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ABSTRACT

The success of most existing cross-modal retrieval methods heavily relies on the
assumption that the given queries follow the same distribution of the source do-
main. However, such an assumption is easily violated in real-world scenarios due
to the complexity and diversity of queries, thus leading to the query shift problem.
Specifically, query shift refers to the online query stream originating from the do-
main that follows a different distribution with the source one. In this paper, we
observe that query shift would not only diminish the uniformity (namely, within-
modality scatter) of the query modality but also amplify the gap between query
and gallery modalities. Based on the observations, we propose a novel method
dubbed Test-time adaptation for Cross-modal Retrieval (TCR). In brief, TCR em-
ploys a novel module to refine the query predictions (namely, retrieval results of
the query) and a joint objective to prevent query shift from disturbing the common
space, thus achieving online adaptation for the cross-modal retrieval models with
query shift. Expensive experiments demonstrate the effectiveness of the proposed
TCR against query shift. The code will be released upon acceptance.

1 INTRODUCTION

Given queries of interest, cross-modal retrieval (Faghri et al., 2017; Lee et al., 2018; Yan et al., 2023;
Wang et al., 2023) try to associate some relevant samples from the gallery set across various modal-
ities, supporting numerous applications such as intelligent surveillance and search engine. The key
to cross-modal retrieval is learning a well-established common space, hoping to distinguish different
instances within the same modality while gathering the same instance across different modalities.
Recently, the pre-trained models (Jia et al., 2021; Yang et al., 2022; Li et al., 2023; Huang et al.,
2024) have emerged as the dominant paradigm for cross-modal retrieval. As shown in Fig. 1(a), af-
ter acquiring generic knowledge from the source domain, the pre-trained models can either perform
zero-shot retrieval in the target domains or be fine-tuned on domain-specific data for customization.

Despite the promising performance of the pre-trained models, their success heavily relies on the
assumption that the given queries exactly follow the same distribution from the source domain,
which is hard to satisfy in real-world applications. Specifically, as shown in Fig. 1(b), inquirers
might embrace different cultural backgrounds or enjoy their individual preferences, resulting in
the online query stream derived from either scarce or highly personalized domains. Clearly, such
out-of-domain queries violate the identical distribution assumption and thus lead to the query shift
problem. As a result, the existing cross-modal retrieval models fail to handle the query shift and
inevitably suffer from significant performance degradation, leaving an urgent need to develop an
online adaptation method for addressing the query shift problem.

As one of the most effective paradigms in reconciling distribution shifts, Test-Time Adaptation
(TTA) methods (Wang et al., 2021; Press et al., 2023; Niu et al., 2024) work by continually updating
the given source model using the online target data stream. Although achieving great success, it
is intractable to adopt existing TTA methods for cross-modal retrieval with query shift due to the
following two reasons. On the one hand, most existing TTA methods focus on the unimodal setting
while overlooking the complexity of the query shift in the cross-modal setting. More specifically,
the query shift in the cross-modal setting would not only affect the intra-modality distribution but
also hinder the cross-modal alignment. On the other hand, most existing TTA methods are specif-
ically designed for the recognition task, which would struggle with the heavy noise from the query
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（a）Dominant Paradigm （b）Query Shift （c）Observations

Pre-trained Models

Fine-tune
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National CostumeCultural Symbol Traditional Craft

Figure 1: (a) Dominant Paradigm: the pre-trained models embrace powerful zero-shot retrieval
capacity and could be fine-tuned on domain-specific data for customization, which has emerged as
the dominant paradigm for cross-modal retrieval. (b) Query Shift: the performance of the paradigm
would be significantly degraded when encountering the query shift problem. On the one hand,
collecting sufficient data to tailor the pre-trained models for scarce domains is daunting and even
impossible. On the other hand, as the saying goes, “Different strokes for different folks”, even
fine-tuned models cannot accommodate all personalized domains. (c) Observations: we study the
query shift problem for cross-modal retrieval and reveal the following observations. Namely, query
shift not only diminishes the uniformity of the query modality but also amplifies the modality gap
between the query and gallery modalities, undermining the well-structured common space inherited
from pre-trained models.

predictions if simply applied to the retrieval task. Intuitively, for a given sample or query, it has a
random probability of 1/K or 1/N to be correctly associated with the desirable category or cross-
modal counterpart in the recognition task or retrieval task, where K and N denote the class number
and candidate number, respectively, with N ≫ K.

To specifically develop a TTA method for cross-modal retrieval with the query shift, we first present
two key observations as illustrated in Fig. 1(c). To summarize, we conclude that the query shift
would diminish the uniformity of the query modality, prohibiting discrimination between diverse
queries in the common space. Moreover, query shift would amplify the modality gap between
query and gallery modalities, undermining the well-constructed common space established by the
pre-trained models.

Based on the above observations, we propose achieving robust cross-modal retrieval against the
query shift by endowing the existing TTA methods with the capacity to manipulate both the modal-
ity uniformity and modality gap. To be specific, we propose a novel method, dubbed Test-time
adaptation for Cross-modal Retrieval (TCR), which consists of a novel query prediction refinement
module and a novel joint objective function. First, the query prediction refinement module is adopted
to refine the retrieval results of the existing TTA methods and thus obtain the retrieval-favorable pre-
dictions for queries. After that, the joint objective is employed on the refined query predictions to
achieve online adaptation for cross-modal retrieval models under query shift. More specifically, the
joint objective function is composed of three individual losses that embrace the following merits. To
enhance the uniformity of the query modality, the intra-modality uniformity learning loss performs
contrast between queries and their respective centers, thus guaranteeing the discrimination between
queries. To rectify the modality gap between the query and gallery modalities, the inter-modality
gap learning loss narrows the difference between the query and gallery modalities with the plau-
sible constraint estimated from off-the-shelf models, thus inheriting the well-established common
space. To prevent overfitting on noisy query predictions, the noise-robust adaptation loss amplifies
the contribution of high-confident predictions while alleviating the noisy ones with a self-adaptive
threshold. The major contributions of this work could be summarized as follows.
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• To the best of our knowledge, this work could be one of the first studies on the query
shift problem, revealing its underlying impacts on cross-modal retrieval. Specifically, the
query shift would not only diminish the uniformity of the query modality but also amplify
the modality gap between query and gallery modalities, undermining the well-established
common space derived from the source model.

• We propose a novel test-time adaptation method named TCR. TCR first employs a novel
module to refine the query predictions, thus supporting the existing TTA methods for cross-
modal retrieval. Then, TCR adopts a novel objective function that can not only manipulate
both the modality uniformity and modality gap but also prevent the model from overfitting
noisy query predictions, thus achieving robust cross-modal retrieval with query shift.

• Extensive experiments verify the effectiveness of the proposed method. Furthermore, we
benchmark the existing TTA methods on cross-modal retrieval with query shift across six
widely-used image-text datasets, hoping to facilitate the study of test-time adaptation be-
yond unimodal tasks.

2 RELATED WORK

In this section, we briefly review two topics related to this work, i.e., domain adaptation for cross-
modal retrieval and test-time adaptation.

2.1 DOMAIN ADAPTATION FOR CROSS-MODAL RETRIEVAL

Cross-modal retrieval aims to establish a well-structured common space, where semantically-
relevant candidates could be prioritized for the queries. However, most existing cross-modal re-
trieval methods implicitly assume that the given queries follow the same distribution as the source
data. Unfortunately, such an ideal assumption is easily violated due to the complexity of real-world
applications, leading to the query shift problem as discussed in Introduction. To address the prob-
lem, some Unsupervised Domain Adaptation (UDA) methods have been proposed to reconcile the
distribution differences for robust cross-modal retrieval. Based on the way to achieve robustness
against query shift, these approaches could be roughly grouped into the following three categories:
i) pseudo-labeling methods (Munro et al., 2021; Hao et al., 2023), which first select the most relevant
cross-modal pairs as positives while treating the irrelevant pairs as negatives and then conduct metric
learning upon the pairs to adapt the model for target domains; ii) domain alignment methods (Peng
& Chi, 2019), which mitigate distribution discrepancies between the target and source domains by
resorting to the maximum mean discrepancy minimization or mutual information minimization ap-
proaches; iii) prototype-based methods (Liu et al., 2021a; Chen et al., 2021), which first constructs
different sets of prototypes to represent various domains and then achieves domain adaptation by
minimizing the KL divergence between the corresponding prototype sets.

Despite the promising performance, the existing domain adaptation works for cross-modal retrieval
require accessing the entire target domain. As a result, these works cannot achieve adaptation for
the online query stream, limiting their practicability in real-time scenarios such as search engine.
Different from them, this paper proposes a new adaptation method for addressing the query shift
problem, which could be one of the first online adaptation approaches for cross-modal retrieval.

2.2 TEST-TIME ADAPTATION

Test-time Adaptation (TTA) has emerged as a promising avenue for domain adaptation, which aims
to reconcile the distribution shifts in an online manner. Towards achieving this goal, some Test-
Time Training (TTT) approaches (Sun et al., 2020; Liu et al., 2021b; Gandelsman et al., 2022) have
been proposed, which require modifying the training process of the source model and adding an
auxiliary self-supervised task. As a result, the source model could be adapted by performing the self-
supervised task on the online target data stream. To avoid the reduplicated training cost of the source
model, Fully Test-Time Adaptation Wang et al. (2021) paradigm has been proposed, which could
be coarsely divided into the following three categories: i) online TTA methods (Chen et al., 2022;
Lee et al., 2024), which continually update the normalization layers by resorting to the unsupervised
objectives, such as entropy minimization or its variants. ii) robust TTA methods (Niu et al., 2022;
2023; Zancato et al., 2023), which strive to improve the robustness against noisy predictions, mixed
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Figure 2: Overview of the proposed TCR. For the given online queries, the modality-specific
encoders are employed to project the query and gallery samples into the latent space established by
the source model. The obtained query embeddings and gallery embeddings are passed into the query
prediction refinement module. In the module, TCR first selects the most similar gallery sample for
each query and obtain the query-gallery pairs. After that, the pairs with higher uniformity and lower
modality gap are chosen to estimate the filtering threshold of query predictions and modality gap of
the source model as the constraints for the adaptation. Finally, three loss functions are employed to
achieve robust adaptation for cross-modal retrieval with query shift.

distribution shifts, label shifts, and so on. iii) TTA beyond recognition, which focuses on the tasks
including but not limited to image restoration (Gou et al., 2024), multimodal recognition (Yang et al.,
2024), and multimodal segmentation (Cao et al., 2023).

In this paper, we focus on online TTA for achieving robust cross-modal retrieval against query shift.
Among existing approaches, DISC (Ma et al., 2024) is most relevant to our work, while having
significantly different motivations. In brief, DISC is designed to adapt the pre-trained image hashing
models against the distribution shift for achieving effective retrieval in the target domain. Different
from DISC, our work focuses on addressing the query shift problem for cross-modal retrieval, which
is less-touched by the existing studies. Moreover, unlike DISC that requires accessing the source
data to train the hashing model, our TCR could adapt the off-the-shelf pre-trained models without
using the source data.

3 METHOD

In this section, we introduce the proposed Test-time adaptation for Cross-modal Retrieval (TCR)
to handle the query shift problem for cross-modal retrieval. The section is structured as follows.
In Section 3.1, we present the formal definition of the query shift problem and design a simple
baseline to facilitate TTA for cross-modal retrieval. In Section 3.2, we propose the query prediction
refinement module to derive the retrieval-favorable query predictions. In Section 3.3-3.5, we design
a novel joint objective function to achieve robust cross-modal retrieval against query shift.

3.1 NOTATIONS AND PROBLEM FORMULATION

Without loss of generality, we take two modalities as a showcase to elaborate on the query shift
problem. Let fΘs

denote the multimodal model pre-trained on the source-domain data DS , which
consists of two modality-specific encoders, i.e., fΘQ

s
and fΘG

s
. For a given query xQ

i from the target

domain data DT =
{
XQ = {xQ

i }N
Q

i=1,X
G = {xG

j }N
G

j=1

}
, cross-modal retrieval aims to associate

the corresponding sample xG
j from the gallery set XG by resorting to the common space established

by fΘs
, where Q and G denote as query modality and gallery modality for clarity in the following. In

real-world applications, the given queries are usually from the distribution distinct with the source-
domain data, i.e., P (DT ) ̸∼ P (DS), where P (D) denotes the distribution of the given data D. As
a result, such a query shift problem would lead to the performance degradation of fΘs as verified in
the experiments.
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To achieve online adaptation for fΘs
with query shift, we first propose a simple baseline that endows

the unimodal-recognition-oriented TTA approaches with the capacity to handle the cross-modal re-
trieval task. To be specific, we formulate the retrieval task as a query prediction process in analogy
with the recognition task that assigns the given samples to their corresponding categories. Formally,
for a given online batch of queries with size B, the corresponding query predictions could be defined
as

p = Softmax
(
zQ
(
ZG
)T

/τ
)
, (1)

where τ is the temperature that controls the trade-off between the smoothness and sharpness of the
predictions, zQ = fΘQ

s
(xQ) ∈ RB×D and ZG = fΘG

s
(XG) ∈ RNG×D are the ℓ2-normalized

embeddings with the dimensionality of D for the given query and gallery samples, respectively.
Thanks to the above formulation, most existing TTA methods could be adopted to handle the query
shift challenge with the following objective,

min
Θ̃

LTTA (p) , (2)

where Θ̃ ⊆ Θs is the learnable parameters. However, such a simple formulation of query prediction
would result in either model underfitting or overfitting even with carefully tuning of τ due to the
variable gallery sizes, as verified in Table 3 and Fig. 4(a). Furthermore, such a simple baseline over-
looks the underlying influences behind the query shift problem and thus fails to achieve promising
performance as discussed in Introduction. On the one hand, the existing TTA methods cannot ex-
plicitly manipulate the intra-modality uniformity and inter-modality gap. On the other hand, these
methods struggle to account for the heavy noise from the query prediction.

As a remedy, we propose Test-time adaptation for Cross-modal Retrieval (TCR). As shown in Fig. 2,
for the given online batch of queries, TCR first employs the novel query prediction refinement
module to obtain the retrieval-favorable predictions p̂. After that, the following joint objective
consisting of three novel loss functions is adopted to achieve robust cross-modal retrieval against
the query shift, i.e.,

min
Θ̃

L (p̂) , (3)

where L = LMU +LMG+LNA, with LMU , LMG, and LNA denote the intra-modality uniformity
learning loss, inter-modality gap learning loss, and the noise-robust adaptation loss, respectively. In
the following, we will elaborate on each loss individually.

3.2 QUERY PREDICTION REFINEMENT

In this section, we introduce the query prediction refinement module which involves refining the
prediction for the given queries and estimating the constraints to support the optimization of Eq. 3.

3.2.1 CANDIDATE SELECTION

To break the dilemma of vanilla query prediction formulation in Eq. 1, we propose selecting a subset
of candidates from the gallery and then establishing new query predictions for the given queries.
Mathematically, for each given query xQ

i , the corresponding candidate in the gallery is obtain via

xG′

i = N (xQ
i ), (4)

where N (·) denotes the selection manner, and we adopt the nearest neighborhood selection in the
common space for simplicity. In other words, we retrieve the most similar sample from the gallery
set for each query and thus obtain query-candidate pairs (zQ, zG

′
). Consequently, the refined query

predictions for the online-batched queries xQ could be formulated as follows,

p̂ = Softmax

(
zQ
(
ZG′

)T
/τ

)
, (5)

where ZG′
are the embeddings of the selected candidates for xQ. The query prediction refinement

manner embraces the following two merits. On the one hand, the query prediction refinement man-
ner could exclude some irrelevant samples in the gallery, thus preventing the model from overfitting
to some extent. On the other hand, the excluded irrelevant samples would avoid looking for a needle
in a bottle of hay for queries, thus alleviating the model underfitting issue.
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3.2.2 CONSTRAINT ESTIMATION

It is widely acknowledged that source data could effectively regulate the domain adaptation pro-
cess (Long et al., 2017; Kang et al., 2019), thus circumventing the catastrophic forgetting issue.
Due to the unavailability of the source data in the test-time adaptation, we propose further choosing
some source-domain-like data from the selected query-candidate pairs to estimate desirable con-
straints that support the optimization of Eq. 3. To this end, we first design a criterion for choosing
the query-candidate pair (zQi , z

G′

i ), i.e.,

SI = 2
(
∥zQi − zG

′

i ∥
)
−
(
∥zQi − zQ∥+ ∥zG

′

i − zG
′
∥
)
, (6)

where zQ = 1
B

∑B
i zQi and zG

′
= 1

B

∑B
i zG

′

i are the centers of the given queries and the selected
candidates, respectively. In the implementation, we choose 30% query-candidate pairs with the
smallest SI value, namely, (zQm , zG

′
m) of size M , as the source-domain-like data. Clearly, a low

value of the criterion has the incentive to select the query-candidate pairs with the small modality
gap and high intra-modality uniformity, which have higher probability to be source-domain-like, as
verified in Fig. 3.

Based on the selected source-domain-like data, we propose estimating the modality gap of the source
model as follows,

∆S =

∥∥∥∥∥∥ 1

M

M∑
i

zQm

i − 1

M

M∑
j

z
G′

m
j

∥∥∥∥∥∥ , (7)

where zQm

i and z
G′

m
j denote the i-th query sample and the j-th gallery sample in the query-candidate

pairs, respectively. As the another by-product, a desirable threshold that could filter the noise in the
query predictions p̂ could be adaptively determined as follows,

Em = max
i=1,...,M

E
(
xQm

i

)
, (8)

where E (·) indicates the entropy based on the refined query predictions.

3.3 INTRA-MODALITY UNIFORMITY LEARNING

As discussed in Introduction, query shift would diminish the uniformity of the query modality, re-
sulting in confused queries with lower discrimination in the common space. To address the problem,
we propose to perform the contrast between queries and their respective centers, thus explicitly en-
larging the intra-modality uniformity. Mathematically, the loss function of intra-modality uniformity
learning is defined as follows,

LMU =
1

B

B∑
i

exp
(
−∥zQi − zQ∥/t

)
(9)

where t is the trade-off parameter to control the uniformity that is fixed as 10 in the experiments.

3.4 INTER-MODALITY GAP LEANING

As discussed in Introduction, query shift would amplify the modality gap between query and gallery
modalities, disrupting the cross-modal alignment established by the source model. To remedy this,
we propose to rectify the difference between the query and gallery modalities to the estimated modal-
ity gap of the source model in Eq. 7. Formally, the inter-modality gap learning loss is defined as
follows,

LMG = (∆T −∆S)
2
, (10)

where ∆T =
∥∥∥zQ − zG

′
∥∥∥ denotes the modality gap of the target domain. The key idea behind LMG

is that the modality gap rectification would take advantage of well-aligned multimodal common
space from the source model, thus boosting retrieval performance. Notably, as observed in Liang
et al. (2022), over-eliminating the modality gap would not improve or even degrade the performance
of the multimodal model. Therefore, we believe the proposed loss that rectifies the modality gap of
the target model to a plausible constraint in a non-monotonic manner is reasonable. The experimen-
tal results in Fig. 3 could support the claims.
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3.5 NOISE-ROBUST ADAPTATION

To achieve robustness against the heavy noise on the query predictions, we propose the following
noise-robust adaptation loss,

LNA =
1∑

i I{S(xQ
i )̸=0}

NQ∑
i=1

S(xQ
i )E(xQ

i ), where S(xQ
i ) = max

(
1− E(xQ

i )

Em
, 0

)
, (11)

where Em is the self-adaptive threshold estimated in Eq. 8, and I{·} is an indicator function eval-
uating to 1 i.f.f. the condition is satisfied. Such behavior could achieve robustness against noise
by excluding high-entropy query predictions from adaptation and assigning higher weights to query
predictions with lower uncertainties. It is worth noting that existing TTA methods like EATA (Niu
et al., 2022) and SAR (Niu et al., 2023) are highly sensitive to the manually determined thresholds,
resulting in either none or all query predictions being treated as noise. In contrast, the proposed
LNA employs a self-adaptive threshold to filter out noise, thus achieving better performance.

4 EXPERIMENTS

In this section, we verify the effectiveness of TCR in handling the query shift problem for the
image-text retrieval task. This section is organized as follows. In Section 4.1, we present the imple-
mentation details and experiment settings of TCR. In Section 4.2, we conduct extensive comparison
experiments to verify the performance superiority of TCR. In Section 4.3, we perform a series of ana-
lytic studies, ablation studies, and visualization analyses, to provide a comprehensive understanding
of TCR.

4.1 IMPLEMENTATION DETAILS AND EXPERIMENT SETTINGS

TCR is a general TTA framework that could endow most existing pre-trained models with robust-
ness against the query shift. Therefore, we select CLIP (Radford et al., 2021) and BLIP (Li et al.,
2022) as the source models since they are the widely adopted vision-language models for image-text
retrieval task. Following Lee et al. (2018), we adopt two testing protocols, namely, image-to-text
retrieval (a.k.a. TR) and text-to-image retrieval (a.k.a. IR). During the adaptation process, TCR
performs the objective function for each coming mini-batch of queries, and the batch size is set
as 64. Following Niu et al. (2023); Wang et al. (2021), TCR updates the parameters within the
normalization layers in the query-specific encoder fΘQ

s
using the AdamW optimizer. To be more

specific, the learnable parameters in Θ̃ (Eq. 3) correspond to the Layer Normalization (LN) layers in
our implementation. Besides, the temperature hyper-parameter τ in Eq. 1 and uniformity learning
hyper-parameter t in Eq. 9 are fixed as 0.02 and 10 for all experiments, respectively.

To investigate the influence of cross-modal retrieval with query shift, we employ the following two
settings for extensive evaluations (see more details in Appendix B.1).

• Query Shift (QS): In this setting, only the queries come from different distributions with
the source-domain data. Following Qiu et al. (2023), we introduce 16 types of corruptions
to the image modality and 15 types to the text modality across widely-used image-text re-
trieval datasets, COCO (Lin et al., 2014) and Flickr (Plummer et al., 2015). As a result,
the COCO-C and Flickr-C benchmarks are constructed, which would result in distribution
shifts on either the image or text modalities. To guarantee the controlled study on QS, we
first fine-tune the pre-trained model on either the COCO (Lin et al., 2014) or Flickr (Plum-
mer et al., 2015) dataset, namely, treating them as the source domains. After that, evalua-
tions are conducted on the COCO-C or Flickr-C benchmarks, namely, treating them as the
target domain.

• Query-Gallery Shift (QGS): In this setting, both the query and gallery samples are drawn
from distributions different from the source-domain data. To this end, evaluations are di-
rectly conducted on the pre-trained model upon several widely-used image-text retrieval
datasets from various domains, including Fashion-Gen (Rostamzadeh et al., 2018) from the
e-commerce domain, CUHK-PEDES (Li et al., 2017) and ICFG-PEDES (Ding et al., 2021)
from the person re-identification (ReID) domain, and COCO, Flickr, and Nocaps (Agrawal
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et al., 2019) from the natural image domain. In other words, the source model would en-
counter distribution shifts on both image and text modalities during adaptation.

Table 1: Comparisons with state-of-the-art methods on COCO-C benchmark under QUERY SHIFT
ON THE IMAGE MODALITY with maximum severity level regarding the Recall@1 metric. The best
results are marked in bold.

Noise Blur Weather Digital
Query Shift Gauss. Shot Impul. Speckle Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
BLIP ViT-B/16 43.4 46.3 43.2 57.3 43.3 68.0 39.7 8.4 32.3 52.2 57.0 66.8 36.0 41.3 20.6 63.7 45.0
• Tent 41.6 40.5 37.9 54.0 44.7 65.1 39.6 8.3 31.9 48.7 56.3 66.5 31.8 40.3 19.2 62.3 43.0
• EATA 41.4 50.3 35.7 63.1 49.8 72.2 46.2 6.9 45.6 56.7 62.5 71.4 43.6 51.3 25.6 67.0 49.3
• SAR 42.3 51.5 37.5 61.8 40.3 71.5 32.8 6.2 38.0 56.2 59.1 70.6 31.1 53.5 17.5 66.4 46.0
• READ 45.8 48.4 37.2 59.9 44.5 71.8 46.6 11.5 39.9 49.9 58.4 70.3 35.8 45.0 18.8 66.2 46.9
• DeYO 47.9 53.5 46.8 63.4 42.9 72.1 36.7 3.2 37.5 59.7 66.4 71.2 40.3 49.0 13.1 67.6 48.2
• Ours 53.2 56.2 54.8 64.6 58.0 73.7 56.4 32.2 56.5 64.1 71.0 73.4 57.9 63.7 41.8 68.4 59.1

BLIP ViT-L/16 50.3 51.8 51.1 61.6 53.7 72.1 49.4 14.5 44.0 57.5 61.8 70.5 37.3 50.6 32.0 70.5 51.8
• Tent 46.3 49.3 46.7 58.4 52.2 71.8 47.5 12.3 41.9 56.2 60.9 69.7 35.7 48.3 29.4 69.6 49.8
• EATA 46.2 53.5 49.5 63.8 56.5 73.8 52.6 18.4 50.6 59.1 64.5 72.1 40.7 55.4 43.5 70.7 54.4
• SAR 45.9 50.2 47.3 63.1 51.1 73.8 47.2 11.6 40.8 58.9 60.7 71.6 33.6 54.0 34.4 70.5 50.9
• READ 38.1 48.0 43.3 63.5 43.6 73.4 43.6 22.0 44.5 56.5 62.2 71.9 32.9 49.6 27.5 70.6 49.5
• DeYO 39.9 50.2 43.5 63.8 50.4 74.0 52.4 5.4 49.5 59.3 62.8 71.8 34.0 54.7 34.4 69.7 51.0
• Ours 58.2 60.7 59.8 66.6 61.5 74.9 60.3 36.8 59.0 65.2 72.1 73.5 56.3 65.7 50.2 71.6 62.0

Table 2: Comparisons with state-of-the-art methods on COCO-C benchmark under QUERY SHIFT
ON THE TEXT MODALITY with maximum severity level regarding the Recall@1 metric.

Character-level Word-level Sentence-level
Query Shift OCR CI CR CS CD SR RI RS RD IP Formal Casual Passive Active Backtrans Avg.
BLIP ViT-B/16 31.4 11.3 9.4 18.9 11.4 43.6 51.5 50.3 50.6 56.8 56.6 56.2 54.9 56.8 54.2 40.9
• Tent 31.4 11.0 9.5 17.7 11.3 43.2 51.3 50.3 50.6 56.6 56.2 56.0 54.9 56.9 53.9 40.7
• EATA 33.1 11.9 10.5 18.4 12.0 44.9 53.0 51.6 50.3 56.2 56.8 56.8 56.0 56.8 54.3 41.5
• SAR 31.8 11.6 9.9 18.5 11.7 43.6 51.5 50.3 50.6 56.8 56.5 56.2 54.9 56.8 54.2 41.0
• READ 32.3 11.4 9.6 18.2 11.2 44.3 52.9 51.7 51.1 57.6 57.1 56.7 55.9 57.1 54.7 41.4
• DeYO 31.4 11.3 9.4 17.9 11.4 43.6 51.5 50.3 50.6 56.8 56.5 56.2 54.9 56.7 54.2 40.9
• Ours 34.1 13.7 11.8 19.5 13.2 45.3 53.8 51.8 51.5 57.3 57.1 56.8 56.0 57.3 54.7 42.3

BLIP ViT-L/16 34.5 12.3 11.1 19.7 12.9 46.0 54.4 54.0 53.5 59.4 59.1 58.8 57.8 59.4 56.7 43.3
• Tent 34.0 12.3 11.0 19.6 12.9 46.5 54.2 53.8 53.4 59.4 59.1 58.8 57.6 58.9 56.5 43.2
• EATA 35.6 13.3 11.3 20.3 13.2 47.2 55.4 54.2 53.8 59.2 59.1 59.4 57.9 59.4 56.8 43.7
• SAR 34.5 13.1 11.2 20.3 13.1 46.7 54.4 54.0 53.5 59.5 59.1 58.8 57.8 59.4 56.7 43.5
• READ 35.3 12.2 10.9 19.1 12.7 47.3 55.1 55.0 53.3 59.7 59.3 59.1 58.1 59.6 56.7 43.6
• DeYO 34.5 12.3 11.1 19.7 12.9 46.7 54.4 54.0 53.5 59.5 59.1 58.8 57.8 59.4 56.7 43.4
• Ours 36.8 14.7 13.4 21.3 14.3 47.9 56.3 54.8 53.9 59.5 59.4 59.0 58.2 59.6 56.9 44.4

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

In this section, We compare TCR with five SOTA TTA methods (Tent (Wang et al., 2021),
EATA (Niu et al., 2022), SAR (Niu et al., 2023), READ (Yang et al., 2024), and DeYO (Lee et al.,
2024)) under both the QS and QGS settings. Among the baseline methods, Tent is the vanilla TTA
approach with an entropy-based objective, while the others enhance Tent by incorporating specially
designed noise-robust loss functions. For a fair comparison, we select the optimal temperature (Eq.1)
for the TTA baselines upon each dataset according to Fig. 4(a). The results on the QS setting and
QGS setting are summarized in Tables 1-2, 7-8 and Tables 3-4, respectively. From the results, one
could have the following observations and conclusions.

• Existing TTA methods only achieve marginal performance improvements over the base
model, which could be attributed to the inability on manipulating both modality uniformity
and the modality gap. In contrast, TCR could rectify the modality gap and enlarge the
modality uniformity, thus significantly outperforming all the baselines across various pre-
trained model types and sizes.

• TCR demonstrates greater robustness against more severe shift types like “Zoom” and
“Pixel” (see Table 1 and Table 7), whereas most baseline methods experience significant
performance degradation under these challenging distribution shifts. Moreover, in Table 3,
the more significant performance improvements on “Base2Nocaps” with “ND” and “OD”
compared to that with “ID” also verify the conclusion.

• As the size of the gallery set increases in Table 3 (from “Base2Flickr” to “Base2COCO” to
“Base2Fashion”), existing TTA methods suffer from increasing performance degradation,
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eventually performing even worse than the base model. This supports our claim in Sec-
tion 3.1 that TTA methods struggle to accommodate well for cross-modal retrieval tasks
due to the excessively large gallery set. In contrast, our method consistently achieves per-
formance improvements across various gallery sizes.

Table 3: Comparisons with state-of-the-art methods on benchmarks under QUERY-GALLERY
SHIFT regarding the Recall@1 metric. In the table, “ID”, “ND” and “OD” refer to “In-Domain”,
“Near-Domain” and “Out-Domain”, respectively. Besides, “TR@1” / “IR@1” represent Recall@1
for image-to-text retrieval / text-to-image retrieval.

Base2Flickr Base2COCO Base2Fashion Base2Nocaps(ID) Base2Nocaps(ND) Base2Nocaps(OD)
Query Shift TR@1 IR@1 TR@1 IR@1 TR@1 IR@1 TR@1 IR@1 TR@1 IR@1 TR@1 IR@1 Avg.
CLIP ViT-B/16 80.2 61.5 52.5 33.0 8.5 13.2 84.9 61.4 75.4 49.2 73.8 55.8 54.1
• Tent 81.4 64.0 48.8 27.6 5.6 10.7 85.1 61.7 74.6 48.6 71.8 56.1 53.0
• EATA 80.4 63.4 52.1 34.8 8.1 12.0 84.7 62.0 75.1 52.3 74.1 56.9 54.7
• SAR 80.3 62.2 51.8 33.9 8.0 13.3 84.7 61.3 75.4 51.3 73.7 56.1 54.3
• READ 80.6 64.4 46.0 35.7 5.8 11.2 85.1 63.0 75.0 52.1 73.5 57.0 54.1
• DeYO 80.1 64.0 51.5 33.4 6.9 10.9 84.4 62.2 75.1 52.0 73.2 57.3 54.3
• Ours 82.4 64.8 52.9 36.5 8.9 14.0 85.1 63.5 75.7 54.0 74.4 58.0 55.9

BLIP ViT-B/16 70.0 68.3 59.3 45.4 19.9 26.1 88.2 74.9 79.3 63.6 81.9 67.8 62.1
• Tent 81.9 68.5 61.7 41.7 14.1 26.1 88.5 75.4 82.6 64.1 82.7 68.9 63.0
• EATA 82.3 69.4 64.2 47.9 12.8 25.2 87.8 75.1 82.8 63.9 81.5 67.9 63.4
• SAR 81.7 68.3 63.5 46.6 17.9 26.1 88.2 75.6 81.0 65.4 81.2 69.3 63.7
• READ 80.0 69.9 62.1 46.4 5.6 24.1 87.3 75.1 80.6 63.9 80.7 67.9 62.0
• DeYO 83.5 69.9 65.0 47.3 12.2 24.1 89.2 75.6 83.7 65.7 84.3 69.4 64.2
• Ours 86.8 70.3 68.9 48.9 23.6 30.3 89.7 76.0 86.3 66.1 87.2 69.5 67.0

4.3 ABLATION AND ANALYTIC STUDY

Table 4: Comparisons with state-of-the-
art methods on ReID benchmarks under
QUERY-GALLERY SHIFT regarding the Re-
call@1 metric.

CUHK2ICFG ICFG2CUHK
Query Shift IR@1 IR@1 Avg.
CLIP ViT-B/16 33.3 41.0 37.2
• Tent 33.5 41.9 37.7
• EATA 33.3 42.2 37.8
• SAR 33.3 42.2 37.8
• READ 33.0 42.3 37.7
• DeYO 33.3 42.2 37.8
• Ours 37.3 42.4 39.9

In this section, all the experiments are conducted un-
der the “Base2COCO” setting using the BLIP ViT-
B/16 model unless otherwise stated.

Analytic Studies on Intra-modality Uniformity
and Inter-modality Gap. As pointed out in Intro-
duction, the query shift would diminish the intra-
modality uniformity and amplify the inter-modality
gap. For an in-depth understanding, we conduct an-
alytic experiments to investigate how the two char-
acteristics affect the retrieval performance. To exam-
ine the influence of the intra-modality uniformity, we
manually scale the latent distance between different
queries. Mathematically, the scaling operation is defined as follows.

(zQi )
scale = Z

Q
+ λscale

(
zQi − Z

Q
)
, (12)

(a) (b)

Figure 3: Observation of the intra-modality uni-
formity and inter-modality gap. The increasing
λscale indicates the growing intra-modality unifor-
mity while the decreasing λoffset indicates the nar-
rowing inter-modality gap. Notably, λscale = 1.0
and λoffset = 0 represent no scaling and no offset,
respectively.

where Z
Q

= 1
NQ

∑NQ

i=1 z
Q
i is the center of

queries, λscale is the scaling factor. As illus-
trated in Fig. 3(a), increasing the intra-modality
uniformity in the query modality would im-
prove the performance, but not vice versa. Such
a phenomenon indicates that higher uniformity
would guarantee the discrimination between
queries and thus boost performance. To ex-
amine the influence of the inter-modality gap,
following Liang et al. (2022), we manually
move every query embedding towards closing
the modality gap. Formally,

(zQi )
offset = zQi − λoffset

(
Z

Q − Z
G
)
, (13)

where Z
G

= 1
NG

∑NG

i=1 z
G
i is the center of the gallery samples, λoffset controls the offset of the

embeddings. From the results in Fig. 3(b), one could observe that monotonously eliminating the
modality gap would not always improve the performance. In contrast, the estimated modality gap

9
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(a) Query Prediction Refinement (b) Parameter Ablation (c) t-SNE

Figure 4: Finer-grained Ablation studies. (a) The parameter analysis of τ (Eq. 1 and Eq. 5) on
the vanilla TTA method Tent w/ (solid line) and w/o (dotted line) the query prediction refinement
module. (b) The parameter analysis of t in Eq. 9. (c) The t-SNE visualization of TR on the query
and gallery embeddings after employing the proposed TCR.

from the pre-trained model is a plausible criterion for modality gap rectification. Note that the
embeddings are all ℓ2-normalized after scaling or shifting.

Table 5: Ablation study of the loss func-
tions, where ” ✓ ” denotes the loss is
adopted.
LNA LMU LEMG TR@1 IR@1 Avg.

59.3 45.4 52.4
✓ 67.4 47.8 57.9

✓ 64.9 46.7 55.8
✓ 64.3 46.3 55.3

✓ ✓ 67.8 48.3 58.2
✓ ✓ 68.1 48.4 58.4

✓ ✓ 66.3 47.8 57.1
✓ ✓ ✓ 68.9 48.9 58.9

Ablation studies. To verify the effectiveness of each
design, we investigate the loss terms of TCR in Ta-
ble 5, resulting in the following conclusions. First,
LNA boosts performance through the query prediction
refinement module and self-adaptive loss, e.g., TCR
improves R@1 by 9.2% and 14.6% on text and im-
age retrieval, compared to Tent in Table 3. Second,
both the designed intra-modality uniformity learning
module and inter-modality gap learning module would
enhance robustness against query shift. Third, TCR
achieves optimal performance when all the loss terms
are employed. Moreover, we carry out experiments to
verify the effectiveness of the proposed query predic-
tion refinement module in Section 3.5. As shown in Fig. 4(a), we observe that: i) selecting an
appropriate temperature for the existing TTA approach across various datasets is challenging; ii)
even a low temperature (e.g., 1e− 4) is a better setting across all datasets, the performance degrades
as a low temperature tends to make model overfitting on noisy query prediction. In contrast, the
query prediction refinement module not only stabilizes the temperature setting for all the datasets
but also prevents the model from either underfitting or overfitting by excluding some irrelevant sam-
ples in the gallery. Besides, TCR demonstrates stable performance within the range of [0.001,0.05]
and achieves the best performance when τ = 0.02. As depicted in Fig. 4(b), one could observe that
TCR is not sensitive to the choice of t.

Visualization Result. To qualitatively study the effectiveness of TCR, we conduct the t-SNE visual-
ization on both the query and gallery embeddings before and after the TTA process. From the results
in Fig. 4(c), one could observe that the samples in the query modality enjoy more scatter and the
difference between the query and gallery modalities narrows after the TTA process. In other words,
TCR achieves better robustness against query shift by rectifying the intra-modality uniformity and
the inter-modality gap.

5 CONCLUSION

In this paper, we develop a new test-time adaptation method, dubbed TCR, to achieve robust cross-
modal retrieval against the query shift problem. In brief, TCR first employs a novel module to refine
the query predictions. After that, TCR adopts a novel joint objective to prevent the model adaptation
from overfitting noise while simultaneously manipulating the intra-modality uniformity and inter-
modality gap to preserve the well-established common space from the source model. Extensive
experiments not only verify the effectiveness of TCR but also reveal the importance of each designs.
In the future, we plan to explore more potential scenarios contaminated with query shift and extend
TCR to address the corresponding issues.
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A DEFINATION OF INTRA-MODALITY UNIFORMITY AND INTER-MODALITY
GAP

Here, we provide a mathematical definition of the modality uniformity and the modality gap men-
tioned in the manuscript. Specifically, the modality uniformity of query modality is defined as

Uniformity =
1

NQ

NQ∑
i=1

∥zQi − Z
Q∥. (14)

A low intra-modality uniformity illustrates that the samples in the query modality are compact,
which degrades the retrieval performance as the model struggles to distinguish diverse queries.

The modality gap between query and gallery modalities is defined as

Modality Gap = ∥ZQ − Z
G∥. (15)

Modality gap has been proved to be a inherent characteristic of multimodal pre-trained models
in Liang et al. (2022), which might represent the well-aligned common space to some extent. As
shown in Fig. 4(a), either an over-low or over-high modality gap would destroy the well-constructed
common space, harming the retrieval performance.
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B MORE IMPLEMENTATION DETAILS

B.1 MORE DETAILS ABOUT THE BENCHMARKS

In the manuscript, we employ the QS setting and the QGS setting for evaluation. Here, we provide
more detail about the benchmarks employed in the two settings.

Query Shift. We construct two benchmarks with only query modality distribution shifts based on
the widely-used COCO and Flickr datasets. Specifically,

• COCO is a large-scale dataset for cross-modal retrieval and image captioning tasks. For
evaluation, we conduct experiments on the COCO 2014 testing set following Li et al.
(2022), which contains 5,000 images and 25,000 annotations, with each image associated
with five corresponding text descriptions.

• Flickr is a cross-modal retrieval dataset collected from natural scenarios. Following Rad-
ford et al. (2021), we employ the test set comprising 1,000 images and 5,000 annotations,
where each image is paired with five corresponding sentences.

Following (Qiu et al., 2023), we introduce 16 and 15 types of corruption to the image and text
modality, respectively. Specifically, the corruptions in image modality consist of: (1) Noise: Gaus-
sian noise, Shot noise, Impulse noise, Speckle noise; (2) Blur: Defocus blur, Glass blur, Motion
blur, Zoom blur ; (3) Weather: Snow, Frost, Fog, Brightness; (4) Digital: Contrast, Elastic, Pixelate,
JPEG compression. To simulate real-world corruptions, each image modality corruption is applied
at five different severity levels, resulting in a total of 80 perturbations. As for the text modality,
the employed corruptions could be categorized into three levels: character-level, word-level, and
sentence-level. Specifically, the character-level corruptions consist of OCR, Character Insert (CI),
Character Replace (CR), Character Swap (CS), and Character Delete (CD), which simulate real-
world typos or mistakes during typing. The word-level corruptions involve Synonym Replacement
(SR), Word Insertion (WR), Word Swap (WS), Word Deletion (WD), and Insert Punctuation (IP),
which simulate different writing habits that people may replace, delete, or add words to express the
same meaning. For sentence-level corruptions, we convert the annotation styles into Formal, Casual,
Passive, Active, and Back-translation, which simulate various speaking, writing styles or translation
errors. Similar to the image corruptions, we introduce 7/2/1 severity levels for character-level/word-
level/sentence-level corruptions.

As a result, we construct the two benchmarks named COCO-C and Flickr-C. Notably, we only
introduce the corruptions to the query modality in the QS setting, e.g., for image-to-text retrieval,
the distribution shifts occur on the image modality. The cases of the 16 image corruptions and 15
text corruptions are visualized in Fig. 5 and Table 6.

Query-Gallery Shift. We establish the following benchmarks with distribution shifts across both
query and gallery modalities, including Fashion-Gen from the E-commerce domain, CUHK-PEDES
and ICFG-PEDES from the ReID domain, as well as COCO, Flickr, and Nocaps from the natural
image domain. Specifically,

• Fashion-Gen is a cross-modal retrieval dataset source from the E-commerce domain, com-
prising fashion images paired with item descriptions provided by professional stylists. In
the experiment, we employ the testing set containing 32,528 image-text pairs.

• CUHK-PEDES is a text-to-image person re-identification dataset derived from short-
duration surveillance videos. Following (Jiang & Ye, 2023), we utilize the testing set which
contains 3,074 images and 6,156 textual descriptions of 1,000 identities. The cases of the
CUHK-PEDES are visualized in Fig. 6 (a).

• ICFG-PEDES is a large-scale text-to-image person re-identification dataset gathered at dif-
ferent times of the day (i.e., morning, noon, afternoon). Following (Jiang & Ye, 2023), we
adopt the testing set consists of 19,848 image-text pairs, corresponding to 1,000 identities.
The examples of the ICFG-PEDES are visualized in Fig. 6 (b).

• Nocaps is a cross-modal retrieval dataset derived from the OpenImages dataset. For eval-
uation, we perform experiments on the test set, which consists of 648 in-domain images,
2,938 near-domain images, and 914 out-domain images. Each image is paired with 10
captions.
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Gaussian Noise

Noise

Blur

Weather

Digital

Shot Noise Impulse Noise Speckle Noise

Defocus Blur Glass Blur Motion Blur Zoom Blur

Snow Frost Fog Brightness

Contrast Elastic Pixelate JPEG

Figure 5: Examples of 16 types of image corruption. The original image is from the COCO dataset.

Table 6: Examples of 15 types of text corruption. The original text is from the COCO dataset.
Category Perturbation Example

Original Clean A train traveling down tracks next to a brick building.

Character

OCR A train travelin9 down track8 next to a brick building.

CI A train traveling down traGcks next to a brick bui1lding.

CR A train traveling doPn tracks next to a brick buildirg.

CS A train rtaveilng down tracks next to a brick building.

CD A train tr[X]veling down tr[X]cks next to a brick building.

Word

SR A train jaunt down running adjacent to a brick building.

RI A train pass traveling down tracks next to go a brick building

RS A building traveling down tracks next to a brick train.

RD A train [X] down tracks [X] to a brick building.

IP A : train traveling down tracks next to , a brick building.

Sentence

Formal A train moving down tracks next to a brick building.

Casual A train that goes down tracks next to a brick building.

Passive Tracks next to a brick building are being traveled down by a train.

Active There is a train traveling down tracks next to a brick building.

Backtrans A train runs down the tracks next to a brick building.

The male pedestrian is
wearing jeans along with
matching orange and Gray
coat and backpack.

A pale oriental looking
man in Gray clothing,
white tennis shoes, black
well-groomed hair walking
briskly.

The young lady has a black
bag on her left arm and is
carrying a red and blue
plaid garment on her right
arm.

A slender woman with
black hair is walking with
a red umbrella over her
head. She is wearing a
black shirt with tan shorts
and is carrying a white bag.

The lady has long black
hair. She is wearing a
sleeveless white dress that
hangs to just above her
knees. She is carrying a
stool in her hands.

The man is wearing black and
white tennis shoes with a pair
of white socks. He is wearing
a pair of grey jean shorts with
a red tee-shirt with a white
logo on the chest.

(a) CUHK-PEDES

(b) ICFG-PEDES

Figure 6: Examples of CUHK-PEDES dataset and ICFG-PEDES dataset.
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B.2 MORE EXPERIMENT DETAILS

To guarantee the performance of the baselines, we select the optimal temperature (Eq. 1) for the TTA
baselines upon each dataset. According to Fig. 4(a), the temperature is fixed as 0.01 for COCO-
C, Flickr-C, COCO, Flickr, and Nocaps datatsets, 0.001 for Fashion-Gen dataset, and 0.0001 for
CUHK-PEDE and ICFG-PEDES datasets. Note that we employ Tent to conduct the experiment in
Fig. 4(a) since most TTA methods are variants based on the Tent. Moreover, the adaptation process
utilizes an initial learning rate of 3e−4/3e−5 for text/image retrieval, excepting 3e−4 for image
retrieval on the CLIP model.

In addition, for the ablation study in Fig. 4(a), we perform experiments on the Flickr-C dataset using
the following corruptions: Gaussian, Zoom, Snow, and Contrast for the image modality; OCR, IP,
and Formal for the text modality.

B.3 MORE DETAILS ABOUT THE RELATED WORK

Test-time Adaptation (TTA) aims to reconcile the distribution shifts in an online manner. To achieve
this goal, fully TTA (Wang et al., 2021) has been proposed, which fine-tunes the BatchNorm layers
by minimizing entropy during the test phase. EATA (Niu et al., 2022) employs a Fisher regularizer
to limit excessive model parameter changes and filter out high-entropy samples via the selection
strategy. SAR (Niu et al., 2023) removes high-gradient samples and promotes flat minimum weights,
enhancing robustness against more challenging TTA scenarios such as mixed domain shifts, single-
sample adaptation, and imbalanced label shifts. READ (Yang et al., 2024) proposes a noise-robust
adaptation loss and reliable fusion module to tackle the reliability bias challenge in the multi-modal
setting. DeYO (Lee et al., 2024) reveals the unreliability of treating entropy as the confidence
metric and establishes a novel metric by measuring the difference between predictions before and
after applying an object-destructive transformation.

B.4 PSEUDO CODE

In the following, we provide the pseudo-code of the proposed TCR in Algorithm 1. To guarantee
the stability of the estimation for Em and ∆S , we maintain a queue which always saves the query-
candidate pairs with the smallest SI during the adaptation process. Following (Caron et al., 2020),
we limit the queue updating times to a maximum of 10 iterations.

Algorithm 1: Test-time adaptation for Cross-modal Retrieval (TCR)

Input: Test samples DT =
{
{xQ

i }
NQ

i=1 , {xG
j }N

G

j=1

}
, the source model fΘs with trainable parameters Θ̃,

TTA steps η > 0, batch size B.
Output: Predictions {pi}N

Q

i=1 .
1 Initialize Θ̃0 = Θs;
2 for given queries xQ ∈ DT do
3 for step = 1, · · · , η do
4 Obtain the query predictions p in Eq. 1;
5 Select a subset of candidates xG′

from the gallery using Eq. 4 ; // Candidate Selection

6 Obtain the refined query predictions p̂ in Eq. 5 and the corresponding entropy E(xQ);
// Update the queue

7 if step = 1 then
8 Compute the criterion SI in Eq. 6;
9 Select the 30% query-candidate pairs with the smallest SI;

10 Maintain a queue of size B to save the pairs and their corresponding entropies;
11 end
12 Estimate the modality gap ∆S using Eq. 7 ; // Constraint Estimation
13 Estimate the desirable threshold Em using Eq. 8 ; // Constraint Estimation
14 Compute the overall loss L in Eq. 3 with ∆S and Em;
15 Update parameters Θ̃ through gradient descent to minimize L;
16 end
17 end
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C AN ALTERNATIVE IMPLEMENTATION OF TCR WITHOUT TRAINING

From the results in Fig. 3, we observe that the performance could be boosted by simply scaling
up the uniformity or rectifying the modality gap even without adopting the function. Based on the
observation, in this section, we propose to implement TCR in an untrained manner, which demon-
strates the great potential of TCR. Specifically, to enhance the uniformity of the query modality, we
scale the given queries by Eq. 12 with λscale fixed at 2. To adjust the inter-modality gap, we estimate
the modality gap ∆S of the source domain by Eq. 7 and then rectify the modality gap in the target
domain to ∆S by Eq. 13. The details are presented in Algorithm 2 and the experiment results are
shown in Table 10-11.

Algorithm 2: An Implementation of Untrained TCR

Input: Test samples DT =
{
{xQ

i }
NQ

i=1 , {xG
j }N

G

j=1

}
, the source model fΘs , batch size B, scaling factor

λscale.
Output: Predictions {pi}N

Q

i=1 .
1 Initialize Θ̃0 = Θs;
2 for given queries xQ ∈ DT do
3 Select a subset of candidates xG′

from the gallery using Eq. 4 ; // Candidate Selection
// Update the queue

4 Compute the criterion SI in Eq. 6;
5 Select the 30% query-candidate pairs with the smallest SI;
6 Maintain a queue of size B to save the pairs;
7 Scale xQ using Eq. 12 with λscale ; // Scaling up Intra-modality Uniformity
8 Estimate the modality gap ∆S using Eq. 7 ; // Constraint Estimation
9 Rectify the modality gap to ∆S using Eq. 13 ; // Rectifying between-modality Gap

10 Perform ℓ2-normalization on the embeddings in the query modality;
11 Obtain the query predictions p in Eq. 1;
12 end
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D MORE EXPERIMENT RESULTS

D.1 RESULTS ON FLICKR-C

In the manuscript, we have carried out experiments on the COCO-C benchmark. Here, we provide
more results on the Flickr-C benchmark. As shown in Table 7-8, TCR significantly outperforms all
the baselines across various pre-trained model types and sizes on the Flickr-C benchmarks.

Table 7: Comparisons with state-of-the-art methods on Flickr-C benchmark under QUERY SHIFT
ON THE IMAGE MODALITY with maximum severity level regarding the Recall@1 metric.

Noise Blur Weather Digital
Query Shift Gauss. Shot Impul. Speckle Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
BLIP ViT-B/16 49.8 56.6 50.3 71.6 53.1 84.5 47.4 15.5 66.4 80.4 79.5 85.5 60.6 53.3 35.1 80.3 60.6
• Tent 54.9 54.9 54.3 73.1 53.3 85.3 47.9 1.6 67.2 80.9 79.6 86.8 63.6 53.4 35.4 81.4 60.9
• EATA 55.5 60.5 55.8 75.8 64.6 86.2 52.2 8.5 72.0 83.7 82.5 87.9 68.4 60.1 45.9 81.6 65.1
• SAR 54.8 62.5 55.6 75.2 48.3 87.2 34.8 15.5 71.9 83.1 82.2 87.9 68.2 60.3 42.2 81.4 63.2
• READ 50.1 58.2 52.2 74.8 63.7 87.0 55.1 2.2 71.7 83.8 81.9 87.7 67.4 62.3 42.5 81.4 63.9
• DeYO 55.4 62.0 56.3 76.2 63.8 86.3 50.3 3.2 73.1 84.1 83.2 88.6 70.1 63.1 46.8 81.3 65.2
• Ours 62.0 66.6 61.4 80.0 68.1 87.9 65.2 39.9 78.2 85.2 85.7 89.5 75.1 73.1 56.8 83.3 72.4

BLIP ViT-L/16 58.2 61.0 59.7 76.9 66.4 88.5 62.5 33.4 67.7 81.5 79.3 89.1 60.4 66.4 46.5 85.0 67.7
• Tent 61.3 64.3 63.3 77.6 70.8 88.7 62.8 31.5 70.4 83.8 81.1 89.2 61.2 68.7 52.0 84.5 69.5
• EATA 62.0 65.1 64.5 78.9 70.2 89.5 63.3 33.1 71.9 83.7 81.2 89.3 61.6 69.3 53.0 85.8 70.2
• SAR 61.1 64.4 63.7 79.7 71.6 90.3 64.4 27.6 70.6 83.4 81.0 89.7 62.4 70.1 53.3 85.3 69.9
• READ 61.1 64.4 63.7 79.7 71.6 90.3 64.4 27.6 70.6 83.4 81.0 89.7 62.4 70.1 53.3 85.3 69.9
• DeYO 61.5 61.0 62.1 78.3 69.6 89.5 62.5 37.2 72.1 83.6 81.4 89.9 61.3 67.6 52.5 86.8 69.8
• Ours 68.2 71.7 70.2 83.3 74.7 91.9 72.5 49.6 78.2 87.0 85.5 92.1 70.9 79.6 65.5 87.8 76.8

Table 8: Comparisons with state-of-the-art methods on Flickr-C benchmark under QUERY SHIFT
ON THE TEXT MODALITY with maximum severity level regarding the Recall@1 metric.

Character-level Word-level Setence-level
Query Shift OCR CI CR CS CD SR RI RS RD IP Formal Casual Passive Active Backtrans Avg.
BLIP ViT-B/16 53.5 18.4 18.0 30.4 22.5 68.3 77.9 76.9 77.9 82.1 82.1 81.9 79.9 82.2 79.8 62.1
• Tent 55.4 18.6 18.2 31.1 23.0 69.6 78.8 77.7 78.0 82.2 81.9 81.8 79.6 82.0 79.9 62.5
• EATA 55.7 19.9 19.9 31.6 23.6 69.5 78.6 77.5 77.9 82.4 82.3 81.8 80.5 82.6 80.2 62.9
• SAR 53.5 20.1 19.1 32.1 23.8 68.3 77.9 76.9 77.9 82.1 82.1 81.9 79.9 82.2 79.8 62.5
• READ 55.8 19.7 20.6 32.0 23.5 69.3 78.6 77.6 78.1 82.4 82.2 81.8 80.5 82.5 80.2 63.0
• DeYO 53.5 18.4 18.0 30.4 22.5 68.3 77.9 76.9 77.9 82.1 82.1 81.9 79.9 82.2 79.8 62.1
• Ours 57.1 21.4 22.5 33.6 25.1 69.8 79.3 78.0 78.1 82.5 82.4 82.2 81.0 82.6 80.2 63.7

BLIP ViT-L/16 58.0 22.2 22.0 34.1 25.1 71.2 79.9 78.9 78.8 83.3 83.1 82.7 81.7 83.5 80.7 64.4
• Tent 59.0 22.4 22.1 34.5 25.3 71.4 80.3 79.3 78.8 83.7 82.8 82.7 81.8 83.3 80.7 64.6
• EATA 59.1 23.0 23.2 35.1 25.6 71.7 80.3 79.3 78.8 83.5 83.0 83.2 81.8 83.5 80.7 64.8
• SAR 58.1 23.1 23.0 34.5 25.8 71.2 79.9 78.9 78.8 83.3 83.1 82.7 81.7 83.4 80.7 64.6
• READ 58.9 23.4 23.3 34.9 25.9 71.5 80.7 79.3 78.8 83.5 83.2 83.1 81.9 83.4 80.8 64.8
• DeYO 58.1 22.2 22.0 34.1 25.1 71.2 79.9 78.9 78.7 83.3 83.1 82.7 81.7 83.4 80.8 64.4
• Ours 59.7 24.4 24.4 36.1 26.7 71.8 80.9 79.5 78.9 83.5 83.2 83.4 81.8 83.5 80.8 65.2

D.2 EXPERIMENTS ABOUT PERSONALIZED QUERIES ON FASHION-GEN

As mentioned in Introduction of the manuscript, different inquirers would submit personalized
queries, e.g., some are drawn to fashionable handbags, while others are passionate about collecting a
variety of shoes. To further demonstrate the generalization of TCR in this scenario, we simulate the
personalized queries on the Fashion-Gen benchmark. In detail, following Cartella et al. (2023), we
fine-tune the pre-trained CLIP on four publicly available fashion datasets including Fashion-Gen,
Fashion IQ (Wu et al., 2021), Fashion200K (Han et al., 2017), and iMaterialist (Guo et al., 2019).
After that, we employ TCR to adapt various preferences such as “TOPS” and “SWEATERS” on
the Fashion-Gen benchmark. The experimental results are presented in Table 9, one could observe
that TCR improves both image-to-text and text-to-image retrieval performance under personalized
queries.

Table 9: The cross-modal retrieval performance of TCR on Fashion-Gen benchmark with PERSON-
ALIZED QUERIES regarding Recall@1 metric.

Query Shift TOPS SWEATERS JACKETS PANTS JEANS SHIRTS DRESSES SHORTS SNEAKERS SKIRTS Avg.

TR BLIP ViT-B/32 18.0 19.3 19.9 12.0 5.5 18.3 38.1 17.9 37.3 29.6 21.6
• Ours 22.9 25.2 21.6 14.3 6.0 22.8 44.3 8.5 41.7 37.4 24.5

IR BLIP ViT-B/32 24.9 27.9 29.2 16.9 6.7 25.4 51.8 25.7 47.1 47.8 30.3
• Ours 28.2 31.7 32.8 19.5 9.6 28.5 57.1 29.1 53.6 50.7 34.1
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D.3 RESULTS ON THE ALL SEVERITY SETTING

In Section 4.2 of the manuscript and Appendix D.1, we have demonstrated the effectiveness of TCR
in handling query shift at the maximum severity level. To further verify the robustness of TCR, we
conduct more experiments on the COCO-C benchmark with query shift across all severity levels.

The results in Fig. 7-8 indicate the effectiveness of TCR in addressing various severity of the query
shift.
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Figure 7: Text retrieval performance comparisons on the COCO-C benchmark under QUERY SHIFT
ON THE IMAGE MODALITY with all severity levels regarding Recall@1 metric. The legend key
provides an overview of the average performance of each approach across various corruption types.
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Figure 8: Image retrieval performance comparisons on the COCO-C benchmark under QUERY
SHIFT ON THE TEXT MODALITY with all severity levels regarding Recall@1 metric.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.4 RESULTS OF UNTRAINED TCR

Here, we perform experiments on the COCO-C and Flickr-C benchmarks to evaluate the proposed
untrained TCR in Appendix C. During the experiments, we compare untrained TCR with the best
baseline EATA in Table 1-2. From the results in Table 10 and Table 11, we observe that the un-
trained TCR achieves significant improvement over EATA, even without parameter update, which
corroborates our observations and validates the effectiveness of the proposed TCR.

Table 10: The cross-modal retrieval performance of untrained TCR on COCO-C and Flickr-C bench-
marks under IMAGE MODALITY DISTRIBUTION SHIFTS with maximum severity level regarding
the Recall@1 metric.

Noise Blur Weather Digital
Dataset Query Shift Gauss. Shot Impul. Speckle Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Flickr-C

EATA 55.5 60.5 55.8 75.8 64.6 86.2 52.2 8.5 72.0 83.7 82.5 87.9 68.4 60.1 45.9 81.6 65.1
Ours (untrain) 58.7 63.2 58.1 78.8 65.9 87.8 61.2 34.6 79.2 84.8 84.4 89.1 68.2 67.4 46.0 83.0 69.4
Ours 62.0 66.6 61.4 80.0 68.1 87.9 65.2 39.9 78.2 85.2 85.7 89.5 75.1 73.1 56.8 83.3 72.4

COCO-C

EATA 41.4 50.3 35.7 63.1 49.8 72.2 46.2 6.9 45.6 56.7 62.5 71.4 43.6 51.3 25.6 67.0 49.3
Ours (untrain) 48.8 51.7 49.8 61.5 53.9 72.6 49.4 18.7 49.7 60.5 67.1 71.4 43.9 49.9 26.7 67.4 52.7
Ours 53.2 56.2 54.8 64.6 58.0 73.7 56.4 32.2 56.5 64.1 71.0 73.4 57.9 63.7 41.8 68.4 59.1

Table 11: The cross-modal retrieval performance of untrained TCR on COCO-C and Flickr-C bench-
marks under TEXT MODALITY DISTRIBUTION SHIFTS with maximum severity level regarding the
Recall@1 metric.

Character-level Word-level Setence-level
Dataset Query Shift OCR CI CR CS CD SR RI RS RD IP Formal Casual Passive Active Backtrans Avg.

Flickr-C
EATA 55.7 19.9 19.9 31.6 23.6 69.5 78.6 77.5 77.9 82.4 82.3 81.8 80.5 82.6 80.2 62.9
Ours (untrain) 55.8 20.3 20.7 32.7 23.8 69.2 78.3 77.8 77.8 82.5 82.2 82.0 80.4 82.3 80.0 63.1
Ours 57.1 21.4 22.5 33.6 25.1 69.8 79.3 78.0 78.1 82.5 82.4 82.2 81.0 82.6 80.2 63.7

COCO-C
EATA 33.1 11.9 10.5 18.4 12.0 44.9 53.0 51.6 50.3 56.2 56.8 56.8 56.0 56.8 54.3 41.5
Ours (untrain) 32.9 12.3 10.4 19.0 12.3 44.8 52.6 51.3 51.5 57.8 57.1 57.2 56.2 57.2 54.7 41.8
Ours 34.1 13.7 11.8 19.5 13.2 45.3 53.8 51.8 51.5 57.3 57.1 56.8 56.0 57.3 54.7 42.3
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D.5 MORE ABLATION RESULTS ABOUT MODALITY UNIFORMITY AND MODALITY GAP

Table 12: The intra-modality uniformity and
inter-modality gap of different baselines af-
ter TTA under the “Base2COCO” setting. IU
and TU indicate the uniformity of image and
text modalities, respectively. MG indicates
the modality gap.

Method IU MG TR@1 TU MG IR@1
Base 0.62 0.72 59.3 0.67 0.72 45.4
Tent 0.82 0.74 61.7 0.85 0.76 41.7
EATA 0.87 0.68 64.2 0.88 0.67 47.9
SAR 0.86 0.70 63.5 0.74 0.69 46.6
READ 0.85 0.72 62.1 0.84 0.70 46.4
DeYO 0.88 0.68 65.0 0.86 0.67 47.3
Ours 0.93 0.63 68.9 0.96 0.64 48.9

We provide more ablation studies under the
“Base2COCO” setting to prove that TCR achieves
better performance by enlarging intra-modality
uniformity and rectifying the inter-modality gap.
Specifically, we present the intra-modality unifor-
mity and inter-modality gap of different baselines af-
ter TTA in Table 12. The results illustrate that i) most
of the baselines improve the performance by implic-
itly enlarging the intra-modality uniformity and nar-
rowing the modality gap; ii) the improvement of Tent
is unstable due to the enlarged modality gap; iii) the
proposed TCR achieves the highest intra-modality
uniformity (0.93 and 0.96) and enjoys the modal-
ity gap (0.63 and 0.64) in the target domain close
to that (0.67) in the source domain, thus contribut-
ing to boosting the performance. Notably, we obtain the modality gap in the source domain by
constructing a subset of 12,000 image-text pairs derived from the COCO, Visual Genome (Krishna
et al., 2017), CC3M (Changpinyo et al., 2021), and SBU Captions (Ordonez et al., 2011) datasets.

D.6 MORE VISUALIZATION RESULT

Figure 9: The t-SNE visualization re-
sults of image retrieval on the query and
gallery embeddings by employing the
proposed TCR.

As shown in Fig. 4(c) of the manuscript, we have visual-
ized the text retrieval results before/after TTA. Here, we
provide additional visualization results of image retrieval
before/after TTA under the “Base2COCO” setting. The
results in Fig. 9 illustrate that samples in the query modal-
ity enjoy more scatter and the modality gap narrows after
the TTA process, which proves that TCR improves perfor-
mance in both TR and IR by rectifying the intra-modality
uniformity and the inter-modality gap.
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D.7 RESULTS ON THE MIXED SEVERITY SETTING AND MIXED QUERY SHIFT

We conduct more experiments on the COCO-C benchmark, investigating the robustness of the pro-
posed TCR under non-i.i.d. settings (i.e., Mixed Severity Levels and Mixed Corruption Types).
Specifically,

• Mixed Severity Levels: For each corruption, we create the test pairs by selecting 1/m of
the data from each severity level, resulting in a total of N test pairs, where m is the number
of severity levels and m=5 / 7 / 2 for the image / character-level / word-level corruptions.

• Mixed Corruption Types: For the text retrieval, we construct the test pairs by selecting 1/16
of the data from each image corruption (1 through 16), resulting in a total of N test pairs.
For the image retrieval, we create test pairs by selecting 1/15 of the data from each text
corruption (1 through 15), resulting in a total of N test pairs.

To verify the effectiveness of TCR under the Mixed Severity and Mixed Corruption Types settings,
we choose the typical TTA method Tent and the SOTA TTA methods EATA, DeYO as baselines
for comparisons. In the experiment, we carry out the experiments on the COCO-C benchmark, and
he corresponding results are depicted in Table 13-15. Note that for the Mixed Corruption Types
setting, there are five levels of the mixed corruptions in text retrieval, corresponding to the image
corruptions with five severity levels. For image retrieval, the severity levels of character-level/word-
level/sentence-level text corruptions are 7/2/1. Thus, we select the two highest severity levels for
character-level and word-level corruptions, and combine them with sentence-level corruptions, re-
sulting in two levels of the mixed corruptions.

The performance superiority of TCR over all baselines under both Mixed Severity and Mixed Cor-
ruption Types settings demonstrates its robustness against non-i.i.d query shift.

Table 13: Comparisons with state-of-the-art methods on COCO-C benchmark under MIXED
SEVERITY LEVELS ON THE IMAGE MODALITY regarding the Recall@1 metric.

Noise Blur Weather Digital
Mixed Severity Levels Gauss. Shot Impul. Speckle Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
BLIP ViT-B/16 61.8 61.8 59.7 66.4 58.5 70.7 56.7 22.5 42.6 60.4 66.0 70.8 61.0 61.2 47.8 69.8 58.6
• Tent 65.3 64.9 59.9 69.4 31.6 74.1 35.7 1.9 10.7 63.3 70.4 73.8 64.4 65.8 47.8 71.5 54.4
• EATA 64.9 65.6 64.6 70.0 62.0 74.3 61.7 28.1 55.3 63.9 71.1 74.4 65.5 66.0 53.7 72.7 63.4
• DeYO 64.0 66.0 63.0 69.8 64.6 74.6 63.0 5.8 56.1 65.7 71.4 74.5 65.7 67.8 52.5 72.7 62.3
• Ours 67.2 68.1 66.6 70.7 67.0 75.8 65.8 45.7 61.2 68.4 74.2 75.2 70.4 70.4 58.6 73.5 67.4

Table 14: Comparisons with state-of-the-art methods on COCO-C benchmark under MIXED
SEVERITY LEVELS ON THE TEXT MODALITY regarding the Recall@1 metric.

Character-level Word-level
Mixed Severity Levels OCR CI CR CS CD SR RI RS RD IP Avg.
BLIP ViT-B/16 42.1 29.7 28.0 33.9 30.0 44.8 51.7 50.5 50.8 56.8 41.8
• Tent 42.4 28.5 23.6 33.8 26.9 45.5 52.4 51.4 50.9 57.0 41.2
• EATA 43.4 30.8 29.4 34.8 30.7 46.0 53.2 51.8 51.4 57.6 42.9
• DeYO 43.4 30.7 29.3 35.0 30.9 46.2 53.4 51.9 51.4 57.7 43.0
• Ours 44.4 32.2 30.6 35.7 31.7 46.3 53.8 52.1 51.5 57.4 43.6

Table 15: Comparisons with state-of-the-art methods on COCO-C benchmark under MIXED COR-
RUPTION TYPES levels regarding the Recall@1 metric.

TR@1 IR@1
Mixed Corruption Types Level 1 Level 2 Level 3 Level 4 Level 5 Level 1 Level 2 Avg.
BLIP ViT-B/16 68.8 64.5 61.4 54.5 44.9 42.5 41.1 53.9
• Tent 70.0 67.0 64.4 56.4 33.2 42.2 38.5 53.1
• EATA 71.7 68.2 64.7 58.9 48.0 43.2 41.9 56.7
• DeYO 71.5 68.4 65.1 59.9 48.3 42.9 41.8 56.8
• Ours 73.3 70.4 66.9 61.5 53.6 43.8 42.3 58.8
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D.8 RESULTS ON THE GALLERY SHIFT

In the manuscript, we have conducted experiments under the Query-Gallery Shift setting (Table 3),
which demonstrates that TCR could improve retrieval performance even when the gallery modality
occurs distribution shift. Here, we conduct additional experiments to investigate whether gallery
shift would affect the outcomes of nearest neighbor selection. Specifically, we carry out experiments
on the COCO-C benchmark under two gallery shift settings, i.e., only gallery shift setting, both query
and gallery shift setting.

• Only Gallery Shift: In this setting, there is no distribution shift in the query modality. For
the baseline BLIP ViT-B/16, the IR@1 and TR@1 without any query or gallery shift are
57.1% and 74.0%, respectively.

• Both Query and Gallery Shift: In this setting, we choose the OCR/Gaussian corruptions as
the query shift for image/text retrieval, respectively. For the baseline BLIP ViT-B/16, the
IR@1/TR@1 with OCR/Gaussian corruptions is 31.4%/43.4%.

From the results in Table 16-17, one could observe that gallery shift degrades both retrieval per-
formance and nearest neighbor selection accuracy, whether in only gallery shift or both query and
gallery shift settings. However, the proposed TCR improves the retrieval performance under gallery
shift, with the selected nearest neighbors more likely to be correct. Besides, even under gallery
shift setting, TCR could enhance retrieval performance surpassing the baseline performance without
gallery shift. For example, in the both query and gallery shift setting, the text retrieval performance
of TCR under RI (47.7%), RS (45.4%), Formal (52.4%), and Passive (52.1%) gallery shift exceeds
the baseline performance without gallery shift (43.4%). It’s worth noting that in real-world sce-
narios, data with only gallery shift is rare, as the data in the gallery is often extensive and curated.
In contrast, the queries of the users are more diverse, which might lead to the distribution shift
challenge.

Table 16: Performance under GALLERY SHIFT ON THE IMAGE MODALITY regarding the Re-
call@1 metric and neighbor ACC (i.e., the cross-modal nearest neighbor of the query is correct).
Notably, for the baseline BLIP ViT-B/16, the neighbor ACC and R@1 are the same since both are
computed using cosine similarity for ranking.

Noise Blur Weather Digital
Image Retrieval Gauss. Shot Impul. Speckle Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
No Query Shift (ACC & R@1) 35.4 37.4 35.9 44.4 38.5 53.2 35.8 15.2 36.5 43.0 47.7 51.7 32.5 36.2 20.3 48.9 38.3
• TCR (ACC) 36.3 38.0 36.6 45.2 39.1 53.7 37.4 16.4 38.4 44.2 49.2 52.5 33.1 38.5 21.8 49.5 39.4
• TCR (R@1) 36.5 38.6 37.1 45.2 39.9 53.8 37.4 16.8 38.3 44.5 49.3 52.4 33.5 38.5 21.8 49.6 39.6

OCR Corruption (ACC & R@1) 18.5 19.8 18.6 23.4 20.1 28.8 19.0 8.2 18.9 22.5 25.5 27.6 17.1 18.6 10.4 26.0 20.2
• TCR (ACC) 20.6 21.8 20.6 26.0 22.6 31.6 21.5 9.3 21.6 25.5 28.8 30.5 18.9 21.8 12.1 28.4 22.6
• TCR (R@1) 20.6 21.8 20.6 26.0 22.6 31.7 21.5 9.4 21.6 25.6 28.8 30.5 19.0 21.8 12.2 28.4 22.6

Table 17: Performance under GALLERY SHIFT ON THE TEXT MODALITY regarding the Re-
call@1 metric and neighbor ACC.

Character-level Word-level Setence-level
Text Retrieval OCR CI CR CS CD SR RI RS RD IP Formal Casual Passive Active Backtrans Avg.

No Query Shift (ACC & R@1) 49.7 23.1 20.1 34.5 22.8 59.7 64.8 65.2 66.9 73.1 73.2 72.5 71.5 73.6 71.1 56.1
• TCR (ACC) 55.5 26.8 23.5 39.5 27.5 66.2 70.9 70.4 71.3 77.1 76.5 76.2 75.1 77.3 75.4 60.6
• TCR (R@1) 55.5 26.8 23.5 39.0 27.7 65.9 70.9 70.6 71.6 77.2 76.7 76.2 75.2 77.3 75.3 60.6

Gauss. Corruption (ACC & R@1) 27.2 13.2 11.1 18.4 27.2 32.5 36.3 37.2 38.9 42.2 42.8 42.7 41.0 43.2 41.0 33.0
• TCR (ACC) 35.7 16.0 15.2 24.7 35.7 42.1 47.1 46.0 48.2 53.0 53.8 53.0 51.9 53.1 51.7 41.8
• TCR (R@1) 35.2 16.5 15.3 24.6 35.2 42.2 47.7 45.4 48.3 52.8 52.4 52.7 52.1 53.5 52.1 41.7
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D.9 MORE ABLATION RESULTS ABOUT QUERY REFINEMENT MODULE

We conduct more experiments to investigate how the number of selected candidates affects per-
formance. To this end, we directly perform zero-shot retrieval experiment on the COCO dataset
with pre-trained BLIP as the source model. In the paper, we retrieve the most similar sample from
the gallery set for each query, thus the number of selected candidates is equal to the batch size B.
In the additional experiment, we vary the number of selected candidates at different values, i.e.,
[0.2B, 0.5B,B, 2B, 5B, 10B, 50B]. Specifically, assume that the number of selected candidates is
λB, where λ is an integer. When λ < 1, we randomly select λB candidates from the original B
selected candidates. When λ ≥ 1, we retrieve the most similar λ candidates from the gallery set for
each query, forming a new set of λB selected candidates.

From the results in Table 18, one could observe that increasing the number of selected candidates
would significantly degrade the performance. Such a phenomenon indicates that an excessively large
number of candidates may lead to underfitting issue, which highlights the necessity and effectiveness
of the query refinement module.

Table 18: Ablation study on the number of selected candidates under “Base2COCO” setting.

Number 0.2B 0.5B B 2B 5B 10B 50B
TR@1 67.2 68.5 68.9 65.3 64.9 64.7 64.6
IR@1 47.3 48.3 48.9 48.3 48.2 48.0 47.5

D.10 EFFICIENCY COMPARISONS

In this section, we conduct additional experiments to analyze the efficiency of TCR. To this end, we
choose the pre-trained model BLIP as the source model and perform zero-shot retrieval on the COCO
dataset. We measure the GPU time during the test-time adaptation phase. Note that the learnable
parameters of all the methods are the same for a fair comparison. The results underscore that TCR
achieves adaptation more efficiently than the augmentation-based method DeYO. Compared to the
vanilla Tent and EATA (only low-entropy samples are employed for optimization), TCR requires
only a negligible additional time cost, primarily due to the nearest neighbor selection in the query
prediction refinement module.

Table 19: Efficiency comparisons among different approaches under “Base2COCO” setting.

Method TR IR Avg.
Tent 285.5 seconds 189.7 seconds 237.6 seconds
EATA 276.3 seconds 190.4 seconds 233.3 seconds
DeYO 391.6 seconds 254.2 seconds 322.9 seconds
Ours 291.1 seconds 193.6 seconds 242.4 seconds
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D.11 RESULTS IN REMOTE SENSING DOMAIN

We conduct additional experiments in the even rarer remote sensing domain. To this end, we
choose the BLIP as the source model and perform zero-shot retrieval on the remote sensing datasets
RSICD (Lu et al., 2017) and RSITMD (Yuan et al., 2022). To verify the effectiveness of TCR, we
choose the typical TTA method Tent, the SOTA TTA method EATA and DeYO as the baselines for
comparisons. The results in Table 20 indicate that TCR could also achieve the best performance in
even rarer remote sensing domain.

Table 20: Comparisons with state-of-the-art methods on benchmarks in the remote sensing domain
with QUERY-GALLERY SHIFT regarding the Recall@1 metric.

Base2RSICD Base2RSITMD
Query Shift TR@1 IR@1 TR@1 IR@1 Avg.
BLIP ViT-B/16 6.4 6.8 7.6 10.4 7.8
• Tent 5.7 5.4 7.9 9.3 7.1
• EATA 6.9 6.7 8.0 10.4 8.0
• DeYO 6.4 6.5 7.7 10.0 7.7
• Ours 8.5 7.1 8.4 10.7 8.7

E MORE DISCUSSIONS ABOUT TEMPORAL SHIFT AND CONCEPT DRIFT

In this section, we discuss the connection between query shift, temporal shift, and concept drift.
To be specific, as discussed in (Yu et al., 2024), the underlying distributions of data are distinct at
different times, leading to concept drift. For instance, in weather forecasting, data is collected across
diverse distributions (e.g., sunny, frost, snow). It is noteworthy that we have evaluated TCR under
query shift caused by different weather conditions (e.g., frost, snow, fog). The corresponding results
from COCO-C (Table 1) and Flickr-C (Table 7) settings demonstrate the robustness of TCR against
concept drift to some extent. As noted in (Xie et al., 2024) and (Bai et al., 2022), the collected data
would continuously vary over time, resulting in temporal shift. For example, changes in lighting
conditions throughout the day could impact the distribution of the collected data. For evaluation,
we have conducted experiments under the CUHK2ICFG setting (Table 4). Specifically, the ICFG-
PEDES dataset is gathered at different times of the day (i.e., morning, noon, and afternoon), while
the CUHK-PEDES dataset is derived from short-duration surveillance videos. Therefore, com-
pared to CUHK-PEDES, the data in the ICFG-PEDES dataset exhibit distribution shifts due to time
changes, such as illumination variation. The corresponding results from the CUHK2ICFG setting
demonstrate that TCR could achieve robustness against temporal shift to some extent. Notably, any
distribution shifts in the query modality would lead to query shift, not limited to temporal issues.
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