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Abstract

Deep learning sometimes appears to work in unexpected ways. In pursuit of deeper understanding
of its surprising behaviors, we investigate the utility of a tractable and accurate model of a neural
network consisting of a sequence of first-order approximations telescoping out into a single em-
pirically operational tool for practical analysis. We illustrate how it can be applied to derive new
empirical insights on a diverse range of prominent phenomena in the literature — including double
descent, grokking and the challenges of applying deep learning on tabular data.

1. Introduction

Deep learning works, but it sometimes works in mysterious ways. The pursuit of a deeper understand-
ing of both has since motivated many subfields, and progress on fundamental questions has been
distributed across many distinct yet complementary perspectives that range from purely theoretical
to predominantly empirical research. Here, we take a hybrid approach and investigate how we can
apply ideas primarily used in theoretical research to investigate the behavior of a tractable model of
a neural network empirically. Building upon previous work that studies linear approximations to
learning in neural networks [1, 2], we consider a model that uses first-order approximations for the
functional updates made during training. However, unlike most previous work, we define this model
incrementally by simply telescoping out approximations to individual updates made during training
so that it more closely approximates the true behavior of a fully trained network. This provides
us with a mechanism with which we can conduct empirical investigations into several prominent
deep learning phenomena that highlighted how neural networks sometimes generalize in apparently
unpredictable ways. Across three case studies, we then show that this model allows us to construct
and extract metrics that help predict and understand the a priori unexpected performance of the
networks. In particular, we investigate (i) surprising generalization curves (i.e. double descent [3] &
grokking [4], Sec. 4.1), (ii) performance differences between gradient boosting and neural networks
(Sec. 4.2) and (iii) the success of weight averaging (i.e. linear mode connectivity [5], Appendix B).

2. Background

Notation and preliminaries. Let fg : X C R? — ) C R* denote a neural network parameterized
by (stacked) model weights 8 € RP. Assume we observe a training sample of n input-output pairs
{xi,yi}1_;, i.i.d. realizations of the tuple (X,Y") sampled from some distribution P, and wish to
learn good model parameters @ for predicting outputs from this data by minimizing an empirical
prediction loss £ " | ¢(fo(x;),y;), where £ : R* x R¥ — R denotes some differentiable loss
function. Throughout, we let £ = 1 for ease of exposition, but unless otherwise indicated our
discussion generally extends to £ > 1. We focus on the case where 6 is optimized by initializing the
model with some 6 and then iteratively updating the parameters through stochastic gradient descent
(SGD) with learning rates ~y; for 7" steps, where at each ¢ € [T'] = {1,...,T"} we subsample batches

B, C [n] ={1,...,n} of the training indices, leading to parameter updates A@; := 6, — 0;_; as:

*Equal contribution.
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0 =0, 1+ A0, =60, — G;ﬁ ZiEBt Vefet—l(xi)gft =0;1 — %Ttgf (D
where T, = [I{bgft}v(;fgt_l (x1), .- 1{?;1‘%} Vo fo,_,(xn)] is ap x n matrix that has as columns

Vo fo,_,(x;), the gradients of the model prediction w.r.t. its parameters for examples in batch B,
T 0(fo,_, (xi)y:)
] AL Wil

Ofe, (i)

Linearized neural networks & tangent kernels. A growing body of work explores the use of
linearized neural networks as a tool for theoretical [1, 2, 6] and empirical [7-9] study. In this paper,
we similarly make extensive use of the following observation (as in e.g. [7]): we can linearize the
difference A f(x) = fo,(x) — fo,_,(x) between two consecutive parameter updates as

Afi(x) = Voo, (x) A0 + O(||A6:|*) = Vo fo,_, (x) A8, = Afy(x) )

(and 0 otherwise), and gf = [¢{,, ..., g’,]" with g, =

where the quality of the approximation A ft(x) is good whenever the parameter updates A@; from a
single batch are sufficiently small. If Eq. (2) holds exactly (e.g. for infinitesimal +¢), then running
SGD in the network’s parameter space to obtain Af, corresponds to executing steepest descent on
the function output fg(x) directly using the neural tangent kernel K¢ (x,x;) at time-step ¢ [1], i.e.

Af(x) = —y Zz‘e[n} Kf(x, xi)gft where Kf(x, X;) = 1{‘i§ﬁt}VQfgt71(X)TVQfgtil(Xi). 3)

Lazy learning [2] occurs as the model gradients remain close to constant during training. For
learned parameters @1, this implies that the first-order (linear) approximation around 6 holds, i.e.
fé‘;zy(x) = fo,(x) + Vafo,(x)" (87 — 6p). In sufficiently wide neural networks Vg fg, (x) can
theoretically be shown to be constant in some settings [1, 6] — which has been exploited to study
convergence and generalization of neural networks [1, 6, 10—13] — but in practice they generally
vary during training [7, 8]. This present work relates most closely to recent empirical studies using
linearizations, such as [9, 14] highlighting differences between lazy learning and real networks, and

[7] who empirically explore the relationship between loss landscapes and the evolution of K f (x,%;).

3. Looking at deep learning through a telescoping lens

In this work, we explore whether we can exploit the approximation in Eq. (2) beyond the laziness
assumption to gain new insight into neural network learning. Instead of applying the approximation
across the entire training trajectory at once as in féaTZy (x), we consider using it incrementally at each
batch update to approximate what has been learned at this step. Specifically, we explore whether —
instead of studying the final model fg,.(x) as a whole — we can gain insight by felescoping out the
functional updates made throughout training, i.e. exploiting that we can always write:

for (%) = foo (%) + 3213 [fo, (%) = fo,_, (x)] = fao (%) + X0, Afi(x) )

This representation of a learned neural network in terms of its learning trajectory rather than its final
parameters is interesting because we are able to better reason about the impact of training on the
intermediate updates A f;(x) than the final function fp, (x) itself. Then, we investigate whether
empirically monitoring behaviors of the sum in Eq. (4) while making use of the approximation in
Eq. (2) will enable us to gain practical insights into learning in neural networks. That is, we explore
the use of the following telescoping model ng (x) as an approximation of a trained neural network:

for(®) = fo, () + Y Vafo, ,(x)TA0 = fo,(x) = > Y KF (xxi)gl, )

te[T) te(T]

The weight-averaging representation The kernel representation

where K[ (x,x;) is determined by the neural tangent kernel as 7; K2 (x, ;) in the case of plain SGD,
but can take other forms for different optimizers (see Appendix A).
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In Fig. 1, we examine the quality of fg, (x) for a 3-layer ReLU
network of width 200, trained to discriminate 3-vs-5 from 1000
MNIST examples using the squared loss. In red, we plot its mean

average approximation error (g5 > xe Xpow | f0.(X) — fo,(x)]) as  =107L 5 ]
well as the same quantity for fé‘:zy(x) (i.e. the first-order expansion
around 6) in gray and find that iteratively telescoping out the updates Figure 1: Approximation
instead improves the approximation by orders of magnitude — which error of telescoping (fg,(x),
is also reflected in their prediction performance (see Appendix F.1). red) and lazy model (fo'* (x),

Unsurprisingly, -y controls absolute error as it determines ||A8;||. gray).
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10-7 107 ==10% ==10"?
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4. A closer look at modern deep learning phenomena

We now turn to applying the telescoping model, presenting case studies revisiting existing experiments
that provided evidence for a range of unexpected behaviors of neural networks. These have in common
that they highlight cases in which neural networks appear to generalize somewhat unpredictably,
which is also why each phenomenon has received considerable attention in recent years. For each, we
then show that the telescoping model allows us to construct and extract metrics that help predict and
understand the unexpected performance of the networks. In particular, we investigate (i) surprising
generalization curves (Sec. 4.1) and (ii) performance differences between gradient boosting and
neural networks on some tabular tasks (Sec. 4.2) here, and include a third study on linear mode
connectivity & the success of weight averaging in Appendix B. An extended literature review can be
found in Appendix C and a detailed discussion of all experimental setups in Appendix E.

4.1. Case study 1: Exploring surprising generalization curves and benign overfitting
Classical statistical wisdom provides clear intuitions about overfitting: models that can fit the training
data too well are expected to generalize poorly [15]. Modern phenomena like double descent [3],
however, highlighted that pure capacity measures (capturing what could be learned instead of what is
actually learned) would not be sufficient to understand the complexity-generalization relationship
in deep learning [16]. Raw parameter counts, for example, cannot be enough to understand the
complexity of what has been learned by a neural network during training because, even when using
the same architecture, what is learned could be wildly different across various implementation
choices within the optimization process — and even at different points during the training process of
the same model, as prominently exemplified by the grokking phenomenon [4]. Here, we explore
whether the telescoping model allows us to gain insight into the relative complexity of what is learned.
A candidate complexity measure that avoids the shortcomings listed above because it only
considers the behavior of the final fitted model was recently used by [17] in their study of non-
deep double descent. Because their measure pg builds on ideas from the literature on smoothers
[18], it requires to express learned predictions as a function of training labels, i.e. as f(x) =
S(x)y = > ey 8'(x)yi. Then, Pl = p(Zo,8(-) = i > ety |\§(x§))| |2 denote the effective
parameters used by the model when issuing predictions for inputs {X? }jez, (with indices collected
in Zp); intuitively the larger pg, the less smoothing is performed. Does the telescoping model allow
us to make use of pg as a proxy for complexity? Yes! For the special case of a single output
(k = 1) and training with squared loss £(f(x),y) = 3(y — f(x))% if welety = [y1,...,yn]"
and fg, = [fo,(x1),-- -, fo,(%n)] ", the SGD weight update simplifies to AQ; = v, T;(y — fo,_,)-
Assuming the telescoping approximation holds exactly, this implies functional updates A ft(x) =
% Ve fo, ,(x) Ty — f‘gtil). Recursively substituting this into Eq. (5) then allows us to write
fo,(x) = sq, (X)y + cgt (x), where the 1 X n vector sg, (x) is a function of the kernels { K, (-, ) }r<¢
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Figure 2: Double Descent (1) and Grokking (2, 3). Error (top) vs effective parameters pg (bottom).

alone, and the scalar cj (x) is a function of the { K7, (-, -)}»<¢ and the initialization fg,(-) — enabling
us to use p? with sg, (x)! We derive sg, (x) and cp, (x) for different optimizers in Appendix D.1.
Double descent: Model complexity vs model size. [3] made the surprising observation that,
while training error always monotonically decreases as model size (measured by parameter count)
increases, test error initially worsens when the model is increasingly able to overfit to the training
data (as is expected) but can then improve again as model size is increased further past the so-called
interpolation threshold where perfect training performance is achieved. This double descent shape
appears to contradict the classical U-shaped relationship between model complexity and test error
[15]! Here, we investigate whether tracking pg on train- and test data separately will allow us to
gain new insight into the phenomenon in neural networks. In Fig. 2 (1), we replicate the binary
classification example of double descent in neural networks of [3], training single-hidden-layer ReLU
networks of increasing width to distinguish cats and dogs on CIFAR-10. First, we indeed replicate
the characteristic behavior of error curves of [3]. Measuring learned complexity using pg, we then
find that while pgmm monotonically increases as model size is increasing, the effective parameters
used on test data pge“ implied by the trained neural network decrease as model size is increased
past the interpolation threshold. Thus, paralleling the findings made in [17] for linear regression
and tree-based methods, we find that distinguishing between train- and test-time complexity of a
neural network using pg provides new quantitative evidence that bigger networks are not necessarily
learning more complex prediction functions for unseen test examples, which resolves the ostensible
tension between deep double descent and the classical U-curve. Importantly, note that pé“t can
be computed without access to test-time labels, which means that the observed difference between
pg"“m and pt;“ allows to quantify whether there is benign overfitting 19, 20] in a neural network.
Grokking: Model complexity throughout training. The grokking phenomenon [4] then
showcased that improvements in test performance during a single training run can occur long after
perfect training performance has been achieved (contradicting early stopping practice!). While [21]
attribute this to weight decay causing ||6;|| to shrink late in training — which they demonstrate on
an MNIST example using unusually large 8y —, [22] highlight that grokking can also occur as the
weight norm ||0;|| grows later in training — which they demonstrate on a polynomial regression
task. In Fig. 2 we replicate a version of both experiments while tracking pg to investigate whether
this provides new insight into this apparent disagreement. Then, we observe that the continued
improvement in test error, past the point of perfect training performance, is associated with divergence
of pg’"am and pées'f in both experiments (analogous to the double descent experiment), suggesting
that grokking may reflect transition into a measurably benign overfitting regime during training.

4.2. Case study 2: Understanding differences between gradient boosting and neural networks

Despite their overwhelming successes on image and language data, neural networks are — perhaps
surprisingly — still widely considered to be outperformed by gradient boosted trees (GBTs) on tabular
data, an important modality in many data science applications. Exploring this apparent Achilles
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heel of neural networks has therefore been the goal of multiple extensive benchmarking studies
[23, 24]. Here, we concentrate on a specific empirical finding of [24]: their results suggest that GBTs
may particularly outperform deep learning on heterogeneous data with greater irregularity in input
features, a characteristic often present in tabular data. Below, we first show that the telescoping model
offers a useful lens to compare and contrast the two methods, and then use this insight to provide
and test a new explanation of why GBTs can perform better in the presence of dataset irregularities.
Identifying (dis)similarities between GBTs and neural networks. We begin by introducing
GBTs [25] closely following [15, Ch. 10.10]. GBTs, with learning rate -y and initialized at ho(x),
consists of a sequence f&F(x) = ho(x) + 7 Zthl hy(x) where each hy(x) iteratively improves
upon the existing predictions fﬁ B(x). Specifically, GBTs execute steepest descent in function space
directly, where each update ﬂt( ) simply outputs an estimate of the negative gradient of the loss
function w.r.t. the previous model, i.e. i (x;) = —gt(x) where g(x) = ou(f¢ x))/ofe5
This is achieved by fitting trees hy(-) to the training input-gradient pairs {x;, gzt}Ze Wthh can
then also be evaluated at new inputs. Focusing on trees that issue predictions by averagmg, which are
sometimes interpreted as kernel smoothers [26—28], lets us express the learned predictor as:

FOB) = ho(x) —7 30 3 MO =l i} e o TS K (i)l (6)

te[T]i€[n] () te[T)i€n]

where [}, (x) is the leaf x falls into, 1;(x) =3 ;) 1{ln, (x) =1n, (xi) } counts the training examples
initand Kj, (x,%;)="1/me1{l; (x)=1; (x;)} is the kernel of the tth tree. Comparing Eq. (6) to the
kernel representation of the telescoping model (Eq. (5)), we make a perhaps surprising observation:
the telescoping model of neural networks and GBTs have identical structure, differing only in kernel!
Why can GBTs outperform deep learning in the presence of dataset irregularities? Contrast-
ing Eq. (5) and Eq. (6) thus suggests that at least some of the performance differences between neural
networks and GBTs are likely to be rooted in the differences between K (x,x;) and K (% %).
One difference obvious: it is possible that either kernel encodes a better inductive bias to fit the
outcome-generating process of a given dataset. Another difference is more subtle and relates to the
behavior of the learned model on new inputs x — the tree kernels are likely to behave much more
predictable at test-time than the tangent kernels. To see this, note that for the tree kernels we have
that Vx € X and Vi € [n], 0 < Kj, (x,%x;) < Land } .1 K}, (x,%;) = 1. For the tangent kernels
on the other hand, K?(x, x;) is in general unbounded and could behave very erratically for x not
observed during training. This leads us to hypothesize that this difference may be able to explain
[24]’s observation that GBTs perform better whenever features are heavy-tailed: if a test point x
is very different from training points, k?(x) = [K?(x,x1),..., K?(x,x,)]" may behave very
differently than at train-time while k;, (x) = [Kj, (x,x1),..., K}, (%, x,,)] " will be less affected.
We empirically test this hypothesis on standard tabular benchmark 300
datasets proposed in [23], comparing the models as inputs become in-
creasingly irregular. As a simple notion for input irregularity, we apply
principal component analysis to the inputs to obtain a lower dimen- =
sional representation of the data and sort the observations according b
to their distance from the centroid. For a fixed trained model, we then
evaluate on test sets consisting of increasing proportions p of the most
irregular inputs. We compare GBTs to neural networks by examining
(i) the most extreme values their kernel Weights take at test-time relative

T Y-y max; p e (x5)l
t=1 JET] t\Xj)l12

to the training data (measured as +
T i 1maXzeztmm [kt (i) ]2

MSE?,  —MSEP, ... Figure 3: Neural Nets vs
MSES, y—MSE, 5.’ GBTs: Performance (top) &
behavior of kernels (bottom).
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how their relative mean squared error (measured as
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changes as the proportion p of irregular examples increases. In Fig. 3 on houses and in Ap-
pendix F.3 using additional datasets, we first observe that GBTs outperform neural networks already
in the absence of irregular examples; this highlights that there may indeed be differences in the
kernels’ fit to the outcome-generating processes. Consistent with our expectations, we then find that
as the test data becomes more irregular, the performance of the neural network decays faster than
the GBTs’. Importantly, this is well tracked by their kernels, where the unbounded nature of the
network’s tangent kernel indeed results in changed behavior on irregular examples.

5. Conclusion

We investigated the utility of a telescoping model for neural network learning, consisting of a
sequence of linear approximations, as a tool for understanding deep learning phenomena. We believe
there are many interesting opportunities to study this in more generality, empirically and theoretically.
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Appendix

This appendix is structured as follows: In Appendix A, we derive the linearized functional updates
implied by modern optimizers. In Appendix B, we present an additional case study investigating
linear mode connectivity the success of weight averaging. Further, Appendix C presents an extended
literature review related to the phenomena we consider in , Appendix D presents additional theoretical
derivations, Appendix E presents an extended discussion of experimental setups and Appendix F
presents additional results.

Appendix A. Understanding the effect of modern design choices on linearized
functional updates

The literature on the neural tangent kernel primarily considers plain SGD, while modern deep learning
practice typically relies on a range of important modifications to the training process (see e.g. [29,
Ch. 6]) — this includes many of the experiments demonstrating surprising deep learning phenomena
we examine in Sec. 4. To enable us to use modern optimizers, we derive their implied linearized
functional updates through the weight-averaging representation A ft(x) =Volfe, , (x) " AB; below.
As a by-product, we find that this provides us with an interesting and pedagogical formalism to
reason about the relative effect of different design choices in neural network training.

Momentum with scalar hyperparameter 3; smoothes weight updates by employing an exponen-
tially weighted average over the previous parameter gradients as A@; = —; tg% 2221 5§_kT k gi
instead of using the current gradients alone. This implies linearized functional updates

AJe(x) = =175 i (P (i) gty + 30520 BT KD (6, x0)gf) @

where Kg L (X, %) = L{ligiﬁ’“}vf; fo, (%) Vg fo,_, (x;) denotes the cross-temporal tangent kernel.
Thus, the functional updates also utilize previous loss gradients, where their weight is determined
using an inner product of the model gradient features from different time steps. If Vg fo, (x) is
constant throughout training and we use full-batch GD, then the contribution of each training
example i to Afy(x) reduces to —y K¢ (x, xi)%[zzzl BiF gt ], an exponentially weighted
moving average over its past loss gradients — making 1the effect of momentum on functional updates
analogous to its effect on updates in parameter space. However, if Vg fg, (x) changes over time, it is

e.g. possible that K¢ ,(x, x;) has opposite sign from K (x, x;) in which case momentum reduces

instead of amplifies the effect of a previous gft. This is more obvious when re-writing Eq. (7) to collect

all terms containing a specific g};, leading to K/'(x, x;) = Z;}th Vi i:g}c Bf_th7t(x, x;) for Eq. (5).
1

Weight decay with scalar hyperparameter \ uses A@; = —v;(T;gf + \0;_1). For constant
learning rate + this gives 6; = 0y — S5 _; V(Txgs + A0r_1) = (1 — M) — > h_ (1 —
)\’y)t_kagﬁ. This then implies linearized functional updates

A (%) = =7 Y i (Ki (%, %0)gh — My Yoy (1= M) 1K (x, xi) g5

8
—A(1 = M) Voo, , (%) 6 ®
For full-batch GD and constant tangent kernels, —yK§ (x, x;)[gix — Ay 22;11 (1= Xy Fglis
the contribution of each training example to the functional updates, which effectively decays the
previous contributions of this example. Further, comparing the signs in Eq. (8) to Eq. (7) highlights
that momentum with 51 > (1 — \y) approximately offsets the effect of weight decay on the learned
updates in function space (in which case weight decay mainly acts through the term decaying 6g).
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Adaptive & parameter-dependent learning rates are another important modification in practice
which enable the use of different step-sizes across parameters by dividing A8, elementwise by ap x 1
scaling vector ¢;. Most prominently, this is used to adaptively normalize the magnitude of updates

(e.g. Adam [30] uses ¢y = }:g? Z',;:l Bé_k[Tkgﬁ]Q + €). When combined with plain SGD,
2
this results in kernel Kf’(x, X;) = %V@f@t_l(X)Tdiag(é)VQfgt_l(Xi). This expression

highlights that ¢; admits an elegant interpretation as re-scaling the relative influence of features
on the tangent kernel, similar to structured kernels in non-parametric regression [15, Ch. 6.4.1].
Architecture design choices also impact the form of the kernel. One important practical example

is whether fg(x) applies a non-linear activation function to the output gg(x) € R of its final layer.

Consider the choice of using the sigmoid o(z) = H% for a binary classification problem and

recall 8%0(95) =o(z)(1 —0o(x)) € '(07 1/4], which is largest where o(x) = 1/2 and smallest when
o(z) - 0V 1 If K9(x,x;) = Hrgﬁt}v(; g6, ,(x) " Vg g, ,(x;) denotes the tangent kernel of
the model without activation, it is easy to see that the tangent kernel of the model o (gg, (x)) is

K7 (x,%;) = (g, (%)) (1 — 7(gs, (x)))o (g, (x:)) (1 — o(ge, (x:))) K7 (x, x;) ©)

This indicates that Kf 7 (x,x;) will give relatively higher weight in functional updates to training
examples ¢ for which the model is uncertain (o (g(x;)) =~ 1/2)) and lower weight to examples where
the model is certain (c(gg, (x;)) =~ 0V 1) — regardless of whether o(gg, (x;)) is the correct label.
Conversely, Eq. (9) also implies that when comparing the functional updates of gg(x) to those of
o(ge(x)) across inputs x € X, updates will be relatively larger for x where the model is uncertain
(0(ge,(x)) =~ 1/2)). Finally, Eq. (9) highlights that the (post-activation) tangent kernel of a model with
sigmoid activation cannot be constant over time unless the model predictions o (gg, (x)) do not change.

Appendix B. Case study 3: Towards understanding the success of weight averaging

The final interesting phenomenon we investigate is that it is sometimes possible to simply average
the weights 61 and 0, obtained from two stochastic training runs of the same model, resulting in
a weight-averaged model that performs no worse than the individual models [5, 31] — which has
important applications in areas such as federated learning. This phenomenon is known as linear
mode connectivity (LMC) and is surprising as, a priori, it is not obvious that simply averaging the
weights of independent neural networks (instead of their predictions, as in a deep ensemble [32]),
which are highly nonlinear functions of their parameters, would not greatly worsen performance.
While recent work has demonstrated empirically that it is sometimes possible to weight-average an
even broader class of models after permuting weights [31, 33, 34], we focus here on understanding
when LMC can be achieved for two models trained from the same initialization 8. In particular, we
are interested in [5]’s observation that LMC can emerge during training: the weights of two models
0§,T, j € {1, 2}, which are initialized identically and follow identical optimization routine up until
checkpoint ¢’ but receive different batch orderings and data augmentations after ¢/, can be averaged
to give an equally performant model as long as ¢’ exceeds a so-called stability point t*, which was
empirically discovered to occur early in training in [5]. Interestingly, [7, Sec. 5] implicitly hint at
an explanation for this phenomenon in their empirical study of tangent kernels and loss landscapes,
where they found an association between the disappearance of loss barriers between solutions during
training and the rate of change in K¢ (-, -).

LMC and train-time transition into the lazy regime. Using the weight-averaging representation
of the telescoping model, we can extend on [7]’s empirical results to show that, not only is the
stabilization of the tangent kernel associated with lower linear loss barriers, but the transition into
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a lazy regime during training — i.e. reaching a point ¢* after which the model gradients no longer
change — can be sufficient to imply LMC during training as observed in [5] under a mild assumption
on the performance of the two networks’ ensemble. To see this, let L(f) = Ex y.p[l(f(X),Y)]
denote the expected loss of f and recall that if supqcjo17L( fao{T (1-a)0l, ) — [aL( f"ilT )+ (11—
a)L(fgr )] < 0LMC is said to hold. If we assume that the ensemble f%(x) = afy (x) + (1 —
2T B 1T
) fgrr (x) performs no worse than the individual models (i.e. L(f*) < aL(fyr )+ (1 —a)L(fqv )
2T 17T 2T
Va € [0, 1], as is usually the case in practice [35]), then one case in which LMC is guaranteed is if the
predictions of weight-averaged model and ensemble are identical. In Appendix D.2, we show that if
there exists some ¢* € [0, '] after which the model gradients Vg f, (-) no longer change (i.e. for all
jt

t > t* the learned updates 0;; lie in a convex set @jmble in which Vg fg(-) = Vg fe,. (-)), then indeed
by T / !
fox) = fa@i/T—Q—(l—oa)BgT (x) ~ fo, (%) + Vo fo,. (x)" Yot i1 (A0, + (1 —a)A8,). (10)

That is, transitioning into a lazy regime during training can imply LMC because the ensemble
and weight-averaged model become near-identical! This also has as an immediate corollary that
models with the same 6y which train fully within the lazy regime will have ¢t* = 0. Note that,
when using nonlinear (final) output activation o (-) the post-activation model gradients will generally
not become constant during training (as we discussed in Appendix A for the sigmoid and as was
shown theoretically in [8] for general nonlinearities). If, however, the pre-activation model gradients
become constant during training and the pre-activation ensemble — which averages the two model’s
pre-activation outputs before applying o (-) — performs no worse than the individual models (as is also
usually the case in practice [36]), then the above also immediately implies LMC for such models.
This suggests a candidate explanation for why LMC 06 —e— Rand init |
emerged at specific points ¢* in [5]. To test this, we repli- —e— Pretrained
cate their CIFAR-10 experiment using a ResNet-20 in
Fig. 4 (blue). In addition to plotting the maximal decrease

in accuracy when comparing faetle +(1-a)0L, (x) to the

Accuracy gap
&

. . .21 | S —— —o
weighted average of the accuracies of the original models g *'L. :
as [5], we also plot the relative change in pre-activation E 3311
[IVofo, 400 (X)—Vale, coll2 Z
: +390 t =
gradients Vola, Tz over the next epoch % gl
(390 batches) after checkpoint ¢’. We find that, as hy- &
. . . . = 23t
pothesized, the disappearance of the loss barrier indeed g 23
coincides with the time in training when the gradients § 06l
become close to stable. Z S0 AP ARRL S

.. . . . N S
Pre-training and weight averaging. Because weight Checkpoint

averaging methods .have' become increasingly 'piop'ular Figure 4: LMC. Decrease in accuracy
when using pre-trained instead of randomly initialized using averaged weights a6, + (1 —
models [37-39], we are interested in testing whether pre- )8, (top) and relative change in gradients
training may improve mode connectibility through stabi- - within one epoch of #', by ¢’ for randomly
lizing the model gradients. To test this, we replicate the initialized (blue) and pre-trained ResNet-20
above experiment with the same architecture pre-trained (green).
on the SVHN dataset (in green in Fig. 4). Mimicking findings of [37], we find the loss barrier to
be substantially smaller after pre-training — and can now link this to a new explanation for this
phenomenon, which is that pre-training can lead to gradients stabilizing much earlier in training.
Takeaway Case Study 3. Reasoning through the learning process by telescoping out functional
updates suggests that weight-averaging model parameters trained from the same checkpoint can be
effective if their models’ gradients are relatively stable (i.e. they train lazily).
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Appendix C. Additional literature review

In this section, we present an extended literature review related to the phenomena we consider in
Sec. 4.1 and Appendix B.

C.1. The model complexity-performance relationship (for Sec. 4.1)

Classical statistical textbooks convey a well-understood relationship between model complexity
— historically captured by a model’s parameter count — and prediction error: increasing model
complexity is expected to modulate a transition between under- and overfitting regimes, usually
represented by a U-shaped error-curve with model complexity on the x-axis in which test error first
improves before it worsens as the training data can be fit too well [15, 18, 40]. While this relationship
was originally believed to hold for neural networks as well [41], later work provided evidence that —
when using parameter counts to measure complexity — this U-shaped relationship no longer holds
[42, 43].

Double descent. Instead, the double descent [3] shape has claimed its place, which postulates
that the well-known U-shape holds only in the underparameterized regime where the number of model
parameters p is smaller than the number of training examples n; once we reach the interpolation
threshold p = n at which models have sufficient capacity to fit the training data perfectly, increasing p
further into the overparametrized (or: interpolation) regime leads to test error improving again. While
the double descent shape itself had been previously observed in linear regression and neural networks
in [42, 44-47] (see also the historical note in [48]), the seminal paper by [3] both popularized it as
a phenomenon and highlighted that the double descent shape can also occur tree-based methods.
In addition to double descent as a function of the number of model parameters, the phenomenon
has since been shown to emerge also in e.g. the number of training epochs[49] and sparsity [50].
Optimal regularization has been shown to mitigate double descent [51].

Due to its surprising and counterintuitive nature, the emergence of the double descent phe-
nomenon sparked a rich theoretical literature attempting to understand it. One strand of this literature
has focused on modeling double descent in the number of features in linear regression and has
produced precise theoretical analyses for particular data-generating models [19, 46, 52-56]. Another
strand of work has focused on deriving exact expressions of bias and variance terms as the total
number of model parameters is increased in a neural network by taking into account all sources
of randomness in model training [42, 57-59]. A different perspective was presented in [17], who
highlighted that in the non-deep double descent experiments of [3], a subtle change in the parameter-
increasing mechanism is introduced exactly at the interpolation threshold, which is what causes
the second descent. [17] also demonstrated that when using a measure of the test-time effective
parameters used by the model to measure complexity on the x-axes, the double descent shapes
observed for linear regression, trees, and boosting fold back into more traditional U-shaped curves.
In Sec. 4.1, we show that the telescoping model enables us to discover the same effect also in deep
learning.

Benign overfitting. Closely related to the double descent phenomenon is benign overfitting
(e.g. [19, 60-65]), i.e. the observation that, incompatible with conventional statistical wisdom about
overfitting [15], models with perfect training performance can nonetheless generalize well to unseen
test examples. In this literature, it is often argued in theoretical studies that overparameterized neural
networks generalize well because they are much more well-behaved around unseen test examples
than examples seen during training [63, 65]. In Sec. 4.1 we provide new empirical evidence for this
by highlighting that there is a difference between pg‘"” and pge‘gt.

Understanding modern model complexity. Many measures for model complexity capture
some form of capacity of a hypothesis class, which gives insight into the most complex function
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that could be learned — e.g. raw parameter counts and VC dimensions [66]. The double descent and
benign overfitting phenomena prominently highlighted that complexity measures that consider only
what could be learned and not what is actually learned for test examples, would be unlikely to help
understand generalization in deep learning [16]. Further, [17] highlighted that many other measures
for model complexity — so-called measures of effective parameters (or: degrees of freedom) including
measures from the literature of smoothers [18, Ch. 3.5] as well as measures relying on the model’s
Hessian [67, 68] (which have been considered for use in deep learning in [69]) — were derived in
the context of in-sample prediction (where train- and test inputs would be the same) and do thus
not allow to distinguish differences in the behavior of learned functions on training examples from
new examples. For this reason, [17] proposed an adapted effective parameter measure for smoothers
that can distinguish the two, and highlighted that differentiating between the amount of smoothing
performed on train- vs test examples is crucial to understanding double descent in linear regression,
trees and gradient boosting. In Sec. 4.1, we show that the telescoping model makes it possible to
use [17]’s effective parameter measure for neural networks, allowing interesting insight into implied
differences in train- and test-time complexity of neural networks.

Grokking. Similar to double descent in the number of training epochs as observed in [49]
(where the test error first improves then gets worse and then improves again during training), the
grokking phenomenon [4] demonstrated the emergence of another type of unexpected behavior during
the training run of a single model. Originally demonstrated on arithmetic tasks, the phenomenon
highlights that improvements in test performance can sometimes occur long after perfect training
performance has already been achieved. [21] later demonstrated that this can also occur on more
standard tasks such as image classification. This phenomenon has attracted much recent attention
both because it appears to challenge the common practice of early stopping during training and
because it showcases further gaps in our current understanding of learning dynamics. A number of
explanations for this phenomenon have been put forward recently: [70] attribute grokking to delayed
learning of representations, [71] use mechanistic explanations to examine case studies of grokking,
[72] attribute grokking to more efficient circuits being learned later in training, [21] attribute grokking
to the effects of weight decay setting in later in training and [73] attribute grokking to the use of
adaptive optimizers. [22] highlight that the latter two explanations cannot be the sole reason for
grokking by constructing an experiment where grokking occurs as the weight norm grows without the
use of adaptive optimizers. Instead, [22, 74] conjecture that grokking occurs as a model transitions
from the lazy regime to a feature learning regime later in training. Our perspective presented in
Sec. 4.1 is complementary to these lines of work: we highlight that grokking coincides with the
widening of a gap in effective parameters used for training and testing examples and that there is
thus a quantifiable benign overfitting effect at play.

C.2. Weight averaging in deep learning (for Appendix B)

Ensembling [75], i.e. averaging the predictions of multiple independent models, has long established
itself as a popular strategy to improve prediction performance over using single individual models.
While ensembles have historically been predominantly implemented using weak base learners like
trees to form random forests [76], deep ensembles [32] —i.e. ensembles of neural networks — have
more recently emerged as a popular strategy for improving upon the performance of a single network
[32, 77]. Interestingly, deep ensembles have been shown to perform well both when averaging the
predictions of the underlying models and when averaging the pre-activations of the final network
layers [36].

A much more surprising empirical observation made in recent years is that, instead of averaging
model predictions as in an ensemble, it is sometimes also possible to average the learned weights
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6, and 0, of two trained neural networks and obtain a model that performs well [5, 78]. This is
unexpected because neural networks are highly nonlinear functions of their weights, so it is unclear
a priori when and why averaging two sets of weights would lead to a sensible model at all. When
weight averaging works, it is a much more attractive solution relative to ensembling: an ensemble
consisting of k models requires k£ x p model parameters, while a weight-averaged model requires
only p parameters — making weight-averaged models both more efficient in terms of storage and
at inference time. Additionally, weight averaging has interesting applications in federated learning
because it could enable the merging of models trained on disjoint datasets. [78] were the first to
demonstrate that weight averaging can work in the context of neural networks by showing that model
weights obtained by simple averaging of multiple points along the trajectory of SGD during training —
a weight-space version of the method of fast geometric ensembling [79] — could improve upon using
the final solution directly.

Mode connectivity. The literature on mode connectivity first empirically demonstrated that there
are simple (but nonlinear) paths of nonincreasing loss connecting different final network weights
obtained from different random initializations [79-81]. As discussed in the main text, [5] then
demonstrated empirically that two learned sets of weights can sometimes be /inearly connected
by simply interpolating between the learned weights, as long as two models were trained together
until some stability point ¢*. [82] perform an empirical study investigating which networks and
optimization protocols lead to mode connectivity from initialization (i.e. t* = () and which
modifications ensure ¢* > 0. As highlighted in Appendix B, our theoretical reasoning indicates that
one sufficient condition for linear mode connectivity from initialization is that models stay in the
lazy regime during training.

Methods that average weights. Beyond [78]’s stochastic weight averaging method, which
averages weights from checkpoints within a single training run, weight averaging has also recently
gained increased popularity in the context of averaging multiple models finetuned from the same pre-
trained model [37-39]: while [37] showed that multiple models finetuned from the same pretrained
model lie in the same loss basin and are linearly mode connectible, the model soups method of
[38] highlighted that simply averaging the weights of multiple models fine-tuned from the same
pre-trained parameters with different hyperparameters leads to performance improvements over
choosing the best individual fine-tuned model. A number of methods have since been proposed that
use weight-averaging of models fine-tuned from the same pretrained model for diverse purposes (e.g.
[83, 84]). Our results in Appendix B complement the findings of [37] by highlighting that fine-tuning
from a pre-trained model leads to better mode connectivity because the gradients of a pre-trained
model remain much more stable than those trained from a random initialization.

Weight averaging after permutation matching. Most recently, a growing number of papers
have investigated whether attempts to merge models through weight-averaging can be improved
by first performing some kind of permutation matching that corrects for potential permutation
symmetries in neural networks. [34] conjecture that all solutions learned by SGD are linearly mode
connectible once permutation symmetries are corrected for. [31, 33, 85] use different methods for
permutation matching and find that this improves the quality of weight-averaged models.

Appendix D. Additional theoretical results

D.1. Derivation of smoother expressions in the telescoping model (for Sec. 4.1)

Vanilla SGD. Recall that letting y = [y1,...,y,]" and fg, = [fo,(X1), ..., fo,(Xn)], the SGD
weight update with squared loss ¢(f(x),y) = %(y — f(x))?, in the special case of single outputs
k = 1, simplifies to AG; = T (y — fo,_,). If we assume that the telescoping model holds
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exactly, this implies functional updates A f;(x) = v;Va fo,_,(x) T+(y — fo,_,). If we could write
fo, , = Se, ,y + ce, ,,then we would have

Afy(x) = T/ Ti(y — (Se,_,y +co,_,)) = %T{ To(I, — Se,_, )y — T/ Tico,_, (11

Noting that we must have cg, = fp, and Sg, = 0"*", and recursively substituting Eq. (11) into
Eq. (5) then allows to write the vector of training predictions as

T T—t
fo, = (Z <H(In—%+thT+th+k)> %TtTTt) y

Se,y

T-1
+ ( 11 (In—%—thT_th—k)> fo,

k=0

(12)

CgT

which is a function of the training labels y, the predictions at initialization fp, and the model gradients
{T,g}tT:1 traversed during training (captured in the n X n matrix Sg,, and the n x 1 vector cg,.) alone.
Similarly, we can then also write the weight updates (and, by extension, the weights 07) using the
same quantities, i.e. A0; = 1 Ty(I, — Se,_,)y — 1 Tice,_,. By Eq. (5), this also implies that we
can write predictions at arbitrary test input points as a function of the same quantities:

T
for (x (Z%Ve)fet (x)'T (n—Set_1)> <f90 Z Ve fo,_, (%) Tico,_ 1)

t=1

sop (X)y cop (%)

where the matrix Sg, , is as defined in Eq. (12), which indeed has sg, ,(x;) as its i-th row (and
analogously for cg,_,).

General optimization strategies. Adapting the previous expressions to enable the use of adaptive
learning rates is straightforward and requires only inserting dlag( )Tt into the expression for
A ft( ) instead of T alone; then defining the matrices similarly proceeds by recursively unraveling
updates using Af;(x) = v,V fo, , (x )leag( -)Te(y — fg,_,). Both momentum and weight decay
lead to somewhat more tedious updates and necess1tate the introduction of additional notation.
Let Asi(x) = sg,(x) — sg,_, (x), with sg,(x) = 01" and Aci(x) = cg,(x) — cg,_,(x), with

co,(X) = fo,(x), 5o that sg..(x) = S| As;(x) and cg,.(x) = fo,(x) + 31—, Acs(x). Further,
we can write

Afy(x) = Asi(x)y + ci(x) = % Vofo, ,(x) ' Uly +7%Vafo, ,(x) U (13)

which means that to derive sg, (x) for each ¢, we can use the weight update formulas to define the
p x n update matrix Uy and the p x 1 update vector U that can then be used to compute As;(x)
as Vo fo, ,(x)TU? and Acy(x) as 1 Ve fo, . (x) TUS. For vanilla SGD,

Uy = Ty(I, — Sp, ,) and UY = —Tycy, | (14)

while SGD with only adaptive learning rates uses

.1 1
U? = dlag(a)Tt(In —Sp, ,) and UY = —dlag(a)thet_l (15)
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Momentum, without other modifications, uses Uf = US and UC = UtC , Where

15t 1ﬁt

UF = (1 - B)Tu(I, — Se,_,) + /10U, and US = —((1 - B1)Tycq, , + HUL)  (16)

with fjg = 0P*" and fjg = oPx1,
Weight decay, without other modifications, uses

U} = Ty(I, — Se,_, + AD?) and UY = —Ty(cq,_, + ADY) (17)

where DY = 71U | + (1 — My—1)D7 | and DY = % 1UY | + (1 — Ay—1)DY | with
D§ = 07*" and D§ = 6.

Putting all together leads to AdamW [86] (which decouples weight decay and momentum, so
that weight decay does not enter the momentum term), which uses

1
U; = diag(— ) US + AT,DY and C§ = 5t ——diag(— ™y )UC +AT,DY  (18)

‘;bt 1- 51
where all terms are as in Eq. (16) and Eq. (17).

Remark: Writing f'gT = Sg,y + Cg,fg, is reminiscent of a smoother as used in the statistics
literature [18]. Prototypical smoothers issue predictions y = Sy — which include k-Nearest Neighbor
regressors, kernel smoother, and (local) linear regression as prominent members —, and are usually
linear in that S does not depend on y. The smoother implied by the telescoping model is not
necessarily a linear smoother because Sg,. can depend on y through changes in gradients during
training, making ng an adaptive smoother. This adaptivity in the implied smoother is similar to
trees as recently studied in [17, 28]. In this context, effective parameters as measured by p? can
be interpreted as measuring how non-uniform and extreme the learned smoother weights are when
issuing predictions for specific inputs [17].

D.2. Comparing predictions of ensemble and weight-averaged model after train-time
transition into lazy regime (for Appendix B)

Here, we compare the predictions of the weight-averaged model f_ . +(1—a)e, (x) to the ensemble
_ 1T 2T
fex) = af g (x)+ (1 —a)f g (x) if the models transition into a lazy regime at time t* < ¢'.
1T 2T
We begin by noting that the assumption that the gradients no longer change after ¢* (i.e.
v(’fet’ (1) = Vafo,. () for all t > t*) implies that the rate of change of Vg fp,.(x) in the di-

rection of the weight updates must be approximately 0. That is, V f,. (x)(8 — 6;+) ~ 0 for all
0 < @jmble, or equivalently all weight changes in each @jtable are in directions that are in the
null-space of the Hessian (or in directions corresponding to diminishingly small eigenvalues). To
avoid clutter in notation, we use splitting point ¢ = ¢* below, but note that the same arguments hold
for ' > t*.
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First, we now consider rewriting the predictions of the ensemble, and note that we can now write
the second-order Taylor approximation of each model f,:+ (x) around 6;~ as
5T

Z AB,

t=t*+41

Tot;, (%) = forr (x) + Vo o, (x Z AGj; +

t=t*+1

Vefot* [ > A6

t=t*+1

~0

+Ry( Z A6
t=t*+1

~ for (%) + Vo fo,. (x Z AB}; + Ry Z N

t=t*+1 t=t*+1

where RQ(Z?:H 1 AO;;) contains remainders of order 3 and above. Then the prediction of the
ensemble can be written as

T
FAX) ~ fo. () + fo. ()T Y (A6, + (1 —a)A6%,)
t=t*+1 19)
T T (
+aR( Z A6f;) + (1 — ) Ry( Z A63,))
t=t"+1 t=t+1

Now consider the weight-averaged model f_,./ H(1-a)e (x). Note that we can always write
1T 2T
07 =00+ 1 A% =0y + 51, AG%; and thus
abl + (1 — )0y =0 + 3,y (@8, + (1 — ) ABY,). Further, because
V3 fo,. (x) Zfzt*+1 AO};; ~ 0 for each j € {0, 1}, we also have that

T

Vi fo,. (x) ( Z alAby + (1 — a)A9t2> ~a0+ (1—a)0=0 (20)
t=t*+1

Then, the second-order Taylor approximation of faei/T +(1-a)8l, (x) around 6+ gives

T
Faot! 1o, (%) = fo,. () + Vofo,. (x)T D (al6i + (1 —a)Aby)
t=t*+1
., 1)
+Ry( > Abn + (11— a)Aby)
t=t*+1

Thus, fa@’ilT +(1-a)6t, (x) &= f*(x) up to remainder terms of third order and above.

Appendix E. Additional Experimental details

In this section, we provide a complete description of the experimental details throughout this work.
Each section also reports their respective required compute which was performed on either Azure
VMs powered by 4 x NVIDIA A100 GPUs or an NVIDIA RTX A4000 GPU.
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E.1. Case study 1 (Sec. 4.1) and approximation quality experiment (Sec. 3, Fig. 1)

Double descent experiments. In Fig. 2 (1), we replicate [3, Sec. S.3.3]’s only binary classifi-
cation experiment which used fully connected ReLLU networks with a single hidden layer trained
using the squared loss, without sigmoid activation, on cat and dog images from CIFAR-10 [87].
Like [3], we grayscale and downsize images to d = 8 x 8 format and use n = 1000 training
examples and use SGD with momentum 5; = 0.95. We use batch size 100 (resulting in B = 10
batches), learning rate v = 0.0025, and test on n¢s; = 1000 held out examples. We train for up
to e = 30000 epochs, but stop when training accuracy reaches 100% or when the training squared
loss does not improve by more than 10~ for 500 consecutive epochs (the former strategy was also
employed in [3], we additionally employ the latter to detect converged networks). We report re-
sults using {1,2,5,7,10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 70, 85, 100, 200, 500, 1000, 2000, 5000 }
hidden units. We repeat the experiment for 4 random seeds and report mean and standard errors in
all figures.

In Appendix F.2, we additionally repeat this experiment with the same hyperparameters using
MNIST images [88]. To create a binary classification task, we similarly train the model to distinguish
3-vs-5 from n = 1000 images downsampled to d = 8 x 8 format and test on 1000 examples. Likely
because the task is very simple, we observe no deterioration in test error in this setting for any hidden
size (see Fig. 7). Because [49] found that double descent can be more apparent in the presence of
label noise, we repeat this experiment while adding 20% label noise to the training data, in which
case the double descent shape in test error indeed emerges. As above, we repeat both experiments for
4 random seeds and report mean and standard errors in all figures.

Compute: We train num_settingsxnum hidden_sizesXnum_seeds (3x22x4 = 264)
models forup to T = B x e = 300000 gradient steps. Training times, which included all gradient
computations to create the telescoping approximation, depended on the dataset and hidden sizes, but
completing a single seed for all hidden sizes for one setting took an average of 36 hours.

Grokking experiments. In panel (2) of Fig. 2, we replicate the polynomial regression experiment
from [22, Sec. 5] exactly. [22] use a neural network with a single hidden layer, using custom
nonlinearities, of width nj, = 500 in which the weights of the final layer are fixed, that is they use

fo(x) = Tjh Z QS(HJTX) where ¢(h) = h + %h2 (22)
j=1

Inputs z € R? are sampled from an isotropic Gaussian with variance é and targets y are generated as
y(x) = (87 x)? In this setup, € used in the activation function of the network controls how easy it
is to fit the outcome function (the larger ¢, the better aligned it is for the task at hand), which in turn
controls whether grokking appears. In the main text, we present results using € = .2; in Appendix F.2
we additionally present results using e = .05 and € = 0.5. Like [22], we use d = 100, n¢prqin = 550,
ntest = 500, initialize all weights using standard normals, and train using full-batch gradient descent
with v = B = 500 on the squared loss. We repeat the experiment for 5 random seeds and report
mean and standard errors in all figures.

In panel (3) of Fig. 2, we report an adapted version of [21]’s experiment reporting grokking
on MNIST data. Here, we need to adapt [21]’s experiment into a binary classification task with
lower learning rate «y to enable the use of ng (x). The reduction of v is needed here as the A,
are otherwise too large to obtain an accurate approximation and has as side effect that the grokking
phenomenon appears visually less extreme as perfect training performance is achieved later in
training. In particular, to enable the use of our model, we once more consider the binary classification
task 3-vs-5 from n = 1000 images downsampled to d = 8 x 8 features and test on 1000 held-out
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examples. Like [21], we use a 3-layer fully connected ReLU network trained with squared loss
(without sigmoid activation) and larger than usual initialization by using a8 instead of the default
initialization 6. We report o = 6 in the main text and include results with « = 5 and & = 7 in
Appendix F.2. Like [21] we use the AdamW optimizer [86] with batches of size 200, 1 = .9 and
B2 = .99, and use weight decay A\ = .1. While [21] use learning rate 10~3, we need to reduce this by
factor 10 to vy = 10~* and additionally use linear learning rate warmup over the first 100 batches to
ensure that weight updates are small enough to ensure the quality of the telescoping approximation;
this is particularly critical because of the large initialization which otherwise results in instability
in the approximation early in training. We repeat these experiments for 4 random seeds and report
mean and standard errors in all figures.

Compute: Replicating [22]’s experiments required training num_settings X num_seeds
(3 x 5 = 15) models for " = 100,000 gradient steps. Each training run including all gradient
computations took less than 1 hour to complete. Replicating [21]’s experiments required training
num_settings X num_seeds (3 x 4 = 12) for T'= 100, 000 gradient steps. Each training run
including all gradient computations took around 5 hours to complete.

Approximation quality experiment (Fig. 1) The approximation quality experiment uses the
identical MNIST setup, training process and architecture as in the grokking experiments (differing
only in that we use standard initialization v and no learning rate warmup). In addition to the vanilla
SGD experiment presented in the main text, we present additional settings — using momentum alone,
weight decay alone, AdamW [86] and using sigmoid activation — in Appendix F.1. In particular, we
use the following hyperparameter settings for the different panels:

* “SGD”: A =0, p; = 0, no sigmoid.

* “AdamW”: A = 0.1, 1 = 0.9, S2 = .99, no sigmoid.

* “SGD + Momentum”: A = 0, 51 = 0.9, no sigmoid.

* “SGD + Weight decay”: A = 0.1, 1 = 0, no sigmoid.
* “SGD + o(-)”: A =0, B1 = 0, with sigmoid activation.

We repeat the experiment for 4 random seeds and report mean and standard errors in all figures.

Compute: Creating Fig. 5 required training num_settings X num_seeds (5 x 4 = 20) for
T = 5,000 gradient steps. Each training run including all gradient computations took approximately
15 minutes to complete.

E.2. Case study 2 (Sec. 4.2)

In Figs. 3 and 10 we provide results on tabular benchmark datasets from [23]. We select four datasets
with > 20,000 examples (houses, superconduct, california, house_sales) to ensure
there is sufficient hold-out data for evaluation across irregularity proportions. We apply standard
preprocessing including log transformations of skewed features and target rescaling. As discussed in
the main text, irregular examples are defined by first projecting each (normalized) dataset’s input
features onto its first principal component and then calculating each example’s absolute distance
to the empirical median in this space. We note that several recent works have discussed metrics
of an examples irregularity or “hardness” (e.g. [89, 90]) finding the choice of metric to be highly
context-dependent. Therefore we select a principal component prototypicality approach based on its
simplicity and transparency. The top K irregular examples are removed from the data (these form
the “irregular examples at test-time”) and the remainder (the “regular examples”) is split into training
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and testing. We then construct test datasets containing 4000 examples, constructed from a mixture of
standard test examples and irregular examples according to each proportion p.

We train both a standard neural network (while computing its telescoping approximation as
described in Eq. (5)) and a gradient boosted tree model (using [91]) on the training data. We se-
lect hyperparameters by further splitting the training data to obtain a validation set of size 2000
and applying a random search consisting of 25 runs. We use the search spaces suggested in
[23]. Specifically, for GBTs we consider learning.rate € LogNormal[log(0.01),log(10)],
num_estimators € LogUniformInt[10.5,1000.5], and max_depth € [None, 2, 3, 4, 5] with re-
spective probabilities [0.1,0.1,0.6, 0.1, 0.1]. For the neural network, we consider learning rate
€ LogUniform[le — 5, le —2] and set batch_size = 128, num_layers = 3,and hidden_dim
= 64 with ReLU activations throughout. Each model is then trained on the full training set with its
optimal parameters and is evaluated on each of test sets corresponding to the various proportions of
irregular examples. All models are trained and evaluated for 4 random seeds and we report the mean
and a standard error in our results.

As discussed in the main text, we report how the relative relative mean squared error of neural
MSE;]QN—MSE%BT
MSENN :M‘C’;EGBT
) . . T 2=l max;zp |1k ()]
increases and relate this to changes in — = test ,
T 2t—1 maXieTy, o (ke (%3]

behave at their extreme during testing relative to the maximum of the equivalent values measured for
the training examples such that the test values can be interpreted relative to the kernel at train time
(i.e. values ;, 1 can be interpreted as being larger than the largest value observed across the entire
training set).

Compute: The hyperparameter search results in num_searchesxnum_datasetsXxnummodels
(25 x 4 x 2 = 200) training runs and evaluations. Then the main experiment requires num_seeds X
num_datasetsxnummodels (4x4x2 = 32) training runs and num_seeds Xnum_datasets X
num_models X num_proportions (4 X 4 X 2 x 5 = 160) evaluations. This results in a total of
232 training runs and 360 evaluations. Individual training and evaluation times depend on the model
and dataset but generally require j 1 hour.

network and GBT (measured as

) changes as the proportion p of irregular examples

which measures how the kernels

E.3. Case study 3 (Appendix B)

In Fig. 4 we follow the experimental setup described in [5]. Specifically, for each model we train
for a total of 63,000 iterations over batches of size 128 with stochastic gradient descent. At a
predetermined set of checkpoints (¢’ € [0, 4, 25, 50, 100, 224, 500, 1000, 2000, 4472, 10000, 25100])
we create two copies of the current state of the network and train until completion with different batch
orderings, where linear mode connectivity measurements are calculated. This process sometimes
also referred to as spawning [7] and is repeated for 3 seeds at each . The entire process is repeated
for 3 seeds resulting in a total of 3 x 3 = 9 total values over which we report the mean and a standard
error. Momentum is set to 0.9 and a stepwise learning rate is applied beginning at 0.1 and decreasing
by a factor of 10 at iterations 32,000 and 48,000. For the ResNet-20 architecture [92], we use an
implementation from [93]. Experiments are conducted on CIFAR-10 [87] where the inputs are
normalized with random crops and random horizontal flips used as data augmentations.

Pretraining of the finetuned model model is performed on the SVHN dataset [94] which is also
an image classification task with identically shaped input and output dimensions as CIFAR-10. We
use a training setup similar to that of the CIFAR-10 model but set the number of training iterations to
30,000 and perform the stepwise decrease in learning rate at iterations 15,000 and 25,000 decaying by
a factor of 5. Three models are trained following this protocol which achieve validation accuracy of
95.5%, 95.5%, and 95.4% on SVHN. We then repeat the CIFAR-10 training protocol for finetuning
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but parameterize the three initialization with the respective pretrained weights rather than random
initialization. We also find that a shorter finetuning period is sufficient and therefore finetune for
12,800 steps with the learning rate decaying by a factor of 5 at steps 6,400 and 9,600.

Also following the protocol of [5], for each pair of trained spawned networks (fg, & fg,) we
consider interpolating their losses (i.e. £o° = a-£(fg,(x),y)+(1—a)-£( fg,(x),y)) and parameters
(i.e. /1M := {(fome(x),y) where 8™ = B + (1 — a)B2) for 30 equally spaced values of « € [0, 1].
In the upper panel of Fig. 4 we plot the accuracy gap at each checkpoint ¢’ (i.e. the point from
which two identical copies of the model are made and independently trained to completion) which
is simply defined as the average final validation accuracy of the two individual child models minus
the final validation accuracy of the weight averaged version of these two child models. Beyond
the original experiment, we also wish to evaluate how the gradients V fp,(-) evolve throughout
training. Therefore, in the lower panel of Fig. 4, at each checkpoint we also measure the mean

squared difference in the gradient vectors lagged between the current iteration ¢ and those at the next

v i)—V i
epoch  + 390 over a set of n = 256 test examples, * 7 L (Tléfe {,e(t.ﬂ:‘fo sl
t T

Compute: We train num_outer_seeds X num_inner_seeds X num_child models X
num_checkpoints (3 X 3 x 2 x 12 = 216) networks for the randomly initialized model. For the
finetuned model this results in 3 x 3 x 2 x 10 = 180 training runs. Additionally, we require the
pertaining of the 3 base models on SVHN. Combined this results in a total of 216 + 180 + 3 = 399
training runs. Training each ResNet-20 on CIFAR-10 required ;1 hour including additional gradient
computations.

E.4. Data licenses

All image experiments are performed on CIFAR-10 [87], MNIST [88], or SVHN [94]. Tabular
experiments are run on houses, superconduct, california, and house_sales from
OpenML [95] as described in [23]. CIFAR-10 is released with an MIT license. MNIST is released
with a Creative Commons Attribution-Share Alike 3.0 license. SVHN is released with a CCO:Public
Domain license. OpenML datasets are released with a 3-Clause BSD License. All the datasets used
in this work are publicly available.

Appendix F. Additional results

F.1. Additional results on approximation quality (supplementing Fig. 1)

AdamW SGD + Momentum SGD + Weight Decay

Learning rate Tea Learning rate Learning rate

E 107 10 =08 ==y-2 1076 - 101 =05 ==yg2 101 =05 ==yg2
< 1 50 500 5000 1 50 500 5000 1 50 500 5000 1 50 500 5000 1 50 500 5000
Optimization step ¢ Optimization step ¢ Optimization step ¢ Optimization step ¢ Optimization step ¢

Figure 5: Approximation error of the telescoping (fg, (x), red) and the lazy model ( fé‘;zy(x), gray)
by optimization step for different optimization strategies and other design choices. Iteratively tele-
scoping out the updates using fgt (x) improves upon the lazy approximation around the initialization
by orders of magnitude.

In Fig. 5, we present results investigating the evolution of approximation errors of the telescoping

and lazy approximation during training using additional configurations compared to the results
presented in Fig. 1 in the main text (replicated in the first column of Fig. 5). We observe the same
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SGD AdamW SGD + Momentum SGD + Weight Decay SGD + o (:)
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Figure 6: Test accuracy of the telescoping (fg, (), red, top row) and the lazy model ( fé‘tlzy (x), blue,
bottom row) against accuracy of the actual neural network (gray) by optimization step for different
optimization strategies and other design choices. While the telescoping model visibly matches the
accuracy of the actual neural network, the lazy approximation around the initialization leads to
substantial differences in accuracy later in training.

trends as in the main text, where the telescoping approximation matches the predictions by the
neural network by orders of magnitudes better than the lazy approximation around the initialization.
Importantly, we highlight in Fig. 6 that this is also reflected in how well each approximation matches
the accuracy of the predictions of the real neural network: while the small errors of the telescoping
model lead to no visible differences in accuracy compared to the real neural network, using the
Taylor expansion around the initialization leads to significantly different accuracy later in training.
Finally, note that the learning rate y interacts with the optimizer choice — e.g. Adam(W) [30, 86]
naturally makes larger updates due rescaling (see Appendix A) and therefore requires smaller -y to
ensure approximation quality than SGD.

F.2. Additional results for case study 1: Exploring surprising generalization curves and benign
overfitting

Double descent on MNIST. In Fig. 7, we replicate the CIFAR-10 experiment from the main
text while training models to distinguish 3-vs-5 on MNIST. We find that in the absence of label
noise, no problematic overfitting occurs for any hidden size; both train and test error monotonically
improve with increased width. Only when we add label noise to the training data, do we observe the
characteristic double descent behavior in error — this is in line with [49]’s observation that double
descent can be more pronounced when there is noise in the data. Importantly, we observe that as in
the main text, the improvement of test error past the interpolation threshold is associated with the
divergence of effective parameters used on train and test data.

Additional grokking results. In Fig. 8, we replicate the polynomial grokking results of [22] with
additional values of e. Like [22], we observe that larger values of ¢ = 0.5 lead to less delayed
generalization. This is reflected in a gap between effective parameters on test and train emerging
earlier. With very small € = .05, conversely, we even observe a double descent-like phenomenon
where test error first worsens before it improves later in training. This is reflected also in the effective
parameters, where pt°** first exceeds pg’"ai” before dropping below it as benign overfitting sets in
later in training. In Fig. 9, we replicate the MNIST results with additional values of a; like [21] we
observe that grokking behavior is more extreme for larger . This is indeed also reflected in the gap

between pis! and p{ ™ emerging later in training.
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Figure 7: Double descent experiments using MNIST, distinguishing 3-vs-5, with 20% added label
noise during training (left) and no added label noise (right). Without label noise, there is no double
descent in error on this task; when label noise is added we observe the prototypical double descent
shape in test error.
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Figure 8: Grokking in mean squared error (top) on a polynomial regression task (replicated from
[22]) against effective parameters (bottom) with different task alignment parameters e.

F.3. Additional results for Case study 2: Understanding differences between gradient boosting
and neural networks

In Fig. 10, we replicate the experiment from Sec. 4.2 on three further datasets from [23]’s tabular
benchmark. We find that the results match the trends present in Fig. 3 in the main text: the neural
network is outperformed by the GBTs already at baseline, and the performance gap grows as the test
dataset becomes increasingly more irregular. The growth in the gap is tracked by the behavior of the
normalized maximum kernel weight norm of the neural network’s kernel. Only onthe california
dataset do we observe a slightly different behavior of the neural network’s kernel: unlike the other
T Yim max;czp  |lke(z;)ll2

T D maxieTy, o, ke (i)ll2 ' ‘
there may have been examples in the training set that are irregular in ways not captured by our

three datasets stays substantially below 1 at all p; this indicates that
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Figure 9: Grokking in misclassification error on MNIST using a network with large initialization (
replicated from [21]) (top), against effective parameters (bottom) with different initialization scales
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Figure 10: Neural Networks vs GBTs: Relative performance (top) and behavior of kernels (bottom)
with increasing test data irregularity for three additional datasets.

experimental protocol. Nonetheless, we observe the same trend that

increases in relative terms as p increases.
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