learning a
shared representation in multi-task reinforcement learning is presented, whereas works proposed
training interpretable MoEs in continuous RL [42]. These methods differ from our work in that they
are not categorized in the CEPS framework, or are model-based variants and do not use automatic
curriculum learning techniques. In the CEPS framework, RL with MoE policies has also been
explored [11, 43], in which an MoE model with linear experts without automatic curriculum learning
is learned. Additional constraints need to be added to enforce diversity in the experts. In [44] a
mixture model is used to perform RL, however, pre-recorded demonstration data is required to train
the mixture model and no curriculum learning is considered. Related method to MoEs, Product of
Experts was used in [45, 46] for motion generation. The work in [8] also uses MoE policies and relies
on the maximum entropy objective as we do, however, their method only considers linear experts
with Gaussian per-expert distributions which limits the performance and consequently requires many
experts to solve a task. Moreover, it requires environment knowledge to hand-tune a punishment term
to keep the optimization of the per-expert context distributions within the context bounds.

We discuss related works in Quality-Diversity Optimization and Unsupervised RL in the App. B.

4 Diverse Skill Learning

The common Contextual Episodic Policy Search (CEPS) loop [6] with a Mixture of Experts (MoE)
policy representation learning observes a context c, and then selects an expert o that subsequently
adjusts the controller parameters θ given (c, o). We consider the same process during testing time, as
shown in blue color in Fig. 1 (see also Fig. 7a). However, the procedure changes during training for
Di-SkilL as automatic curriculum learning requires that the agent can determine which context regions
it prefers to focus on. In this case, we observe a batch of context samples from the environment’s
context distribution p (c). For each of these samples, every per-expert context distribution π(c|o)
calculates a probability, which results in a categorical distribution over the contexts c. We use these
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probabilities to sample contexts cT for the corresponding expert o resulting in (cT , o) sample pairs
(see orange parts in Fig. 1 and Fig. 7b). Each chosen expert o provides Gaussian distributions over
the motion primitive parameters θ by mapping the contexts cT to mean vectors µθ and covariance
matrices Σθ using a parameterized neural network. We can now sample motion primitive parameters
θ from these Gaussian distributions to generate trajectories τ using a motion primitive generator.
These trajectories are subsequently executed on the environment (green color in Fig. 1) and an
episode return R(θ, cT ) is observed and used for updating the MoE (see Section 4.2). Yet, there exist
several issues for a stable overall training of the MoE model, which requires special treatment for
each π(c|o) and π(θ|c, o). Details (algorithmic and model specific) can be found in the Appendix C.

4.1 Energy-Based Model For Automatic Curriculum Learning

To illustrate these issues, we consider a bounded, uniformly distributed two-dimensional environment
context distribution p(c) (see example in the Appendix C in Fig. 7c). It is challenging for a Rein-
forcement Learning (RL) agent to automatically learn its curriculum π(c|o) within the valid context
space [8]. Hard discontinuities such as steps often naturally arise in p (c) due to the environment’s
finite support in real-world environments. For instance, in an environment where the agent’s task is
to place an object in specific positions on a table, the probability of observing a goal position outside
the table’s surface is zero. This implies that a large subset of the context space has no probability
mass. Therefore, exploration in these regions might be difficult if there is no guidance encoded in the
reward. Even if it is guaranteed that π(c|o) only samples valid contexts, it still needs to be able to
represent multi-modal distributions, such as illustrated in Fig. 7d. This multi-modality can be present
because of environmental circumstances or simply if experts π(θ|c, o) prefer contexts in spatially
apart regions. For the object placing example, this could correspond to regions on the table where the
object cannot be placed due to obstacles or holes. We therefore require π(c|o) being able to represent
i) complex distributions, ii) multi-modality and iii) only explore within the valid context bounds of
p (c). We propose parameterizing each per-expert distribution π(c|o) as an energy-based model

π(c|o) = exp(ϕo(c))/Z (6)

to address the issues i) and ii), where the energy function ϕo is a per-expert learnable neural network.
Energy-based models (EBMs) have shown to be capable of representing sharp discontinued functions
and multi-modal distributions [47]. Yet, they are hard to train and sample from due to the intractable
normalizing constant Z =

∫
c
exp(ϕo(c))dc. We can circumvent and address these issues iii) by

approximating the normalizing constant with contexts c ∼ p (c) as Z ≈
∑N

i=1 exp(ϕo(ci)). This
approximation is justified as we can sample from p (c) by simply resetting the environment without
execution. Additionally, the EBM will encounter important parts of the context space during the
training by resampling a large enough batch of contexts c ∼ p (c) in each iteration. Each expert
can therefore sample preferred contexts from the current batch of valid contexts by calculating the
probability for each of the contexts using π(c|o) as parameterized in Eq. 6. Updating the parameters of
the EBM can readily be addressed by the standard RL objective for diverse skill learning, as described
in the next section. It should be noted that explicit models such as Gaussians, or Normalizing Flows
[48] can also be used to parameterize π(c|o), but their support cannot be easily restricted to a bounded
space with hard discontinuities defined by the environment. Therefore, sampling from an explicit
π(c|o) can easily generate invalid contexts, especially if the valid distribution has hard non-linearities.

4.2 Updating the Mixture of Experts Model

We update each expert π(θ|c, o) and its corresponding per-expert context distribution π(c|o) by
maximizing the objectives in Eq. 4 and in Eq. 5, respectively. These decomposed objectives allow
us to independently update both distributions and to retain the properties of diverse skill learning
from the objective in Eq. 9. However, updating the distributions is not straightforward due to the
bi-level optimization that leads to a dependency on both terms. This is particularly challenging for
the expert π(θ|c, o) as the sampled contexts c can drastically change from one iteration to another if
π(c|o) changes too aggressively. The same applies for updating π(c|o) as calculating the objective
requires calculating an integral over θ under the expectation of π(θ|c, o). For a stable update for both
distributions, we employ trust-region updates to restrict the change of both distributions from one
iteration to another. These updates have been shown to improve the learning process [49, 50, 51, 25].
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Figure 2: a) High-probability regions of the individual per-expert context distributions π(c|o), where
a color represents an expert o. The red circle marks the context space of goal-reaching positions for
the 5-Link Reacher’s tip. The specialization of π(c|o) is induced by π̃(o|c). b) Different π(c|o) need
to overlap for learning diverse skills. This overlapping is induced by the entropy bonus H [π(c|o)]. c)
Different tip trajectories sampled in the same contexts. The trajectories and the end joint constellation
are in the same color. The diversity in the parameter space is induced by π̃(o|c,θ). d) Visualization
of the 5-Link Reacher task (5LR).

Expert Update. We parameterize each expert π(θ|c, o) with a single neural network and update
them by a trust-region constrained optimization

max
π(θ|c,o)

Eπ(c|o),π(θ|c,o) [R(c,θ) + α log π̃(o|c,θ)] + αEπ(c|o) [H [π(θ|c, o)]] (7)

s.t. KL (π(θ|c, o) ∥ πold(θ|c, o)) ≤ ϵ ∀ c ∈ C,

where the KL-bound ensures that the expert π(θ|c, o) does not differ too much from the expert
πold(θ|c, o) from the iteration before for each context c. The entropy bonus H [π(θ|c, o)] incentivizes
π(θ|c, o) to fully cover the parameter space while avoiding (θ, c) regions that are covered by other
experts o. The latter is guaranteed by π̃(o|c,θ) which rewards (θ, c) regions that can be assigned to
expert o with high probability. We efficiently update the experts using trust region layers [25, 16].

Per-Expert Context Distribution Update. We consider the objective with the augmented rewards
as shown in Eq. 5 for updating each context distribution π(c|o). We can not apply the trust region
layers [25] in this case, as π(c|o) is a discrete distribution over the context samples ci parameterized
by the EBM. Yet, we can still use PPO [51] for updating π(c|o) and simplifying our objective, as we
can now calculate many terms in closed form. For this, we rewrite the objective as

max
π(c|o)

∑
ci∼p(c)

π(ci|o)Lc(o, ci) +
∑

ci∼p(c)

π(ci|o)
(
(β − α) log π̃(o|ci)− β log π(ci|o)

)
(8)

and observe that all terms in the second sum can be calculated in closed form. The first term is approx-
imated by resampling the contexts using π(c|o) since computing Lc(o, c) requires calculating the
integral over θ under the expectation of π(θ|c, o) as Lc(o, c) = Eπ(θ|c,o)

[
R(c,θ) + α log π̃(o|c)

]
+

αH [π(θ|c, o)]. This expectation can only be estimated for context vectors that are actually chosen
by the component. The entropy bonus in Eq. (8) incentivizes covering of the context space, while
focusing on context regions that are not, or only partly covered by other options. The latter is
guaranteed by π̃(o|c) which assigns a high probability if expert o can be assigned to the context c.

4.3 How does Diversity Emerge?

From the Eq. 7 and Eq. 8 it is clear that diverse behaviors, represented by the experts, emerge from
the interplay of those terms in Eq. 7 and Eq. 8. We visually demonstrate the meaning of the individual
terms on the 5-Link Reacher task (see Fig. 2d). The Reacher needs to reach a goal position in the
two-dimensional space with its tip. In this task, a context represents the goal position within the
context space, visualized as a red circle around the reacher’s fixed first joint (Fig. 2a). We trained
Di-SkilL with 50 experts. In Fig. 2a we show the high-probability regions of the individual per-expert
context distributions π(c|o), by setting the color intensity proportional to this probability. Each color
represents an individual expert o. Each π(c|o) concentrates on a sub-region of the context space such
that the corresponding π(θ|c, o) becomes an expert there. This specialization is incentivized by the
term π̃(o|c) in Eq. 8. However, for learning diverse behaviors for the same context regions, it is
necessary that the per-expert context distributions π(c|o) overlap, which is motivated by the entropy
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Figure 3: a) (left top) Hopper Jump (HJ). (Top right) Box Pushing with Obstacle (BPO). (Bottom Left)
Robot Mini Golf (MG). (Bottom right) Robot table tennis (TT). b) Ablation studies, showcasing the
need for automatic curriculum learning for Di-SkilL. BBRL and Di-SkilL can solve TT environment
decently. Di-SkilL’s variants without curriculum learning struggle to achieve a good performance.
SVSL needs more samples to achieve around 80% success rate, suffering under the linear experts. c)
Performance of Di-SkilL, BBRL, LinDi-SkilL, and PPO on 5LR with sparse in-time rewards.

term H [π(c|o)] in Eq. 8. These overlapping context regions are visualized in Fig. 2b, where we
count how many experts o are active for each context. The figure shows that more experts prefer
regions close to the initial position of the reacher, indicating that these contexts are easier to solve.
Despite the closeness to the reacher’s initial position, the agent does not have to exert much energy to
reach these points. Indeed, both aspects are present in the task’s reward function (see App. D for
details), explaining why the left half plane of the context space has fewer overlapping. However, the
learned MoE has two or more experts active in most parts of the context region. These experts differ
in their behavior (see Fig. 2), which is motivated by the terms π̃(o|c,θ) and H [π(θ|c, o)] in Eq. 7.

5 Experiments

In our evaluations, we compare Di-SkilL against the baselines BBRL [16] and SVSL [8]. Whenever
the environment satisfies the Markov properties, we additionally compare against PPO [51]. BBRL
and SVSL are suitable baselines as they are state-of-the-art CEPS algorithms that can learn complex
skills. BBRL can learn highly non-linear policies leveraging trust region updates. SVSL learns
a linear Mixture of Experts (MoE) model and can capture multi-modality in the behavior space.
We consider challenging robotic environments with continuous context and parameter spaces. The
considered environments either have a non-Markovian reward function, i.e. require retrospective data
for calculation, or temporally sparse reward functions increasing the learning complexity.

Environments. Environment visualizations are in Fig. 3a. Further information is in Appendix C.

Table Tennis (TT). A 7-degree of freedom (DoF) robot has to learn fast and precise motions to smash
the ball to a desired position on the opponent’s side. The 4-dim. context consists of the incoming ball’s
landing position and the desired ball’s landing position on the opponent’s side. The TT environment
requires good exploratory behavior and has a non-markovian reward structure making step-based
approaches infeasible to learn useful skills [16].

Table Tennis Hard (TT-H). We extend the TT environment to a more challenging version by varying
the ball’s initial velocity. This additionally increases the learning complexity, as the agent now needs
to reason about the physical effects of changed velocity ranges and requires improved adaptability.

5-Link Reacher (5LR). The 5-Link reacher has to reach a goal position within all quadrants in the
context space (see Fig. 2a) as opposed to the version in [16], where the multi-modality in the behavior
space (see Fig. 2c) was avoided by constraining the context space to the upper half of the context
space. Additionally, the time-sparse reward makes this task a challenging benchmark.

Hopper Jump (HJ). Presented in [16] in which the Hopper [52] is tasked to jump as high as possible
while landing in a goal position. The HJ has a non-markovian reward, making step-based RL methods
unfeasible to learn useful policies [16].
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Figure 4: Performance on the a) HJ b) BPO, c) TT-H, and d) MG tasks. a) Di-SkilL performs on
par with BBRL on the HJ task. b) The multi-modality introduced by the obstacle in the box pushing
task leads to worse performance for BBRL than for Di-SkilL and LinDi-SkilL. PPO suffers under
the time-sparse reward setting. c) BBRL converges faster, Di-SkilL achieves a higher success rate
eventually. d) Di-SkilL outperforms the baselines on the MG task. LinDi-SkilL performs poorly on
the non-Markovian rewarded tasks TT-H and MG, indicating that non-linear policies are beneficial.

Box Pushing with Obstacle (BPO). A 7DoF robot is tasked to push a box to a target position and
rotation while avoiding an obstacle. In addition to the time-spare reward [16], our version includes
the obstacle and considers a larger range of the box’s target position.

Mini Golf (MG). The 7DoF robot has to hit the ball such that it passes the tight goal while avoiding
the obstacles (static, varying). The context is the obstacle’s, the goal’s, and the ball’s position. The
env. has a non-markov. reward, making step-based RL methods unfeasible to learn useful policies.

5.1 ACL Benefits

Automatic Curriculum learning (ACL) enables Di-SkilL’s experts to shape their curriculum by
explicitly sampling from preferred context regions. We analyze the importance of this feature by
comparing the performance of variants of Di-SkilL on the table tennis (TT) task. For both variants
Di-SkilLV2 and Di-SkilLV3 we disable ACL by fixing the term induced by the variational distribution
to log π̃(o|c) = 0 in Eq. 8 and by setting the entropy scaling parameter β = 2000. Ignoring the
variational distribution π̃(o|c) during training eliminates the intrinsic motivation of the per-expert
context distribution π(c|o) to focus on sub-regions in the context space that are not, or only partially,
covered by any other π(c|o) (Section 4.3). Setting β = 2000 incentivizes each π(c|o) to maximize its
entropy, resulting in a uniform distribution in the environment’s bounded context space. For Di-SkilL
we keep the ACL and set β = 4. We provide the same number of 50 context-parameter samples per
expert for Di-SkilLV2 and Di-SkilL, whereas Di-SkilLV3 receives 260 samples per expert in each
iteration. All variants possess 5 experts. In Fig. 3b we report the mean success rates and the 95%
confidence interval for each method on at least 4 seeds. Di-SkilLV2 converges to a much smaller
success rate, and Di-SkilLV3 needs more samples to reach the level of Di-SkilL. BBRL and Di-SkilL
achieve high success rates, while BBRL performs slightly better. SVSL shows worse performance,
even though the model has 20 experts. The results indicate that ACL is an essential feature of Di-SkilL
ensuring that Di-SkilL can learn high-perfroming skills with fewer samples. Moreover, SVSL’s
poor performance shows that Gaussian parameterized per-expert context distributions that require
additionally tuned punishment terms for guided updates are together with linear experts incapable of
achieving a satisfying performance.

5.2 Analyzing the Performance and Diversity

For a detailed analysis, we have evaluated all methods on 24 seeds for each environment and
algorithm and report the interquantile mean (IQM) with a 95% stratified bootstrap confidence interval
as suggested by [53]. Please note that SVSL requires designing a punishment function to guide
the context samples in the environment’s valid context region, which makes its application difficult,
especially if the context influences the objects’ physics. We therefore propose comparing against
LinDi-SkilL instead of SVSL. LinDi-SkilL also has linear experts but benefits from Di-SkilL’s
energy-based per-expert context distribution π(c|o) eliminating the need for punishment functions.

The performance curve of the HJ task in Fig. 4a shows that Di-SkilL performs on par with BBRL,
while BBRL converges slightly faster. Both methods can solve the task, indicating that the task doesn’t
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Figure 5: Di-SkilL’s Diverse Skills for the Box Pushing with Obstacle BPO Task. The figures
visualize diverse solutions to the same contexts c on a table (black rectangle). The red, thick rectangle
represents the obstacle. The 7DoF robot is tasked to push the box (shown in different colors for each
solution found) to the goal box position (red rectangle with a green dot) and align the blue edges to
match the orientation. We visualized successful box trajectories for each sampled skill. The diversity
learned in the parameter space results in different box trajectories ranging in position and orientation.

goal
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goal
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goal
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Figure 6: Di-SkilL’s Diverse Skills for the TT-H task. We fixed the ball’s desired landing position
and varied the serving landing position and the ball’s initial velocity.

require diversity. LinDi-SkilL achieves a similar performance as BBRL and Di-SkilL but needs more
samples to converge. We provide additional analysis of this task in Appendix E. Fig. 4b shows
the performance curves on the BPO task. The obstacle introduces multi-modality in the behavior
space. This multi-modality explains why DiSkilL and LinDi-SkilL outperform BBRL, while Di-SkilL
achieves the highest success rate. PPO’s poor performance indicates that time-correlated exploration
as used with motion primitives is effective in sparse rewarded tasks. A similar performance behavior
can be observed in the 5LR task. In Fig. 3c we report the achieved returns and observe that Di-SkilL
outperforms BBRL due to the ability to capture multi-modal behaviors (e.g. reaching from different
sides) while PPO suffers from the sparse rewarded setting. LinDi-SkilL’s linear experts cause slow
convergence, indicating that more experts are needed to effectively cover the whole context space.
For both tasks, Di-SkilL’s diverse skills in the parameter space θ induce different behaviors. Fig. 5
shows diverse box trajectories to several fixed goal and obstacle positions in the BPO task, whereas
Fig. 2c shows different tip trajectories to several fixed goal positions in the 5LR task.

The non-Markovian rewarded tasks (TT-H and MG) show that non-linear policies as learned by
BBRL and Di-SkilL are beneficial. Di-SkilL and BBRL perform similarly well on the TT-H task (see
Fig. 4c), where Di-SkilL achieves a slightly higher end success rate compared to BBRL. However,
there is a clear performance gap between Di-SkilL and BBRL on the MG task (see Fig. 4d) with
Di-SkilL outperforming BBRL. In both tasks, LinDi-SkilL performs worse than Di-SkilL and BBRL
indicating that linear experts are insufficient for solving these tasks. Di-SkilL can discover diverse
striking styles in the table tennis task (TT-H). Fig. 6 shows some of these learned skills. Additional
strike visualizations are in Appendix E.

6 Conclusion and Future Work

We proposed a novel method for learning diverse skills using a contextual Mixture of Experts.
Each expert learns its curriculum by optimizing for a per-expert context distribution π(c|o). We
have demonstrated challenges that arise through enabling automatic curriculum learning (ACR)
and proposed parameterizing π(c|o) as energy-based models (EBMs) to address these challenges.
Additionally, we provided a methodology to efficiently optimize these EBMs. We also proposed
using trust-region updates for the deep experts to stabilize our bi-level optimization problem. In an
ablation, we have shown that ACR is necessary for efficient and performant learning. Moreover, in
sophisticated robot simulation environments, we have shown that our method can learn diverse skills
while performing on par or better than the baselines. Currently, the major drawback of our approach
is that it is not able to replan, causing failures in the tasks if the robot even has small collisions with
objects. We intend to address this issue in future research. To improve the sample complexity of our
approach, we additionally plan to use off-policy RL techniques.
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Figure 7: Probabilistic Graphical Models (PGMs) during inference a) and training b). During
a)) the model observes the contexts c from the environment. An expert o is sampled from π(o|c),
which leads to an adjustment of the motion primitive parameters θ by π(θ|c, o). We iterate over
each expert during (b), sample the contexts c and θ from the per-expert distribution π(c|o) and
π(θ|c, o) respectively. Sampling from π(c|o) allows shaping the expert’s curriculum. c) illustrates
the environment’s context distribution p (c) and a possibly optimal π(c|o) (d)) in two-dim. space.
Yellow areas indicate high and purple zero probability. The illustrations show that optimizing π(c|o)
requires dealing with i) step-like non-linearities, ii) multi-modality, iii) bounded within the red
rectangle support of p (c), complicating exploration.

A Additional Information to Self-Paced Diverse Skill Learning with MoE

The general self-paced diverse skill learning objective

max
π(θ|c),π(c)

Eπ(c)

[
Eπ(θ|c) [R(c,θ)] + αH [π(θ|c)]

]
− βKL (π (c) ∥ p (c))

can be reformulated to

max
π(c,θ)

Eπ(o),π(c|o)
[
Eπ(θ|c,o) [R(c,θ) + α log π(o|c,θ)] + β log p (c) + (β − α) log π(o|c)

]
(9)

+ αEπ(o),π(c|o) [H [π(θ|c, o)]] + βEπ(o) [H [π(c|o)]] + βH [π(o)] , (10)

by inserting π(θ|c), π (c) from Eq. (2) into Eq. (9) and applying Bayes theorem. This objective
is not straightforward to optimize for Mixture of Experts MoE models and requires further steps
to introduce a lower bound (see Section 2) that can be efficiently optimized. Please note that the
variational distributions in Eq. 4 and Eq. 5 can be calculated in closed form by the identities

π̃(o|c,θ) = πold(o|c,θ) =
πold(θ|c, o)πold(o|c)

πold(θ|c)

π̃(o|c) = πold(o|c) =
πold(c|o)π(o)

πold(c)

We refer the interested reader to [8] for a detailed derivation.

B Additional Related Work

Quality-Diversity Optimization (QDO). Learning diverse skills has also been explored in the
evolutionary strategy community, most notably with the MAP-Elites algorithm [54], where behavioral
descriptors are defined to distinguish the different learned motions. Extensions [55, 56, 57] have been
proposed to improve the performance of these methods. However, these methods can not easily be
applied to the contextual setting where different controller parameters should be chosen in different
situations such that post hoc adaptations [58, 57] are required. In contrast to QDO methods, in our
work diversity measurement naturally arises through the considered objective and does not need
defining behavioral descriptors. Moreover, Di-SkilL indirectly learns a gating distribution that selects
the expert after observing a context.

Unsupervised Reinforcement Learning. Another field of research that considers learning diverse
policies is unsupervised reinforcement learning (URL). In URL the agent is first trained solely with
an intrinsic reward to acquire a diverse set of skills from which the most appropriate is picked to solve
a downstream task. More related to our work is a group of algorithms that obtain their intrinsic reward
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based on information-theoretic formulations [9, 10, 59, 60, 61]. However, their resulting objective is
based on the mutual-information and differs from the objective we maximize. The learned skills in
the pre-training aim to cover distinct parts of the state-space during pre-training in the absence of
an extrinsic task reward which implies that skills are not explicitly trained to solve the same task in
different ways. Those methods operate within the step-based RL setting which differs from CEPS.

C Additional Information to Diverse Skill Learning

C.1 The Parameterization of the Mixture of Experts (MoE) Model

In the following, we provide details on the parameterization of the MoE model.

Parametrization of the expert π(θ|c, o). We parameterize each expert π(θ|c, o) as a Gaussian
policy N (µγ(c),Σγ(c), where the mean µγ(c) and the covariance Σγ(c) are functions of the
context c and parameterized by a neural network with parameters γ. Although the covariance Σγ(c)
is formalized as a function of the context c, we have not observed any advantages in doing so. In our
experiments, we therefore parameterize the covariance as a lower-triangular matrix L and form the
covariance matrix Σ = LLT .

Parameterization of the per-expert context distribution π(c|o). The reader is referred to Section
4 for details on the parameterization of π(c|o)
Parameterization of the prior π(o). We fix the prior π(o) to a uniform distribution over the number
K of available components and do not further optimize this distribution. This is a useful definition to
increase the entropy of the mixture model.

Parameterization of the context distribution π (c). Due to the relation π (c) =
∑

o π(c|o)π(o),
π (c) is defined by π(c|o) and does not need explicit modelling.

Parameterization of the gating distribution π(o|c). Due to the relation π(o|c) = π(c|o)π(o)
π(c) we do

not need an explicit parameterization of π(o|c) and can easily calculate the probabilities for choosing
the expert o given a context c.

C.2 Using Motion Primitives in the Context of Reinforcement Learning

Motion Primitives (MPs) are a low-dimensional representation of a trajectory. For instance, instead
of parameterizing a desired joint-level trajectory as the single state in each time step, MPs introduce a
low-dimensional parameter vector θ which concisely defines the trajectory to follow. The generation
of the trajectory depends on the method that is used. Probabilistic Movement Primitives (ProMPs)
[13] for example define the desired trajectory as a simple linear function τ = ΦTθ, where Φ
are time-dependent basis functions (e.g. normalized radial basis functions). Dynamic Movement
Primitives (DMPs) [12] rely on a second-order dynamic system that provides smooth trajectories in
the position and velocity space. Recently Probabilistic Dynamic Movement Primitives (ProDMPs)
were introduced in [14] and combines the advantages of both methods, that is the easy generation of
trajectories and smooth trajectories. We therefore rely on ProDMPs throughout this work.

In the context of reinforcement learning, the policy π(θ|c), or in our case an expert π(θ|c, o) defines
a distribution over the parameters θ of the MP depending on the observed context c. This allows the
policy to quickly adapt to new tasks defined by c.

C.3 Algorithm Details

Detailed descriptions of the algorithm during training and during inference are provided in the
algorithm boxes Alg. 1 and Alg. 1, respectively. In each iteration during training, we sample a batch
of contexts c from the environment by resetting it. We then iterate over each expert and evaluate
the probabilities of these contexts c on each per-expert context distribution π(c|o) and sample then
training contexts cT from them. From the corresponding expert π(θ|c, o) we sample motion primitive
parameters θ and evaluate the samples (cT ,θ) on the environment and observe a return R(c,θ) which
we use to update the experts π(θ|c, o) and the per-expert context distributions π(c|o) by maximizing
Obj. 7 and Obj. 8 respectively. During inference, we observe contexts c from the environment,
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calculate the gating distributions π(o|c) = π(c|o)π(o)
π(c) from which we sample the expert o. We then

either take the mean or sample an θ from this expert and execute it on the environment.

Algorithm 1 Di-SkilL Training

Input: α, β, N(max. iterations), K(num. experts),T(num. samples per expert)
Output: π(θ|c)

1: for k = 1 to N do
2: c ∼ p (c) (context batch by environment resetting)
3: for o = 1 to K do
4: cT ∼ π(c|o) (context batch from EBM)
5: θ ∼ π(θ|cT , o)
6: R(c,θ)← eval(θ, cT )
7: π(θ|c, o)← Obj. 7
8: π(c|o)← Obj. 8
9: end for

10: end for

Algorithm 2 Di-SkilL Inference

Input: π(θ|c)
1: c ∼ p (c) (observe contexts from environment)
2: o ∼ π(o|c), where π(o|c) = π(c|o)π(o)

π(c)

3: θ ∼ π(θ|c, o)
4: R(c,θ)← eval(θ, c)

D Experimental Details

D.1 Environment Details

D.1.1 Table Tennis Easy

Environment. We use the same table tennis environment as presented in [16], in which a 7 Degree
of Freedom (DoF) robot has to return a ball to a desired ball landing position. The context is the
four-dimensional space of the ball’s initial landing position ( x ∈ [−1,−0.2], y ∈ [−0.65, 0.65])
on the robot’s table side and the desired ball landing position (x ∈ [−1.0,−0.2], y ∈ [−0.6, 0.6])
on the opponent’s table side. The robot is controlled with torques on the joint level in each time
step. The torques are generated by the tracking controller (PD-controller) that tracks the desired
trajectory generated by the motion primitive. We consider three basis functions per joint resulting in
a 21-dimensional parameter (θ) space. We additionally allow the agent to learn the trajectory length
and the starting time step of the trajectory. Note that the starting point allows the agent to define
when after the episode’s start the generated desired trajectory should be tracked. Induced by the
varying contexts, this is helpful to react to the varying time the served ball needs to reach a positional
space that is convenient to hit the ball with the robot’s racket. Overall the parameter space is 23
dimensional. The task is considered successful if the returned ball lands on the opponent’s side of the
table and within ≤ 0.2m to the goal location.

The reward function is unchanged from [16] and is defined as

Rtask =



0, if cond. 1,
f2(pr,pb) if cond. 2,
f3(pr,pb,pl,pgoal) if cond. 3,
f4(pr,pb,pl,pgoal) if cond. 4,
f5(pr,pb,pl,pgoal) if cond. 5,

where pr is the executed trajectory position of the racket center, pb is the executed position trajectory
of the ball, pl is the ball landing position, pgoal is the target position. The individual functions are
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defined as

f2(pr,pb) = 0.2− 0.2g(pr,pb)

f3(pr,pb,pl,pgoal) = 3− 2g(pr,pb)− h(pl,pgoal)

f4(pr,pb,pl,pgoal) = 6− 2g(pr,pb)− 4h(pl,pgoal)

f5(pr,pb,pl,pgoal) = 7− 2g(pr,pb)− 4h(pl,pgoal),

where g(x,y) = tanh (min ||x− y||2) and h(x,y) = tanh (||x− y||2). The different conditions
are

• cond. 1: the end of the episode is not reached,

• cond. 2: the end of the episode is reached,

• cond. 3: cond.2 is satisfied and the robot did hit the ball,

• cond. 4: cond.3 is satisfied and the returned ball lands on the table,

• cond. 5: cond.4 is satisfied and the landing position is at the opponent’s side.

The episode ends when any of the following conditions are met

• the maximum horizon length is reached

• ball did land on the floor without hitting

• ball did land on the floor or table after hitting

The whole desired trajectory is obtained ahead of environment interaction, making use of this property
we can collect some samples without physical simulation. The reward function based on this desired
trajectory is defined as

rtraj = −
∑
(i,j)

|τdij | − |qbj |, (i, j) ∈ {(i, j) | |τdij | > |qbj |}

where τd is the desired trajectory, i is the time index, j is the joint index, qb is the joint position upper
bound. The desired trajectory is considered as invalid if rtraj < 0, an invalid trajectory will not be
executed on the robot. The overall reward is defined as:

r =

{
rtraj , rtraj < 0

rtask, otherwise

SVSL. SVSL requires designing a guiding punishment term for context samples that are not in a
valid region. For the four-dimensional context space in table tennis, this can be done using quadratic
functions (as proposed in the original work [8]):

Rc(c) = −20 · d2c ,

where d2c is the distance of the current context c to the valid context region.

SVSL Hyperparameters All hyperparameters are summarized in the Table 1.

Hyperparameters are listed in the Table 2.

D.1.2 Table Tennis Task Hard

Environment. We extend the table tennis environment described in Appendix D.1.1 by additionally
including the ball’s initial velocity in the context space making the task harder as the agent has to react
to ranging velocities now. We define the initial velocity vx ∈ [1.5m

s , 4
m
s ]. Note that every single

constellation within the resulting context space is a valid context. However, there exist ball landing
positions that can not be set along with a subset of the initial velocity range. This makes designing
a guiding punishment term for SVSL especially difficult. We adopt the parameter space and the
reward function as defined in the standard table tennis environment as described in Appendix D.1.1.

Hyperparameters are listed in the Table 4.
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D.2 Hopper Jump

Environment. We use the same hopper jump environment as presented in [16], in which the hopper
[52] has to jump as high as possible and land at a specified position. The context is the four-
dimensional space of the last three joints of the hopper and the goal landing position [j3, j4, j5, g],
where the ranges are from [−0.5,−0.2, 0, 0.3] to [0.0, 0.0, 0.785, 1.35]. The hopper is controlled the
same as in [52]. Here, we consider three basis functions per joint and a goal basis resulting in a
parameter space (θ) of 12 dimensions. The reward is non-markovian and is unchanged from [16].

In each time-step t the action cost

τt = 10−3
K∑
i

(ait)
2,

is provided. The variable K = 3 corresponds to the number of degrees of freedom. At the end of the
episode, a reward containing retrospective information about the maximum height in the z-direction
of the center of mass achieved hmax, the goal landing position of the heel pgoal, the foot’s heel position
when having contact with the ground after jumping the first time pfoot, contact is given. Additionally,
per-time information such as pfoot, t describing the position of the foot’s heel in world-coordinates is
given. The resulting reward function is

Rtot = −
T∑

t=0

τt +Rheight +Rgdist +Rcdist +Rhealthy,

where

Rheight = 10hmax,

Rgdist = ||pfoot,T − pgoal||2,
Rcdist = ||pfoot,contact − pgoal||2,

Rhealthy =

{
2 if zT ∈ [0.5,∞]and θ, γ, ϕ ∈ [−∞,∞]
0 else.

The healthy reward is the same as provided by [52].

Hyperparameters are listed in the Table 5.

D.2.1 Box Pushing with Obstacle Task

Environment. We increase the difficulty of the box pushing environment as presented in [16], by
changing major parts of the context space. The goal of the box pushing task is to move a box to a
specified goal location and orientation using the seven DoF Franka Emika Panda. The newly context
space (compared to the original version in [16]) are described in the following. We increase the
box’ goal position range to xg ∈ [0.3, 0.6], yg ∈ [−0.7, 0.45], and keep the goal orientation angle
ϕ ∈ [0rad, 2πrad]. Additionally, we include an obstacle between the initial box and the box’s goal.
The range of the obstacle position is xo ∈ [0.3, 0.6], yo ∈ [−0.3, 0.15]. Note that we guarantee a
distance of at least 0.15m between the obstacle’s position and the initial position as well as at least
0.15m between the obstacle’s position and the box’s goal position.

The robot is controlled via torques on the joint level. We use four basis functions per DoF, resulting
in a parameter space of 28 dimensions. We consider an episode successful if the box’s orientation
around the z-axis error is smaller than 0.5 rad and the position error is smaller than 0.05m.

The sparse-in-time reward function is up to a scaling parameter the same as presented in [16]. We
describe the whole reward function in the following.

The box’s distance to the goal position is

Rgoal = ∥p− pgoal∥,

where p is the box position and pgoal is the goal position. The rotation distance is defined as

Rrotation =
1

π
arccos |r · rgoal|,
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where r and rgoal are the box orientation and goal orientation quaternion respectively. The incentive
to keep the rod within the box is defined as

Rrod = clip(||p− hpos||, 0.05, 10),
where hpos is the position of the rod tip. Similarly, to incentivize to maintain the rod in a desired
rotation, the reward

Rrod_rotation = clip(
2

π
arccos |hrot · h0|, 0.25, 2)

is defined, where hrot and h0 = (0, 1, 0, 0) are the current and desired rod orientation in quaternion
respectively. To incentivize the robot to stay within the joint and velocity bounds, the error

err(q, q̇) =
∑

i∈{i||qi|>|qbi |}

(|qi| − |qbi |)

+
∑

j∈{j||q̇j |>|q̇bj |}

(|q̇j | − |q̇bj |)

is used, where q, q̇, qb, and q̇b are the robot’s joint positions and velocities as well as their respective
bounds. To learn low-energy motions, the per-time action (torque) cost

τt =

K∑
i

(ait)
2,

is used. The resulting temporal sparse reward is given as

Rtot =


−Rrod −Rrod_rotation − 0.02τt − err(q, q̇) t < T,

−Rrod −Rrod_rotation − 0.02τt − err(q, q̇)
−350Rgoal − 200Rrotation t = T,

where T = 100 is the horizon of the episode. The reward gives relevant information to solve the ask
only in the last time step of the episode, which makes exploration hard.

Further Visualizations of learned skills. We show additional plots of the box’s trajectories in the
box pushing task in Fig. 8.

Hyperparameters are listed in the Table 6.

D.3 Extended 5-Link Reacher Task

Environment. In the 5-Link Reacher task, a 5-link planar robot has to reach a goal position with
its tip. The reacher’s initial position is straight to the right. This task is difficult to solve, as it
introduces multi-modality in the behavior space. [16] avoided this multi-modality by constraining the
y coordinate of the goal position to y ≥ 0, i.e. the first two quadrants. We adopt the 5Link-Reacher
task by increasing the context space to the full space, i.e. all four quadrants. We consider 5 basis
functions per joint leading to a 25-dimensional parameter space. We consider the sparse reward
function presented in [16] as

Rtot =

{
−τt t < T,

−τt − 200Rgoal − 10Rvel t = T,

where
Rgoal = ∥p− pgoal∥2

and

τt =

K∑
i

(ait)
2.

The sparse reward only returns the task reward in the last time step T and additionally adds a velocity
penalty Rvel =

∑K
i (q̇iT )

2. The joint velocities are denoted asq̇. This velocity penalty avoids
overshooting in the last time step.

Hyperparameters are listed in the Table 3.
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D.4 Robot Mini Golf Task

Environment. In the robot mini golf task the agent needs to hit a ball while avoiding the two
obstacles, such that it passes the tight goal to achieve a bonus. The context space consists of the ball’s
initial x-position xball ∈ [0.25m, 0.6m], the XY positions of the green obstacle xobs ∈ [0.3, 0.6] and
yobs ∈ [−0.5,−0.1] and the x positions of the goal xball ∈ [0.25, 0.6]. The parameter space is 29
dimensional resulting from the 4 basis functions per joint and an additional duration parameter which
allows the robot to learn the duration of the trajectory. The robot starts always at the same position.
The reward function consists of three stages:

Rtask =



−0.0005 · τt if cond. 1,
0.2− 0.2 tanh (min ||pr − pb||) if cond. 2,
2− 2 tanh (min ||pb − pg||)
− tanh (||pb,y − pthresh,y||) if cond. 3,
6 if cond. 3,

where the individual conditions are

• cond. 1: the end of the episode is not reached,
• cond. 2: the end of the episode is reached and the robot did not hit the ball,
• cond. 3: the end of the episode is reached and the robot has hit the ball, but the ball didn’t

pass the goal
• cond. 4: the end of the episode is reached, robot has hit the ball and the ball has passed the

goal for at least 0.75m

The episode ends when the maximum horizon length T = 100 is achieved. We again make use of the
advantage that we obtain the whole desired trajectory ahead of the environment interaction, such that
we can collect some samples without physical simulation. The reward function based on this desired
trajectory is defined as

rtraj =
∑
(i,j)

|τdij | − |qbj |, (i, j) ∈ {(i, j) | |τdij | > |qbj |}

where τd is the desired trajectory, i is the time index, j is the joint index, qb is the joint position upper
bound. The desired trajectory is considered as invalid if rtraj < 0, an invalid trajectory will not be
executed on the robot. Additionally, we provide a punishment, if the agent samples invalid duration
times

rdur = −3 (max(0, td − td,max) + max(0, td,mint − td)) ,

where td,max = 1.7s, td,min = 0.45s and td is the duration in seconds chosen by the agent. The
overall reward is defined as:

r =


rtraj ,−20(rtraj + rdur)− 5 if invalid duration,

or trajectory
rtask, otherwise.

Hyperparameters are listed in the Table 7.

E Additional Evaluations

We provide additional diverse skills to the Box Pushing Obstacle task in Fig. 8. In Fig. 10 we provide
additional diverse strikes to fixed ball’s desired landing positions on the TT-H task.

Furthermore, we analyze Di-SkilL’s performance on the hopper jump task in more detail. In Fig. 9a
we observe that the mean return is on par with BBRL, similar to the achieved goal distance in Fig. 9c.
However, there is a small gap in the max height, where BBRL jumps slightly higher (see Fig. 9b.
Given that the mean return is on par, one would expect that the maximum jump height is on par as
well. However, Di-SkilL optimizes the remaining terms in the objective of the hopper jump task such
as the healthy reward (see Appendix D), which explains this gap.
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Figure 8: Additional Diverse Skills for the Box Push Obstacle Task learned by Di-SkilL. We fix
the contexts and sample experts which we subsequently execute. This leads to diverse behaviors in
the motion primitive parameter spaceθ which leads to different trajectories of the pushed box on the
table.
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Figure 9: Additional Analysis of the Hopper Jump (HJ) task.

F Hyperparameters

We list the hyperparameters for all algorithms on all environments in the following tables.

add component every iteration 1000
fine tune all components every iteration 50

number component adds 1
number initial components 1
number total components 20

number traj. samples per component per iteration 200
α 0.0001
β 0.5

expert KL-bound 0.01
context KL-bound 0.01

Table 1: Hyperparameters for SVSL on TT
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Figure 10: Di-SkilL’s Diverse Skills for the TT-H task. We fixed the ball’s desired landing position
and varied the serving landing position and the ball’s initial velocity. Di-SkilL can return the ball in
different striking types. Note that each row represents a different desired ball landing position.

Di-SkilL BBRL
critic activation tanh tanh

hidden sizes critic [8,8] [32, 32]
initialization orthogonal orthogonal

lr critic 0.0003 0.0003
optimizer critic adam adam

ciritc epochs 100 100
activation context distribution tanh –

epochs context distribution 100 –
hidden sizes context distr [16,16] –

initialization orthogonal –
lr context distribution 0.0001 –
optimizer context distr adam –

batch size per component 50 209
number samples from environment distribution 5000 –

number samples per component 50 209
normalize advantages True True

expert activateion tanh tanh
epochs 100 100

hidden sizes expert [64] [32]
lr policy 0.0003 0.0003

covariance type full full
alpha 0.001 –
beta 4 –

number components 5 –
covariance bound 0.005 0.001

mean bound 0.05 0.05
projection type KL KL

trust region coefficient 100 25

Table 2: Hyperparameters for Di-SkilL and BBRL on TT.
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Di-SkilL BBRL LinDi-SkilL PPO
critic activation tanh tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32] [32, 32]
initialization orthogonal orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003 0.0003
optimizer critic adam adam adam adam

ciritc epochs 100 100 100 10
activation context distribution tanh – tanh –

epochs context distribution 100 – 100 –
hidden sizes context distr [16,16] – [16, 16] –

initialization orthogonal – orthogonal –
lr context distribution 0.0001 – 0.0001 –
optimizer context distr adam – adam –

batch size per component 25 240 25 512 (32 minibatches)
number samples from environment distribution 5000 – 5000 –

number samples per component 25 240 25 16384
normalize advantages True True True True

expert activateion tanh tanh – tanh
epochs 100 100 100 10

hidden sizes expert [32,32] [64,64] – [32, 32]
lr policy 0.0003 0.0003 0.0003 0.0003

covariance type full full full diagonal
alpha 0.01 – 0.01 –
beta 8 – 8 –

number components 10 – 10 –
covariance bound 0.001 0.005 0.0005 –

mean bound 0.05 0.05 0.05 –
projection type KL KL KL –

trust region coefficient 100 25 100 –
discount factor 1 1 1 1

Table 3: Hyperparameters for Di-SkilL, BBRL, LinDi-SkilL, and PPO on 5LR. We used all code-level
optimization [62] needed for PPO. The implementation is based on the source code from [25].
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Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [8,8] [32, 32] [8,8]
initialization orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distribution tanh – tanh

epochs context distribution 100 – 100
hidden sizes context distr [16,16] – [16, 16

initialization orthogonal – orthogonal
lr context distribution 0.0001 – 0.0001
optimizer context distr adam – adam

batch size per component 50 209 50
number samples from environment distribution 5000 – 5000

number samples per component 50 209 50
normalize advantages True True True

expert activateion tanh tanh –
epochs 100 100

hidden sizes expert [128] [32,32] –
lr policy 0.0003 0.0003 0.0003

covariance type full full full
alpha 0.001 – 0.001
beta 0.5 – 0.5

number components 10 – 10
covariance bound 0.005 0.0005 0.001

mean bound 0.05 0.05 0.05
projection type KL KL KL

trust region coefficient 100 25 100

Table 4: Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the Hard Table Tennis Task
(TT-H).
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Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [64,64] [64, 64] [64,64]
initialization orthogonal orthogonal orthogonal

lr critic 0.0001 0.0001 0.0001
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distribution tanh – tanh

epochs context distribution 100 – 100
hidden sizes context distr [16,16] – [16, 16]

initialization orthogonal – orthogonal
lr context distribution 0.0001 – 0.0001
optimizer context distr adam – adam

batch size per component 80 200 80
number samples from environment distribution 1000 – 1000

number samples per component 80 200 80
normalize advantages True True True

expert activateion tanh tanh –
epochs 100 100 100

hidden sizes expert [32, 32] [32,32] –
lr policy 0.0003 0.0003 0.0003

covariance type full full full
alpha 0.01 – 0.01
beta 8 – 8

number components 3 – 3
covariance bound 0.005 0.05 0.005

mean bound 0.05 0.1 0.05
projection type KL KL KL

trust region coefficient 100 25 100

Table 5: Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the Hopper Jump Task (HJ).
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Di-SkilL BBRL LinDi-SkilL PPO
critic activation tanh tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32] [256, 256]
initialization orthogonal orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003 0.0001
optimizer critic adam adam adam adam

ciritc epochs 100 100 100 10
activation context distribution tanh – tanh –

epochs context distribution 100 – 100 –
hidden sizes context distr [16,16] – [16, 16] –

initialization orthogonal – orthogonal –
lr context distribution 0.0001 – 0.0001 –
optimizer context distr adam – adam –

batch size per component 50 500 50 410 (40 minibatches)
number samples from environment distribution 5000 – 5000 –

number samples per component 50 500 50 16384
normalize advantages True True True True

expert activateion tanh tanh – tanh
epochs 100 100 100 10

hidden sizes expert [64,64] [64,64 – [256, 256]
lr policy 0.0003 0.0003 0.0003 0.0001

covariance type full full full diagonal
alpha 0.01 – 0.0001 –
beta 64 – 64 –

number components 10 – 10 –
covariance bound 0.005 0.0005 0.001 –

mean bound 0.05 0.05 0.05 –
projection type KL KL KL –

trust region coefficient 100 25 100 –
discount factor 1 1 1 1

Table 6: Hyperparameters for Di-SkilL, BBRL, LinDi-SkilL, and PPO for Box Pushing Obstacle task
(BPO). We used all code-level optimization [62] needed for PPO. The implementation is based on
the source code from [25].
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Di-SkilL BBRL LinDi-SkilL
critic activation tanh tanh tanh

hidden sizes critic [32,32] [32, 32] [32, 32]
initialization orthogonal orthogonal orthogonal

lr critic 0.0003 0.0003 0.0003
optimizer critic adam adam adam

ciritc epochs 100 100 100
activation context distribution tanh – tanh

epochs context distribution 100 – 100
hidden sizes context distr [16,16] – [16, 16]

initialization orthogonal – orthogonal
lr context distribution 0.0001 – 0.0001
optimizer context distr adam – adam

batch size per component 50 500 50
number samples from environment distribution 5000 – 5000

number samples per component 50 500 50
normalize advantages True True True

expert activateion tanh tanh –
epochs 100 100 100

hidden sizes expert [64,64] [128,128] –
lr policy 0.0003 0.0003 0.0003

covariance type full full full
alpha 0.0001 – 0.0001
beta 1 – 1

number components 10 – 10
covariance bound 0.005 0.001 0.001

mean bound 0.05 0.05 0.01
projection type KL KL KL

trust region coefficient 100 25 100

Table 7: Hyperparameters for Di-SkilL, BBRL, and LinDi-SkilL for the mini golf task.
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