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ABSTRACT

Synaptic plasticity is a fundamental substrate for learning and memory, where different
synapse types exhibit distinct plasticity mechanisms. However, how functional behav-
iors emerge from heterogeneous synaptic plasticity mechanisms remains poorly under-
stood. Here, we introduce a computational framework that harnesses Darwinian evo-
lutionary principles to discover biologically plausible, heterogeneous synaptic plasticity
rules within a biologically realistic model of the mouse primary visual cortex. Specifi-
cally, we parameterize several key factors related to synaptic plasticity, including presy-
naptic and postsynaptic spikes, their associated eligibility traces, and neuromodulatory
signals. By integrating these factors via a truncated Taylor expansion, we construct a
large-scale search space of candidate plasticity rules, with each rule containing over 2.6k
optimizable parameters. Each rule is subsequently evaluated on both cross-domain visual
task performance and biological validity. Leveraging a multi-objective evolutionary al-
gorithm, we effectively navigate this high-dimensional search space to identify plasticity
rules that are both biologically plausible and yield high task performance. We uncover di-
verse families of high-performing plasticity rules that achieve similar behavioral outcomes
despite markedly different mathematical formulations, suggesting that real-world synaptic
learning mechanisms may exhibit computational degeneracy. We further show that these
biologically plausible rules are not only robust across network scales but also enable few-
shot learning, offering a computational explanation for the emergence of innate ability.

1 INTRODUCTION

A long-standing ambition in both neuroscience and artificial intelligence has been to uncover the mecha-
nisms by which the brain learns to generate intelligent behavior. Synaptic plasticity, as one of the most
fundamental mechanisms underlying learning and memory (Bliss & Collingridge, 1993; Markram et al.,
2011; McFarlan et al., 2023), has been primarily characterized through experimental studies, revealing a
rich repertoire of plasticity mechanisms associated with different types of synapses (Markram et al., 1997;
Bi & Poo, 1998; 2001; Woodin et al., 2003; Froemke & Dan, 2002; Kullmann & Lamsa, 2007; Kullmann
et al., 2012; D’amour & Froemke, 2015). Nevertheless, the technical challenges inherent in large-scale in
vivo experiments have limited our understanding of how these heterogeneous synaptic plasticity mechanisms
cooperatively contribute to the emergence of behaviors (McFarlan et al., 2023).

In complement to experimental studies, theoretical modeling approaches aim to reveal the principles un-
derlying synaptic plasticity mechanisms by developing mathematical frameworks that explain how neural
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activity patterns drive synaptic changes (Hebb, 1949; Bienenstock et al., 1982; Oja, 1982; Song et al., 2000;
Pfister & Gerstner, 2006; Clopath et al., 2010; Lagzi & Fairhall, 2024; Agnes & Vogels, 2024). Data-driven
inference approaches, on the other hand, seek to extract plasticity rules directly from neural recordings or
behavioral data using machine learning or statistical methods (Bengio et al., 1991; Stevenson & Koerding,
2011; Robinson et al., 2016; Confavreux et al., 2020; Chen et al., 2023; Mehta et al., 2024; Bell et al.,
2024; Kaleb et al., 2024; Confavreux et al., 2025a). However, none of these studies have explored the ex-
tensive landscape of heterogeneous plasticity rules in biologically grounded networks, while simultaneously
accounting for biological constraints and functional objectives.

In this paper, we investigate the landscape of heterogeneous plasticity rules by asking: What mathematical
structure and computational principles allow heterogeneous plasticity rules to achieve functional efficacy in
realistic cortical circuits? Our approach leverages evolutionary algorithms to search a broad but interpretable
candidate space of heterogeneous plasticity rules on a biologically realistic mouse primary visual cortex (V1)
model, where each type of synapse is allowed to employ a distinct learning mechanism. The exploration
process is evaluated under multiple objectives that balance task performance with biological plausibility. By
simultaneously evaluating a diverse set of candidates within the population, our framework enables the study
of not just a single “optimal” rule, but a family of rules that span various trade-offs. This includes rules that
are potentially very simple yet surprisingly effective, as well as more complex and highly performant ones.
As a result, our approach offers a way to explore the rich diversity of plasticity rules that may exist in the
brain. The key contributions are:

• Methodological advances: (i) We construct an interpretable candidate space of plasticity rules through
truncated Taylor expansion, enabling comprehensive enumeration of plasticity rules ranging from sim-
ple to complex forms, while maintaining biological interpretability (see Sec. 2.1). (ii) We introduce
an evolutionary framework that allows multi-objective optimization on the constructed candidate space
for discovering diverse families of plasticity rules (see Sec. 2.2). (iii) We develop several metrics cov-
ering task performance and biological constraints, enabling the discovery and systematic evaluation of
plasticity rules with varying trade-offs among simplicity, efficiency, task effectiveness, and biological
plausibility (see Sec. 2.3).

• Neuroscientific insights: (i) Using the proposed framework, we uncovered families of high-performing
plasticity rules capable of producing similar memory behavioral outcomes, despite having significantly
different mathematical forms (see Sec. 3.2, 4.1 and 4.2). (ii) We show that the evolved plasticity rules
discovered by our framework enable few-shot learning, suggesting a potential mechanistic basis for
innate abilities (see Sec. 3.3 and 4.3). (iii) We further demonstrate that the explored plasticity rules
generalize well beyond their evolutionary settings, maintaining their effectiveness across networks of
varying scales (see Sec. 3.4).

2 SYNAPTIC PLASTICITY RULE EXPLORATION FRAMEWORK

In this section, we present the proposed multi-objective evolutionary optimization framework, which en-
ables the discovery of biologically plausible synaptic plasticity rules by evolving a large-scale population of
candidate rules, as illustrated in Fig. 1.

2.1 CONSTRUCTION OF SYNAPTIC PLASTICITY RULE CANDIDATES

Studies have shown that cortical circuits comprise diverse synaptic connections between neuronal popula-
tions, which may be governed by distinct plasticity mechanisms (McFarlan et al., 2023). To address this
complexity, we build on the mouse V1 cortical model (Billeh et al., 2020; Chen et al., 2022), a biologically
grounded spiking recurrent neural network comprising 17 neuron types: four excitatory subtypes from a
single class (Exc) and 13 inhibitory subtypes across three classes (Pvalb, Sst, and Htr3a), distributed across
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Figure 1: Overview of synaptic plasticity rule exploration framework. a. Our framework accounts for synap-
tic heterogeneity by considering one excitatory (Exc) and three classes of inhibitory synapses (Pvalb, Sst,
Htr3a), each highlighted with a distinct color. Light and dark variants further indicate layer-specific subtypes
within these classes. b. Plasticity rules are constructed from fundamental neural signals, including pre- and
postsynaptic spikes, their associated eligibility traces, and the reward prediction error. These signals are sys-
tematically combined to generate candidate plasticity sub-rules for each synapse type. c. Plasticity rules are
evolved through a multi-objective optimization process that simultaneously considers both biological and
task performance metrics in a manner that parallels Darwinian evolutionary processes. d. The evolutionary
search produces a Pareto-optimal subgroup of plasticity rules in the final generation, from which additional
constraints are applied to select the filtered population and the overall best-performing rule.

six cortical layers (Fig. 1a). Specifically, as shown in Fig. 1b, we consider 289 possible synaptic connection
types, corresponding to all pairwise combinations of the 17 neuron types. For each of these synaptic types,
we employ a set of commonly identified neural signals in constructing synaptic plasticity rules:

T = {Spre, Spost, Xpre, Xpost, R}, (1)

where Spre and Spost represent pre- and postsynaptic spikes, Xpre and Xpost denote pre- and postsynaptic
eligibility traces that capture the history of neural activity, and R corresponds to the reward prediction error
trace that encodes neuromodulatory signals. These signals serve as fundamental building blocks, enabling
the systematic construction of diverse plasticity rules through their additive and multiplicative combinations.
It is important to note that the diversity of neuron types can significantly influence the temporal dynamics of
both reward prediction error traces (Mohebi et al., 2024) and eligibility traces (Kerlin et al., 2010; He et al.,
2015), resulting in heterogeneous plasticity rules across the network. To capture this biological heterogene-
ity, we use distinct trace decay parameters for different neuron types, as detailed below.

Reward prediction error trace model. Neuromodulators, such as dopaminergic signals, typically influence
synaptic plasticity in the form of reward prediction errors (Steinberg et al., 2013; Chang et al., 2016; Corkrum
et al., 2020; Gershman et al., 2024). Motivated by this finding, we model the neuromodulator signal as a
reward prediction error R in our plasticity formulation, with optimizable neuron-type-specific decay time
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constants τR to capture the potentially heterogeneous temporal profiles of neuromodulation across different
neural populations.

In each trial, the neuron population maintains and shares a reward prediction signal, modeled as a simple
moving average of recent rewards: Hli = [rli−1, rli−2, . . . , rli−Nwin

], where Nwin = 20 is the window
size. This approach reflects the fact that reward signals can persist and influence neuronal activity even after
the immediate reward has been received (Hamid et al., 2016). Specifically, the population-shared reward
prediction error δR(li) for trial li can be formulated as:

r̄(li) =
1

Nwin

Nwin∑
n=1

rli−n, (2)

δR(li) = r(li)− r̄(li). (3)

Eqs. (2)-(3) drives δR close to 0 when rewards become predictable. Given that neuromodulators signals
exhibit distinct dynamics across different synaptic types (Huang et al., 2024b; Mohebi et al., 2024), we model
this biological heterogeneity by allowing different neuronal types to maintain distinct reward prediction error
traces Rm:

dRm

dt
=

{
−Rm

τm
R

+ δR(li) at trial onset li + 1

−Rm

τm
R

during trial execution,
(4)

where τmR is the time constant for neuron type m that controls the temporal dynamics of the reward signal.
Note that the reward prediction error δR(li) is only given at the onset of the next trial.

Eligibility trace model. Similar to neuromodulatory signals, the eligibility traces of pre- and postsynaptic
activities also exhibit heterogeneous temporal dynamics across different neuron types (He et al., 2015). In
our model, each neuron type maintains an eligibility trace that decays exponentially over time, with neuron-
type-specific time constants to reflect this biological diversity. Specifically, the eligibility trace Xi for neuron
i is denoted as

Xi(t+∆t) = Xi(t)− ∆t

τmE
Xi(t) + Si(t), (5)

where τmE refers to the time constant of the eligibility trace for neuron type m, and Si(t) denotes spike
occurrence at time t.

Candidate rule set. We further generate candidate synaptic plasticity terms that act as fundamental building
blocks for plasticity rules. Leveraging Taylor expansion’s ability to enumerate possible neural signal inter-
actions while preserving biological interpretability, we derive these plasticity terms by expanding the basic
neural signals defined in Eq. (1) up to third order. Formally:

P =
{ q∏

j=1

uj

∣∣∣ uj ∈ {Spre, Spost, Xpre, Xpost, R}, q ≤ 3
}
. (6)

In practice, redundant terms (e.g., S2
pre = Spre since Spre is binary) and non-meaningful terms (e.g., R2) are

removed. This results in a candidate term set S = {Pk}NP
k=1, where NP = 25, to be used in the subsequent

construction of plasticity rules. Each plasticity rule is formulated as a weighted combination of a subset
of these candidate terms. Specifically, for a given pair of presynaptic neuronal type mpre, and postsynaptic
neuronal type mpost, the candidate plasticity rules are defined as:

∆W (mpre,mpost) =

NP∑
k=1

gk ck,(mpre,mpost) Pk, (7)
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Figure 2: Overview of the biologically realistic mouse V1 model (Billeh et al., 2020; Chen et al., 2022) used
in this work.

where ck,(mpre,mpost) denotes the coefficient for the k-th candidate term specific to synapses connecting neu-
ronal type mpre to type mpost. The variable gk ∈ {0, 1} is a binary selection gate that determines whether
the k-th term is active, shared across all synaptic types. According to Eq. (7), the total number of optimiz-
able parameters for each plasticity rule exceeds 2.6K, with the detailed calculation provided in Appendix D.
During the weight optimization, Dale’s law (Strata et al., 1999) is enforced and hard bounds on the maxi-
mum and minimum weight (Gerstner et al., 2014) are implemented to maintain biological plausibility and
numerical stability during the weight update. The implementation details are also provided in Appendix D.

2.2 PLASTICITY RULE EXPLORATION VIA MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

All optimizable parameters of each synaptic plasticity rule are collected in a vector θ = {c, g, τE , τR},
which comprises the plasticity coefficients c, binary gates g, and the time constants τE = {τmE } and τR =
{τmR } that govern the temporal dynamics of eligibility and reward traces across distinct neuron populations,
respectively. This parameterization allows us to formulate synaptic plasticity rule exploration as a multi-
objective optimization problem:

Minimize F(θ) ∈ Y,θ ∈ Ωθ, (8)
where F(θ) = (f1(θ), . . . , fNo

(θ)) represents No competing objective functions within the objective space
Y, while Ωθ defines the feasible parameter search space. For each candidate synaptic plasticity rule defined
by the parameter vector θ, we evaluate its performance by applying it to update the synaptic weights of the
V1 model across different cognitive tasks.

As shown in Fig. 2, the input pathway to the V1 model is constructed based on biological data follow-
ing Billeh et al. (2020). Visual stimuli are first processed by the fixed lateral geniculate nucleus (LGN) and
LGN-V1 models before being passed to the learnable V1 model. Model performance is evaluated via readout
from the layer 5 excitatory neurons in the V1 model. Model implementation is detailed in Appendix C.

Each plasticity rule undergoes a multi-objective evaluation based on its performance across different cogni-
tive tasks. The evaluation framework incorporates biological plausibility metrics to assess whether both the
V1 model’s connectivity patterns and neural dynamics align with experimental observations after applying
the plasticity rule. The evaluation framework also employs task performance metrics to quantify the plas-
ticity rule’s ability to solve the presented cognitive tasks. To explore this complex optimization landscape,
we introduce a custom multi-objective evolutionary algorithm, whose design is described in Appendix H.
During the evolutionary process, following principles analogous to Darwinian evolution, high-performing
plasticity rules are retained and given opportunities to undergo crossover and mutation with other successful
plasticity rules, thereby generating novel plasticity rules. Conversely, plasticity rules that exhibit poor per-
formance on cognitive tasks or low biological plausibility are progressively eliminated from the population.

2.3 METRICS

To effectively evaluate each plasticity rule across the population, a comprehensive assessment comprising
both task performance and biological metrics is employed, as illustrated in Fig. 1c. To maintain compu-

5



Published as a conference paper at ICLR 2026

𝑙௧௥௔௜௡ trials 𝑙୴ୟ୪ trials

Training Validation

Time (ms)

…

-- Stimulus -- Response window -- Grey image
30 msGrating image

retina
LGN

V1

Natural image

a b

Initial trial 1-st trial 2-nd trial

Figure 3: Overview of the multitask experimental setting. a. In each evaluation, stimuli are drawn either
from gratings or from natural images in ImageNet (not mixed), and are presented to the V1 model. b. Each
evaluation consists of training trials in the first half, with plasticity rules enabled, followed immediately by
validation trials in the second half, with rules disabled.

a b

Figure 4: Performance of the filtered plasticity rules after convergence of the population. a. Normalized
fitness value of 6 objectives for the whole plasticity rule population (N=4000). b. Normalized fitness value
for the filtered Pareto-optimal population (N=70). The fitness values are normalized to [0, 1], with original
value ranges provided for reference.

tational tractability and ensure a balanced evaluation, the following six objectives are considered in the
experiments. We leave the implementation details in the Appendix E.

1. Cross-domain task performance, measured by cross-domain task average accuracy, assesses whether
the plasticity rule generalizes across different stimulus types rather than specializing to a particular type.

2. Rule complexity assesses the number of terms within each plasticity rule, with preference given to
simple formulations when comparable performance is achieved.

3. Maximum firing rate monitors peak neuronal firing rates during the cognitive task after the plasticity
rule optimization has been done, with rules maintaining firing rates below 30 Hz considered biologically
optimal (Niell & Stryker, 2008).

4. Asynchronous firing proportion evaluates population-level synchronous firing, requiring that simulta-
neously active neurons constitute less than 1% of the total population at any time point (Lennie, 2003).

5. Firing rate difference measures the discrepancy between the network’s population firing dynamics
during cognitive tasks, after the plasticity rule optimization has been done, and the mean firing rate data
observed in mice performing analogous cognitive tasks (Siegle et al., 2021; de Vries et al., 2023).

6. Firing rate distribution difference quantifies the distributional differences between the network’s pop-
ulation firing dynamics during cognitive tasks, after the plasticity rule optimization has been done, and
the firing rate distributions recorded from mice performing analogous cognitive tasks (Siegle et al., 2021;
de Vries et al., 2023).
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Mathematical formulation of Ratio
Obj-1 (↑) Obj-2 (↓) Obj-3 (↓) Obj-4 (↓) Obj-5 (↓) Obj-6 (↓)

plasticity rules in filtered population Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best

∆w = Spre 48.57% 65.18 70.29 0.04 0.04 157.22 127.83 0.00 0.00 1.25 0.86 0.83 0.71

∆w = Spre · Xpost 7.14% 64.54 68.43 0.04 0.04 165.10 125.96 0.00 0.00 1.16 0.87 0.91 0.86

∆w = Spost · Xpre 5.71% 62.50 63.21 0.04 0.04 170.62 137.43 0.00 0.00 1.04 0.84 0.91 0.85
...

...
...

...
...

...
...

...
...

...
...

...
...

...
∆w = Xpost + Spre · Xpre+

Spost · Xpre + X2
post + Xpost · R 1.43% 71.86 71.86 0.20 0.20 115.63 115.63 0.00 0.00 1.76 1.76 0.98 0.98

Table 1: Mathematical formulations of plasticity rules ranked by ratio of occurrence in the filtered population
and their average performance on two visual change detection tasks. Each formulation may contain multiple
rules with identical mathematical form but varying parameters. Avg: average fitness across individuals
within each formulation; Best: optimal fitness within each formulation.

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTAL SETTINGS

Cross-domain task setting. Based on the mouse behavioral studies in two visual change detection exper-
iments (Garrett et al., 2020; Siegle et al., 2021), we designed a cross-domain generalization learning (see
Fig. 3a). For the natural image change detection, all stimuli are selected from a set of 8 randomly cho-
sen images from the ImageNet dataset (Deng et al., 2009). For the grating image change detection, static
grating images are generated with orientations uniformly sampled from the range [60◦, 120◦] at 0.1◦ pre-
cision. The probability of stimulus change between consecutive presentations in two tasks is maintained
at 50%. Change detection is signalled when the mean firing rate of the readout excitatory neurons during
the response window exceeds a learnable, task-shared threshold φ. This experiment requires plasticity rules
to endow the V1 model with working memory capabilities analogous to those required in 1-back working
memory tasks (Owen et al., 2005).

Evaluation setting. Each plasticity rule is evaluated independently on each task using a two-phase proto-
col: 100 training trials (plasticity enabled) followed by 100 validation trials (plasticity disabled). After the
population converges, rules undergo a final evaluation using 100 training and 200 testing trials per task to
assess average performance across both tasks, with additional testing trials employed to reduce overfitting
bias in performance assessment. Our evolution maintained a population of 4,000 plasticity rules across 150
generations, with each individual evaluated by applying its plasticity rule to a V1 model of 3,000 neurons,
sampled following the strategy proposed in Chen et al. (2022). Details about the experimental setting and
the search space Ωθ can be found in Appendix E.

3.2 DISCOVERED PLASTICITY RULES

As shown in Fig. 4, we identified and filtered 70 candidate plasticity rules from the Pareto-optimal popula-
tion from the last generation based on overall task performance and biological validity criteria. The prevalent
mathematical formulations, as demonstrated in Table 1, were ranked and selected according to their ratio of
occurrence within the filtered population. We found that most plasticity rules exhibited performance consis-
tent with biological observation. Specifically, the V1 model optimized using these plasticity rules achieves
task accuracies comparable to those observed in mice (∼60% for grating change detection (Glickfeld et al.,
2013) and ∼73% for natural image change detection (Garrett et al., 2020)). Results were consistent across
seeds; one representative seed is shown. The full mathematical formulation table is provided in Appendix F.
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Figure 5: Visualization of spike raster plot and firing distribution of the V1 model optimized by the overall
best-performing plasticity rule.
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Figure 6: Comparison of performance on visual change detection of grating images between the best individ-
ual of three representative rules highlighted in Table 1 and the widely used gradient-based Adam optimizer.
a. Performance overview. b. Mean test accuracy and standard deviation over 5 seeds (200 test trials each).

In Table 1, the simple presynaptic dependent plasticity rule (i.e., ∆w = Spre) emerged as the most prevalent
formulation, comprising nearly half of the filtered rules. Several reward-free plasticity rules (e.g., ∆w =
Spre · Xpost) also succeeded in our reward-required task settings. To further analyze the explored plasticity
rules, we selected the overall best-performing plasticity rule from the filtered population, which takes the
mathematical form ∆w = Xpost + Spre · Xpre + Spost · Xpre + X2

post + Xpost · R (highlighted in red in
Fig. 4b and Table 1). The spike raster plot generated by this plasticity rule, as presented in Fig. 5a, illustrates
the temporal dynamics of neural activity across cortical layers during both stimulus change and no-change
conditions. Fig. 5b demonstrates the comparison of firing rate distributions between biological data (Garrett
et al., 2020) and the optimized V1 model, both obtained during the grating change detection task. The
analysis reveals that, consistent with the biological data, the optimized V1 model also demonstrates a heavy-
tailed firing rate distribution during the grating change detection task.

3.3 DATA EFFICIENCY ANALYSIS

To evaluate the efficiency of the discovered plasticity rules, we compared their performance against a con-
ventional gradient descent (GD) baseline. Specifically, we trained the V1 model on the same visual change
detection tasks using the Adam optimizer (Kingma & Ba, 2014) with a surrogate gradient function (Neftci
et al., 2019a), serving as a baseline that utilizes global error signals but learns without evolutionary pri-
ors. To ensure a fair comparison, the biological validity metrics described in Sec. 2.3 were incorporated as
regularization terms in the loss function. A detailed training setup is provided in Appendix G.
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a bVisual change detection of grating image Visual change detection of natural image

Figure 7: Evaluation of the scalability of the overall best-performing plasticity rule across network sizes.
Red bars indicate test accuracy on the V1 model size used during the evolutionary search, while blue bars
show test performance on different V1 model sizes. Results represent mean accuracy across 5 independent
random seeds, with each evaluated with 200 testing trials. Error bars denote standard deviation across seeds.

For benchmarking, we selected three representative rules from our discovered population: the best-
performing rules from the top two prevalent formulations (shown in yellow and green in Table 1), and
the overall best-performing rule (shown in red). As illustrated in Fig. 6b, we observed a substantial disparity
in data efficiency. All three plasticity rules achieved superior detection accuracy within the first 100 training
trials, whereas the Adam baseline required nearly 5000× more samples to attain comparable performance
levels. In practice, the wall-clock training time for the Adam optimizer is even greater than this factor sug-
gests, due to the additional computational overhead introduced by backpropagation. A similar phenomenon
is also observed in visual change detection on natural images (see Fig. S13). The detailed hyperparameter
analysis of both Adam and Stochastic Gradient Descent (SGD) is provided in Appendix G.2.

3.4 SCALABILITY OF DISCOVERED PLASTICITY RULES

To evaluate the robustness and scalability of our discovered plasticity rules, we tested the overall best-
performing plasticity rule across different network scales. Specifically, we varied the V1 model size from
1,000 to 5,000 neurons using the sampling strategy described in Chen et al. (2022). As shown in Fig. 7, the
overall best-performing plasticity rule maintained strong performance across different network sizes. This
scalability suggests that the discovered plasticity rule captures scale-invariant principles underlying memory
formation and retrieval, rather than being overfit to the 3,000-neuron V1 architecture used during the evolu-
tionary optimization. This overall best-performing rule also demonstrates remarkable homeostatic properties
under a significantly long time horizon modulation beyond its evolutionary setting (see Appendix F.7).

4 DISCUSSION

4.1 FUNCTIONALLY EQUIVALENT PLASTICITY RULES

Table 1 demonstrates that high task performance is not restricted to a single plasticity rule. In other words,
multiple structurally different computational strategies can generate identical functional behavior, implying
a degree of computational degeneracy similar to the recent findings in Confavreux et al. (2025b). This
observation sheds light on why experimental synaptic plasticity studies focusing on the same type of synapse
in the visual cortex sometimes report contradictory mechanisms (Lu et al., 2007; Sarihi et al., 2008; Huang
et al., 2013), complementing previous explanations based on neuromodulation (McFarlan et al., 2023).
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4.2 EXPLORED PLASTICITY RULES SUPPORT MEMORY EMERGENCE

Fig. 5 and Fig. S10 reveal that sustained neural firing during delay periods between stimulus windows
emerges naturally within the optimized V1 model, which is a canonical signature of working memory (Fuster
& Alexander, 1971; Miyashita, 1988) from a neural activity aspect. Notably, reward-free plasticity rules
relying exclusively on presynaptic activity constitute a significant proportion of the high-performing pop-
ulation (see Table 1) and also result in stable firing dynamics as the reward-required rule (see Fig. S11).
This computational efficacy challenges the exclusivity of classical Hebbian coincidence detection and aligns
with recent computational modeling in episode memory (Pang & Recanatesi, 2025). It also echoes experi-
mental evidence from hippocampal mossy fiber synapses, where presynaptic activity has been identified as
sufficient to support robust memory storage and recall (Vandael et al., 2020; Pelkey et al., 2023; Vandael &
Jonas, 2024).

4.3 EVOLUTIONARY PRIORS AND THE SYNAPTIC PLASTICITY VIEW OF INNATE ABILITIES

As illustrated in Fig. 6, our comparison with GD is not intended to establish algorithmic superiority, but
to provide a possible explanation of the origins of biological learning efficiency. While GD operates as
a general-purpose solver requiring extensive data to learn from scratch, evolution can embed task-related
inductive biases into the structure and parameters of the plasticity rules. Consequently, this may enable the
plasticity rules, even in a reward-free formulation, to achieve few-shot adaptation. This may explain why
the sucking behavior of newborn mice requires maternal pheromone signals to be expressed (Logan et al.,
2012). This perspective advances a ‘synaptic plasticity view’ of innate behaviors beyond hardwired neural
circuitry (Wilmer et al., 2010; Haimson & Mizrahi, 2025): innate capabilities may depend on pre-configured
plasticity mechanisms that render specific behaviors accessible with minimal experience, thus bypassing the
extensive trial-and-error learning required by acquired capabilities.

4.4 LIMITATIONS AND FUTURE WORK

Building on these findings, our framework has several limitations that motivate future extensions. First,
while several neural signals are used as building blocks of plasticity rules, incorporating additional variables
such as synaptic weights or membrane voltages would allow capturing a broader range of possible mech-
anisms. Second, by grounding our plasticity rules in mouse V1 data and visual processing pathways, we
ensure biological fidelity to some extent but limit conclusions about generalization to non-visual sensory
modalities, such as auditory data. Third, our framework captures only millisecond-scale plasticity driven by
spike timing, without incorporating second-scale mechanisms such as behavioral timescale synaptic plas-
ticity (BTSP) found in hippocampal CA1 (Bittner et al., 2017; Milstein et al., 2021). Fourth, the similarity
between the optimized V1 model and biological data is evaluated from a neural representation-based as-
pect. Future work could incorporate recent advances in dynamics-based similarity metrics (Zhang et al.,
2025) to constrain and accelerate the exploration. Addressing these limitations through expanded signal
sets, cross-modal validation, multi-timescale integration, and advanced biological constraints represents im-
portant future directions.

5 CONCLUSION

In this paper, we present a computational framework that employs a multi-objective evolutionary algorithm
to discover biologically plausible, heterogeneous plasticity rules within an experimentally grounded mouse
V1 model. Our approach uncovers structurally distinct yet functionally equivalent rules, highlighting the role
of computational degeneracy in neural robustness. Furthermore, our findings offer potential explanations for
the origins of memory and innate abilities, suggesting that efficient learning can emerge from local synaptic
dynamics. This work bridges the gap between evolutionary constraints and synaptic diversity, suggesting
that the key to biological intelligence may lie in the degenerate yet robust landscape of learning rules.
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specified in Appendix A, building upon the publicly available Allen Brain Atlas data (Billeh et al., 2020)
and following the architecture modification in Chen et al. (2022). All modifications to the original GLIF3
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Experimental protocols. Detailed experimental settings, including stimulus generation, task protocols,
evaluation metrics, and hyperparameter ranges, are provided in Appendices D and E. The visual change
detection paradigm follows established behavioral protocols (Garrett et al., 2020; Siegle et al., 2021).
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Baseline comparisons. The gradient-based Adam optimizer baseline implementation, including surrogate
gradient functions and training procedures, is fully described in Appendix G to enable direct replication of
comparative results.

Statistical analysis. All reported results include appropriate statistical measures (means, standard devia-
tions, sample sizes) across 5 random seeds. The evolutionary search was conducted with a population of
4,000 rules over 150 generations, with final evaluations performed using 5 independent seeds and 200 test
trials each.
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György Buzsáki and Kenji Mizuseki. The log-dynamic brain: how skewed distributions affect network
operations. Nature reviews neuroscience, 15(4):264–278, 2014.

12



Published as a conference paper at ICLR 2026

Chun Yun Chang, Guillem R Esber, Yasmin Marrero-Garcia, Hau-Jie Yau, Antonello Bonci, and Geoffrey
Schoenbaum. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward
prediction errors. Nature Neuroscience, 19(1):111–116, 2016.

Guozhang Chen, Franz Scherr, and Wolfgang Maass. A data-based large-scale model for primary visual
cortex enables brain-like robust and versatile visual processing. Science Advances, 8(44):eabq7592, 2022.

Shirui Chen, Qixin Yang, and Sukbin Lim. Efficient inference of synaptic plasticity rule with gaussian
process regression. Iscience, 26(3), 2023.

Ran Cheng and Yaochu Jin. A Competitive Swarm Optimizer for Large Scale Optimization. IEEE Transac-
tions on Cybernetics, 45(2):191–204, 2015. doi: 10.1109/TCYB.2014.2322602.
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A SUMMARY OF NOTATIONS

This section provides a summary of the important notations and variables that are frequently used throughout
the paper in Table S2.

Table S2: Summary of important notations

Notation Description

General Indices
pre, post Indices denoting presynaptic and postsynaptic quantities, respectively.
(mpre,mpost) A pair of presynaptic and postsynaptic neuronal types uniquely identifies a

certain synapse type.
Plasticity Signals
S Binary indicator for spike occurrence (e.g., Spre, Spost).
X Eligibility trace capturing the history of neural activity (e.g., Xpre, Xpost).
R Reward prediction error trace encoding neuromodulatory signals.
Plasticity Parameters
c Learnable coefficient for a specific plasticity term (e.g., ck).
τmE Time constant for the eligibility trace of neuron type m.
τmR Time constant for the reward trace of neuron type m.
P Set of candidate plasticity terms derived from Taylor expansion.
∆W Synaptic weight update value (plasticity rule).
Network & Neuron Model
WLGN Fixed synaptic weights from the LGN model to the V1 model.
τsyn Synaptic time constant governing current decay.
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B RELATED WORK

B.1 MODELING PLASTICITY MECHANISM

Explaining the synaptic plasticity mechanism via mathematical formulation has been a main theme in com-
putational neuroscience. Initial theoretical frameworks for synaptic plasticity, including BCM theory (Bi-
enenstock et al., 1982) and Oja’s rule (Oja, 1982), were largely based on Hebbian assumptions (Hebb, 1949).
Later experimental evidence revealed that the precise timing of spikes is crucial for synaptic plasticity (Bi
& Poo, 1998; Zhang et al., 1998; Debanne et al., 1998; Woodin et al., 2003). This led to the development
of a rich body of spike timing-dependent plasticity (STDP) models (Song et al., 2000; Kempter et al., 1999;
Pfister & Gerstner, 2006; Clopath et al., 2010). More recently, spike timing-based plasticity models have
established connections with network properties, as well as network learning and memory characteristics,
offering an integrated view of how synaptic plasticity shapes neural computation (Zenke et al., 2015; Illing
et al., 2021; Payeur et al., 2021; Eckmann et al., 2024; Brito & Gerstner, 2024; Agnes & Vogels, 2024).

Despite remarkable progress in understanding individual synaptic plasticity mechanisms in isolation, ex-
perimental studies suggest that multiple types of synaptic plasticity often operate synergistically (D’amour
& Froemke, 2015; El-Boustani et al., 2018). These processes commonly involve various neuromodula-
tors (Seol et al., 2007; Huang et al., 2013; McFarlan et al., 2023; Park et al., 2025), which collectively shape
network dynamics and functional behavior. However, technical limitations inherent to large-scale in vivo
experiments have hindered a comprehensive understanding of how these heterogeneous synaptic plasticity
mechanisms interact.

B.2 INFERRING PLASTICITY MECHANISM

In addition to modeling plasticity rules, an alternative approach to understanding plasticity mechanisms in-
volves inferring their mathematical formulations directly from neural or behavioral data using data-driven
methods. Predicting plasticity rules from spike train data, in particular, represents an intuitive and powerful
means of uncovering the underlying synaptic mechanisms (Stevenson & Koerding, 2011; Linderman et al.,
2014; Robinson et al., 2016; Ghanbari et al., 2017; Wei & Stevenson, 2021; Mehta et al., 2024). Previous
studies have also derived synaptic plasticity rules by examining changes in neuronal firing distributions ob-
served before and after learning (Lim et al., 2015; Chen et al., 2023). Alternatively, some studies explore
plasticity mechanisms by identifying how synaptic modifications enable networks to achieve desired net-
work dynamics and computational functions (Confavreux et al., 2020; 2023). Complementarily, another
class of studies optimizes synaptic rules to endow networks with the capability for successful cognitive
task performance or behavioral data fitting (Najarro & Risi, 2020; Ashwood et al., 2020; Jordan et al., 2021;
Tyulmankov et al., 2022; Shervani-Tabar & Rosenbaum, 2023; Miconi, 2023; Mehta et al., 2024; Confavreux
et al., 2025a;b).

Although some of the aforementioned studies have employed evolutionary methods or meta-learning frame-
works to explore plasticity mechanisms (Najarro & Risi, 2020; Jordan et al., 2021; Tyulmankov et al., 2022;
Confavreux et al., 2023; Miconi, 2023; Shervani-Tabar & Rosenbaum, 2023; Confavreux et al., 2025a),
these approaches suffer from several limitations. First, they have largely been restricted to small artificial
networks or simplified biological models, which may limit their ability to incorporate biological constraints
and capture the full complexity of biological systems. Second, most current methods are restricted to a
small, manually defined space of plasticity rules, typically spanning from a uniform rule applied across all
synapses to limited forms of heterogeneity that distinguish only between excitatory and inhibitory synapses.
Third, prior studies have primarily been limited to single-task settings or have considered only a single
biological objective. These limitations hinder comprehensive exploration of the broader landscape of het-
erogeneous plasticity rules, as well as the systematic identification of synaptic plasticity mechanisms that
are both biologically plausible and functionally relevant.
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C MODEL CONSTRUCTIONS OF LGN AND V1

Our computational framework employs a hierarchical visual processing architecture comprising a fixed
LGN preprocessing stage and an adaptive V1 cortical network. Specifically, the LGN model transforms
visual stimuli through 17,400 spatiotemporal filters, while the V1 network, built on experimentally validated
Allen Brain Atlas parameters (Billeh et al., 2020), serves as the substrate for plasticity rule discovery across
17 distinct cell types and cortical layers.

C.1 LGN MODEL AND LGN-TO-V1 MODEL

Visual stimuli undergo preprocessing through an LGN model that qualitatively simulates the computational
functions of both retinal and LGN processing stages (Billeh et al., 2020). The model architecture incorpo-
rates 17,400 spatiotemporal filters designed to replicate the response characteristics of mouse LGN neurons
to visual inputs (Durand et al., 2016). Each filter generates positive-valued outputs representing the firing
rates of individual LGN neurons.

The preprocessing pipeline begins with converting visual input pixels to grayscale, followed by normaliza-
tion to the interval of intensity [−Int, Int] where Int = 2 in our setting. The processed LGN outputs are
subsequently transformed into external current injections for the V1 model through a fixed biological-data-
based LGN-to-V1 connection weight. The whole LGN to V1 pathway can be represented as:

Isti = WLGN · LGN(GInt). (9)

where GInt denotes the intensity-normalized image inputs within the range [−2, 2] following the settings
in Chen et al. (2022). Note that the LGN model LGN(·) and LGN-to-V1 model WLGN remain fixed during
the whole optimization process, as we only focus on the plasticity within the V1 model.

C.2 V1 MODEL

Neuron models. Our computational framework builds upon the point-neuron implementation of the biolog-
ically realistic V1 model developed by Billeh et al. (2020). To ensure compatibility with plasticity learning
rules, we substituted the discrete membrane potential reset mechanism following spike generation with a
continuous voltage reduction term zj(t)(vth−EL), where the spike indicator zj(t) = 1 during firing events
of neuron j at time t, and zj(t) = 0 otherwise. Here, vth represents the spiking threshold and EL denotes
the resting membrane potential. This modification preserves the essential neural dynamics while enabling
synaptic plasticity rule-based weight updates.

The temporal evolution of the spiking model follows the modified GLIF3 model (Teeter et al., 2018), which
can be represented as:

vj(t+∆t) = βvj(t)− zj(t)(vth − EL)

+
1− β

C

(
Iej (t+ 1) +

∑
m

Imj (t+ 1) + gEL + Isynj (t)

)
(10)

zj(t) = H(vj(t)− vth) (11)

Iej (t) =
∑
i

W i,j
LGNLGN(GInt)i(t) (12)
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where C represents neuron capacitance, Iej denotes external current input, Imj refers to the post-spike current,
Isynj represents synaptic current, g specifies membrane conductance, and vth indicates the spiking threshold.
The LGN-to-V1 connectivity is mediated by the weight matrix WLGN . The decay factor β = e−∆t/τ

incorporates the membrane time constant τ , while ∆t = 1 ms defines the resolution of the simulation time
step. The Heaviside step function H(·) governs spike generation dynamics.

To model the neuronal refractory period, we implemented a simplified mechanism where zj(t) remains fixed
at 0 following each spike for a brief refractory period determined by neuron type. Postsynaptic spike current
dynamics are governed by:

Im(t+∆t) = fmIm(t) + z(t)∆Im; m = 1, . . . , Nasc (13)

where the multiplicative decay constant fm = exp(−km∆t) and additive term ∆Im characterize the after-
spike current properties. Our implementation supports m = 1 or 2 current types. Biophysical parameters
are derived from experimental measurements of 111 neurons in the Allen Brain Atlas database (Durand
et al., 2016; Billeh et al., 2020), encompassing neuron capacitance C, conductance g, resting potential EL,
refractory period duration, and the amplitudes ∆Im and decay constants km for both after-spike current
types.

Synaptic connectivity and dynamics. The V1 network architecture incorporates experimentally-derived
connectivity patterns that define probabilistic synaptic connections between neuron populations. Connection
probabilities for all pairwise combinations among the 17 characterized cell classes are specified according to
experimental measurements (Billeh et al., 2020), with data organized in a comprehensive connectivity ma-
trix. Grid entries indicating unknown values represent uncharacterized connection types in the experimental
dataset.

The baseline connection probabilities reflect measured synaptic contact frequencies for neuron pairs po-
sitioned within 75-µm horizontal intersomatic distances. To incorporate spatial connectivity constraints,
these probabilities are modulated by an exponentially decaying factor that scales with horizontal distance
between neuronal somata following Chen et al. (2022) Fig.1D. This distance-dependent scaling preserves
the statistical properties observed in experimental connectivity data while accounting for spatial organization
principles in cortical circuits.

Synaptic transmission delays are distributed uniformly within the interval [1,4] ms, derived from experimen-
tal measurements presented in Fig. 4E of Billeh et al. (2020) and discretized to match the 1 ms integration
time step. The postsynaptic current dynamics for neuron j follows first-order kinetics:

Isynj (t+∆t) = e
− ∆t

τsyn Isynj (t) + ∆t · e−
∆t

τsyn Crise
j (t), (14)

Crise
j (t+∆t) = e

− ∆t
τsyn Crise

j (t) +
∑
i

W i,j
V 1zi(t)

1

τsyn
, (15)

where τsyn represents the synaptic time constant, W i,j
V 1 denotes the recurrent connection weight from presy-

naptic neuron i to postsynaptic neuron j within V1, and zi(t) indicates spike occurrence in the presynaptic
neuron. The synaptic time constants τsyn are cell-type specific, reflecting the diverse kinetic properties of
synaptic transmission between different neuronal populations as characterized in Billeh et al. (2020).

Network initialization. All state variables, including spike indicators and membrane potentials, are initial-
ized to zero at simulation onset. The initial configurations of both feedforward weights WLGN and recurrent
connectivity weights WV 1 are established according to the empirical values reported in Billeh et al. (2020),
providing a biologically realistic starting point for network dynamics and subsequent plasticity-driven mod-
ifications.
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D DETAILS ABOUT PLASTICITY RULES AND WEIGHT UPDATES

D.1 PLASTICITY RULE CANDIDATES TERMS

Here we present all the possible plasticity rule terms that may exist in Eq. 7 in the main manuscript. Each
plasticity rule candidate is governed by a binary selection indicator g and a learnable coefficient c. This term
set includes the first-order terms:

g1 · c1 · Spre, g
2 · c2 · Spost, g

3 · c3 ·Xpre, g
4 · c4 ·Xpost, g

5 · c5 ·R;

the second-order terms:

g6 · c6 · Spre · Spost, g
7 · c7 · Spre ·Xpre, g

8 · c8 · Spre ·Xpost, g
9 · c9 · Spre ·R,

g10 · c10 · Spost ·Xpre, g
11 · c11 · Spost ·Xpost, g

12 · c12 · Spost ·R,

g13 · c13 ·X2
pre, g

14 · c14 ·Xpre ·Xpost, g
15 · c15 ·Xpre ·R, g16 · c16 ·X2

post,

g17 · c17 ·Xpost ·R;

and the third-order terms:

g18 · c18 ·Xpre · Spost ·R, g19 · c19 · Spre ·Xpost ·R, g20 · c20 ·X2
pre ·R,

g21 · c21 ·X2
post ·R, g22 · c22 · Spre · Spost ·R, g23 · c23 ·Xpre ·Xpost ·R,

g24 · c24 · Spost ·Xpost ·R, g25 · c25 · Spre ·Xpre ·R,

where g serves as a binary indicator, and c denotes the coefficient for candidate. Among the 25 candidate
plasticity terms presented above, 16 terms depend only on neuron types, 8 terms are synapse-type specific,
and 1 term represents the global reward prediction error. Two additional decay factors govern the neuron-
type-dependent eligibility trace and reward prediction error trace.

Optimizable parameter analysis. The total number of optimizable parameters for each of the plasticity
rules in our framework can be decomposed as follows:

noptimizable = 18× nneuron types + 8× nsynapse type + ngate + 2. (16)

For our V1 model implementation following Billeh et al. (2020), which contains 17 distinct neuron types and
thus 172 = 289 possible synapse types, combined with our 25 candidate plasticity terms, the total number
of optimizable parameters becomes:

noptimizable = 18× 17 + 8× 172 + 25 + 2 = 2645. (17)

This formulation accounts for several parameter categories:

• Neuron type specific coefficients. The first term (18 × nneuron types) corresponds to 16 plasticity
rule coefficients that depend only on either presynaptic or postsynaptic neuron type, encompassing
most first-, second-, and third-order terms as well as the 2 neuron-type-dependent decay factors.

• Synapse type specific coefficients. The second term (8 × nsynapse type) represents coefficients that
depend on synapse types (i.e., both presynaptic and postsynaptic neuron types).

• Binary selection gates. The term ngate represents the number of binary indicators g for each can-
didate term in the plasticity rule set.
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• Additional parameters. The constant term 2 accounts for: (i) the global coefficient for the reward
prediction signal R in first-order terms, which is shared across all synaptic types; and (ii) the task-
shared learnable readout threshold φ used in the decision-making process.

Note that among the first-order terms, the reward prediction signal R has only a single coefficient and
gate parameter that can be optimized globally, rather than being specific to individual synaptic connections,
reflecting its role as a neuronal population-level learning signal.

D.2 WEIGHT UPDATE CONSTRAINTS

We enforce Dale’s law (Strata et al., 1999) during plasticity rule based weight updates to maintain biological
plausibility and numerical stability. Dale’s law, which requires neurons to release identical neurotransmitters
across all synapses, ensures that synaptic polarity remains invariant throughout network optimization. More-
over, due to physical constraints in biological synapses, we consider the synapse type-specific thresholds to
prevent weights from becoming excessively large, which can be treated as hard bounds during the network
optimization (Gerstner et al., 2014). We set these bounds at 1.5 times the maximum biological values (Billeh
et al., 2020) for each synapse type. We also implement an adaptive scaling mechanism to prevent excessive
weight changes that could destabilize network dynamics. The weight updates are constrained by a threshold
proportional to the current weight magnitude, where the proportion is set to 0.01. This approach ensures that
weight modifications remain proportional to existing connection strengths, preventing dramatic changes that
could disrupt established connectivity patterns.
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E EXPERIMENTAL DETAILS

E.1 DETAILED IMPLEMENTATION OF THE EVALUATION METRICS

1. Cross-domain task performance, measured by cross-domain task average accuracy, assesses whether
the plasticity rule generalizes across different stimulus types rather than specializing to a particular type.
In this work, we measure it as the average validation accuracy from independent training sessions using
two distinct input domains (grating images and natural images). The accuracy is computed as the pro-
portion of correct responses, including hits during change trials and correct rejections during no-change
trials.

2. Rule complexity assesses the number of terms within each plasticity rule, with preference given to
simple formulations when comparable performance is achieved. In our implementation, we quantify
rule complexity by counting the number of active terms in the plasticity rule, determined by the binary
selection indicators g of Eq. (7).

3. Maximum firing rate monitors peak neuronal firing rates during the cognitive task after the plasticity
rule optimization has been done, with rules maintaining firing rates below 30 Hz considered biologically
optimal (Niell & Stryker, 2008). In our implementation, we record the maximum firing rate across all
neurons in the network during the validation phases.

4. Asynchronous firing proportion evaluates population-level synchronous firing, requiring that simulta-
neously active neurons constitute less than 1% of the total population at any time point (Lennie, 2003).
In our implementation, we calculate the proportion of neurons firing simultaneously at each time step
during the validation phase, and identify the maximum proportion.

5. Firing rate difference measures the discrepancy between the network’s population firing dynamics
during cognitive tasks, after the plasticity rule optimization has been done, and the mean firing rate data
observed in mice performing analogous cognitive tasks (Siegle et al., 2021; de Vries et al., 2023). In
our implementation, we compute the absolute difference between the average firing rate of the network
during validation phase and the experimentally recorded mean firing rate from mice.

6. Firing rate distribution difference quantifies the distributional differences between the network’s pop-
ulation firing dynamics during cognitive tasks, after the plasticity rule optimization has been done, and
the firing rate distributions recorded from mice performing analogous cognitive tasks (Siegle et al., 2021;
de Vries et al., 2023). In our implementation, we compute the Wasserstein distance between the normal-
ized firing rate distributions of the network during validation phase and the experimentally recorded
firing rate distributions from mice.

E.2 CROSS-DOMAIN TASK SETTING

The original behavioral protocol (Siegle et al., 2021; de Vries et al., 2023) required mice to perform sequen-
tial discrimination on static natural images or grating images (250 ms presentation duration) interspersed
with inter-stimulus grey screen intervals (500 ms), determining whether consecutive stimuli are identical or
different. To enable large-scale population search, we implemented 60 ms stimulus presentations and 90
ms inter-stimulus grey intervals (Fig. 3b). Each trial sequence initiated with a 30 ms pre-stimulus delay.
Network responses are evaluated within a 30 ms response window beginning 60 ms post-stimulus onset.

E.3 SEARCH SPACE SETTING

The search spaces of different parameters in each of the plasticity rules are set as follows: Coefficient of
plasticity candidate c ∈ [−1, 1], binary selection indicator g ∈ {0, 1}, decay factor of eligibility trace
τE ∈ (0, 150], and decay factor of reward prediction error τR ∈ (0, 150]. The task-shared learnable readout
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Table S3: Statistics of 3,000 randomly sampled solutions across six objectives.

Metric Mean Std Median Best Worst

Obj 1: Cross-domain task performance (↑) 0.503 0.016 0.500 0.685 0.440
Obj 2: Rule complexity (↓) 0.501 0.097 0.520 0.200 0.840
Obj 3: Maximum firing rate (↓) 437.21 122.96 500.00 99.33 500.00
Obj 4: Asynchronous firing proportion (↓) 0.754 0.408 1.000 0.000 1.000
Obj 5: Firing rate difference (↓) 139.13 93.66 144.87 0.62 271.71
Obj 6: Firing rate distribution difference (↓) 0.612 0.201 0.610 0.144 1.253

threshold φ ∈ [0, 10] Hz, following mouse cortical pyramidal neuron firing rates where most neurons fire
below 10 Hz (Buzsáki & Mizuseki, 2014).

To gauge the complexity of this search space, we conducted a preliminary analysis by evaluating 3, 000
randomly sampled solutions from the defined search space. The statistical distribution of the six objectives
is summarized in Table S3. The results demonstrate that the search space is highly non-trivial. Judging by
the mean and median values, the vast majority of randomly sampled plasticity rules fail the task. While
the best-observed values (Maximum for task performance, minimum for constraints) indicate that high-
performing candidates exist within the theoretical bounds, these statistics are computed independently for
each objective. Notably, a solution that achieves a good score on one metric (e.g., good accuracy) may
perform poorly on others (e.g., extremely high firing rate).

Our evolution framework and model implementation are built on Jax (Bradbury et al., 2018). All the experi-
ments were conducted on 8×A6000 GPUs. The simulations were conducted with 1 ms temporal resolution.

E.4 BEHAVIOR DATA ESTIMATION FOR VISUAL CHANGE DETECTION

The behavioral accuracy of visual change detection on natural images is estimated from Fig. 1I of Garrett
et al. (2020) when familiar images were presented to mice. The behavioral accuracy of visual change detec-
tion on grating images is estimated from Fig. 3A of Glickfeld et al. (2013) when the orientation difference
was 5 degrees.
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b ca

Figure S8: Analysis of constraint enforcement dynamics for the three selected rule sets from Fig. 6. The
rules were evaluated over 50 training trials; the curves show the proportion of synapses triggering Dale’s
Law or hitting the maximum weight bound at each timestep. a. Overall best-performing rule (form: ∆w =
Xpost + Spre ·Xpre + Spost ·Xpre +X2

post +Xpost ·R). b. Best rank 1 rule (form: ∆w = Spre). c. Best rank 2
rule. (form: ∆w = Spre + Spre ·Xpost)

F ADDITIONAL RESULTS OF PLASTICITY RULE

F.1 CONSTRAINT ENFORCEMENT DYNAMICS

To analyze the functionality of the constraints, we tracked the enforcement dynamics for the three represen-
tative rules highlighted with color in Table 1 and mentioned in Fig. 6. We observed significant differences
in how distinct plasticity rules interact with these boundaries. Fig. S8a shows that the best performing rule
actively engages the constraints, with approximately 15% of synapses frequently hitting the hard bounds or
Dale’s law limits during training. In contrast, other rules (Fig. S8b and S8c) remain almost entirely within the
permissible range. Importantly, our evolutionary optimization process does not penalize boundary contact;
rather, we view these constraints as integral components of the synaptic dynamics. From an evolutionary
perspective, the existence of these hard bounds serves as a stabilizing scaffold, allowing the search algo-
rithm to explore more complex plasticity profiles that drive rapid learning. Without these bounds, such rules
would very likely lead to catastrophic weight explosion or sign reversal, especially in the early stages when
the parameters are not fully tuned.

F.2 DISTRIBUTION OF DISCOVERED PLASTICITY RULES

As shown in Table S4, we identified and filtered 70 candidate plasticity rules from the Pareto-optimal popula-
tion from the last generation based on overall task performance and biological validity criteria. The prevalent
mathematical formulations were ranked and selected according to their ratio of occurrence within the filtered
population. Fig. S9 illustrates the visualization of synapse-type-specific coefficients for representative plas-
ticity rules from the filtered rule population in Table S4. Empty rows indicate that the corresponding term is
absent from all rules in the filtered population. Each polar plot shows the coefficient distribution of one plas-
ticity candidate term. Panels (a-d) display coefficient distributions for synapse-type-specific plasticity terms
that depend on both presynaptic and postsynaptic neuron types (e.g., Spre ·Spost or Xpre ·Xpost), organized
by connection class: (a) excitatory-to-excitatory, (b) excitatory-to-inhibitory, (c) inhibitory-to-excitatory, and
(d) inhibitory-to-inhibitory connections. Panel (e) shows coefficient distributions for neuron-type-dependent
terms that depend only on either presynaptic or postsynaptic activity (e.g., Spre or Xpost), which are shared
across all types of connections.
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Excitatory to excitatory connections Excitatory to inhibitory connectionsa b

Inhibitory to inhibitory connectionsdc Inhibitory to excitatory connections

e Neuronal activity only

Figure S9: Illustration of how different rules from the filtered population as shown in Table S4 distribute
their plasticity coefficients across the 25 plasticity candidate terms shown in Sec. D.1.
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Figure S10: Visualization of cortical layer-specific firing rate dynamics during the test phase, optimized
using the overall best-performing plasticity rule identified from the filtered rule population (form: ∆w =
Xpost + Spre ·Xpre + Spost ·Xpre +X2

post +Xpost ·R).

Stimulus
change

Stimulus
no change

Stimulus window Response window

Figure S11: Spike raster plot during the test phase, optimized using a reward-free plasticity rule with high
performance identified from the filtered rule population (form: ∆w = Spre).
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Figure S12: Visualization of the overall best-performing plasticity rule.

Best-performing rule

Best rank 1 rule

Best rank 2 rule

a
Gradient-Adam

𝟑𝟎𝟎𝟎 ×

Baseline

b

Figure S13: Comparison of performance on visual change detection of natural images between three repre-
sentative rules and the widely used gradient-based Adam optimizer. a. Performance overview. b. Mean test
accuracy over 5 seeds (200 test trials each); shaded areas indicate standard deviation.
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Rank
Mathematical formulation of Ratio

Obj-1 (↑) Obj-2 (↓) Obj-3 (↓) Obj-4 (↓) Obj-5 (↓) Obj-6 (↓)

plasticity rules in filtered population Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best

1 ∆w = Spre 46.67% 65.19 70.29 0.04 0.04 156.99 127.83 0.00 0.00 1.25 0.86 0.83 0.71

2 ∆w = Spre · Xpost 10.67% 63.91 68.43 0.04 0.04 165.88 125.96 0.00 0.00 1.14 0.87 0.92 0.86

3 ∆w = Xpre · R 5.33% 61.57 64.64 0.04 0.04 162.09 133.94 0.02 0.00 5.39 1.06 0.87 0.78

4 ∆w = Spost · Xpre 5.33% 62.50 63.21 0.04 0.04 170.62 137.43 0.00 0.00 1.04 0.84 0.91 0.85

5 ∆w = Spost 4.00% 61.95 63.57 0.04 0.04 191.33 183.74 0.00 0.00 0.85 0.75 1.03 0.99

6 ∆w = Spre · Xpre 4.00% 65.65 67.07 0.04 0.04 167.58 149.37 0.00 0.00 1.06 0.76 0.85 0.84

7 ∆w = Spre + Spre · Xpost 2.67% 69.79 69.86 0.08 0.08 175.01 168.95 0.00 0.00 1.33 1.18 0.73 0.62

8 ∆w = Spre + Spre · Xpre 2.67% 65.89 67.36 0.08 0.08 137.04 133.72 0.00 0.00 1.36 1.20 0.88 0.86

9 ∆w = Spost · Xpost 2.67% 62.36 62.79 0.04 0.04 190.78 187.54 0.00 0.00 0.97 0.73 1.05 1.05

10
∆w = Xpost + Spre · Xpre

+Spost · Xpre + X2
post + Xpost · R

1.33% 71.86 71.86 0.20 0.20 115.63 115.63 0.00 0.00 1.76 1.76 0.98 0.98

11
∆w = Spre + Spre · Xpost

+Spre · Xpost · R + Spost · Xpost · R 1.33% 60.21 60.21 0.16 0.16 138.89 138.89 0.00 0.00 1.03 1.03 0.79 0.79

12 ∆w = Spre · Xpost + Spre · Xpost · R 1.33% 61.07 61.07 0.08 0.08 119.51 119.51 0.00 0.00 1.21 1.21 0.92 0.92

13 ∆w = Spost + Spost · Xpost · R 1.33% 66.57 66.57 0.08 0.08 130.64 130.64 0.00 0.00 1.36 1.36 0.90 0.90

14
∆w = Spre + Spre · Xpost

+ Spre · Xpre · R 1.33% 65.93 65.93 0.12 0.12 126.65 126.65 0.00 0.00 1.33 1.33 0.78 0.78

15 ∆w = Xpost 1.33% 62.36 62.36 0.04 0.04 182.80 182.80 0.00 0.00 0.87 0.87 1.06 1.06

16 ∆w = Spost · R 1.33% 60.71 60.71 0.04 0.04 132.30 132.30 0.00 0.00 1.25 1.25 0.83 0.83

17 ∆w = Spre + Spre · Xpost · R 1.33% 66.29 66.29 0.08 0.08 162.30 162.30 0.00 0.00 0.97 0.97 0.80 0.80

18 ∆w = Spre · Xpost + Spost · Xpost 1.33% 63.58 63.58 0.08 0.08 131.29 131.29 0.00 0.00 1.35 1.35 0.94 0.94

19 ∆w = Spre + X2
pre · R 1.33% 67.29 67.29 0.08 0.08 150.14 150.14 0.00 0.00 1.15 1.15 0.85 0.85

20 ∆w = Spre + Spost · Xpost · R 1.33% 66.21 66.21 0.08 0.08 156.19 156.19 0.00 0.00 1.09 1.09 0.82 0.82

21
∆w = Spre + Spre · Xpre

+Spre · Xpre · R 1.33% 67.43 67.43 0.12 0.12 155.35 155.35 0.00 0.00 1.11 1.11 0.84 0.84

Table S4: Mathematical formulations of all plasticity rules ranked by ratio of occurrence in the filtered
Pareto-optimal population and their average performance on six objectives. Each formulation may contain
multiple rules with identical mathematical form but varying hyperparameters. Avg: average fitness across
individuals within each formulation; Best: optimal fitness within each formulation.
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F.3 LAYER-WISE FIRING RATE DYNAMICS

Fig. S10 complements Fig. 5a by visualizing the layer-specific average firing rate dynamics during the test
phase, optimized using the overall best-performing plasticity rule identified from the filtered rule population.
The result demonstrates that the optimized V1 model effectively sustains persistent activity across all cortical
layers during the delay period.

F.4 REWARD-FREE PLASTICITY RULE DYNAMICS

Fig. S11 also complements Fig. 5a by visualizing the spike raster plot of V1 model optimized using a
reward-free plasticity rule with high performance identified from the filtered rule population. The result
demonstrates that even without reward modulation, the optimized V1 model can still maintain stable firing
dynamics during the test phase. Especially, different types of neurons exhibit diverse firing patterns during
the stimulus presentation, delay periods and response windows.

F.5 SYNAPTIC WEIGHT CHANGES OF THE OVERALL BEST-PERFORMING RULE

Fig. S12 illustrates the synaptic weight changes induced by the discovered overall best-performing plasticity
rule, ∆w = Xpost+Spre ·Xpre+Spost ·Xpre+X2

post+Xpost ·R, across coarser-grain categories of synap-
tic connections: excitatory-to-excitatory, excitatory-to-inhibitory, inhibitory-to-excitatory, and inhibitory-to-
inhibitory.

F.6 COMPARISON WITH GRADIENT-BASED OPTIMIZATION ON NATURAL IMAGES

Fig. S13 illustrates the performance comparison between three representative plasticity rules as defined in
Sec. 3.3 in the main manuscript and the gradient-based Adam optimizer on a visual change detection task
with natural images. For clarity, we briefly restate the definitions of the three selected rules: (i) the overall
best-performing rule with formulation ∆w = Xpost + Spre ·Xpre + Spost ·Xpre +X2

post +Xpost ·R, (ii)
the best rank-1 rule, defined as the optimal performer within the ∆w = Spre class, and (iii) the best rank-2
rule, representing the top performer in the ∆w = Spre ·Xpost category.

F.7 LONG TIME HORIZON TRAINING AND HOMEOSTATIC PROPERTY

To further characterize the stability properties of the discovered plasticity mechanisms, we evaluated the
overall best-performing rule, ∆w = Xpost+Spre ·Xpre+Spost ·Xpre+X2

post+Xpost ·R, under extended
training regimes beyond its evolutionary setting. As shown in Fig. S15, although the overall best-performing
rule was evolved under a 100 training trials’ setting, it exhibits consistent performance stabilization when
exposed to orders of more training samples. This sustained adaptability suggests that the discovered plas-
ticity mechanism possesses intrinsic self-regulatory dynamics that prevent performance degradation during
continued fine-tuning, analogous to homeostatic plasticity observed in biological neural circuits.

However, we need to acknowledge that this robustness is non-trivial and not representative of the entire
filtered explored rule population. The majority of evolved rules exhibit performance degradation under
prolonged exposure to stimuli. This fragility is especially evident in reward-free plasticity rules, where the
lack of modulatory feedback renders the network prone to unbounded synaptic drift and functional collapse
outside the evolutionary setting.
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a b

Figure S14: Sensitivity analysis training V1 model on visual change detection on natural images via Adam
and SGD with different learning rates. The best performance is achieved using Adam with a learning rate
of 10−3, which is highlighted with ⋆ marker. a. Adam optimizer. b. SGD optimizer.

a b

Figure S15: a. Task performance dynamics of the explored overall best-performing plasticity rule with
sufficient training samples on visual change detection on natural images. b. Sensitivity analysis of the
Adam optimizer’s performance on visual change detection on natural images with respect to the β1 and β2

momentum hyperparameters. The learning rate is fixed at 10−3. Each data point shows the test accuracy
averaged over its 50 nearest neighbors to mitigate sampling variability. The overall best-performing synaptic
plasticity rule is also provided for reference, marked with ⋆.

G GRADIENT DESCENT SETTINGS AND SENSITIVITY ANALYSIS

G.1 DETAILED GRADIENT BASED OPTIMIZATION SETTINGS

For the gradient-based results in the main manuscript, networks were trained using the Adam optimizer with
a learning rate of 0.001 and default values for all other hyperparameters. This setting was chosen based on
a sensitivity analysis in Sec. G.2.

To enable gradient flow through spiking neurons, a Gaussian surrogate gradient was implemented follow-
ing Chen et al. (2022). The surrogate gradient was parameterized with a fixed standard deviation σ = 0.5
and amplitude = 0.3, applied to the scaled membrane potential. These parameters were not updated during
training. Backpropagation through time (BPTT) was used for credit assignment across temporal sequences.
This setup ensures a direct comparison between gradient-based optimization and the explored plasticity
rules, while accounting for the additional computational cost introduced by surrogate gradients and BPTT.
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G.2 SENSITIVITY ANALYSIS IN HYPERPARAMETERS OF OPTIMIZERS

In Fig. S14a, we present the results of training the V1 model on the visual change detection task with
natural images using the Adam optimizer across a range of learning rates: {10−5, 10−4, 10−3, 10−2}. The
analysis reveals that the V1 model is highly sensitive to optimizer choice, where the model achieves peak
performance with a learning rate of 10−3, while other rates degrade convergence. We also evaluated SGD
with the same set of learning rates for comparison in Fig. S14b. However, SGD fails to converge effectively
across all tested learning rates within the same training budget.

We extended our analysis to the sensitivity of Adam’s momentum hyperparameters, β1 and β2, with the
learning rate fixed at previously identified optimal value, 10−3. As shown in Fig. S15b, performance remains
stable across β1 ∈ {0, 0.5, 0.9} and β2 ∈ {0.99, 0.999}. This relative insensitivity to β parameters rein-
forces our conclusion that evolved plasticity rules achieve behavioral performance with order-of-magnitude
greater efficiency than gradient-based methods.
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H DETAILS OF MULTI-OBJECTIVE EVOLUTIONARY FRAMEWORK

As outlined in Section 2, the discovery of plasticity mechanisms can be cast as a multi-objective search
problem. Each candidate corresponds to a parameterized plasticity rule, and the goal is to identify rules that
strike a balance between predictive performance, biological plausibility, and computational efficiency. This
search problem presents several key challenges:

Expensive evaluation. Evaluating the quality of a plasticity rule requires training a new V1 network from
scratch under the candidate rule. This involves long simulation times and limits the number of rules that can
be explored within practical runtime.

Many objectives. The optimization is multi-objective, combining quantitative performance (e.g., task ac-
curacy, number of terms) with qualitative desiderata. Some objectives are soft-bounded: for instance, it is
desirable for the learned plasticity rule to exhibit dynamics similar to biological systems, but perfect match-
ing is neither required nor expected. This leaves room for approximate but functionally relevant behaviors.

High-dimensional search space. The plasticity rule is defined over multiple interacting components. This
leads to a large combinatorial search space with complex dependencies.

Noisy evaluation. Because a plasticity rule must be assessed by training a network from scratch on varying
data, its measured performance inevitably exhibits a substantial degree of randomness. As a result, eval-
uations of the same rule can differ across runs. An effective search framework must therefore be robust
to this variability, avoiding misleading selections and favoring rules that demonstrate consistently strong
performance.

Non-differentiable optimization. The objective functions do not admit closed-form gradients with re-
spect to the rule parameters. This rules out traditional gradient-based optimization and motivates the use of
derivative-free search.

Taken together, these factors make the search for plasticity mechanisms especially demanding. To address
them, we employ a evolutionary framework, which is well suited to handling non-differentiability, noise,
and multiple objectives while naturally supporting parallel and scalable evaluation. The following section
details the specific evolutionary algorithm used in our study.

H.1 PROPOSED EVOLUTIONARY FRAMEWORK

To address the challenges outlined above, we propose a tailored evolutionary framework for plasticity rule
discovery. Our method builds on established multi-objective evolutionary algorithms (MOEAs) and is im-
plemented within the EvoX framework (Huang et al., 2024a).

The algorithm is designed to be robust to noise, scalable to large populations, and efficient on modern GPU
clusters through parallel evaluation. Its workflow follows four main phases: initialization, reproduction,
evaluation (including re-evaluation), and selection, as summarized in Algorithm 1.

During initialization, a population of candidate rules is randomly sampled from the parameter space. In
each generation, reproduction produces offspring via swarm-inspired updates followed by mutation. Eval-
uation then proceeds on the offspring and on a dynamically selected subset of the current population for
re-evaluation (i.e., individuals with few prior evaluations). This adaptive re-evaluation saves computational
budget early while preserving the ability to reliably discriminate between similarly performing solutions
in later stages through multiple rounds of evaluation. Finally, selection ranks all evaluated solutions us-
ing a noise-aware non-dominated sorting procedure and retains the most promising candidates for the next
generation.
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Algorithm 1 Noise-Aware Multi-Objective Evolutionary Framework

1: Initialize population P with random candidates
2: Initialize evaluation statistics (counts, means, variances)
3: while termination criteria not met do
4: Offspring← REPRODUCTION(P ) ▷ Sec. H.1.1
5: R ← select subset of P with lowest evaluation counts for re-evaluation
6: Evaluate Offspring ∪R in parallel ▷ Sec. H.1.3
7: Update evaluation statistics
8: P ← SELECTION(P,Offspring,R) ▷ Sec. H.1.2
9: end while

10: return Final non-dominated set from P

H.1.1 REPRODUCTION OPERATOR

The reproduction operator follows a Competitive Swarm Optimizer (CSO)–style mechanism adapted from
TensorRVEA (Cheng & Jin, 2015; Liang et al., 2024). The population is randomly partitioned into N/2
disjoint pairs. For each pair, a teacher (winner) and a student (loser) are identified by comparing their
performance on a randomly sampled objective, where the objective index is drawn according to a predefined
weight distribution. Only the student updates its velocity and position by combining directional cues from
the teacher and the population center; the teacher remains stationary in this phase. To produce a full set of N
offspring per generation, both members of the pair then undergo mutation: one offspring is generated from
the updated student, and a second offspring is generated from the teacher.

This CSO-style pairing and update are well suited to GPU acceleration: pair formation, pair-wise compar-
ison, per-dimension velocity updates, and independent mutations can be executed in parallel without data
dependencies (the population center is a single reduction).

H.1.2 SELECTION OPERATOR

The selection phase accounts for noisy evaluations by incorporating statistical confidence into the dominance
relation used in non-dominated sorting (Deb et al., 2002) while following the general principle of dealing
with noisy data in evolutionary algorithm (Jin & Branke, 2005; Fieldsend & Everson, 2005). Each solution
maintains online estimates of the mean and variance of its objectives, updated via Welford’s method. Rather
than applying deterministic dominance, solutions are compared probabilistically, the algorithm estimates the
probability that one solution outperforms another using their means and variances.

Formally, for each objective, a win-rate probability is computed between two solutions. A solution is said
to dominate another only if it achieves a sufficiently high probability (e.g., > 55%) of being better on all
objectives. This definition naturally adapts to noise: under high variance, dominance requires a clear margin
of superiority, while under low variance, even small improvements can suffice. In this way, the selection
pressure adjusts automatically to evaluation reliability.

These probabilistic dominance relations are used to construct a dominance matrix, which forms the basis
for a confidence-aware non-dominated sorting procedure. After sorting, ties near the population cutoff are
broken using a diversity measure (crowding distance) adjusted with an uncertainty penalty, favoring solutions
that are both diverse and reliably evaluated.
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Algorithm 2 Reproduction(P, {vi}, ϕ)

1: Input: Population P = {xi}Ni=1, velocities {vi}Ni=1, convergence parameter ϕ, objective weights w ∈
Rm

2: Output: Offspring set P ′ = {x′
i}Ni=1 and offspring velocities {v′

i}Ni=1
3: Randomly shuffle indices and form N/2 disjoint pairs
4: Compute population center c← 1

N

∑N
i=1 xi (parallel reduction)

5: for each pair (i, j) in parallel do
6: Sample objective k ∼ Categorical(w)
7: Determine teacher/student by objective-wise comparison (assume minimization):

if fk(xi) ≤ fk(xj) : t← i, s←j else t←j, s← i

8: Sample elementwise coefficients λ1,λ2,λ3 ∼ U [0, 1]d
9: Student update (only):

vs ← λ1 ⊙ vs + λ2 ⊙ (xt − xs) + λ3 ⊙ ϕ⊙ (c− xs)

x̃s ← xs + vs

10: Mutation (both members produce offspring):
x′
s ← MUTATE(x̃s) (continuous: polynomial; gating: discrete/bit-flip; dimension-aware rates)

x′
t ← MUTATE(xt) (teacher does not move before mutation)

11: Set offspring velocities: v′
s←vs (updated), v′

t←vt (unchanged)
12: Add x′

s,x
′
t (and v′

s,v
′
t) to P ′

13: end for
14: return P ′, {v′

i}Ni=1

This procedure reduces bias from noisy evaluations, improving stability in stochastic environments and
enabling reliable optimization when evaluations are expensive and uncertain. The overall process is summa-
rized in Algorithm 3.

H.1.3 EFFICIENT EVALUATION

Evaluating a candidate plasticity rule is computationally demanding, as each evaluation requires training
a V1 model from scratch. To make this feasible at scale, two key complementary strategies are explored:
batched parallelism and an optimized forward pass enabled by the gradient-free setup. Together, these tech-
niques substantially reduce computational and memory costs, making large-scale exploration of candidate
rules tractable.

Batched evaluation. At each generation, P candidate rules are trained concurrently. State variables (mem-
brane potentials, spikes, synaptic traces) are organized in a Structure-of-Arrays (SoA) layout, rather than an
Array-of-Structures (AoS). This design improves coalesced memory access and GPU bandwidth utilization,
allowing all candidate rules to advance in lockstep. Within a single device, data parallelism enables simul-
taneous processing of multiple candidates and mini-batches. The same principle extends across multiple
devices or nodes, achieving near-linear scaling as computational resources increase.

Optimized forward pass (Gradient-free setup). Because the evolutionary search is gradient-free, no
backpropagation-through-time is required (Werbos, 1990). This removes the need to store long sequences
of activations, so memory usage depends only on the instantaneous network state rather than the simulation
length. As a result, models can be trained over long horizons by the plasticity rules without the prohibitive
costs of differentiable approaches. The gradient-free setup also aligns naturally with the event-driven nature
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Algorithm 3 Selection with Probabilistic Non-Dominated Sorting

1: Input: Candidate set C (parents, offspring, re-evaluated), mean objectives f̄ , variances s2, population
size N

2: Output: Survivor set P
3: Update f̄ and s2 for all x ∈ C via online estimators
4: for each pair (i, j) in C do
5: for each objective k do
6: Compute win probability:

WinRate(k)ij =
1

1 + exp

(
− f̄

(k)
j −f̄

(k)
i√

s
2(k)
i +s

2(k)
j +ϵ

)
7: end for
8: i dominates j if WinRate(k)ij > τ for all k
9: end for

10: Build dominance matrix and perform non-dominated sorting
11: Break ties at cutoff using adjusted crowding distance:

AdjDisti = Crowdingi − κ · 1
m

m∑
k=1

s
2(k)
i

maxj s
2(k)
j

12: Select top N individuals as survivor set P

of spiking models. In contrast to surrogate-gradient methods (Huh & Sejnowski, 2018; Zenke & Gan-
guli, 2018; Neftci et al., 2019b), spikes are treated directly as binary events, which can be stored and pro-
cessed compactly. This representation reduces both memory bandwidth demands and computation relative
to floating-point operations. When combined with batched evaluation, these properties make forward-only
simulation particularly efficient.

These efficiencies stem directly from the design of an evolutionary framework. Its gradient-free nature
enables many techniques that avoid the heavy compute and memory demands of backpropagation, while its
population-based structure inherently supports batching and large-scale parallelism. Taken together, these
properties allow our system to sustain evaluation throughput on the order of 105 candidate plasticity rules
per GPU per day, with each rule applied to training a V1 model of 3,000 neurons and approximately 400k
parameters from scratch on two distinct tasks. This level of scalability enables exploration of vast rule spaces
that would otherwise be computationally prohibitive.
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LARGE LANGUAGE MODEL USAGE DISCLOSURE

In accordance with the policy on LLM usage, we provide the following disclosure regarding how LLMs
were employed during this work. LLMs were used only in supportive roles, with all substantive research
contributions, coding, and writing decisions made by the human authors.

Code base. LLMs were used strictly for short code auto-completion, comparable to standard IDE assistance.
All completions were reviewed and confirmed by the human authors. No unsupervised code generation,
automatic project generation, or independent algorithm design was delegated to an LLM.

Paper writing. LLMs assisted only at the presentation level, e.g., suggesting alternative phrasings or im-
proving clarity of exposition. All scientific content, descriptions of methodology, results, and discussion
were written and verified by the authors. All language suggestions from the LLM were reviewed by the
authors.

Research assistant. LLMs were occasionally used as research assistants in a role analogous to a search
engine. This included tasks such as quickly gathering related information or checking terminology. All final
written content is based on references and verified sources; no scientific claims or results were drawn solely
from LLM outputs.
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