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ABSTRACT

Effective reasoning on real-world graphs necessitates a thorough understanding
and optimal utilization of structural information from graph structure and textual
information corresponding to nodes and edges. Recent research has primarily
focused on two paradigms: employing graph neural networks to capture struc-
tural features and utilizing language models to process textual information, re-
spectively. While these approaches have shown impressive performance, inte-
grating structural and textual information presents significant challenges. To be
more specific, concurrently training graph neural networks and language models
is particularly challenging, primarily due to the scale of real-world graphs. Ad-
ditionally, the dynamic set of answer nodes poses a difficulty to the design of
joint optimization objectives. This paper introduces a novel framework, named
CoST, tailored for graph reasoning tasks. The proposed optimization objective
enables alternating training of the GNN and PLM, leading to the generation of
effective text representations by the PLM model, thereby enhancing the reasoning
capabilities of the GNN model. Empirical results demonstrate that CoST achieves
state-of-the-art performance across representative benchmark datasets.

1 INTRODUCTION

Significant progress has been achieved through the utilization of deep learning methods to enhance
reasoning tasks in recent years. The realm of reasoning encompasses a diverse array of tasks, in-
cluding natural language reasoning (Clark et al., 2020; Talmor et al., 2020; Wei et al., 2022; Suzgun
et al., 2023), visual reasoning (Battaglia et al., 2016; Weston et al., 2016; Hu et al., 2017), multi-
modal reasoning (Johnson et al., 2017; Nam et al., 2017; Cadene et al., 2019; Lu et al., 2022; Yang
et al., 2023b), mathematical reasoning (Saxton et al., 2019; Zhang et al., 2019a; Lu et al., 2023;
Yang et al., 2023a; Gou et al., 2024), and sophisticated hard science reasoning (Fragkiadaki et al.,
2016; Bongini et al., 2021; Lu et al., 2022).

Graph-structured data plays a pivotal role in modeling complex and dynamic systems and the inter-
connections among system components (Zartman & Gordon, 1981; Pan et al., 2021; Das & Soylu,
2023), making it a crucial data type in reasoning tasks (Chen et al., 2019; Zhang et al., 2019b; 2021).
Reasoning on graphs typically involves a query and aims to predict a set of nodes as answers. In
recent years, a considerable direction of research has delved into enhancing reasoning capabilities
on graphs. Traditional methods (Katz, 1953; Page, 1999; Borgatti & Everett, 2006) often rely on
statistical data and heuristic metrics to extract graph data features for reasoning purposes. More
recently, graph neural networks (GNNs) have demonstrated remarkable performance across various
graph-related tasks, including graph reasoning. GNNs (Kipf & Welling, 2017; Velickovic et al.,
2018; Xu et al., 2019) employ a message-passing mechanism that enables them to capture trans-
ferable invariances of structural nature among graphs, enhancing their ability to conduct reasoning
tasks effectively. However, these studies still encounter the issue: of solely focusing on graph struc-
ture while overlooking non-structural information associated with nodes and edges in graphs. In this
paper, we focus on the textual information embedded in the text descriptions corresponding to nodes
and edges.

Consider Figure | as an illustration: given a heterogeneous graph representing persons and their as-
sociated teams, suppose the goal is to answer queries such as (Kylian Mbappé,belong,?).
This graph comprises nodes characterized as either person or team, connected by rela-
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Figure 1: Illustration of reasoning on graphs using different information. and  indicate the

textual description corresponding to nodes.

tions, including teammate and belong.  GNNs can detect patterns (Qiu et al., 2024),
like the association between two persons as teammates implying they belong to the same
team. While leveraging this learned pattern, GNNs can correctly respond to queries like
(Anthony Davis,belong,Lakers). However, these methods may erroneously predict an-
swers, as in the case of (Kylian Mbappé,belong, ENG). By incorporating textual data, models
gain the ability to differentiate between various feam nodes based on their descriptions. As shown
in Figure 1, models can accurately predict (Kylian Mbappé,belong,Real Madrid) with
textual information.

Despite the promising application, discrete text information presents a challenge for neural networks
relying on stochastic gradient descent. An intuitive solution is to utilize a pre-trained language
model (Devlin et al., 2019; Liu et al., 2019; Yang et al., 2019; Dong et al., 2019; Bao et al., 2020;
He et al., 2021) (PLM) to convert textual data into continuous embeddings for reasoning or inte-
gration into graph reasoning models. Static text representations fall short in capturing contextual
nuances (Peters et al., 2018), highlighting the need for fine-tuning the pre-trained language model
for effective reasoning. However, the scale of graph data presents substantial challenges when at-
tempting to fine-tune pre-trained language models in conjunction with reasoning GNN models (Zhao
et al., 2023). In addition, for graph reasoning tasks, the probability of all candidate nodes on the
graph needs to be modeled using pairwise representations under different query contexts. This re-
quirement drives GNN-based models and PLM-based models to adopt different reasoning pipelines,
thereby posing significant challenges to the interaction and co-optimization of these models.

To overcome the aforementioned challenges, we propose an assembled graph reasoning framework
that effectively Combines Structural and Textual information, named CoST. Specifically, we first
introduce an objective to integrate both structural and textual elements into a GNN-based reason-
ing model coupled with a PLM model, utilized for producing text embeddings. Additionally, we
formulate an alternative objective function enabling us to optimize the GNN and PLM models in a
cyclical manner. Each iteration involves training both models using observed data from the training
graph and pseudo target generated by a separate fixed model. We conduct extensive experiments
on several benchmark datasets to demonstrate the superior performance of CoST. Significantly, our
framework enhances the performance of the GNN model by offering effective text representations
from the PLM model, leading to CoST achieving state-of-the-art performance on benchmarks.

2 METHODOLOGY

2.1 TASK FORMULATION

Given a graph G = {V, R, £}, the query (h,r,7?) is linked to an answer set Ay €V, where
Y represents the node set, R denotes the relation set, and £ C V x R X V characterizes the set of

!"This definition typically characterizes a heterogeneous graph (Sun et al., 2011; 2013); for homogeneous
graphs, it can be viewed as a specific case where |R| = 1.
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edges. Here, h € V and r € R correspond to the query node and query relation, respectively. Gen-
erally, the sets VV and R are associated with sequential text features such as sentences or paragraphs,
allowing the graph to be defined as G = {V, R, &, Ty, Tr }. In this paper, we focus on the task of
answering the query (h,r,?) by utilizing the structural information £ and the textual information
T = {7y, Tr }. Formally, we aim to model the distribution p (¢t|h,r, &, T) foreach t € V), assessing
the plausibility of ¢ € A, ).

2.2 CoST: MODEL DESIGN AND OPTIMIZATION OBJECTIVE

Intuitively, the aforementioned problem can be effectively tackled by using graph neural networks
(GNNs) in a message-passing manner (Schlichtkrull et al., 2018; Zhang et al., 2019¢c; Hu et al.,
2020b; Vashishth et al., 2020; Zhu et al., 2021b; 2023). To be specific, the message-passing mecha-
nism for a query (h, 4, ?) can be outlined as follows:

RO« INIT (ulh,7,),
h{*+Y) « UpD (hﬁj), AGG ({{MSG (hSP, erq) |v e N-(u),r € R}})) , (1)

P (17, €/ (hrg,tyy) ¢ DEC (th)> ;

where h, and e, indicates the representation for nodes and relations, respectively,
INIT, MSG, AGG, UPD, and DEC represents the initialization, message, aggregation, update, and
decoder functions, respectively and N,.(u) dedicates the neighbor nodes of u corresponds to rela-
tion r. ¢ = {INIT, MSG, AGG, UPD, DEC} denotes the parameters of GNN models. Noticeably,
most previous methods have typically utilized random initialization or fixed embeddings for initial-
ization function Init, neglecting the textual information. As mentioned before, the discrete nature
of textual information poses a challenge as it cannot be directly integrated into the GNN model. A
straightforward approach is to implement INIT by leveraging a pre-trained language model (PLM)
based encoder function (e.g., BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019)) to encode
textual information into continuous embeddings:

h{") « INIT (u|h, 74, ENC (T3)), e, « ENC(T;),
P (th, 7, €/ ¢(hrg0)y, T) ¢ DEC (hEL)) :

Subsequently, ¢ = {INIT, MSG, AGG, UPD, ENC, DEC} can be updated by maximizing the follow-
ing objective:

2

O(¢) = ZIngqﬁ (O(h,r)|hu 7, 5/{(;1’7«,5)}{60@ T)7T> ) 3)
S :

where S = {(h,7)|(h,r,t) € £,t € V} and O,y denotes the observed answer node set corre-
sponding to the query (h, 7, ?) in the training data.

However, optimizing the pre-trained language model based encoder ENC and the GNN model
jointly presents challenges due to the immense scale of real-world graphs, characterized by a large
number of nodes, relations, and edges. To mitigate this challenge, we introduce a variational
distribution gg (H (hory |, ’7'), where 0 representing the associated parameters. In this context,
Hppy = V/Oum-) indicates the candidate target node set for the query (h,r,?) that includes the
hidden answer nodes. Notice that ¢ is solely conditioned on the textual information 7, enabling the
parameterization of gy (H (h,r) |h, 7, T) using a PLM that shares parameters with ENC.

Parameterization of gy. In parameterizing the distribution ¢, we opt to utilize the same PLM
employed for generating embeddings for INIT function of the GNN model. Specifically, we encode
the textual descriptions of h, 7, and ¢ € H(; ) using the PLM and subsequently compute the

distribution gy (t~ |h, T) by an decoder network g:
go (t|h,,T) = g (PLM(Ta) , PLM(T;) ,PLM(Ty)) “)

Also, we hypothesize ¢ (f|h,r, ’T) is only relates to 7T, 7, and 7T;, leading to the formula-
tion (Kadanoff, 2009; Kingma & Welling, 2014):

ao(Hplhor, T) = [ aoltlh,r, 7). (5)

EGH(}LJ‘)
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Algorithm 1: COST Framework
Input: PLM model 6, GNN model ¢, Graph G = {V, R, €, Ty, Tr }, Update steps L
Qutput: Trained PLM model 6, Trained GNN model ¢

/* Pre—training PLM model */
while Not convergence or reach the max training epochs do

‘ Obtain # by optimizing ) 5 qo (O(hﬂ.) |h, T, ’7');
end
/+* Pre—training GNN model */
while Not convergence or reach the max training epochs do

Obtain ¢ by optimizing ) s py (O(h,,ﬂ) |h, T, E/{(h7r7g)}feo<h ) T> ;
end
ASSign (97 ¢) to (507$0) 5
for i < 1to L do 7 3 3
Fix GNN model ¢,_; and update PLM model 6;_ to obtain §; by optimizing Opy in
Equation (9) ;
Fix PLM model 6;_; and update GNN model ¢; ; to obtain ¢, by optimizing Ogyy in
Equation (12) ;

end

The introduction of ¢ leads us to the following theorem:

Theorem 2.1. Optimizing the objective function O(¢) in Equation (3) is equivalent to optimizing
the following objective:

Do (O(h,r)7 H(h,r) ‘hy r, 5/{(h7T’£)}£EO(h,r) s T)

O(¢a 0) - E r log +
; a6 (Hn,r |y T) qo (H(h7r)|h,7", T)

(6)

Evidence Lower Bound
DKL (qg (H(h,T‘) |ha T, T) ||p¢ (H(h,r) |ha T, ga T) ) ’

KL divergence

where  pg <O(h,r)»H(h,r)hvrvg/{(h,r,f)},;eo(w)aT> represents  the joint  distribution,

Do (H(hyr)|h7r,€,7') denotes the posterior distribution, qq (H(hyr)|h,7", T) illustrates the
variational distribution.

The proof is provided in Appendix B. Based on Theorem 2.1, the optimization of the objective in
Equation (6) can be implemented as an alternating process between optimizing the distributions p
and q (Neal & Hinton, 1998; McLachlan & Krishnan, 2007; Qu et al., 2019; Zhao et al., 2023). The
optimization of ¢ focuses on reducing the KL divergence between variational distribution and pos-
terior distribution to enhance the tightness of the lower bound while optimizing p aims to maximize
the evidence lower bound (ELBO) to optimize the overall objective.

The upcoming sections will elaborate on the optimization strategies employed to facilitate collabo-
ration between the PLM and GNN models.

2.3 CoST: OPTIMIZATION FRAMEWORK
2.3.1 PLM OPTIMIZATION

During the optimization of the PLM, the GNN model remains fixed while the PLM model is updated
by minimizing the KL divergence between the posterior distribution and variational distribution. To
be specific, we aim to minimize Dxr, (g0 (H(p,r)|ho 7, T) |Ipg (H(n,ry|h, 7, €, T)), which is equiv-
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Figure 2: Illustration of  for COST framework, optimization of PLM model, and  for opti-
mization of GNN model, where & indicates the trainable model and # indicates the fixed model.

alent to minimizing:
do (H(hﬂ“) |ha T, T) log 4o (H(hﬂ“) |ha T, T) — 4 (H(h,r) |ha r, T) logqu (H(h,r) |h7 T, 57 T) . (7)

However, optimizing the mentioned objective proves challenging because of the intricateness and
instability of optimizing the entropy of gy, which is shown in the first term.

Note that p,, (H (h,r) |h, 7, &, T) represents the prediction of the GNN model to the candidate target
node set and remains unchanged due to the fixed GNN model. We can alternatively optimize the
PLM model with the utilization of hard pseudo target produced by the GNN model. Formally, we

obtain pseudo target {P(th?j), N(Ghmi)} from pg (H(h,r) |h,r, &, T) by:
PEy ~ M ({po (007, €, T) Y, -1 Houn )

N(G}?,I:) ~ M ({ﬁ¢ (ﬂha T, 877-) }EEH(h,r) ) |H(h,r)|) )

N

®)

where M means the multinomial distribution. Intuitively, N (G,f

m € H },,) indicates the negative

target and P(GhNﬂ) € H,, indicates the positive target for query (h,r,?) predicted by the fixed
GNN model, respectively. We combine Pﬁfﬂ) with O(j, ) to obtain ﬁ(GhN% and the objective for the
PLM model can be described as:

t\h,r, T
OPLM = Z Z P (qe (t| - )) . (9)

exp (g0 (|, 7, T)) + ZgEN(G}TNT) exp (qo (th,7,T))
: :

S \fergr,
Intuitively, we utilize both the observed answer node set and the predicted pseudo target node set to
optimize the PLM model by a contrastive loss.

2.3.2 GNN OPTIMIZATION

While optimizing the GNN model, the parameters of the PLM model remain constant, with the
GNN model being updated through the maximization of the evidence lower bound. In particular, we
leverage the fixed PLM to generate the continuous embeddings for textual information {7y, Tz } by
hy < PLM(Ty) and e < PLM(Tr), which are then feed into the GNN model. Then, we aim to
optimize:

E‘19(H<m>\"/ﬂ‘=7_) logpy <O(”~'“>’ Hp,ry B, g/{(hvr’i)}fe()(h.v')’T>:|

(10)
= EqH(H(;M.)Uz,,r.T) [IO?;ZPO <f|hs7“a 5/{<h,r;£)}{€o(m)7T>] :

tey
Inspired by previous studies (Mikolov et al., 2013; Tang et al., 2015; Qu et al., 2019; Zhao et al.,

2023), we approximate the optimization process by sampling {P(Ph”ﬂ), N (P}{“bﬁ)} from gy and lever-

aging them to update the GNN model The acquisition of {P(thf)’ N (P}fbﬁ)} mirrors the manner as
shown in Equation (8):
P(ljh]jbﬁ) ~ M ({qe (t|h,7", T)}EeH<h,T) ) |H(h,7") |> 5

. (11)
NG ~ M ({ag (00, T) Yoy, [Henm ) -
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By combining {P(thf), N, (thﬁ) } with the observed answer node set Oy, ,-), we establish the objective
for updating the GNN model:

1 ~
OGNN = Z Y . Z log <1 7[)(,5 <l€}l,’]‘7 5/{(}%7“'[’)}#’,60(;”.)77’)> +

S ‘ (h,r) tEx\‘(rhﬁ,,)

12)

1 R
Z T e Z log py <t|h,7'7 5/{(h-,7‘-f>}£eo<,l‘,)’T> )
S ‘ (hyr)| i€PE

where ﬁ(}?h“ﬁ) = {P(PhL_Df), O(n,ry } and (7, 7) are hyperparameters controlling different term weights.

2.4 CoST: A HIGH-LEVEL SUMMARY

The high-level illustration of the CoST is delineated in Figure 2 and Algorithm 1. Initially, a PLM
model and a GNN model are integrated to form the CoST framework. Then, to expedite con-
vergence and enhance model performance, the GNN model and PLM model are pre-trained on a
certain dataset. The subsequent training iterates between the GNN and PLM models, adhering to
the objective functions specified in Equation (9) and Equation (12) to finalize the training of CoST.

3 EXPERIMENT

3.1 EXPERIMENT ON HOMOGENEOUS GRAPHS
3.1.1 EXPERIMENTAL SETTINGS

Datasets. We utilize four datasets, namely AmazonSports (McAuley et al., 2015), AmazonCloth-
ing (McAuley et al., 2015), MAGGeology (Zhang et al., 2023b), and MAGMath (Zhang et al.,
2023b) introduced by He et al. (2024b) to assess the performance of methods on the homogeneous
graph reasoning task. Furthermore, the large-scale datasets CitationV8 and GoodReads, introduced
by Yan et al. (2023), are employed as benchmarks for evaluating the effectiveness on the larger
homogeneous graphs. Table 1 illustrates the dataset statistics and further details about datasets are
available in Appendix C.1.

Baselines.  For the AmazonSports, AmazonClothing, MAGGeology, and MAGMath datasets, we
consider two categories of baselines: 1) GNN-based methods, including GCN (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017), and GATv2 (Brody et al., 2022); 2) LLM-based meth-
ods, such as GraphGPT (Tang et al., 2024), LLaGA (Chen et al., 2024) and LINKGPT (He et al.,
2024b). For the GNN-based methods, we use the embeddings produced by BERT (Devlin et al.,
2019) following original papers. Applying large language model methods to large-scale datasets

Table 1: Dataset statistics of homogeneous datasets and heterogeneous datasets.

Dataset #Node #Relation #Train #Valid #Test
AmazonSports 20,417 — 40,297 2,238 2,240
AmazonClothing 20, 180 — 46,187 2,565 2,567
MAGGeology 20, 530 - 46, 386 2,577 2,577
MAGMath 19,878 — 31,208 1,733 1,735
CitationV8 1,106, 759 — 6,059,687 30,604 30,604
CoodReads 676,084 - 7,724,075 171,646 686,585
FB15k237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86, 835 3,034 3,134

WikidataSMyans 4,594,485 822 20,614,279 5,163 5,163
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Table 2: Results of CoST and other baseline models on the AmazonSports, AmazonClothing,
MAGGeology, and MAGMath datasets. Red indicates the best results, green indicates the second-
best results, and blue indicates improvement comparing with the pretrained GNN model.

Method AmazonSports AmazonClothing MAGGeology MAGMath
MRRt H@1{ MRR{ H@l+ MRR} H@lt MRRt H@l1
GNN-based Method
GCN (Kipf & Welling, 2017) 70.4 60.2 68.2 60.0 51.4 40.1 45.8 33.1
GraphSAGE (Hamilton et al., 2017) 77.6 68.4 81.2 71.6 51.0 36.8 44.2 28.4
GATV2 (Brody et al., 2022) 81.4 73.0 87.8 81.6 65.7 55.3 51.6 38.0
LLM-based Method
LLaMA2 (Touvron et al., 2023) 40.8 30.9 30.2 22.5 22.9 13.5 21.9 13.5
GraphGPT (Tang et al., 2024) 14.8 6.0 32.3 14.3 12.4 4.4 9.8 2.6
LLaGA (Chen et al., 2024) 83.4 75.4 84.5 7.5 74.3 63.3 62.2 49.8
CLINKGPT (e ctal, 20240) 3 871796 902 _ 848 _ 810 __ 710 __T54___ 646
COST pretrained PLM 56.2 40.1 61.1 48.1 20.9 11.3 29.0 17.5
COST pretrained GNN 85.9 78.5 88.7 83.6 80.1 69.8 74.3 62.9
COST 883124 80.6121 914107 852116 823102 724106 T6.6103 65950

Table 3: Results of CoST and other baseline models on the CitationV8 and GoodReads datasets. Red
indicates the best results, green indicates the second-best results, and blue indicates improvement
concerning the pretrained GNN model within CoST.

CitationV8 GoodReads
Method
MRRT H@101T H@501 H@100t MRRT H@l0tT H@501 H@100 1

GNN-based Method
GCN (Kipf & Welling, 2017) 60.0 50.4 75.1 90.2 65.1 55.4 85.0 91.5
SAGE (Hamilton et al., 2017) 54.0 44.1 71.3 89.1 65.7 54.1 82.9 89.6

PLM-based Method
BERT iy (Jiao et al., 2020) 41.2 33.6 48.2 66.6 42.2 36.9 52.5 76.2
BERTy,. (Devlin et al., 2019) 44.6 38.9 57.5 72.4 44.4 44.0 60.9 79.2

Topological Contrastive Learning based Method
GCN (Kipf & Welling, 2017) 70.2 68.3 84.6 93.7 85.1 73.9 92.8 95.9
SAGE (Hamilton et al., 2017) 60.2 62.4 80.6 92.6 82.2 75.2 90.7 94.0
BERT iny (Jiao et al., 2020) 47.3 41.3 57.3 72.6 55.1 45.5 61.6 82.4
_BERTp (Devlinetal, 2019) _ 528 466 658 725 612 526 660 856

COST pretrained PLM 42.7 35.9 54.3 69.9 43.8 42.5 68.1 78.8
COST pretrained GNN 71.1 68.1 85.9 94.2 84.7 4.7 92.3 94.6
CoST 72.7416 69.5414 874415 95.2419 86.4417 76.1414 93.9116 97.0124

like CitationV8 and GoodReads proves challenging. Therefore, in such cases, we adopt BERT (De-
vlin et al., 2019) as the text-based baseline. Additionally, we incorporate topological contrastive
learning as presented by Yan et al. (2023) as a strong baseline method that leverages both structural
and textual information.

Metrics. We employ standard evaluation metrics (Wang et al., 2017; Hu et al., 2020a), including
mean reciprocal rank (MRR) and Hits@n (n = 1,10, 50, 100). MRR represents the average recip-
rocal rank of all answer entities, while Hits@n quantifies the percentage of answer entities ranked
within the top-k positions.

3.1.2 RESULTS AND ANALYSIS

Table 2 and Table 3 illustrates the experimental results of CoST and baselines on the homogeneous
graph reasoning datasets. Upon analysis of the results, it is evident that CoST outperforms promi-
nent text-based and structure-based baselines across all datasets. Particularly on the Amazon and
MAG datasets, CoST showcases superior performance compared to the resource-intensive LLM-
based strategy. In the context of the CitationV8 and GoodReads datasets, our method outperforms
models employing topological contrastive learning techniques. As mentioned before, this method
can be viewed as a strong baseline that integrates both textual and structural information. The obser-
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Table 4: Results of CoST and other baseline models on the FB15k237 and WN18RR datasets. Red
indicates the best results, green indicates the second-best results, and blue indicates improvement
concerning the pretrained GNN model.

FB15k237 WN18RR
Method
MRR?T Hel 1t H@31 H@10T MRR?T H@lt He@31 He@10t
Embedding-based Method
TransE (Bordes et al., 2013) 27.9 19.8 37.6 44.1 24.3 4.3 44.1 53.2
DistMult (Yang et al., 2015) 28.1 19.9 30.1 44.6 44.4 41.2 47.0 50.4
RotatE (Sun et al., 2019) 33.8 24.1 37.5 53.3 47.6 42.8 49.2 57.1
TuckER (Balazevic et al., 2019) 35.8 26.6 39.4 54.4 47.0 44.3 48.2 52.6
HousE (Li et al., 2022) 36.1 26.6 39.9 55.1 51.1 46.5 52.8 60.2
Textual Information based Method
MTL (Kim et al., 2020) 26.7 17.2 29.8 45.8 33.1 20.3 38.3 59.7
StAR (Wang et al., 2021a) 29.6 20.5 32.2 48.2 40.1 24.3 49.1 70.9
HittER (Chen et al., 2021) 37.3 27.9 40.9 55.8 50.3 46.2 51.6 58.4
Structural Information based Method

CompGCN (Vashishth et al., 2020) 35.5 26.4 39.0 53.5 47.9 44.3 49.4 54.6
NBFNet (Zhu et al., 2021b) 41.5 32.1 45.4 59.9 55.1 49.7 57.3 66.6
RED-GNN (Zhang & Yao, 2022) 374 28.3 — 55.8 53.3 48.5 — 62.4
A*Net (Zhu et al., 2023) 41.1 32.1 45.3 58.6 54.9 49.5 57.3 65.9
AdaProp (Zhang et al., 2023a) 41.7 33.1 — 58.5 56.2 49.9 — 67.1
COST pretrained PIM 28.7 23.3 34.7 49.3 51.1 44.5 50.8 57.6
COST pretrained GNN 40.8 32.1 44.3 58.8 54.9 48.7 57.2 66.0
CoST 42749 345104 467124 60916 56.8119 B51.0103 58210 674414

vation strongly suggests that our method efficiently utilizes both textual and structural data for graph
reasoning tasks. Furthermore, comparing CoST with the GNN model at various stages (pretraining
and after co-training) underscores the effectiveness and necessity of retraining the pre-trained lan-
guage model for enhanced text representation.

3.2 EXPERIMENT ON HETEROGENEOUS GRAPHS

3.2.1 EXPERIMENTAL SETTINGS

Datasets. For the hetero- Table 5: Results of CoST and other baseline models on the
geneous graph task, we focus WikidataSMi., datasets.

on the knowledge graph rea-
soning  datasets, including
FB15k-237 (Toutanova & Chen,  Method
2015), WNI18RR (Saxe et al,

WikidataSMyans
MRRt H@1{ H@3{ He@l0?

2014), and WikidataSM (Wang Embedding-based Method
et ‘dl., 2021 C). Among them, TransE (Bordes et al., 2013) 25.3 17.0 31.1 39.2
RotatE (Sun et al., 2019) 29.0 23.4 32.2 39.0

FB15k237 and  WNISRR
are widely used knowledge
graph inference datasets. while SimKGC (Wang et al., 2022) 35.8 31.3 37.6 44.1
WikidataSM  is a 1arg:e-scale KGTS5-context (Kochsiek et al., 2023) 42.6 40.6 44.0 46.0
knowledge graph dataset con-

Textual Information based Method

Structural Information based Method

taining 5M entities. Wikidata5M ~_ CompGCN (Vashishth etal., 2020) 355 264 390 535
provides data sets with trans- ~ COST ererrained euu 3240 298 356 413

k X ) , e SN p— 41.9 39.4 454 558
ductive and inductive settings.  cosr 450131 43.7303 463100 57T.41s

However, the dataset with in-
ductive setting does not provide
graph structural information, so the experiment is only carried out on WikidataSMyns. To further
access the inductive performance, we involve fully inductive datasets proposed in Lee et al. (2023).
More details about datasets can be found in Table 1 and Appendix C.1.

Metrics. Similar to the evaluation on the homogeneous datasets, we leverage MRR and
Hits@n (n = 1, 3, 10) as the evaluation metrics.
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Figure 3: Illustration of ablation studies. (a) Ablation study of various GNN architectures - the left
diagram displays the results for FB15k237, while the right diagram depicts the results for WN18RR.
(b) Ablation study focusing on the convergence of CoST training, conducted on FB15k237 and
WNI18RR datasets.

Baselines. = We employ three categories of baselines: 1) embedding-based methods, including
TransE (Bordes et al., 2013), DistMult (Yang et al., 2015), RotatE (Sun et al., 2019), TuckER (Bal-
azevic et al., 2019), and HousE (Li et al., 2022); 2) text-based methods, such as MTL (Kim
et al., 2020), StAR (Wang et al., 2021a), SImKGC (Wang et al., 2022), HittER (Chen et al.,
2021), and KGT5-context (Kochsiek et al., 2023); 3) strcture-based methods, which includes
CompGCN (Vashishth et al., 2020), NBFNet (Zhu et al., 2021b), RED-GNN (Zhang & Yao, 2022),
A*Net (Zhu et al., 2023), and AdaProp (Zhang et al., 2023a).

3.2.2 RESULTS AND ANALYSIS

The experimental results on the FB15k237 and WN18RR datasets are presented in Table 4. It is
noteworthy that baseline models relying on structural information outperform those based on textual
information, emphasizing the significance of structural data in knowledge graph reasoning tasks.
Although the pretrained GNN model in CoST falls slightly behind key baselines, this discrepancy
may be attributed to the difficulty of unaltered language models in providing effective text repre-
sentations relevant to the task. However, following the alternating training of the GNN and PLM
models, CoST surpasses all baselines on both datasets, underscoring the effectiveness of our ap-
proach. Furthermore, Table 5 demonstrates the results on the larger WikidataSM dataset, where
CoST also outperforms prominent baseline models.

3.3 ABLATION STUDIES

Architectures.  In order to assess the generalizability of the proposed method, we ablation ex-
periments involving different graph neural network architectures on the FB15k237 and WN18RR
datasets. We specifically utilize RGCN (Schlichtkrull et al., 2018), CompGCN (Davidson et al.,
2018), and NBFNet (Zhu et al., 2021b) as the backbone graph neural network architectures. The
results depicted in Figure 3a demonstrate a consistent enhancement achieved by our approach across
diverse graph neural network architectures.

Training Paradigm. To access the efficacy of the alternate training paradigm in CoST, we con-
ducted experiments comparing different training methods. We specifically employed two paradigms:
1) static, generating text representations using a fixed pre-trained language model; and 2) two-stage,
involving fine-tuning the pre-trained language model before text representation. The results shown
in Table 6 demonstrate that CoST surpasses the baselines, confirming its effectiveness.

Convergence. Ensuring convergence when training with alternating paradigms is essential. To
confirm the convergence of CoST, we conducted experiments on the FB15k237 and WN18RR
datasets. The results depicted in Figure 3b showcase the model’s rapid convergence, even during
short training periods.
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Table 6: Results of ablation study w.r.t. different training paradigm. Red indicates the best results
and green indicates the second-best results.

Dataset Static Two-Stage CoST

MRRT H@l11t H@3t H@10T MRRt H@l1t H@31T H@0tT MRRt H@lt HE@31t H@10*t
AmazonSports ~ 85.8 76.4 - - 86.9 78.8 - - 88.3 80.6 - -
FB15k237 41.0 325 44.6 58.2 41.7 32.3 44.8 59.0 42.7 34.5 46.7 60.9

4 RELATED WORK

Structure-based Methods.  Traditional methods for graph reasoning (Katz, 1953; Page, 1999;
Borgatti & Everett, 2006) historically relied on statistical data and heuristic metrics to extract fea-
tures from graph data for reasoning purposes. Recently, the widespread adoption of graph neural
networks (GNNSs) has enabled the learning of structural representations by encoding graph topolo-
gies. Prominent frameworks (Kipf & Welling, 2016; Schlichtkrull et al., 2018; Davidson et al., 2018;
Vashishth et al., 2020) have embraced an auto-encoder approach, utilizing GNNs to encode node rep-
resentations and decode edges based on relationships between node pairs. Concurrently, alternative
frameworks (Zhang & Chen, 2018; Teru et al., 2020) explicitly encode the subgraph surrounding
each node pair for enhanced link prediction accuracy. While these methods have demonstrated su-
perior performance to traditional auto-encoder approaches (Zhang et al., 2020) and offer inductive
learning capabilities, their requirement to materialize subgraphs for each link hinders scalability, es-
pecially with large graphs. Subsequent advancements (Zhu et al., 2021b; 2023; Zhang & Yao, 2022;
Zhang et al., 2023a; Liu et al., 2024) have focused on learning path-based representations for pairs,
with innovative labeling strategies yielding state-of-the-art performance.

Text-based Methods.  Text-based methods utilize pre-trained language models (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2020; Dong et al., 2019; Bao et al., 2020) to derive text repre-
sentations of nodes and relations, upon which reasoning models are developed. KG-BERT (Yao
et al., 2019) applies BERT for knowledge graph reasoning, treating triples as textual sequences
to calculate a scoring function effectively for entities and relations by inputting their descriptions.
StAR (Wang et al., 2021a) combines textual encoding and graph embedding techniques for hetero-
geneous graph reasoning, utilizing a siamese-style textual encoder for knowledge graph triple pro-
cessing and incorporating structure learning for enhanced efficiency and performance. HittER (Chen
et al., 2021) introduces a hierarchical Transformer model that learns entity and relation representa-
tions by considering local graph neighborhoods. It comprises two Transformer blocks for capturing
entity-relation interactions and aggregating relational context, with a masked entity prediction task
for balancing contextual information and original entity features. SimKGC (Wang et al., 2022)
proposes an efficient contrastive learning technique using pre-trained language models for knowl-
edge graph completion, employing various types of negative samples and the InfoNCE loss function
to enhance performance. In contrast, KGT5 (Saxena et al., 2022) adopts a sequence-to-sequence
approach, treating the graph reasoning task as a text generation problem to streamline the model
architecture, achieving state-of-the-art results with a notably reduced model size.

5 CONCLUSION

This paper presents CoST, an optimized framework designed for graph reasoning tasks. While ex-
isting methods have demonstrated remarkable performance, the integration of structural and textual
data through simultaneous training of graph neural networks and language models poses notable
challenges, especially with respect to the complexity of real-world graph structures. To address
these challenges related to training on extensive graph datasets, we employ an alternating training
strategy for the graph neural network (GNN) model and pre-trained language model (PLM) with a
variational objective. Empirical assessments validate the efficacy of our proposed model.
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A DISCUSSION AND COMPARISON

In the recent research community, a subset of researchers have studied how to combine structural
information and textual information. The subsequent paragraphs delineate our motivation and dis-
tinguish our work from existing research works.

Focusing on Graph Reasoning Task. In this paper, we focus on the graph reasoning task, while
most previous studies (Zhu et al., 2021a; Yang et al., 2021; Zhao et al., 2023; Yan et al., 2023)
attempt to exploit both textual information and graph structures to address node classification tasks.
Contrasting with node-level tasks like node classification, graph reasoning necessitates the model to
make predictions based on pairwise representations, presenting a substantial challenge in designing
GNN-based and PLM-based architectures, as well as in handling the interaction between these two
models. Moreover, the graph reasoning task necessitates predicting across the entire node set of a
specific graph, presenting a scalability challenge in contrast to classification tasks with predefined
categories.

Learning Effective Embedding.  There are also partial works that try to combine textual infor-
mation and structural information to solve reasoning tasks such as knowledge graph completion (He
et al., 2024a). However their emphasis lies in enhancing the performance of two isolated models,
particularly in sparse graph scenarios, our model goes beyond solely improving performance to en-
compass learning effective text representation. By employing text representations as a connective
layer between GNN-based models and PLM-based models, our approach enhances the optimization
of diverse models and enhances the efficacy of text representations.

B PROOF OF THEOREM 2.1
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Combining all queries, we obtain the final objective in Theorem 2.1. L]
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C MORE DETAILS OF EXPERIMENTS

C.1 DATASETS

C.1.1 HOMOGENEOUS GRAPH DATASETS

AmazonSports & AmazonClothing. The two datasets consist of e-commerce networks, where
each node represents a product available on Amazon, and an edge between two nodes signifies
frequent co-purchases, which are created by He et al. (2024b) through randomly selecting 20,000
nodes from original datasets.

MAGGeology & MAGMath. The two datasets are scholarly networks, with each node symbol-
izing a research paper, and an edge linking two nodes indicating one paper citing the other, which
are created by He et al. (2024b) through randomly selecting 20,000 nodes from original datasets.

CitationV8. CitationV8 is a directed graph dataset that illustrates the citation relationships among
selected papers extracted from DBLP (Tang et al., 2008). Adhering to the parameters outlined in
Yan et al. (2023), the experimental setup involves randomly excluding two references for each source
paper. Subsequently, the prediction model aims to rank the two omitted references higher than 2,000
negative references and candidates.

GoodReads. GoodReads is sourced from the world’s largest book review platform. Nodes corre-
spond to books, and edges are formed based on similarity relationships between books available on
the website. Moreover, we adhere to the parameters set in Yan et al. (2023), which involve selecting
5,000 randomly sampled negative instances for evaluation purposes.

C.1.2 HETEROGENEOUS GRAPH DATASETS

FB15k237. FB15k237 is a knowledge graph reasoning dataset derived from FB15k, which orig-
inates from Freebase (Bollacker et al., 2008). While FB15k (Bordes et al., 2013) comprises 1, 345
relations, 14,951 entities, and 592, 213 edges, numerous triples are reciprocal, leading to leakage
in data splits between training, testing, and validation sets. Therefore, FB15k-237 was introduced
by Toutanova & Chen (2015) to mitigate the issue of inverse relation test leakage in the evaluation
datasets.

WNI18RR. WNI8RR is a knowledge graph reasoning dataset derived from WN18, a subset of
WordNet (Miller, 1994). WNI18 comprises 18 relations and 40, 943 entities. To prevent inverse
relation test leakage arising from the inversion of triples in the training set, the WN18RR dataset
was specifically formulated for evaluation purposes.

Wikidata5M. Wikidata5SM is a large-scale knowledge graph dataset accompanied by an aligned
corpus, merging information from the Wikidata (Vrandecic & Krotzsch, 2014) and Wikipedia pages.
Each entity within WikidataSM is connected to a corresponding Wikipedia page, facilitating the
assessment of link prediction for unfamiliar entities. Moreover, the dataset offers both transductive
and inductive data partitions.

C.2 IMPLEMENTATION DETAILS
C.2.1 IMPLEMENTATION OF PLM MODEL

The implementation of the PLM model in CoST involves a pretrained language model and a decoder
network. For the pretrained language model, we take minilm Wang et al. (2020; 2021b) as the
example. The decoder computes the score for the candidate fact (h',’,¢’) using an inner product
between representation vectors as follows:

Score(h/, ', t') = (g (MiniIM (A') * MiniLM (")), MiniLM (¢')), (14)

where g denotes a multi-layer perceptron (Rumelhart et al., 1987).
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Figure 4: Detailed illustration of the overall optimization process of CoST.

C.2.2 IMPLEMENTATION OF GNN MODEL

We implement the GNN model in CoST with a similar architecture to the model introduced in Zhu
et al. (2023). We will introduce the detail implementation of ENC, INIT, MSG, AGG, UPD, and
DEc.

ENc. The ENC function is utilized to encode textual information into continuous embeddings. In
this paper, we utilize the PLM model denied before to implement ENC.

INIT. The INIT function serves to initialize representations for nodes and relations. In our imple-
mentation, node representation is initialized utilizing its textual embedding and a label vector:

INIT (ulh, 7, T) = g ([ENC (Tu) : Lu=n]), 15)

where [:] denotes a concatenation function and g represents a multi-layer perceptron (Rumelhart
etal., 1987). The label vector 1,,—; comprises all one vector for the query node % and all zero vectors
for other nodes. Conversely, relation representation is only initialized by its textual embedding:

INIT (r) = ENC (7;) (16)

MSG. We employ the message function drawing inspiration from DistMult (Yang et al., 2015).
To be more specific, the MSG function is implemented by multiplying node representation h, by
relation representation e,..

AGG. AGG function is implemented as the summation aggregation.

UpPDp. The UPD function is implemented using a neural network. Following the summation aggre-
gation, the resultant representation is combined with the original node representation and fed into a
multi-layer perceptron (Rumelhart et al., 1987) for updating the representation.

DEcC. The DEC function is utilized to compute the score for each node. A multi-layer percep-
tron (Rumelhart et al., 1987) is employed, followed by a sigmoid function to calculate the score.

Node and Edge Selection.  To enhance scalability, we apply a sampling mechanism to efficiently
select important nodes and edges during message-passing computations Zhu et al. (2023); Zhang
et al. (2023a) on larger graphs. During each iteration of message-passing, a neural network, identi-
cal in architecture and parameters to DEC, is utilized to determine significant scores for each node.
The process involves selecting the top-K crucial nodes and subsequently identifying the top-L im-
portant edges based on the target node scores. Through this sampling approach, the GNN model can
effectively handle large-scale graphs.
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Figure 5: Illustration of performance w.r.t. the number of pseudo targets on the FB15k237 and
WNI8RR datasets.

C.3 HYPERPARAMETERS

In our PLM model, we adjust the input token lengths to {64, 128,256} based on the textual infor-
mation’s varying lengths. During pretraining, we utilize a batch size of 512, which is reduced to 64
when alternately training, while setting the learning rate to 5e — 5. For the GNN model, we fix the
dimension size at 32, the batch size at 64, and the learning rate at 5e — 3. The parameters such as
the number of pseudo target samples are fine-tuned based on the performance of the validation set.

C.4 HARDCORE CONFIGURATIONS
We conduct all experiments with:

* Operating System: Ubuntu 22.04.3 LTS.

e CPU: Intel (R) Xeon (R) Platinum 8358 CPU @ 2.60GHz with 1'TB DDR4 of Memory and
Intel Xeon Gold 6148 CPU @ 2.40GHz with 384GB DDR4 of Memory.

¢ GPU: NVIDIA Tesla A100 SMX4 with 80GB.
* Software: CUDA 12.1, Python 3.9.19, PyTorch (Paszke et al., 2019) 2.3.0.

D ADDITIONAL EXPERIMENTS

Performance w.r.t. Number of Pseudo Targets. In
the context of the CoST framework, we employ pseudo
targets generation to train the model. To assess the corre- 0.80
lation between the model’s performance and the number
of pseudo targets, we conduct pertinent experiments, the
results of which are displayed in Figure 5. Demonstrat-
ing commendable resilience concerning the number of
pseudo targets, our model exhibits notable performance
enhancements even with a limited quantity of pseudo tar-
gets.

B Pretrain Bl CoST

Performance w.r.t. Different PLM Architectures.
Additionally, we utilize various pre-trained language Tniy-Bert MiniLM Bert
models to assess the consistency of performance within
the CoST framework, as depicted in Figure 6. Our model
consistently demonstrates enhancements across three dis-
tinct PLMs, with stronger PLM performance correlating
with amplified CoST performance.

Figure 6: Results of CoST on Cita-
tionV8 dataset based on Tiny-Bert (Jiao
et al., 2020), MiniLM (Wang et al.,
2020), and Bert (Devlin et al., 2019).
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