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ABSTRACT

With the commercial deployment of increasingly larger and more complex neural
networks at the cloud and the edge in recent years, inference has become too
costly in terms of compute workload worldwide. Adaptive inference methods,
which dynamically adjust a neural network’s size or structure during inference,
offer a means to enhance efficiency of neural networks beyond what static network
compression and optimization methods can fundamentally achieve.

This paper introduces the first theoretical framework for quantifying the efficiency
and performance gain opportunity size of adaptive inference algorithms. We pro-
vide new approximate and exact bounds for the achievable efficiency and per-
formance gains, supported by empirical evidence demonstrating the potential for
10-100x efficiency improvements in both Computer Vision and Natural Language
Processing tasks without incurring any performance penalties. Additionally, we
offer insights on improving achievable efficiency gains through the optimal selec-
tion and design of adaptive inference state spaces.

1 INTRODUCTION

In recent years, neural networks have achieved human-level performance across various domains,
ranging from image classification using vision transformers to intricate natural language processing
tasks handled by Large Language Models. However, this notable improvement in performance
comes with the caveat of training progressively larger models. The current high-performing vision
transformers and large language models can only be effectively deployed on large cloud data-centers,
leading to significant economical costs and environmental implications in terms of carbon footprint
and energy consumption (Anthony et al., | 2020; [McDonald et al.| 2022; Desislavov et al., 2023).

Currently, 80-90% of global cloud workloads consist of inference tasks (McDonald et al.| 2022}
Freund, 2019), and this percentage is expected to rise with the increased adoption of Al models. As
models achieve peak performance and maturity, the demand for efficient inference has transitioned
from a mere consideration to an immediate necessity (Samsi et al., |2023; [Desislavov et al., [2023).
This urgency is particularly heightened in non-cloud (edge) applications, where there is a demand
for low latency execution of models on devices with limited memory, compute, and power resources
(Xu et al.} 2018 [Li et al.| |2019; |Daghero et al.| [2021]).

The advent of network compression techniques, such as pruning and quantization, marked a signifi-
cant stride in efficient inference. The initial achievements in this area paved the way for subsequent
developments such as resource-aware neural architecture search, model distillation, and low-rank
decomposition techniques, all aimed at enhancing the performance and efficiency of neural net-
works, either during training or as post-processing steps (Xu & McAuley, 2023} |Li et al.| [2023bj
Han et al., 2023).

However, such efficiency advancements have reached a plateau, necessitating fundamentally new
techniques that extend beyond the design space of conventional static neural network optimization
methods.

One such technique is adaptive inference, founded on the intuition that for easier instances in the
test-set, a simpler neural network might perform as accurately as a more complex one. Hence, an
adaptive neural network (or an adaptive ensemble of networks), capable of dynamically adjusting its
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complexity based on the difficulty of the input instance, can prove to be more efficient and, in some
cases, even more accurate than an equivalent “static” model.

Adaptive inference methods, as commonly explored in the literature, make use of networks with dy-
namically tunable size and complexity (Han et al., 2021)). Such networks are often adapted through
techniques such as early exiting (Laskaridis et al., 2021} [Ilhan et al., [2023}; |Yang et al., |2020) or
through adaptive selection and mixture of experts (Meng et al., 2020} [Li et al., 2023a; |Jawahar &
Mukherjee, |2023; |Chen et al., [2023). One illustrative example is in context of Computer Vision
(CV) is AR-Net (Meng et al.,|2020), which showcases the use of a simple policy network during the
inference phase to adaptively select between pre-trained classifiers with varying sizes and resolu-
tions, achieving efficient video-based activity classification. Another example in context of Natural
Language Processing (NLP) is the work by Rotem et al| (2023) comparing the performance and
efficiency of both multi-model and early exiting approaches on large language models using BERT.

However, the adoption of adaptive inference methods for efficient Al has been limited compared
to static network compression techniques. This can be mainly attributed to the ad-hoc nature of
existing methods, and the lack of a comprehensive framework for designing adaptive inference data
pipelines or gaining insight into the benefits as well as limitations of adaptive inference in specific
tasks and applications.

This paper is the first to establish a theoretical foundation for analyzing adaptive inference meth-
ods and quantifying achievable efficiency and performance gains for general inference tasks. The
proposed framework aims to bridge the gap between current ad-hoc methods and a more systematic
approach to understanding and leveraging adaptive inference.

Our contributions encompass:

* A novel theoretical framework for the analysis of adaptive inference methods, achieved
through the definition of conceptual Oracle Agents.

* Introduction of both approximate and exact bounds on the performance and efficiency gains
achievable by an adaptive agent. This marks the inception of new quantitative measures for
adaptation potential.

* Empirical findings showcasing adaptation potential and limits of models, demonstrated in
the realms of both Computer Vision (Image Classification) and Natural Language Process-
ing (Natural Language Inference).

* Design considerations and recommendations for maximizing efficiency and performance
gain potential of neural networks.

* Ground truth “adaptation labels” for optimal adaptive inference, presented for two datasets
and four neural networks in the context of image classification on ImageNet and Common-
Sense NLI on HellaSwag.

2 A GENERAL FRAMEWORK FOR ADAPTIVE INFERENCE

As discussed earlier, adaptive inference is a broad term encompassing a variety of systems, applica-
tions, and methodologies. However, the majority of adaptive systems can be effectively abstracted
as (finite) state machines (Hopcroft et al., 2001). A state machine is a conceptual framework that
simplifies the behavior of dynamic systems by breaking down their complex dynamics into sets of
“states” representing the system’s behavior at specific points in time, and “transitions” depicting
how the system evolves over time. This abstraction enables the separation of considerations and
constraints imposed by the “adaptation state space” of a system from the performance of a specific
“agent” responsible for guiding the system transitions between the states.

In this section, we begin by defining an adaptation state space within the context of a classification
task. Subsequently, we present precise definitions and equations that explore the theoretical limits
of performance and efficiency achievable by all possible adaptive inference agents. This is achieved
through the analysis and definition of ideal “Oracle Agent”s.
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2.1 MODEL ADAPTATION STATE SPACE FOR CLASSIFICATION

In classification-based adaptive inference, we often see the adaptation state space defined either
using an ensemble of backbone classifiers (like in AR-Net (Meng et al.| [2020), switching between
different classifiers from EfficientNet family) or a single classifier with adaptable complexity (for
instance, RA-Net (Yang et al.,|2020) allowing different setups within a single backbone network).

For simplicity, we conceptualize both scenarios by representing them as a discrete set of IV backbone
classifiers applied to a dataset X. These classifiers constitute a state space, defined as:

S ={S;}fori e {1,2,3,...,N}. (1)

Suppose further that these classifiers are ranked based on the amount of resources they consume in
an increasing order. In other words, let R; represent the resource consumption of the classifier in
the ¢-th state S;, then:

Ry <Ry <..<R;<..<Rp. 2)
In this definition, it is important to highlight that R; encompasses the total cost of selecting state
S;. This includes not only the classification compute cost but also potential resource consumption
overhead of loading/reloading neural network weights or signal routing which can also be a func-
tion of the model size. (For an example of how to incorporate system-specific adaptation resource
consumption overheads into the calculated bounds, refer to Section [4.2).

Let A; represent the test accuracy of classifier ¢ represented with S;. For each state S;, there exists a
pair (R;, A;), representing both the state’s total resource consumption and the accuracy of the corre-
sponding classifier. In practical systems, larger (and more resource-intensive) models are typically
employed only if on average they deliver better or equal performance compared to smaller models.
Consequently, we assume that the model accuracies follow an increasing order

A <Ay <. <A <. < Ap. (3)

Given the definition of the adaptation state space, an adaptive agent aims to identify an optimal
strategy that maximizes average performance (A) and minimizes the average resource consumption
(R) by selecting the optimal adaptation state (,S;) for each given input x.

We establish the performance and efficiency bounds attainable by any adaptive agent through the
concept of an “Oracle Agent”, as defined in the subsequent section.

2.2 THE ORACLE AGENT

An Oracle Agent is defined as an agent equipped with simultaneous knowledge of both resource
consumption and the accuracy (i.e. correctness) of all models for each instance z. As a result, it can
choose the adaptation state with the lowest resource consumption while still achieving the highest
accuracy possible (within the constraints of the adaptation state space) for every classified instance.

In the definition above, the Oracle Agent, like any other adaptive agent, is constrained by the per-
formance and efficiency limits of the corresponding adaptation state space. Consequently, it cannot
guarantee correct predictions (or 100% accuracy) for every instance, nor can it achieve greater ef-
ficiency than the most efficient state. This contrasts with typical definitions of conceptual Oracles
found in literature, but aligns more closely with the capabilities of real-world adaptive agents.

As a conceptual example, consider a 2-state adaptation problem with two backbone classifiers of
different sizes:

Consider a larger classifier characterized by S;, = (R, Ay ) and a smaller model characterized by
Ss = (Rs, As). In Figure |1} there are only four cases to be considered based on the per-instance
accuracy of each classifier. Given that opting for more resources (selecting a larger model) is justified
only if it leads to a better relative accuracy, it can be argued that an Oracle Agent would choose the
larger model for a specific instance only when the smaller model is inaccurate, i.e., incorrect, while
the larger model is accurate, i.e., correct, (as depicted in the IA case in Figure E])

2.2.1 GENERAL FORMULATION

Building upon the insights from this straightforward 2-state scenario, we present the following gen-
eral definition for an Oracle Agent:
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Figure 1: Confusion matrix for a conceptual 2-state classification task. Resource consumption of
the Oracle Agent is only a function of P(IA)

Definition 2.1. Given an adaptation state space {S;}, its corresponding {R;} and {4;}, and a
dataset X, the Oracle Agent is defined as an adaptive agent that implements the following strategy:

min; (R;) s.t.Yi(z) = Yor(z)

Ry O.w. @

Roracte (.CC) = {
forallz € X,
Where Y;(x) is the predicted label from model ¢ on instance z, and Y () is the ground truth label

of instance z. The expected resource consumption and accuracy achieved by such an Oracle are
Roracie and Ayrqere calculated asﬂ

N
Ropacie = Ri(1 = P(e1) + Plen)) + Y _ Ri[P(ei1) — P(e;)],
=2
Aoracle =1- P(eN)7 (5)

In which P(e;) is the probability of event e; defined as:
ei =M #YerNYs #Yorn---Yi_1 #YorNY; # Yar},

This can be interpreted as the event in which all of the ¢ smallest models fail to classify an instance
correctly.

To get a better intuition on the equations above one can use the Bayes rule, and the fact that A; =
1 — P(Y; # Yar), to write each P(e;) as:

_ Oéz(].—Al), i >1
P = {50 12 ©

In which «; is defined for 7 > 1 and can be written as:
a; =PY1 #YerNYs #Yorn--- Y1 # Yar|Y; # Yor).

Intuitively, larger «; values (approaching 1) indicate states where the errors of larger models are in-
herently challenging to resolve using any of the smaller models. Conversely, a smaller a; represents
the scenario in which an ensemble of smaller models are capable of resolving some or all of the
classification errors of a larger model.

Using this definition Equation [5]can be reformulated as:

R()T'acle = Rl + (RZ - Rl)(l - Al) - OCN(fEN - Rl)(l - AN)"’
N

D o1 (Ri = Risa)(1— Aiq))],
=3
Aoracte =1 — Oé]\/'[l - AN]7 (7

The resource consumption and accuracy of an Oracle Agent calculated using this equation can serve
as an upper bound on the performance and efficiency achievable by any adaptive agent applied on

"For a detailed proof of each equation please see the Appendix.
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the same adaptation state space. Calculating this upper bound, however, relies on knowledge about
the adaptation state space, characterized by R;’s and A;’s of the backbone classifiers, along with the
hidden term ¢;.

For pre-trained off-the-shelf backbone models, R; and A; values are typically readily available
since they can be calculated separately for each classifier. On the other hand, «; captures the cross-
dependencies among the entire set of backbone models, a detail often not reported for static off-
the-shelf models. Obtaining an empirical estimate of «; while not impossible, necessitates access
to both a representative validation set and a comprehensive set of candidate backbone models. This
poses a challenge, especially when constructing an adaptive inference pipeline from scratch or when
the backbone models undergo frequent retraining to uphold performance amidst real-world data
distribution shifts.

Fortunately, for classifiers with similar structure that are trained using the same training set, varia-
tions of «;s between states can be relatively small. This allows for calculation of an approximate
performance and efficiency bound for Oracle Agents without the need for calculating o;s for the
entire adaptation space. This is the motivation for the constant-a formulas investigated in the next
section.

1.04

0.8

0.6 1

0.4

—e— Pythia
0.2 —o— Llama-2
—e— EfficientNet
—— ViT

0.0

2 3 4 5 6 7 8

Figure 2: Empirical Measurements of «; for different tasks and models. «; remains relatively
constant for models with similar architecture.

2.2.2 CONSTANT-o@ APPROXIMATION

As previously discussed, «; serves as a measure of the probability that a large model making a
classification error leads to errors in all of the smaller models.

Intuitively, if the classifiers forming the adaptation state space were statistically independent, one
would expect a; to quickly approach 0 as the number of states increases. This is because as the
index ¢ (and subsequently number of states included in calculation of «;) increases, it becomes
increasingly more likely that at least one of the smaller models predicts a label correctly by chance.

However, the expected decrease in «; for larger i values is less pronounced when models forming the
state space are not completely independent. In such cases, larger models are anticipated to correctly
classify most, if not all, of the samples that are correctly classified by the smaller models. This
tendency is commonly observed in backbone classifier families with similar network structures, as
demonstrated in Figure [2]

Building on this intuition, one straightforward approach is to assume ¢; to be constant and indepen-
dent of the state index (a; = ). In this scenario, Equation [7|can be modified as:

N

Roracte = R1+ (Ra — R1)(1 — A1) + « Z[(Rv —Ri_1)(1—A;-1)]— (Rv — R1)(1 — Aw)
i=3

Aoracle =1~ O[[l - AN] (8)

This equation reveals that under the constant-o assumption, the relationship between R4 and
Apracle 18 a line connecting a very optimistic operating point with Agy.qcie = 1 and Rorgele =
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R1 + (R2 — R1)(1 — Ay) (associated with v = 0) to a more realistic “conservative” bound with an
accuracy of A,qce = AN corresponding to o = 1.

For o« = 1 we have:

N
Roracle = Rl + Z(Rz - Rl)(Az - Ai71)7

=2
Aoracle = AN- 9)

This equation serves as a conservative estimate for the performance and efficiency gains achievable
by any adaptive agent. Moreover, it only requires knowledge about the R; and A; values for each
state, which are typically readily available for well-known off-the-shelf classifiers.

Table 1: Estimated Adaptation Opportunity Bounds

Baseline State Space Conscrvatiic Estimate Optimis:ic Estimate
(a=1) (o = amin)
Accuracy Efficiency Efficiency Gain o Accuracy Gain Efficiency Gain
Baseline Baseline Opportunity Estimate Opportunity Opportunity
) . Ry Ry oracle AR A Roracte AR
Context | ModelFamily Ay | GFLOPs) | (GFLOPs) | (GFLOPs) | (GFLOPs) | firatio | @min  Aoracie | A4 | (GF 0Py | (GFLOP) firatio
cv EfficientNet 83.95% 0.39 37.75 0.60 37.15 63.43x 0.58 90.67% | +6.72% 0.54 37.21 70.26x
(ImageNet) ViT 88.60% 4.41 1,016.72 23.21 993.51 43.80x 0.52 94.00% | +5.66% 15.56 1,001.16  65.33x
2 SOTA 90.88% 0.04 2,586.00 21.24 2,564.76 121.77x -
NLP Pythia .~ 67.08% 78.96 2,910.00 304.42 2,605.58 9.56x 0.88 71.13% | +4.05% 286.14 2,623.86  10.17x
(HellaSwag) Llama-2 83.79% 1,670.00 17,570.00 2,423.36 15,146.64 7.25x 0.90 85.43% | +1.64% | 2.385.65 15,184.35  7.36x
SOTA 90.96% 1.90 1,352,640.00 | 16,694.40 | 1,335,945.62 | 81.02x -

085
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Figure 3: Operation points achievable by adaptive inference methods under v = 1 assumption. The
state of the art (SOTA) baseline is used as a proxy for the inherent efficiency versus performance

trade-off of each task.

3 EXPERIMENTS

In the preceding section, we introduced both exact and approximate bounds aimed at evaluating
the achievable efficiency and performance gains of an adaptive agent. This section delves into the
practical applications of these bounds on real-world off-the-shelf neural networks.

Our exploration of adaptation spaces focuses on two distinct inference tasks: image classification on
ImageNet (Russakovsky et al.,[2015) and Natural Language Inference on HellaSwag (Zellers et al.,
2019). For each of these tasks, we assessed models tailored for efficiency-critical applications (e.g.,
image classification at the edge using Efficient-Net) as well as performance-critical applications
(e.g., state-of-the-art Llama-2 LLM models deployed on the cloud). Within each state space formed
by these models, we present the maximum accuracy achievable by an adaptive agent (A,,qclc) along
with the minimum resource consumption required to attain such accuracy (R,,qcle)-

The estimated R,.qcie 1S then employed to derive two quantitative measures of efficiency gain:
AR = RN — Roracle and Rratio = RN/ Roracles together with AA = A4 — AN as a measure

of performance gain as detailed in Table



Under review as a conference paper at ICLR 2025

3.1 IMAGE CLASSIFICATION BENCHMARK: IMAGENET

ImageNet stands out as one of the most renowned and demanding datasets for image classification,
featuring high-resolution images spanning 1000 classes of diverse objects. Off-the-shelf classi-
fiers trained on ImageNet range from compact and efficient models tailored for resource-limited
at-the-edge inference such as Efficient-Net (Tan & Le| 2019) to high-performance models typically
deployed on the cloud like Vision Transformers (Dosovitskiy et al.,2020).

In Figure [3(a)] we present the Performance (Accuracy) versus Resource Consumption (GFLOPs)
profiles for two of the prominent pre-trained classifiers on ImageNet, encompassing a broad spec-
trum of resource requirements and performance capabilities. Additionally, we have calculated the
GFLOPs versus accuracy envelope of the state-of-the-art on ImageNet, serving as a proxy for the
global adaptation potential of ImageNet (datapoints sourced from the papers-with-code leaderboard
(Paperswithcode), [2024)).

Utilizing Equation [9] in conjunction with GFLOPs and accuracy metrics reported in literature for
each model, we derived a conservative estimate of the achievable adaptation bounds for each model,
as illustrated in Figure [3(a)]and summarized in Table[T]

For ImageNet models with a large number of states (e.g., EfficientNet, ViT), even the conservative
assumption of o = 1 suggests a substantial efficiency improvement potential, in orders of 43-63x.
Moreover, the analysis indicates potential for efficiency gains exceeding 121x using the entire state-
of-the-art envelope of ImageNet.

3.2 NATURAL LANGUAGE INFERENCE BENCHMARK: HELLASWAG

HellaSwag serves as a widely adopted benchmark in the domain of Commonsense Natural Language
Inference. Comprising over 10,000 sets of incomplete sentences, each with four potential endings,
this dataset tasks language models with selecting the most probable conclusion for a given sentence.
The dataset is crafted specifically to necessitate commonsense reasoning based on contextual cues
in addition to the words within a sentence.

For this particular task, we chose a large language model typically deployed on cloud infrastructure
(Llama-2 (Touvron et al.,|2023)), alongside a more compact language model crafted for deployment
on resource-limited systems (Pythia (Biderman et al., [2023)). Additionally, we incorporated the
GFLOPs vs Accuracy envelope for state-of-the-art models from the HuggingFace LLLM leaderboard
(Hugginface, 2024} |Gao et al., 2023) as a representation of the overarching resource consumption
vs accuracy trade-offs associated with HellaSwag. The inference cost of each model (measured
in GFLOPs) was computed assuming a batch size of 1 and a maximum sequence length of 128,
utilizing the tools provided by |Ye| (2024) for calculations.

As depicted in Figure[3(b)] and detailed in Table[I] state-of-the-art language models show great po-
tential for substantial efficiency improvements through adaptive inference. Specifically, the smaller
language model (Pythia) boasts a conservative bound of over 9x in achievable adaptation efficiency
gains. Conversely, the larger language model demonstrates the potential for efficiency gains ex-
ceeding 7x, a noteworthy accomplishment given the considerable size and scale of such models,
resulting in a relative resource consumption reduction of more than 15 TFLOPs. Notably, these ac-
complishments are surpassed only by the global adaptation potential of the state-of-the-art models
on HellaSwag, indicating over 81x potential improvements in efficiency without sacrificing perfor-
mance.

3.3 EMPIRICAL (EXACT) ADAPTATION BOUNDS

The o« = 1 bounds discussed in the preceding section serve as a conservative estimate on the adap-
tation potential of various models and datasets. More accurate estimates of the efficiency and per-
formance achievable by an adaptive agent can be obtained by considering the hidden dependencies
between models (abstracted by «;) within a specific adaptation state space.

As it was shown in Figure [2] the empirical calculations of «; for the four state spaces results in
relatively constant values, specially since the models have similar structures and training. Using the
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Figure 4: Proposed constant — o bounds and empirical measurements for an Oracle Agent. The
shaded area shows the space of operation points achievable by adaptive inference methods.

empirical measurements of «; together with Equation [§] one can calculate a constant-cv optimistic
bound for each model.

As shown in Figure [2] the empirical calculations of «; across the four state spaces yield relatively
constant values, especially given that the models within each adaptation state space have similar
structures and training. By combining the empirical measurements of «; with Equation (8} one can
calculate an optimistic efficiency and performance bound for each adaptation state space.

Table [ showcases the minimum « values measured for each of the four classifier families and their
corresponding efficiency and performance gain opportunity bounds. It’s crucial to highlight that,
unlike the @ = 1 bounds, which assumed that no accuracy gain are achievable through adaptation,
constant — « estimates can be employed to calculate both efficiency and performance gains. For
instance, within the EfficientNet family of classifiers, using o = a3, to get an optimistic estimate
on the performance of an adaptive agent results in an estimated accuracy of 90.67%—over 6.72%
more accurate comparing to the largest model in the corresponding adaptation state space.

The reported resource consumption values represent the minimum resources required to achieve the
performance bounds, indicating that simultaneous improvements in efficiency and performance are
attainable for all models based on the « values. For example, the EfficientNet and ViT families (with
smaller «v values) can achieve accuracy gains of over 5 — 6% while realizing efficiency gains of over
70x and 65%, respectively. On the other hand, tasks related to the HellaSwag dataset exhibit larger
a values, resulting in relatively smaller accuracy gains (4.05% and 1.64% for Pythia and LLama-2,
respectively) but still showcasing efficiency gains of over 7-10x for both studied language models.

Figure]illustrates the comparison between the approximate bounds and empirical measurements of
an ideal Oracle Agent’s efficiency and performance across the adaptation space. The visualization
highlights that the proposed conservative and optimistic estimates can serve as accurate bounds on
the actual operating points achievable by an Oracle Agent (Opportunity Space), particularly for
classifier families with larger o values.
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+53.42x
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Figure 5: Efficiency gains achievable for discrete state spaces of different sizes. It is possible to
achieve 90% of the maximum efficiency gain with only 7 states chosen from Imagenet SOTA.
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4 ADAPTATION STATE SPACE DESIGN CONSIDERATIONS

In the preceding section, we established the utility of Equation[9]as a measure of adaptation potential
for off-the-shelf state spaces. In this section, we aim to provide intuitions and design guidelines for
enhancing the adaptation potential of a given adaptation state space.

4.1 EFFECT OF STATE SPACE SIZE AND GRANULARITY

Through a simple rearrangement of terms, Equation [0]can be expressed as:

N
Roracte = Ri + (A — A1) (Ry — Ri) = > _(A; — Ai_1)(Ry — R;) (10)

=2

The first two terms in this equation represent R, 4. calculated using the state dynamic rangeE]

However, the third term Ziin(Ai —A,_1)(RNy — R;) is a positive sum that reduces R,yqcic as each
additional state is added, constantly improving the efficiency of the Oracle Agent.

For real-world adaptive systems, expanding the number of states often accompanies increased com-
plexity. Therefore, it is crucial to discern the minimum number of states that result in a sufficient
adaptation gain. The following section provides an example demonstrating how Equation [I0]can be
applied to select a small but effective adaptation space.

4.1.1 OPTIMUM CHOICE OF STATES

Upon revisiting Equation [I0} it becomes evident that the efficiency gain resulting from iteratively
growing a state space depends solely on the resource consumption of each state (2;) at each step
and its accuracy relative to the most similar states existing in the state space from the previous steps
(A; — A;_1). Therefore, the utility of each state for all state space sizes can be calculated in linear
time

Figure [5is evidence that through an optimal design of the state space, a remarkably high adaptation
potential can be achieved even within relatively small state spaces. Notably, for ImageNet SOTA,
it is possible to realize over a 100x efficiency gain (equivalent to 90% of the efficiency gain of the
largest discrete state space) using only 7 states.

4.1.2 OPTIMUM NUMBER OF STATES

The efficiency gain potential figures presented in the preceding sections imply that expanding the
state space size exhibits diminishing returns in terms of efficiency gains. Nevertheless, given that
Oracle Agents with larger state spaces consistently outperform those with smaller state spaces, con-
sidering the concept of an Oracle Agent with access to an infinite number of states (N — oo forming
a continuous adaptation state space) becomes valuable in theoretically quantifying the achievable ef-
ficiency gains for a specific dataset or benchmark.

Let Ry, = limy_, Ry and Ay, be defined as accuracy of the largest state in the continuous adapta-
tion space. The continuous reformulation of Equation|10|can be then derived as:

Ry,
Roracle = R + Ah(Rh - Rl) - A(R) dR, (11D
Ry

where A(R) represents the curve depicting the relationship between accuracy and resource con-
sumption in the continuous state space.

As an example, we utilized a continuous piece-wise linear approximation of the SOTA adaptation
spaces for ImageNet and HellaSwag to estimate the @« = 1 bound for continuous adaptation. As
presented in Table [2] the gains achievable through continuous adaptation (160.94x and 122.18x for
ImageNet and HellaSwag, respectively) significantly exceed the corresponding figures reported in
Table (1| for a discrete adaptation space (121.77x and 81.02x respectively).

?Please refer to the Appendix for design considerations related to the state dynamic range.
3For an example of such algorithm please see the Appendix.
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Table 2: Conservative bounds for efficiency gain achievable assuming continuous adaptation

Roracte AR .
Dataset  Aoracie | (GFLOPs) | (GFLOPs) | Lratio
TmageNet  90.88% | 16,07 2,569.93 | 160.94x
HellaSwag_ 90.96% | 11,07049 | 1,341,569.52 | 122.18x

4.2 EFFECT OF ADAPTATION COSTS

The Oracle Agent introduced in this work provides an upper bound on efficiency gains achievable
for a adaptive inference task independent of the adaptation strategy or system-specific adaptation
costs. Examples of such costs in the real-world can include the routing cost in dynamic neural
networks or the general cost of switching between different backbone classifiers. However, the
proposed framework can easily be modified to include such factors in calculating a more realistic
estimate of the efficiency gain potential of specific state spaces.

For example, one simple approach would be to model the adaptation overhead cost as a linear
function of the model size and complexity. In other words:

Ay = Bo + B1R;

In which A; is the adaptation overhead cost for selecting state i, 3y is a constant controlling state-
independent adaptation overhead costs (e.g. cost of the agent/policy network itself), while 31 is a
constant controlling state-dependant adaptation overhead costs (e.g. the cost of loading and reload-
ing the neural network weights which is a function of the model size). Adding A; directly to each
R; the new R, can be easily calculated to be:

N
Roracie = (R1 + A1)(1 — P(ey) + Pen)) + Z((Ri + Ay (P(ei—1) — P(ey)))

= 50 + (1 + ﬂl)Ro;acle

In which Ryyqee is the resource consumption of an oracle with no adaptation cost that can be
calculated from Equation

5 LIMITATIONS AND FUTURE WORK

The presented work has certain limitations, which will be explored in future research. This includes
extending the proposed framework to tasks beyond classification, such as regression, and explor-
ing more advanced models for «; (e.g., linear instead of constant-c) to provide tighter bounds on
adaptation potential.

6 CONCLUSION

In this work we introduced a novel theoretical framework, quantifying the efficiency and perfor-
mance gains achievable by adaptive inference methods.

Empirical results demonstrated a substantial efficiency gain opportunity, ranging from 40-70x for
models like EfficientNet and ViT (ImageNet), and exceeding 7x (equivalent to a relative computation
saving of over 15 TFLOPs) for large language models such as Llama-2. Theoretical estimates for
datasets like ImageNet (CV) and HellaSwag (NLP) suggest the potential for achieving over 80-120x
efficiency gain using adaptive inference techniques.

Furthermore, we provided insights and design considerations for further enhancing the efficiency
gain opportunity by carefully designing the adaptation state space. Empirical results highlight that,
for ImageNet, efficiency improvements on the order of 100x can be attained with adaptation space
sizes of 7 or less. This paper establishes the theoretical foundation for effective, quantifiable, and
systematic design of adaptive inference methods.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker: Track-
ing and predicting the carbon footprint of training deep learning models. arXiv preprint
arXiv:2007.03051, 2020.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan, Fan Yang, Huizhong Chen, Zhangyang
Wang, and Yeqing Li. Adamv-moe: Adaptive multi-task vision mixture-of-experts. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 17346-17357, 2023.

Francesco Daghero, Daniele Jahier Pagliari, and Massimo Poncino. Chapter eight - energy-
efficient deep learning inference on edge devices. In Shiho Kim and Ganesh Chandra Deka
(eds.), Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, volume
122 of Advances in Computers, pp. 247-301. Elsevier, 2021. doi: https://doi.org/10.1016/bs.
adcom.2020.07.002. URL https://www.sciencedirect.com/science/article/
p1i1/50065245820300553.

Radosvet Desislavov, Fernando Martinez-Plumed, and José Hernandez-Orallo. Trends in ai infer-
ence energy consumption: Beyond the performance-vs-parameter laws of deep learning. Sustain-
able Computing: Informatics and Systems, 38:100857, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Karl Freund.  Google cloud doubles down on nvidia gpus for inference, 2019. URL
https://www. forbes. com/sites/moorinsights/2019/05/09/google-cloud-doubles-down-on-nvidia-
gpus-for-inference, 2019.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Retrospective: Eie: Efficient inference engine on sparse and compressed neural network.
arXiv preprint arXiv:2306.09552, 2023.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):
7436-7456, 2021.

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, lan-
guages, and computation. Acm Sigact News, 32(1):60-65, 2001.

Hugginface, 2024. URL https://HuggingFaceH4/open_llm leaderboard. [Accessed
08-01-2024].

Fatih Ilhan, Ling Liu, Ka-Ho Chow, Wenqi Wei, Yanzhao Wu, Myungjin Lee, Ramana Kompella,
Hugo Latapie, and Gaowen Liu. Eenet: Learning to early exit for adaptive inference. arXiv
preprint arXiv:2301.07099, 2023.

Ganesh Jawahar and Subhabrata (Subho) et all Mukherjee. Automoe: Heterogeneous mixture-of-
experts with adaptive computation for efficient neural machine translation. In ACL 2023, June
2023.

11


https://www.sciencedirect.com/science/article/pii/S0065245820300553
https://www.sciencedirect.com/science/article/pii/S0065245820300553
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://HuggingFaceH4/open_llm_leaderboard

Under review as a conference paper at ICLR 2025

Stefanos Laskaridis, Alexandros Kouris, and Nicholas D Lane. Adaptive inference through early-
exit networks: Design, challenges and directions. In Proceedings of the 5th International Work-
shop on Embedded and Mobile Deep Learning, pp. 1-6, 2021.

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural
network inference via edge computing. IEEE Transactions on Wireless Communications, 19(1):
447-457, 2019.

Jiamin Li, Qiang Su, Yitao Yang, Yimin Jiang, Cong Wang, and Hong Xu. Adaptive gating in
mixture-of-experts based language models. arXiv preprint arXiv:2310.07188, 2023a.

Zhuo Li, Hengyi Li, and Lin Meng. Model compression for deep neural networks: A survey.
Computers, 12(3):60, 2023b.

Joseph McDonald, Baolin Li, Nathan Frey, Devesh Tiwari, Vijay Gadepally, and Siddharth Samsi.
Great power, great responsibility: Recommendations for reducing energy for training language
models. arXiv preprint arXiv:2205.09646, 2022.

Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid Karlinsky, Aude Oliva,
Kate Saenko, and Rogerio Feris. Ar-net: Adaptive frame resolution for efficient action recogni-
tion. In Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part VII 16, pp. 86—104. Springer, 2020.

Paperswithcode, 2024. URL https://paperswithcode.com/sota/
image-classification—-on—-imagenet. [Accessed 6-01-2024].

Daniel Rotem, Michael Hassid, Jonathan Mamou, and Roy Schwartz. Finding the sweet spot:
Analysis and improvement of adaptive inference in low resource settings. arXiv preprint
arXiv:2306.02307, 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(1JCV), 115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
Benchmarking the energy costs of large language model inference. In 2023 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1-9. IEEE, 2023.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Canwen Xu and Julian McAuley. A survey on model compression and acceleration for pretrained
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10566—
10575, 2023.

Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael Niemier, Jason Cong, Yu Hu, and Yiyu Shi.
Scaling for edge inference of deep neural networks. Nature Electronics, 1(4):216-222, 2018.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive
networks for efficient inference. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 2369-2378, 2020.

Ju Xiao Ye, 2024. URL |https://huggingface.co/spaces/MrYXJ/
calculate-model-flops. [Accessed 08-01-2024].

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12


https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://huggingface.co/spaces/MrYXJ/calculate-model-flops
https://huggingface.co/spaces/MrYXJ/calculate-model-flops

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ASSUMPTIONS

General assumptions (applied to all cases):

1.
2.
3.
4.

The adaptation state space {.5;} is defined for an ensemble of backbone classifiers.
The states .S;’s are ranked in an ascending order based on their resource consumption R;.
Model accuracies are ranked in an non-decreasing sequence, i.e. A; < A; if i < j.

The Oracle Agent has knowledge of both resource consumption (R;) and accuracy (A;)
across all models for each instance x, but does not have any knowledge beyond what is
provided within the defined adaptation state space.

Conditional assumptions (applied only to certain situations):

1.

2.

For Equation [§] and the lower bound Equation [9] assume a; = P(Y; # Yor NYs #
Yor N ---Y;_1 # Yar|Y; # Yor) is constant across all 4’s.

The constant «; assumption applies to all results in sections [3|and 4]

A.2 PROOFS

1.

Proof of the general formula equation 3}

Proof. Intuitively, we can estimate the value of R, using its expected value, which can
be written as:

N

Ro’r’acle = Z Rzp(xz) + Rlp(xf)7
i=1
Aoracle =1- P(xf), (12)
where x1, x;’s, and ;s are defined as the following events:
x1 :={Y1 =Yeor},
v ={V1#YerNYo #Yorn---Y;_1 #YgrNY; = Yar},
vp={MN #YarNYos #Yorn---NYy # Ygr}.

Then, since e; = {Y1 # Yor NYs # Yor N---Y;_1 # Yor NY; # Yar}, we see that
fort =2,3,--- N —1:
P(Il) = P(ei_l) — P(@Z)

Moreover, it’s easy to see that P(z1) = 1 — P(e1), and P(zy) = P(en). We can then
reformulate the expected value formula in terms of P(e;)’s to get the general formula:

N
Roracle = ZRl[P(61—1) - P(67)] + Rl(l - P(el) + P(GN))7

Aoracle =1- P(eN) (13)

. Calculations for rewriting the general formula in terms of « (proof of Equation [7):

Proof. Given the general formula:

N
Ropacte = »_ Ri[P(e;i—1) — P(e;)] + Ry (1 — P(e1) + P(en)),
=2

Aoracle =1- P(eN)a (14)
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and Equation [6] we can do the following calculations:
N

Ropacte = Y Ri[P(ei—1) — P(e;)] + Ri(1 — P(er) + Plew))
i=2

N
— (Z RiP(ei_1) — RiP(eZ-)> 4+ Ri(1 — P(e1) + Plen))
=2

N

= RQP(@l) + Z(Rl — Ri_l)P(ei_l) — RNP(eN) + Rl(l — P(el) + P(eN))
1=3

N
= R2(1 — Al) + Z(RZ — Ri_l)ai(l — Al) — RNOZN(]. — AN)+
=3
R1(1 — (1 — Al) + aN(l — AN))
=R, — Rl(]. — Al) + Rla]\r(l — AN)) + RQ(]. — Al) — RNaN(l — AN)-|-

N
Z(RZ — Ri_l)ai(l — Al)
=3
=R+ (R2 — Rl)(l — A1)+
N
(RZ — Ri,l)ai(l — Al) — aN(RN — Rl)(l — AN),
=3

which is what we have in Equation

3. Proof of the criteria for choosing R, (Equation [16):

Proof. Assume a regular state space {.5;} for a set of backbone classifiers. The Oracle
Agent’s performance is estimated to be:

N
Roracte = Ry + Y _(Ri — R1)(Ai — A;_1),
i—2

Aoracle = AN

according to equation [9) with the ;; = 1 assumption. Then, assume a special state space
{S!} where all states are identical as in {S;}, except that the first state S is replaced by
S, which is a random agent with:

R, =0,
1
A==
1 Ca

where C is the number of classes in the classification task. Then, the Oracle’s performance
on this special state space is estimated to be:

N

1
racte = S (R)(Ai — A1) + Ra(As — —),
oracle izs( )( 1)+ 2( 2 C)
:)racle:AN‘

14
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Note here that A,,qc1e = A’

oracle» SO a specific choice of 1 only makes sense if Rorgcre <

R .. c1os OLif Rorgcie — R.... o < 0. This then leads to the following computation:
ROT@CZ@ - R:ﬂ'acle
N N 1
=R+ R, — R)(A; —A;_1) — R)(A; — A;—1) — Ro(Ay — —
1 ;( 1)( 1) ;( ) 1)~ Ra(42 - 5)
N
=R+ Z(Rz = R)(Ai — A1) + (B2 — R1)(A2 — A1)~
=3
l 1
D (R)(As = A1) — Ro(Az — o)
i=3
N
- Rl + Z(Rz)(Az Az—l)_
=3
N N 1
D (BO)(Ai = Aimr) = Y (Ri)(Ai = Aima) + (Ro = R)(A2 — Ay) — Ro(Az — o)
i=3 i=3
N
=Ry — Y (R1)(4; — Ai_1) + Ra(Ay — Ay) — Ry(Ap — 6) — Ri(Az — Ay)
=3
1
=R — Rl(AN — AQ) — Rl(AQ — Al) + RQ(AQ — Al) — RQ(AQ — 6)
1
=Ry — Ri(An — A1) — Ra(A; — 6)
1
=Ri(1-Axy+ A1) — Ra(Ay — 5)
which gives Roracie — R., 4 < 0 if and only if Ry < %Rg, as required in
equation[I6] O

A.3 STATE SELECTION ALGORITHM

As discussed in Section4, one application of Equation [0] can be used to find the smallest adaptation
space with the highest efficiency gain potential given a larger set of possible states. One example of
a naive state selection algorithm is shown below.

Algorithm 1 State Selection Algorithm

Input: Original state space S with size IV, desired state space size N, with N > N,
Output: Selected state space S, with size N,

Initialize S,={S1, Sn'}.

for size =2 to N, do

S.=9 -8,

for s; in S, do
Jj— = argmazi[R(sy)], s.t. R(sg) < R(si), sk € S
J+ = argming[R(sg)], s.t. R(sg) > R(s;i), sk € So
dR(s:) = [R(s;,) — R(ss)|[A(5:) — A(s,)]

end for

Snew = argmazxs, [dR(s;)]
So = So + {Snew}
end for

A.4 EFFECT OF STATE DYNAMIC RANGE

Equation @] reveals a fundamental observation: R,.4c is always bounded below by R;, while
Apracle 18 directly tied to A . Consequently, careful selection of the smallest and largest models in

15
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the adaptation space, defining the state dynamic range, is of great importance. Utilizing Equation
as a simplified form of Equation 9] for 2 states underscores that adapting with state spaces featur-
ing a broader dynamic range incurs higher efficiency costs but yields more substantial performance
benefits.

Aoracle = AN:
Roracle = Rl + (AN - Al)(RN - Rl) (15)

A.4.1 MAXIMIZING EFFICIENCY: OPTIMUM S

Given the equation above, the instinctive choice might be to optimize .S; for maximum efficiency
(rather than necessarily performance). However, there exists a minimum accuracy threshold for even
the smallest state. A practical method to evaluate whether the accuracy of the smallest state justi-
fies its resource consumption is to confirm that the corresponding R,,qcie 1S lower than a scenario
in which the smallest state provides a random guess on the target class without consuming any re-
sources. Guided by this insight, a design criterion for the resource consumption of the smallest state
(Ry) can be expressed as :
A -1

(1-Anx + Ay)
In which C is is number of classes in the classification task.

R < Ry (16)

A.4.2 MAXIMIZING PERFORMANCE: OPTIMUM Sy

Unlike 51, the accuracy of the Oracle directly hinges on the accuracy of the most accurate state (Sy).
Hence, it is logical to craft the largest model in the adaptation space for performance, prioritizing it
over efficiency.

As demonstrated in Section [3] attaining higher accuracy for most real-world models often incurs an
exponential increase in resource consumption costs. Drawing from Equation[I3] the efficiency of the
Oracle can exhibit a strong correlation with R, particularly in state spaces with a larger dynamic
range. This implies that the Oracle’s resource consumption also grows exponentially relative to its
performance. In the subsequent section, we illustrate that increasing the number of intermediate
states (increasing state granularity) can alleviate this issue, particularly in scenarios where Ry is
exceptionally large.

A.4.3 STATE SELECTION RESULTS
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Figure 6: Optimum discrete state spaces of different size and corresponding R4+, for the ImageNet
SOTA. The red dot shows the state with the most utility relative to the immediately smaller state
space.
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