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ABSTRACT

Solving reasoning problems is an iterative multi-step computation, where a rea-
soning agent progresses through a sequence of steps, with each step logically
building upon the previous one to reach a desired conclusion. If the desired so-
lution is not attained, the agent must backtrack and try reasoning chains that are
quite different from previous attempts. Though prior work such as test-time search
against an outcome verifier can improve performance, most search is done in par-
allel via Best-of-N reranking, and independently for each attempt at a problem,
thus wasting a significant amount of computation in sampling multiple full solu-
tions even beyond the point that is needed. Can we reduce the total amount of
computation by sharing information and computation across multiple attempts to
a given problem? In this paper, we build a novel approach combining process
verifiers that predict likelihoods of success per step with preemptive backtracking
to maximize performance per generated token. To do this, the PRM can be used
to identify where a problematic step in a solution trace is by using the sensitivity
of the predictions of the learned verifier and allowing the model to do focused re-
sampling of the problematic portion of a solution. This approach can significantly
reduce the amount of computation by leveraging partial computation from previ-
ous revisions. To further enhance the computational efficiency of inference, we
introduce in-context process supervision, where the verifier is conditioned on the
history of revisions that are attempted, reducing uncertainty in the verification de-
cisions and improving the verifier’s confidence with each round of backtracking.
This framework for iterative backtracking, leveraging in-context process supervi-
sion, enables an effective tradeoff between inference and model performance.

1 INTRODUCTION

Solving reasoning problems in large language models (LLMs) involves drawing inferences, making
decisions with incomplete or ambiguous information, and solving problems in a structured, logical
manner. Reasoning problems are commonplace in many domains such as code development, where
reasoning is needed to understand complex logical structures, debug errors, and anticipate edge
cases, and mathematics, where it is vital for proving theorems and solving challenging problems.

One promising direction to enhance response quality of responses in reasoning problems is the
strategic use of test-time computation, where a model is given an inference compute budget that it
could leverage to improve its solution quality. In fact, prior work such as Snell et al. (2024); Charniak
& Johnson (2005); Cobbe et al. (2021) explore different mechanisms for solution generation given a
fixed generation budget, exploring search algorithms such as BofN, Beam Search, and Look-Ahead
search. In scenarios where an LLM generates a complex sequence, small but consequential mistakes
made at intermediate steps can lead to a cascade of errors, rendering the entire sequence incorrect.
Traditional search methods, which operate in parallel and start from the beginning of the sequence,
fail to efficiently handle these errors, often wasting inference-time compute on parts of the solution
that are already correct, thus failing to solve intermediate errors. Is there an approach that can more
efficiently leverage inference-time compute for error recovery?

In this work, we propose backtracking-based iterative refinement for improving LLM solutions.
Instead of starting from the beginning with each new sample, our method identifies problematic
steps in the solution trajectory and resamples only the parts of the sequence that need correction.
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This adaptive approach not only reduces the computational burden but also allows for more targeted
revisions, effectively correcting uncorrelated errors and improving the overall solution quality.

Backtracking with Process Feedback

Error
Localization

In-Context Process Supervision

Step 1: <a>
Step 2: <b>
Step 3: <c>

...
Step 10: <j>
Answer: <k> 

Problem (Math)

The solution is incorrect

Probability of Success?

Step 1: <a>
Step 2: <b>
Step 3: <c> 

0.2

Past
Attempt

Partial
Solution

Process
Supervision

Turnwise Feedback

xN

History of Attempts in context can influence Process
Predictions for Future Attempts!

Figure 1: Left: an illustration of using the value-based
verifier for backtracking. Backtracking is a potential ap-
proach to revise an incorrect reasoning chain. Using an error
localization criterion, we can identify an appropriate step to
revise from to regenerate the solution from. We continue to
iteratively revise the solution until a stopping criterion such
as satisfying the outcome reward is met. Right: Leveraging
In-Context Process Supervision. This approach conditions
on prior attempts at a problem to reduce the uncertainty of
process reward estimates on future attempts.

Our method leverages process-based veri-
fiers (PRMs), trained to predict points in
the reasoning chain where the model is
most likely to make mistakes. The PRM
estimates the probability of success of a
reasoning chain conditioned on a partial
solution, akin to a value function in RL, as
shown in by Snell et al. (2024). Using the
PRM value function, we can then compute
an advantage estimate to assess the rela-
tive importance of each step and guide the
backtracking process by focusing on the
steps that contribute least to the solution
quality and selectively resampling them.
These set of targeted revisions allow for
compute to be spent more efficiently, lead-
ing to higher-quality solutions with fewer
revisions. We also establish a stopping cri-
terion in this framework for early termi-
nation of backtracking after a solution has
been found.

Ultimately the success of backtracking re-
lies on how accurate the PRM is on in-
termediate reasoning steps. If we revise a
solution after we encounter an unrecover-
able state in a reasoning problem, the like-
lihood of success even after recovering is very small. To improve the accuracy of the PRM, we
temper distribution shift issues by employing on-policy sampling and label balancing. Additionally,
we propose a method to smooth the verifier’s outputs to account for estimation errors. We addition-
ally introduce in-context process supervision which allows the PRM to condition on prior attempts at
a problem to reduce the uncertainty of the supervision on future attempts. Conditioning on a history
of past revisions, the verifier is able to identify failure modes in past attempts and subsequently avoid
rating them highly if they are present in future attempts. By providing a framework for sequentially
identifying errors and revising them, our approach offers a more scalable and effective solution for
test-time inference in LLMs, making it particularly suited for tasks that are more difficult or longer
horizon. We demonstrate the computational efficiency of our approach, showing that it significantly
improves the test-time compute tradeoff with respect to the number of of generated tokens vs. the
accuracy of the generated solution.

2 PRELIMINARIES AND NOTATION

A process reward model (PRM) assesses the validity of intermediate steps taken during the rea-
soning process, providing feedback on whether these steps are logical/consistent and make progress
towards the solution. Let st represent the state at step t, and let at denote the action taken at that
step. One approach to learn the PRM is through Monte-Carlo (MC) regression as done in Wang
et al. (2023); Snell et al. (2024), where the value at each step is supervised with the Monte-Carlo
return-to-goRD(s, a), which estimates the probability of success of a rollout from a particular state
s and action a. The Monte-Carlo return-to-go is computed as the sum of future discounted rewards,
RD(s, a) =

∑t=T
t=i γtrt, where γ is the discount factor, and the sum is taken over the trajectory

from the current time step i to the end of the episode. Here, the reward function is sparse, 0 for each
intermediate step in the reasoning problem till the answer is predicted. If the answer matches the
ground truth answer, a reward of 1 is provided for this final step, otherwise 0. The loss function is
divergence of the estimated value from the dataset Monte-Carlo return-to-go:

LQ = E(s,a)∼D
[
LKL

(
Q(s, a),RD(s, a)

)]
(1)
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One instantiation of the divergence is soft binary cross-entropy, where each step (st,at) has a target
yt ∈ [0, 1]:

Lprocess = −
∑
t

[yt log ŷt + (1− yt) log(1− ŷt)] , (2)

where ŷt = RD(s, a) is the predicted probability that the step (st,at) is correct.

In contrast, an outcome reward model (ORM) only evaluates the correctness of the final answer,
disregarding individual reasoning steps. Let o represent the final outcome of the reasoning process.
We can similarly learn an ORM through binary classification, where the final outcomes o are labeled
with binary labels youtcome ∈ {0, 1}:

Loutcome = −
∑
i

[youtcome,i log ŷoutcome,i + (1− youtcome,i) log(1− ŷoutcome,i)] , (3)

where ŷoutcome,i = Routcome(oi) is the predicted probability that the final outcome oi is correct.

Collecting large amounts of process-level feedback can be undesirable due to noise in the process la-
bels as well as the higher cost of collection. This motivates approximating process-level supervision
with a learned value function Q(s, a) can be learned through sparse feedback (outcome rewards).

Linear search in test-time inference: Test-time inference often requires efficient search strategies
using to navigate the potential solution space. We define linear search algorithms as those that
operate with a fixed compute budget and a predetermined width of potential completions. Prior
work such as Snell et al. (2024) leverages linear search algorithms like Beam Search and Best of N
to find near-optimal solutions during inference. In Best of N, n candidate solutions are generated
and the solution with the highest evaluation score S is selected:

ŷ = arg max
yi∈{y1,y2,...,yn}

S(yi) (4)

where S(yi) denotes the evaluation score of the i-th candidate yi, and ŷ is the selected output.

In beam search, multiple solution paths are expanded in parallel. At each step t, the algorithm retains
the top k candidates based on their scores S(y1:t):

Bt = Top-k ({y1:t−1 · yt | yt ∈ Y}, S(y1:t)) (5)

where Bt represents the set of the top k sequences at step t, Y is the set of all possible tokens,
and S(y1:t) is the evaluation score of the sequence y1:t. These methods provide varying trade-
offs between computational efficiency and search accuracy, helping to explore the reasoning space
effectively during inference.

Linear Search Non-Linear Search

Fixed Compute Allocation

Adaptive Reallocation

Figure 2: Linear vs Non-Linear Search Linear search
assumes a fixed compute allocation during inference time.
However, with Non-Linear search, we can adaptively allo-
cate inference time compute to parts of the reasoning chain
that require more computation.

Linear Search methods can be effective
in parallel sampling scenarios, where se-
quential revisions of a solution are not pos-
sible, enabling the discovery of better so-
lutions than single-shot sampling from the
model. A non-linear search algorithm,
in contrast, can adaptively allocate infer-
ence time compute. This can allow for
more inference time compute to be spent
on portions of the problem that are harder
to get right. To build a non-linear search
algorithm, we will formalize our intuitions
in a multi-step single-turn MDP for rea-
soning, which we describe next.

Multi-step, Single-turn Markov Deci-
sion Process (MDP) for Reasoning: A
reasoning chain in test-time inference can
be conceptualized as a multi-step Markov
Decision Process (MDP). We formally define a reasoning chain as a trajectory with a bounded hori-
zon H , represented as (s, a, r, t)H0 . These trajectories originate from a dataset of prompts x and
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responses y, which is decomposed into several semantic steps a1, a2, · · · , at that, when concate-
nated, reconstruct the original response y.

We formally define an MDP as:

M = (S,A, T , R, γ, ρ0) , (6)

where:

• S: The state si at any step i includes the current prompt x and the sequence of previously
selected semantic steps a0...i−1.

• A: The action ai involves selecting the next semantic step in the reasoning chain.
• T : The transition dynamics function is the deterministic concatenation of the state and

action: P (s′|s, a) = concat(s, a).
• R: The reward r = R(s, a), which is a function of the current state and action, evaluates

the quality or relevance of the selected semantic step within the given context.
• γ: The discount factor.
• ρ0: The initial state distribution, representing the distribution of initial prompts xi.

This MDPM allows us to define familiar constructs such as a policy π(a|s) and a value function
Q(s, a) at a stepwise level.

3 BACKTRACKING FOR SEQUENTIAL RESPONSE IMPROVEMENT

Mod 10 Didactic Task
State

(context) 01234567890123

Action
(single token) 4

Reward
(Outcome)

Gen: 01234567890123..51789
Targ: 01234567890123..56789

0

Horizon
(N) 1500

Figure 3: Didactic Task: Mod 10 sequence genera-
tion. The state is the context or the set of characters
generated so far. The action is a single character that
is generated. The horizon of generation is 1500 char-
acters. The reward is provided at the outcome level,
whether the sequence matches the target sequence.

As explored in the preliminaries, a linear search
algorithm may be a suboptimal formulation for
search. To explore this further, consider a di-
dactic problem where an LLM needs to gen-
erate a repeating sequence of numbers from 0
to 9. In particular, at each step t, the model
has 10 possible actions corresponding to the
digits 0 through 9, with the correct action de-
termined by the modulus operation t mod 10,
which produces the next digit in the sequence.
The LLM answer is judged after N = 1500
tokens through exact match with the desired se-
quence. The task is represented in Figure 3.

Now, consider a base language model (policy)
that is mostly proficient at producing the correct
digit at each step but struggles specifically with
generating the digit 6 when t mod 10 = 6. Here, the model correctly outputs 6 only 5% of the
time and incorrectly outputs 1, leading to significant errors in the sequence. We formally define the
base policy as:

πbase(at | st) =


Pr(at = 6 | t ≡ 6 mod 10) = 0.05 if t ≡ 6 mod 10,

Pr(at = 1 | t ≡ 6 mod 10) = 0.95 if t ≡ 6 mod 10,

Pr(at = d | t ≡ d mod 10) = 1 if t ≡ d mod 10, d ̸= 6.

(7)

When generating a long sequence of characters N = 1500, this error in generating 6 reliably (i.e.,
whenever t mod 10 = 6) compounds exponentially and results in a substantially wrong sequence.
Over 1500 steps, there are 150 opportunities for the model to output the digit 6, but with a 5%
success rate, it correctly outputs 6 in only ≈ 8 instances, leading to 142 errors.

3.1 EXAMINING LINEAR AND NONLINEAR SEARCH IN THE DIDACTIC TASK:

Let’s examine how a linear search algorithm like Best-of-N would perform in revising this incorrect
sequence. If we sequentially apply Best-of-N to revising an incorrect solution, and assume each
error is uncorrelated, the expected number of samples required to generate a fully correct sequence
becomes exponential in the number of errors: E[N ] = 20150. This requires an impractically
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large number of samples to generate a fully correct sequence in expectation, rendering linear search
methods ineffective for this task.

Can we instead adaptively utilize our compute resources through non-linear search? A common
failure mode for linear search is that the search can reach an unrecoverable state (e.g., a mistake in
the last steps of a proof), leading to subsequent incorrect steps. By allowing the model to backtrack
to a point in the solution before the irrecoverable state, we can give the model an opportunity to
try again and correct its errors. Additionally, if multiple uncorrelated errors exist in a solution, this
process can be repeated until the problem is solved correctly or the sample budget is exhausted. This
adaptive approach prevents wasting computation on parts of the solution that are already correct.

For intuition, let’s apply a sequential backtracking procedure to our didactic problem. For purposes
of understanding, we start with the simpler scenario where we know the step where a mistake occurs
from an oracle. We can backtrack to the step before the mistake and use the same linear search
algorithm (Best-of-N) to correct this single mistake, which would require E[N ] = 20 samples in
expectation. By performing multiple iterations of revisions and retaining the best solution so far, we
can solve the problem in a much more tractable manner, with the total expected number of samples
being linear in the number of errors: E[N ] = 20 ∗ 150.

This motivates the need for non-linear search approaches such as backtracking. While parallel algo-
rithms like Best-of-N or Beam Search can perform well in some scenarios, they become computa-
tionally expensive when revisions are required, as they necessitate generating a large, fixed number
of samples from the beginning of the solution. For challenging or long-horizon problems, this ap-
proach is computationally prohibitive, as significant computation could be wasted on generating
tokens for parts of the solution that are already correct or occur after an unrecoverable mistake has
been made. Next, we will construct a framework for effective backtracking.

3.2 DEFINING THE BACKTRACKING FRAMEWORK FOR SOLUTION REVISION

In this work, we instantiate non-linear search through a novel sequential improvement and back-
tracking framework for solving reasoning problems. We build a setup to realize a practical imple-
mentation of this framework by answering the following key questions: (1) How can problematic
parts of a solution be identified and revised?, (2) Can we leverage the history of sequential revisions
to better guide search and identify problem parts of a solution, and (3) What are practical consider-
ations to build a robust framework for backtracking? We consider each of these key questions in the
following discussion.

Localizing incorrect steps with PRMs. The first key component of the framework is identifying
where in the solution a mistake is made. One natural choice for this is the advantage function,
Aπ(s, a), defined as:

Aπ(s, a) = Qπ(s, a)− V π(s) (8)

At a particular state (i.e context of a reasoning chain), the advantage function measures the differ-
ence in the expected success of a particular action (i.e step in the reasoning chain) compared to a
baseline V π(s), or the expected success of actions queried from a proposal distribution or base pol-
icy. Intuitively, here the baseline can be viewed as a form of calibration/normalization, where the
advantage function not only considers the expected success rate (PRM, Qπ(s, a)) but the success
rate relative to the performance of the proposal distribution or policy.

When the advantage function is low for an action within a trajectory, this indicates that this action
may be a poor sample from the proposal distribution in expectation. Therefore, resampling may be
desirable as a better action from the proposal distribution can be queried. This motivates using the
minimum advantage step within a trajectory τ to revise from:

irevise = min
i

A(si, ai), i ∈ {1, . . . ,H} (9)

where H is the horizon of a trajectory τ .

Modeling two different functions, Qπ(s, a) and V π(s) is undesirable due to computational ineffi-
ciencies in training and querying both functions. One thing we can leverage is that the dynamics of
the underlying MDP (as seen in Section 2) is deterministic. Thus, we can choose to model only a
Q-value function (PRM), Qπ(s, a) and use it to compute V π(s), but querying it at the previous state,
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computing the advantage as the value difference between subsequent steps within the trajectory.

Aπ(s′, a′) = Qπ(s′, a′)−Qπ(s, a), where s′ = concat(a, s), (10)
irevise = min

i
Qπ(si, ai)−Qπ(si−1, ai−1), i ∈ {2, . . . ,H} (11)

This reformulation allows us to additionally view the advantage as a measure of progress, or how
much an action contributes to the success of a trajectory.

Suffix Generation and Stopping Criteria. Once the revision step irevise has been identified, we
can resample the entire suffix of the solution, conditioned on the partial solution before the minimum
advantage step with one of two approaches: (1) Best-Of-N sampling or (2) Beam Search. The value
function at the final (solution) step is an outcome verifier. Therefore, we can use the value of the
verifier at the final step of the solution to determine which solution to keep. Additionally, we can do
this process sequentially, allowing for subsequent revisions from the previously modified reasoning
chain(s). We perform this sequential backtracking process a maximum of M times, ensuring that
the revision process does not continue indefinitely and we can control the sample budget.

Summary of the Backtracking Framework This framework offers an effective approach for solv-
ing complex reasoning problems, allowing for robust, incremental improvements that lead to more
refined and accurate solutions. We summarize the algorithm framework in Algorithm 1.

3.3 ITERATIVE REVISIONS AS A MULTI-STEP, MULTI-TURN MDP.
An additional approach to improving compute efficiency of search is to make the process verifier
aware of what did not work well in prior attempts. This should allow the verifier to adapt its pre-
dictions over the course of the search process, which intuitively should translate to better value
predictions. To do this we need to extend verifiers with some notion of “state” of the search process.
This can be done by conditioning the verifier on a linearization of the entire search procedure so far,
which we denote as in-context verifiers. This can be formalized as follows:

Sequential Revisions for test-time inference can be viewed as a multi-step and multi-turn Markov
Decision Process (MDP). We define a multi-turn revision trajectory τ as τ = {s, a, r, t}H0 of
a bounded horizon H , where each of the N revisions has a sub-horizon (i.e., token lengths)
H1, H2, · · ·HN . These revision trajectories are constructed from several individual reasoning chains
consisting of a prompt x and response y. Here, the response is broken into several semantic steps
a1, a2, · · · at, which when concatenated form the original response y.

Given a dataset of revision trajectories, we can formally we define a modified MDPMmultiturn from
our Multi-Step, Single-Turn MDPM (Defined in Section 2) as:

Mmultiturn = (Smultiturn,A, T , R, γ, ρ0) , (12)

where the state si ∈ Smultiturn at step i in revision turn k consists of the current prompt x, the
sequence of current turn reasoning steps a

(k)
0...i−1, and previous turns reasoning steps a

(1...k−1)
0...H ,

turnwise context c0...k−1.

Learning In-Context Value Verifiers. Given the MDPMmultiturn, we can define familiar reinforce-
ment learning objects such as a policy π(a|s) and a value function Qπ(s, a). These objects can be
designed to interact at both a stepwise and turnwise level, enabling a comprehensive supervision
process that leverages the history of past revisions and turnwise feedback.

The value function Q(s, a) can be conditioned on both the current reasoning chain and the steps
from prior revisions. Let {y1, y2, . . . , yk−1} represent the set of past k − 1 revisions, where each
revision yj has its own sequence of steps {a(j)1 , a

(j)
2 , . . . , a

(j)
Hj
}. The value function at any step i

within the k-th revision can then be expressed as:

Q(snew, a), snew = (x, a
(1)
1 , a

(1)
2 , . . . , a

(1)
H1

, . . . , a
(k)
i , c0...k−1, k) (13)

Here the turnwise context c0...k−1 are additional tokens in the form: Is the turn correct? yes or no.
This token sequence allows the model to understand whether the steps taken in prior revisions were
correct or incorrect, providing the value function the outcome of its previous attempts in context.

We can model the cumulative Monte-Carlo return-to-go estimate over all future revisions (given a
fixed horizon of revisions), accounting for the potential improvement or deterioration of the solution
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as further revisions are made. The cumulative returnRt for step t within the k-th revision is:

Rt =

Hk∑
i=t

γi−tR(si, ai) +

N∑
j=k+1

Hj∑
o=1

γ[(Hk−t)+(
∑j

b=k+1 Hb)+o]R(so, ao) (14)

where Hk is the sub-horizon of the current revision, N is the total number of revisions, and so, ao
denote the states and actions in future revisions. This cumulative return models the expected future
rewards from not just the current revision but also subsequent revisions, allowing the policy to make
decisions that optimize long-term performance across all revision stages.

Intuitively, the conditioning of the value function to leverage the historical context provided by
prior revisions. This enables models to implement effective strategies such as becoming more con-
fident about a certain mistake, allowing for error correction in subsequent attempts, or more confi-
dent about previously successful steps, allowing for further positive reinforcement. In contrast, the
single-turn value function would potentially lead to the same deterministic set of failure actions over
revision turns as the value function is unable to adapt to previous attempts that the policy has tried.

3.4 PRACTICAL CONSIDERATIONS FOR BACKTRACKING

Figure 4: Outcome Accuracy of PRM. We evaluate
the outcome accuracy of different variants of the pro-
cess supervision models. Here, both on-policy sam-
pling and label-balancing leads to higher accuracies
for successful and failure trajectories.

Tempering Distribution Shift in Process Su-
pervision. A primary challenge in maintain-
ing the robustness of the value function is the
distribution of responses it is trained on. Typ-
ically, the value function is initialized using an
offline dataset, such as PRM800K, but a sig-
nificant distribution shift often occurs between
the policy’s responses during inference and the
data used for the initial value function training.
This shift can lead to miscalibration, where the
value function inaccurately assesses the quality
of the base policy’s step proposals, resulting in
sub-optimal outcomes.

The calibration of the value function is critical
for effectively guiding the policy model during
both backtracking for revision step identification and rollout selection. This calibration becomes
particularly important when dealing with steps in backtracking as misidentifying an error can be
catastrophic, where an unrecoverable state can be encountered due to errors in the base policy. An
unrecoverable state can significantly hinder the success of the solution chain of thought, making it
essential to pinpoint where errors occur in the solution process. In particular, the chosen revision
step must precede the point where an unrecoverable error is introduced, ensuring that the revision
process can correct the trajectory.

Figure 5: Learnt PRM Values: Here we plot the value
based PRM for successful and unsuccessful trajecto-
ries. For successful trajectories, we see monotonically
increasing values that match the target Monte-Carlo Re-
turn. For negative trajectories, we see the value increase
and then decrease after a mistake is made, allowing us
to identify, where to revise from.

To counteract this distribution shift, the PRM is
trained with on-policy samples as done in Snell
et al. (2024); Luo et al. (2024), allowing the
PRM to better identify specific types of errors
made by the proposal model during inference.

Another source of distribution shift is the set of
trajectories encountered in revisions being pri-
marily unsuccessful as successful trajectories
do not require further revision. Thus, we intro-
duce a label-balancing mechanism during fine-
tuning. Specifically, let D = Dpositive ∪Dnegative
be a dataset where Dpositive and Dnegative repre-
sent successful and unsuccessful trajectories re-
spectively, and both sets are balanced such that |Dpositive| = |Dnegative|. The final objective function
for fine-tuning becomes:

Vθ = argmin
θ

[
Ex,a∼DpositiveL(Vθ(x),RDpositive(s,a)) + Ex,a∼DnegativeL(Vθ(x),RDnegative(s,a))

]
(15)
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Figure 6: Backtracking allows for better test time sample efficiency, measured by generated tokens vs
accuracy. Here we allow for up to 4 revisions using the Oracle PRM (left) and 8 revisions with the learnt PRM
(right). We compare against two baselines: revising from the first step and revising from a random step to
show the efficacy of localizing errors with the PRM. The choice of suffix generation after a step to revise from
is identified is Best-of-N sampling with N=4 for the oracle PRM and N=16 for the learnt PRM.

Advantage smoothing for effective backtrack step selection. During inference, estimation errors
in computing the advantage function can lead to suboptimal revision step selections. To address this,
we introduce a strategy to smooth the value function during the selection process, which we denote
as minimum advantage with tie margin, where the revision step with the smallest advantage value
is selected, but a margin of tolerance is allowed.

Formally, let A(i) = A(si, ai) denote the advantage function for step i in a trajectory τ =
{(si, ai)}H0 , and ω denote the tie margin. We first identify the minimum advantage value Amin =
mini A(i), and then select the first step ismooth satisfying:

ismooth = min
j
{j : |Amin −A(j)| ≤ ω} (16)

This relaxation allows for a more conservative step to be selected for backtracking, restricting the
presence of incorrect steps to be present in the context of the model while decoding.

4 EXPERIMENTAL EVALUATION

To evaluate how backtracking would perform on reasoning problems, we consider mathematical
reasoning problems from the Hendrycks Math dataset (Hendrycks et al., 2021) for model evalua-
tion. This dataset spans a broad range of mathematical topics, from basic arithmetic to advanced
university-level subjects such as algebra, calculus, and geometry. It is designed to assess a model’s
proficiency in solving both straightforward and complex mathematical problems. We leverage the
processed datasets in Sun et al. (2024) which uses outcome/process level supervision from Lightman
et al. (2023). To validate the backtracking framework, we explore three key experimental questions.

Can we more efficiently leverage test-time compute than linear search algorithms? We first
define a metric that captures the balance between inference resources and model performance: the
total number of tokens generated across sequential revisions versus the accuracy of the generated
solutions in these revisions. The number of generated tokens is a valid element to consider for
efficiency as LLM providers such as Together, OpenAI, and Google generally measure cost as a
function of both the input and output tokens. Additionally, accuracy is an established metric for
performance in reasoning problems such as those found in Hendryks MATH, where a solution can
be verified as correct or incorrect by comparing the generated answer with the ground truth answer.

Figure 7: Outcome and Process Metrics for Value Functions: We plot the aggregate left: outcome accuracy
and right: process-wise MSE from ground truth Monte-Carlo return-to-go. For both metrics, we find that
parameterizing the PRM in the Multi-Turn formulation leads to better performance.
To study sequential revisions, we collect an on-policy dataset utilizing the test-split of Hendryks
Math (Hendrycks et al., 2021) with 100 incorrect solutions. From this point sequential revisions
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are performed with our framework and two baselines, backtracking to the initial step and random
step, to evaluate the success of error localization in our framework. This analysis with two variants
of the PRM: an oracle PRM and a learnt PRM as seen in Figure 6. The oracle PRM, estimated
by rolling out at each step in the reasoning chain and looking at the success rate by comparing the
solution with the ground truth as done in prior work (Wang et al., 2023), provides an upper bound
on performance, while the learnt PRM demonstrate the practical effectiveness of our approach. For
the oracle PRM, we find that backtracking allows us to see a≈ 15% improvement over linear search
(backtracking from the first step) and significantly outperforms backtracking from a random step,
demonstrating the necessity of accurate error localization. We see similar trends with the learned
value functions, comparing a single-turn value function, multi-turn (in-context) value function, and
baselines of revising from the first and random steps.

Figure 8: Evolution of Values over Sequential Revisions in a Reasoning Problem: We plot the evolution of
left: Value (PRM) and right: Advantages for steps in a reasoning problem. In sequential revisions, the value
of the trajectory is able to be successfully optimized to be monotonically increasing over steps. The advantage
is able to successfully identify a problematic step midway in the trajectory, leading to a successful revisions.
How effective are the learnt PRMs at localizing errors for backtracking? One key component
of our framework is the learnt process verifier. If the verifier is inaccurate for intermediate steps in
the reasoning problem, revisions can be suboptimal, especially if after an unrecoverable state. To
evaluate the performance of the PRMs, we consider two metrics: (1) outcome accuracy of the PRM,
allowing us to determine if the PRM can correctly identify if a reasoning chain is incorrect/correct,
and (2) step-wise MSE from the ground truth monte-carlo return-to-go estimate, to evaluate how the
PRM performs on intermediate reasoning steps on held-out queries and steps. We additionally use
this metric to compare different parameterizations of our value function such as the turn-independent
and turn-dependent PRMs. As seen in Figure 7, the absolute performance of the PRM is high for
both variants of the PRM with a high outcome accuracy and low step-wise MSE. Additionally, the
in-context, multi-turn PRM can lead to both better outcome accuracy and step-wise MSE. These
metrics show the efficacy of the learnt PRM at both an outcome and process level, enabling to use
the PRM for both identifying if an error occurred in a reasoning chain and where it did.

Solution with Mistake


# Question


Two bicycle racers cross the starting line on a circular track at 12:15 PM. One cyclist 
takes $12$ minutes per lap, while the other completes a lap every $16$ minutes. 
Assuming their speeds remain constant, what is the next time they cross the starting 
line together?  Your answer should be in the form $h:m_1m_2,$ like 3:45.


# Solution


[STEP] 0. I need to find the time it takes for both cyclists to complete a whole number of 
laps, since that would mean they cross the starting line together. [/STEP]


[STEP] 1. I can use the least common multiple (LCM) of $12$ and $16$ to find that time. 
[/STEP]


[STEP] 2. The LCM of $12$ and $16$ is $48,$ since that is the smallest positive number 
that both $12$ and $16$ divide into evenly. [/STEP]


[STEP] 3. This means that every $48$ minutes, both cyclists complete a whole number 
of laps and cross the starting line together. [/STEP]


[STEP] 4. To find the next time they do this, I need to add $48$ minutes to the current 
time of $12:15$ PM. [/STEP]


[STEP] 5. I can add the minutes by keeping the hours the same and adding $6$ to the 
minutes, since $15 + 33 = 48.$ [/STEP]


[STEP] 6. This gives me $12:51$ PM as the next time they cross the starting line 
together. [/STEP]


[STEP] # Answer


12:51 [/STEP]


Backtracking


# Question


Two bicycle racers cross the starting line on a circular track at 12:15 PM. One cyclist 
takes $12$ minutes per lap, while the other completes a lap every $16$ minutes. 
Assuming their speeds remain constant, what is the next time they cross the starting 
line together?  Your answer should be in the form $h:m_1m_2,$ like 3:45.


# Solution


[STEP] 0. I need to find the time it takes for both cyclists to complete a whole number of 
laps, since that would mean they cross the starting line together. [/STEP]


[STEP] 1. I can use the least common multiple (LCM) of $12$ and $16$ to find that time. 
[/STEP]


[STEP] 2. The LCM of $12$ and $16$ is $48,$ since that is the smallest positive number 
that both $12$ and $16$ divide into evenly. [/STEP]


[STEP] 3. This means that every $48$ minutes, both cyclists complete a whole number 
of laps and cross the starting line together. [/STEP]


[STEP] 4. To find the next time they do this, I need to add $48$ minutes to the current 
time of $12:15$ PM. [/STEP]


[STEP] 5. Adding $48$ minutes to $12:15$ PM gives me $1:03$ PM. [/STEP]


[STEP] 6. Therefore, the next time they cross the starting line together is $1:03$ PM. [/
STEP]


[STEP] # Answer


1:03 [/STEP]<|eot_id|>


Error  
Localization 
with PRM

Correct  
Revision

Figure 9: Qualitative Example of Revision: In the example revision, the PRM is able to localize where an
error is made in the incorrect solution and correct a modular arithmetic mistake.
Futhermore, we qualitatively examine how the behavior of the PRM (value function) evolves over
reasoning steps as seen in Figure 5. For correct solutions, the value function should predict mono-
tonically increasing values, while for incorrect solutions, predict lower values after errors occur.

Do sequential revisions through backtracking exhibit desired behaviors? We conduct a quali-
tative analysis of the revision trajectories generated by our backtracking framework. We present a
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visualization of the revision trajectories in Figure 9, highlighting in an example reasoning problem
in the MATH dataset, an error in modular arithmetic was correctly identified by the PRM.

Additionally, we provide visualizations of the evolution of the learnt value function and correspond-
ing advantage over sequential revisions in Figure 8. The advantage is a useful criterion to identify
where a mistake has been made in the trajectory, where resampling just a single revision leads to
a successful outcome. Additionally, backtracking enables effective ”optimization” over the learnt
values, where future revisions have a larger value over reasoning steps than previous revisions.

5 RELATED WORK

Learning and leveraging process-level supervision for LLMs The idea of using process-level
supervision was popularized in Uesato et al. (2022) and more recently in Lightman et al. (2023).
Both of these works show the promise of using PRMs for MATH. Building upon this idea, papers
such as Math-Shepherd (Wang et al., 2023), MiPS (Wang et al., 2024), and OmegaPRM (Luo et al.,
2024) present more efficient automated ways to gather data for process-level rewards.

Parallel sampling in test-time inference Test-time inference with search has been extensively stud-
ied in works such as Feng et al. (2024); Yao et al. (2023); Hao et al. (2023). One key part of this
equation is the way samples are selected (Welleck et al., 2024). A common paradigm involves gen-
erating multiple trajectories in parallel, then employing some type of model or function to merge
these trajectories. In particular, during test-time inference, the integration of a reward model with
a proposal distribution (LLM) can be employed to refine the output responses to a given prompt.
For instance, search algorithms such as best-of-N (Charniak & Johnson, 2005) and beam search
have been explored in works such as Snell et al. (2024), which leverage reward models to select the
most promising candidate samples in reasoning tasks. Another notable family of techniques include
self-consistency (Wang et al., 2023) and weighted majority voting (Uesato et al., 2022), which are
designed for factual queries with extractable answers. In self-consistency, the language model se-
lects the responses it generates with the highest frequency across multiple samples. This work can
be used in conjunction to our approach, without the use of a verifier. More recent methods such as
universal self-consistency (Chen et al., 2023) and branch-solve-merge (Saha et al., 2024) explicitly
prompt language models to merge the sampled trajectories.

Iterative revisions in test-time inference An alternative paradigm to parallel sampling in test-
time inference is iterative revisions of reasoning steps. Prior work such as RISE (Qu et al., 2024),
SCoRe (Kumar et al., 2024) and Self-Refine (Madaan et al., 2023) parameterize a proposal distribu-
tion that can correct mistakes in an incorrect solution. This approach is complementary as our fixed
proposal distribution can be substituted with the modified learned distribution from these works.
Additionally, in statistics and Markov chain optimization/inference, Sitewise Resampling and
similar approaches (Yang et al., 2019; Wang et al., 2024; Liu et al., 2000; Gagnon et al., 2023)
allow for the sequential reuse of generated samples.

6 DISCUSSION, CONCLUSION, AND LIMITATIONS

In this work, we present a framework for sequential response improvement for reasoning problems
with PRM based backtracking. Backtracking allows the model to localize where in the response
an error has been made and make targeted revisions to efficiently resolve mistakes in a reasoning
chain. We additionally introduce in-context process-supervision to allow the verifier to adapt its
predictions throughout the search process conditioned on prior attempts at a solution, increasing
confidence about a mistake it has made in the past and reinforcing behavior that has led to success.
Evaluating this framework with oracle and learned verifiers in the MATH domain, we achieve a
≈ 15% improvement in test-time compute efficiency compared to linear search algorithms.

There are still many open questions and limitations. While we used a fixed proposal distribution for
responses, methods like RISE (Qu et al., 2024) leverage self-improvement to steer the distribution.
Could these approaches be combined to enhance sequential corrections? Additionally, our analysis
focused on a single reasoning domain (math). Can we develop a general verifier applicable across
domains such as code, legal reasoning, and robotic planning? How does scaling to multiple domains
affect performance, especially in areas where stepwise reasoning is less clearly defined, like code?
Finally, can we use sequential Monte-Carlo sampling approaches to use PRMs effectively?
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7 REPRODUCIBILITY STATEMENT

For reproducibility, we provide the following details so readers can replicate the results found in
our paper. Firstly, we provide algorithm pseudocode as seen in Algorithm 1, giving the reader
transparency in how to replicate the backtracking framework. Additionally, we provide details on
how the dataset is curated such as the prompt template as seen in Appendix A.2 and Hyperparameter
Details in Appendix A.5. Finally, we provide evaluation details in both the main text in Section 4
and Appendix A.6. For the camera ready, we hope to open-source our on-policy datasets and reward
models that we have learned and release a public Github implementation.
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A APPENDIX

A.1 ALGORITHMIC REPRESENTATION FOR BACKTRACKING FRAMEWORK

Below, we provide an algorithmic representation for our backtracking framework for multiple turns
of sequential revision, given a fixed test-time budget:

Algorithm 1 Iterative Backtracking and Solution Revision
1: Input: Initial solution trajectory τ = {s1, s2, . . . , sN}, Maximum iterations M , Advantage

threshold ω, Success Threshold pdes
2: Output: Revised solution trajectory τ ′

3: Initialize iteration count m← 0
4: Initialize best trajectory τbest ← τ
5: Compute initial advantage function A(si, ai) for each step i in trajectory τ
6: while m < M do
7: Identify step irevise ← argmini A(si, ai)
8: Apply the smoothing criterion:

ismooth = argmin
j
{j : |A(sirevise , airevise)−A(sj , aj)| ≤ ω}

9: Resample the suffix of the trajectory starting from step T = ismooth − 1
10: Update the trajectory τ ′ ← {s1, . . . , sT−1, s

′
T , . . . , s

′
N} using a linear search algorithm (e.g

Best-Of-N) as a subroutine, conditioning on the prefix of steps prior to index T .
11: if Improved Solution Found then
12: Update best trajectory τbest ← τ ′

13: end if
14: Identify last state and action in best trajectory τbest as sN , aN
15: if Q(sN , aN ) ≥ pdes then
16: break (stopping criterion)
17: end if
18: Increment iteration count m← m+ 1
19: end while
20: Return final revised trajectory τbest

A.2 DATASET CURATION

We provide additional details in the training datasets used to train the base policy πbase and PRM.

A.2.1 PROMPT TEMPLATE FOR MATH

We use the prompt template in Figure 10 in the training of our PRM and base policy πbase (proposal
distribution). We add four additional tokens ’[STEP]’, ’[/STEP]’, ’[TURN]’, ’[/TURN]’ to the vo-
cabulary of our tokenizer that corresponds to the beginning and end of a step or the beginning and
end of a revision.

A.3 OFFLINE DATASETS

For the base policy πbase and the offline verifier, we utilize the dataloaders from Sun et al. (2024),
which study the PRM800K (Lightman et al., 2023) dataset. Here we use all levels of math problems
(1-5) for both our policy and PRM datasets. We construct a Monte Carlo Estimate using the ground
truth outcome supervision provided in PRM800K (from Stage 1 + 2).

A.4 ON-POLICY DATASET COLLECTION

The on-policy dataset was collected using the following approach. For each question, four rollouts
were generated with the base policy πbase (proposal distribution). These rollouts were then decom-
posed into partial completions, and 20% of these partial completions were further completed using
the current policy and evaluated based on the ground truth reward. In the multiturn setup, each
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Figure 10: Prompt Template for MATH: The prompt template above is used for the MATH dataset. Each
step and revision turn are surrounded by special start and end tokens.

question underwent up to a fixed number of revisions, ranging from 0 to 4. To construct multiturn
trajectories, with K revisions and N responses per revision, N perm K potential revision trajecto-
ries were considered. Given the large number of possible trajectories, the process was simplified
by subsampling J = 100 trajectories from the set of

(
N
K

)
combinations to avoid redundancy and

manage computational complexity.

A.5 HYPERPARAMETERS FOR VALUE FUNCTION TRAINING + POLICY LEARNING

The base policy πbase is initialized with SFT using the following hyperparameters:

Name Values

Learning Rate (lr) 1× 10−6, 1× 10−7

Schedule Cosine

Warmup Ratio 10%

Model LLama 3.1 8B Instruct (Dubey et al.,
2024)

Table 1: Hyperparameters used for SFT

The PRM Qπ(s, a) is initialized with Monte-Carlo Regression using the following hyperparameters:

A.6 ADDITIONAL EVALUATION DETAILS

We leverage 100 validation queries from the Hendryks Math (Hendrycks et al., 2021) and failure
on-policy reasoning chains to construct the dataset for the Performance-Efficiency tradeoff analysis
and the evaluation of the learnt PRMs. We ensure that each of the validation queries is unique.
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Name Values

Learning Rate (lr) 1× 10−5, 1× 10−6

Schedule Cosine

Warmup Ratio 10%

PRM Type Single-Turn, Multi-Turn

Model LLama 3.1 8B Instruct (Dubey et al.,
2024)

Discount γ 0.8, 0.9

Table 2: Hyperparameters used for PRM Training
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