
Under review as a conference paper at ICLR 2024

LANGUAGE MODELS AS SEMANTIC INDEXERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Semantic identifier (ID) is an important concept in information retrieval that aims
to preserve the semantics of objects such as documents and items inside their
IDs. Previous studies typically adopt a two-stage pipeline to learn semantic IDs
by first procuring embeddings using off-the-shelf text encoders and then deriving
IDs based on the embeddings. However, each step introduces potential infor-
mation loss, and there is usually an inherent mismatch between the distribution
of embeddings within the latent space produced by text encoders and the antici-
pated distribution required for semantic indexing. Nevertheless, it is non-trivial
to design a method that can learn the document’s semantic representations and
its hierarchical structure simultaneously, given that semantic IDs are discrete and
sequentially structured, and the semantic supervision is deficient. In this paper, we
introduce LMINDEXER, a self-supervised framework to learn semantic IDs with
a generative language model. We tackle the challenge of sequential discrete ID
by introducing a semantic indexer capable of generating neural sequential discrete
representations with progressive training and contrastive learning. In response to
the semantic supervision deficiency, we propose to train the model with a self-
supervised document reconstruction objective. The learned semantic indexer can
facilitate various downstream tasks, such as recommendation and retrieval. We
conduct experiments on three tasks including recommendation, product search, and
document retrieval on five datasets from various domains, where LMINDEXER out-
performs competitive baselines significantly and consistently. Code is available at
https://anonymous.4open.science/r/ICLR24-submit-B2E7/.

1 INTRODUCTION

In the context of information retrieval (IR), unique IDs are usually assigned to the documents, as doing
so facilitates various downstream tasks including indexing and retrieval. For example, in the realm
of e-commerce platforms, products are often tagged with distinctive product IDs (He & McAuley,
2016), and web passages are linked to specific URLs (Kousha & Thelwall, 2007). However, these
document or item IDs are often randomly assigned, lacking the assurance of accurately encapsulating
the underlying characteristics or content information of items and documents. This issue hinders
the effective understanding, indexing, searching, and analysis of these items or documents based
solely on their IDs. Thus, semantic ID, which is a sequence of discrete ID numbers that captures the
semantic meaning of a document, has been proposed as an advanced unique ID to address this issue.
The objective is to ensure that the initial set of semantic IDs captures the coarse-grained document
semantics while the subsequent IDs delve into the details of its content in a hierarchical structure.

Recent research efforts (Tay et al., 2022; Wang et al., 2022; Rajput et al., 2023) have focused on
acquiring semantic IDs through a self-supervised approach employing a two-step methodology.
Generally, they first procure embeddings for documents using off-the-shelf text encoders, such as
BERT (Devlin et al., 2019), under the assumption that these embeddings possess the capacity to
encapsulate the semantic essence of documents for indexing purposes. They then employ specific
techniques such as rq-VAE (Lee et al., 2022) or hierarchical clustering (Murtagh & Contreras, 2012)
to derive semantic IDs for the documents, using the embeddings obtained as input. However, a
notable issue arises due to the inherent mismatch between the distribution of embeddings in the
latent space generated by text encoders and the expected distribution necessary for effective semantic
indexing. Typically, the former exhibits a uniform distribution (Wang & Isola, 2020), while the latter
requires a hierarchical structure to capture the coarse-grained to fine-grained semantics. Furthermore,
each step of this process introduces potential information loss (Beaudry & Renner, 2012), as the
embeddings may not faithfully preserve the entirety of the original document’s semantics, and the
second-stage methods may not produce flawless IDs.

To this end, we formulate the semantic ID learning task into a sequence-to-sequence fashion and
propose to learn semantic IDs by capturing the document’s semantic representations and its hierar-

1

https://anonymous.4open.science/r/ICLR24-submit-B2E7/


Under review as a conference paper at ICLR 2024

chical structure simultaneously, with a generative language model, following (Raffel et al., 2020;
Radford et al., 2019). However, developing such a generative language model-based method poses a
formidable challenge, primarily rooted in two key aspects: 1) Sequential discrete ID: Semantic IDs,
designed to capture the hierarchical semantics of documents, are sequentially structured. Initial IDs
tend to encapsulate broad, coarse-grained semantics, while subsequent IDs delve into more refined,
granular details. The inherent discreteness of these IDs adds complexity to end-to-end learning
processes. 2) Semantic supervision deficiency: There’s a conspicuous absence of supervisory
signals to guide the specific allocation of semantic IDs to documents. It remains non-trivial to discern
how semantically similar documents should be mapped to analogous semantic IDs. Addressing
the two nuanced challenges requires the development of an advanced framework that is adept at
unraveling and incorporating intricate semantic structures within documents. This ensures accurate
and uniform allocation of semantic IDs, all while navigating the inherent limitations brought about
by their discrete and sequential characteristics.

In pursuit of this goal, we introduce LMINDEXER, an innovative self-supervised approach designed to
acquire semantic IDs directly from the input document with a generative language model, mastering
the concurrent learning of the document’s semantic representations and hierarchical structures. We
tackle the challenge of sequential discrete ID by developing a semantic indexer capable of producing
neural sequential discrete representations and designing a progressive training and contrastive learning
paradigm. These designs adeptly encapsulate the hierarchical semantic intricacies of the input text
within these IDs. In response to the semantic supervision deficiency, we employ a specialized
reconstructor to rebuild the original text from the sequential discrete semantic ID representations
acquired from the indexer via self-supervised learning. Our approach is grounded in the assumption
that an effective semantic indexer should condense document-level semantics into these IDs, enabling
a reconstructor to learn to accurately rebuild the original document from the obtained IDs. Following
the self-supervised learning phase, the semantic indexer excels in producing semantic IDs for
documents and can also undergo fine-tuning for various downstream tasks, including recommendation
and retrieval.

To summarize, our main contributions are as follows:
• Conceptually, we formulate the problem of learning semantic IDs by capturing the document’s

semantic representations and its hierarchical structure simultaneously.

• Methodologically, we propose LMINDEXER, a self-supervised framework that contains a semantic
indexer to generate semantic IDs and a reconstructor to reconstruct the original text from the IDs.
The learned semantic indexer can be further fine-tuned on different downstream tasks.

• Empirically, we conduct experiments on three downstream tasks on five datasets from different
domains, where LMINDEXER outperforms competitive baselines significantly and consistently.

2 RELATED WORK
Self-supervised Learning with Language Models. Training language models through self-
supervision involves tuning the model without any labeled data, relying solely on the input text
corpus itself. This concept has been extensively explored in existing literature (Devlin et al., 2019;
Liu et al., 2019; Clark et al., 2020). BERT (Devlin et al., 2019) introduces two self-supervised
training objectives, masked language modeling, and next sentence prediction. By training on vast
text corpora, BERT demonstrates that the learned model could significantly enhance performance
in downstream tasks. Liu et al. (2019) expands on this notion with RoBERTa, emphasizing the
critical role of masked language modeling. In the information retrieval domain, SEED (Lu et al.,
2021) proposes to pretrain the dense retriever with an attention-restricted decoder. CPDAE (Ma
et al., 2022) introduces a contrastive pretraining approach to learn a discriminative autoencoder
with a lightweight multilayer perception decoder. RetroMAE (Xiao et al., 2022) proposes a new
retrieval-oriented pretraining paradigm based on Masked Auto-Encoder (MAE). However, most prior
research has primarily focused on employing self-supervised learning to train language models for
natural language understanding and dense retrieval. In contrast, this work explores the potential of
self-supervised learning in utilizing language models as semantic indexers.
Semantic indexer. Semantic indexers (Van Den Oord et al., 2017; Lee et al., 2022; Esser et al.,
2021) are initially introduced in computer vision, where they convert input images into a set of
IDs capturing the essence of the original image. In Van Den Oord et al. (2017), an auto-encoder
framework is proposed. The encoder learns discrete latent variables for input images, while the
decoder reconstructs input from these discrete variables. Lee et al. (2022) enhances this with a
residual quantizer for higher-quality semantic IDs. More recently, semantic IDs have been applied

2



Under review as a conference paper at ICLR 2024

… Codebook 𝑬… Codebook 𝑬

…

Semantic IDs

Word token

He only a rival

Deep TransEncoder Deep TransDecoder

Semantic Indexer

<s>

Shallow Transformer

Masked token 

…
He only

is been rival

ReconstructorSemantic Encoder

is been

Semantic ID 
representation

Document

hints

Figure 1: The LMINDEXER self-supervised ID learning framework overview. The proposed semantic
indexer includes a semantic ID encoder and several codebooks. During self-supervised learning,
there is a reconstructor to reconstruct the input document from semantic ID representations.

to information retrieval tasks, such as document retrieval (Tay et al., 2022) and recommendations
(Rajput et al., 2023). These IDs represent documents and are adopted in generative recommendation
(Hua et al., 2023) and retrieval (Sun et al., 2023). Nevertheless, the development of these IDs highly
relies on prior knowledge or supervision from the downstream tasks. Current self-supervised semantic
indexing methods generally follow a two-step process. In the first step, an off-the-shelf text encoder
(Devlin et al., 2019) encodes input documents and generates embedding representations for them.
In the second step, either rq-VAE (Rajput et al., 2023) or hierarchical clustering (Tay et al., 2022;
Wang et al., 2022) is employed to create IDs for documents based on the embeddings from the
first step. Typically, there’s a disparity between the distribution of embeddings in the latent space
produced by text encoders and the expected distribution for semantic indexing. Furthermore, each
stage incurs information loss (Beaudry & Renner, 2012). In this work, we introduce an innovative
self-supervised approach designed to acquire semantic IDs directly from the input document with
a generative language model, learning the document’s semantic embeddings and its hierarchical
structure simultaneously.

3 THE LMINDEXER FRAMEWORK
In this section, we present our LMINDEXER framework, which learns the document’s semantic
representations and its hierarchical structure simultaneously. In Section 3.1, we first introduce in
detail how to design and train a generative language model-based semantic indexer (including a
semantic encoder and codebooks) and tackle the sequential discrete ID and semantic supervision
deficiency challenges. In Section 3.2, we discuss how to effectively optimize the LMINDEXER
framework. In Section 3.3, we illustrate how to apply the learned document semantic IDs and the
semantic indexer on downstream tasks. The overview of our proposed model is shown in Figure 1.

3.1 LEARNING SEMANTIC IDS WITH SEQUENTIAL DISCRETE AUTO-RECONSTRUCTION

Learning semantic IDs is challenging, given that semantic IDs are discrete and structured sequentially
to represent the document’s semantics hierarchically, and there is no semantic supervision to guide the
training, i.e., ground truth (document, semantic ID) pairs. To this end, we propose to learn semantic
IDs as sequential discrete representations to capture the text semantics and train the semantic indexer
with the self-supervised text reconstruction objective to tackle the semantic supervision deficiency.
In the forthcoming sections, we employ bold notation to signify vectors, while non-bold notation is
used to denote single values or units.
Learning semantic IDs as neural sequential discrete representations. The semantic indexer takes
a document as the input and outputs its semantic ID that captures its semantic meaning. Therefore,
learning a semantic indexer naturally formulates a text-to-text language model training problem.
Following (Vaswani et al., 2017), we adopt an encoder-decoder Transformer architecture as the base
model. Let cid denote the semantic ID of a document d at position i. Given a document d and its
learned prefix ID căt

d “ c1d...c
t´1
d before position t, the semantic encoder will encode them and

produce the latent vector representation ht
d P RD of d at position t as:

ht
d “ SemEncθpd, căt

d q “ TransDecoderpTransEncoderpdq, căt
d q. (1)

Here TransEncoder is the Transformer encoder to capture the semantics of the input document and
TransDecoder is the Transformer decoder designed to generate continuous sequential semantic ID
hidden representations based on TransEncoderpdq and căt

d . D is the dimension of the hidden state.

The semantic indexer then maps the continuous hidden state ht
d to a discrete ID ctd. At each ID

position, we will maintain a codebook embedding matrix Et P RKˆD, where K is the codebook size.
We have different codebook embedding matrices at each position to capture semantics of different

3



Under review as a conference paper at ICLR 2024

granularity. Each code embedding etj P RD in Et corresponds to a semantic ID j at position t.
Based on Et, the discrete semantic ID for document d at t is calculated by the dot-product look up:

Pspctd “ j|căt
d , dq “ Softmaxet

jPEtpht
d ¨ etjq, (2)

ctd “ argmaxjPspctd “ j|căt
d , dq. (3)

After this, document d is represented by a sequence of semantic IDs cd “ c1dc
2
d...c

T
d , corresponding

to sequential discrete representations cd “ c1dc
2
d...c

T
d , where ctd “ Etrctds P RD and T is ID length.

The preliminary set of cd should predominantly encapsulate coarse-grained semantics, with successive
IDs delving deeper into nuanced specifics of d. We will discuss how to capture the hierarchical
structure by progressive training and contrastive learning in Section 3.2.

Reconstructing document with sequential discrete semantic ID embeddings. The document
IDs are expected to capture the document-level semantics. As a result, high-quality document IDs
should be able to be utilized to reconstruct the original document. To implement this intuition, we
propose a Transformer reconstructor to perform document reconstruction.

The input of the reconstructor is the sequential discrete semantic ID representations cd and the
expected output is the document content d. Following Xiao et al. (2022), we consider providing some
context hints dh and transfer the reconstruction into a masked token prediction style (Devlin et al.,
2019). We randomly mask some tokens in d and use cd to decode those masked tokens together with
dh. To be specific, the reconstruction objective is calculated by

Lrecon “ ´
ÿ

d

ÿ

wPdzdh

logPreconpw|cd, dhq. (4)

Here Preconpw|cd, dhq is calculated by a shallow bidirectional Transformer (Trans) layer, where cd
is fed as the query channel input embeddings, and dh (token embeddings correspond to dh) are fed
as key and value channel input embeddings in the multi-head self-attention. We adopt a shallow
reconstructor which has limited reconstruction capability based only on the hints in order to force the
semantic indexer to provide high-quality representations. The reconstruction is conducted as follows:

zw “ Reconϕpcd,dhq “
ÿ

t

Transpq “ ctd, k “ dh, v “ dhq

Preconpw|cd, dhq “ softmaxpWzwq

(5)

where W is the token embedding matrix. However, directly adopting the reconstruction objective
with cd as input to the reconstructor will not optimize the semantic encoder. Since the codebook
look-up in Eq.(2) is a hard/discrete operation, the reconstruction objective backpropagation gradients
will flow to the embeddings in the codebook rather than to the parameters in the semantic encoder.
To this end, we propose to approximate the argmax operation similar to (Jang et al., 2016) as follows:

ĉtd “

$

&

%

argmaxet
jPEt ht

d ¨ etj forward pass.
ř

et
jPEt

exppht
d¨et

jq
ř

et
j

PEt exppht
d¨et

jq
etj backward pass.

(6)

In the forward pass, we still adopt the argmaxp¨q hard operation; while in the backward pass, the
selected semantic embedding becomes a weighted average of the codebook embeddings, to enable
gradients to flow to ht

d and finally to the parameters in the semantic encoder. In our implementation,
we achieve this by adopting the stop gradient operator (Van Den Oord et al., 2017). The reconstruction
is then conducted by

zw “ Reconϕpĉtd,dhq “
ÿ

t

Transpq “ ĉtd, k “ dh, v “ dhq (7)

3.2 TRAINING SELF-SUPERVISED SEMANTIC INDEXER

Progressive training. To optimize the semantic indexer and obtain semantic IDs in an auto-regressive
way, we adopt the progressive training scheme similar to Sun et al. (2023). The entire learning
process consists of T learning steps, each corresponding to a specific semantic ID ctd being learned
and optimized at position t within the range of [T ]. Additionally, at each step t, both the ID ctd and
the model parameters associated with generating ctd are updated, while previously generated IDs căt

d

4



Under review as a conference paper at ICLR 2024

remain unchanged. The reconstruction objective in t-step is shown as:

Lt
recon “ ´

ÿ

d

ÿ

wPdzdt
h

logPreconpw|cďt
d , dthq. (8)

Here dth is the hints provided for learning ID on position t. We will gradually reduce the amounts
of hints dth as t increases to inject new knowledge into the new IDs, and finally contribute to a
hierarchical, coarse-to-fine-grained semantic ID learning.

Contrastive loss. The reconstruction objective in Eq.(8) can force the semantic IDs to capture
document-level semantics. However, only optimizing the objective can lead to the case where similar
documents sharing căt

d also have the same ctd. To alleviate this issue, we propose a contrastive
objective to promote distinction between documents that previously shared the same prefix, enabling
the model to discern finer-grained hierarchical relationships between documents:

Lt
contrastive “ ´

ÿ

d

log
exppht

d ¨ ht
dq

exppht
d ¨ ht

dq `
ř

căt
d1 “căt

d
exppht

d ¨ ht
d1 q

. (9)

The contrastive objective can help push ht
d of documents sharing the same căt

d away in the t-th latent
space and force them to obtain diverse ctd, finally contributing to higher codebook utilization.

Commitment loss. In addition, when learning the document semantic IDs for position t, it is
important that the semantic indexer should remember the IDs that are already learned before position
t. To this end, we add a commitment loss as:

Lt
commitment “ ´

ÿ

d

ÿ

jăt

log Pspcjd|d, căj
d q. (10)

We optimize our model at step t based on a combination of the three losses proposed above:

min
θ,ϕ,Et

Lt “ Lt
recon ` Lt

contrastive ` Lt
commitment. (11)

However, we empirically find that directly pursuing optimization of the above objective is suboptimal
as the model would encounter two forms of collapse: reconstructive collapse and posterior collapse.

Reconstructor collapse. It refers to the case when the reconstructor is performing badly and
misguides the semantic indexer. It could happen when the reconstructor is under-trained and back-
propagates noisy gradients to the semantic indexer (Xiao et al., 2022). This problem appears in our
framework since the reconstructor is randomly initialized. We solve this problem by first fixing the
semantic encoder component and warming up the parameters in the reconstructor:

min
ϕ

L0
recon “ ´

ÿ

d

ÿ

wPdzd0
h

logPreconpw|d0hq. (12)

Posterior collapse. It refers to the case when the information provided by the semantic indexer
is weak and noisy for the reconstructor, thus is not utilized in the reconstruction (He et al., 2018).
This problem appears in our framework since the representations the reconstructor receives from the
semantic indexer are approximated by codebook embeddings (find in Eq.(2)) which are randomly
initialized. We solve this problem by first training the auto-reconstruction framework without the t-th
codebook at each step t:

min
θ,ϕ

Lt, zw “ Reconϕpcăt
d ,ht

d,d
t
hq (13)

and initialize the codebook embeddings with a good initialization (e.g., Kmeans of tht
dud) from the

trained semantic encoder before optimizing Eq.(11). More detailed studies on the two collapses can
be found in Section 4.3. A detailed training procedure can be found in Appendix A.2.

3.3 FINETUNING SEMANTIC INDEXER ON DOWNSTREAM TASKS
After we obtain a self-supervised learned semantic ID indexer, it can then be directly utilized to
generate semantic IDs for documents both seen and unseen in the training corpus. Meanwhile, the
semantic indexer can also be finetuned on downstream tasks which take text as input and expect
document IDs as output, e.g., recommendation (user history interaction text as input and next item
ID as output) and retrieval (query as input and document ID as output) as shown in Figure 2. To be
specific, given a set of downstream task samples D “ tpq, dqu where q is the input text and d is the

5



Under review as a conference paper at ICLR 2024

… Codebook 𝑬… Codebook 𝑬

…

Deep TransEncoder Deep TransDecoder

Semantic Indexer

Semantic Encoder

User history

Document IDs

… Codebook 𝑬… Codebook 𝑬

…

Deep TransEncoder Deep TransDecoder

Semantic Indexer

Semantic Encoder

Item IDs

query

(a) Recommendation (b) Retrieval

Figure 2: LMINDEXER can be fine-tuned on downstream tasks including recommendation (user
history as input and item ID as output) and retrieval (query as input and document ID as output).

expected output documents, we first obtain the semantic IDs cd corresponding to d with the learned
semantic indexer. We then finetuned the semantic index on this task with D “ tpq, cdqu as follows:

Ldownstream “ ´
ÿ

pq,cdqPD

ÿ

jďT

log Pspcjd|q, căj
d q. (14)

In the inference stage, we conduct constrained beam search decoding with a prefix tree (Wang et al.,
2022), which in turn only generates valid document IDs.

4 EXPERIMENTS: LEARNING SELF-SUPERVISED SEMANTIC ID

4.1 EXPERIMENTAL SETUP

Datasets. We conduct semantic ID learning experiments on product corpus from three domains in
Amazon review dataset (He & McAuley, 2016): Amazon-Beauty, Amazon-Sports, and Amazon-Toys,
as well as the document corpus from Natural Question (Kwiatkowski et al., 2019) and MS MACRO
(Nguyen et al., 2016). For items in Amazon, their title, description, and features are concatenated
as textual information; while for documents in NQ and MACRO, their content is treated as textual
features. The statistics of the datasets can be found in Table 6 and Table 7 in the Appendix.

Implementation details. In our experiments, we use T5-base (Raffel et al., 2020) as the base model
for our semantic indexer. The reconstructor is a 1-layer Transformer. The length of the semantic IDs
is set as T “ 3. We have different codebook embeddings initialized for different positions t and the
size of the codebook is set to be in {512, 5120, 51200} depending on the size of the document corpus.
We optimize the model with AdamW and search the learning rate in {1e-3, 2e-3, 5e-3}. The training
epochs are set to be 30, 10, and 5 for Amazon datasets, NQ, and MS MACRO respectively. More
information on implementation details can be found in Appendix A.3.

4.2 SEMANTIC ID QUALITY ANALYSIS

Baselines. We compare with two self-supervised semantic indexer methods mentioned in previous
works: rq-VAE indexer (Rajput et al., 2023) and hierarchical clustering (HC) indexer (Tay et al.,
2022). Both methods adopt the two-step paradigm: 1) derive embeddings with the off-the-shelf text
encoder (Devlin et al., 2019); 2) obtain IDs based on the embeddings with rq-VAE (Lee et al., 2022)
or hierarchical clustering (Murtagh & Contreras, 2012).

Table 1: ID quantitative study (AMI).
Model Beauty Sports Toys

rq-VAE indexer 0.2654 0.2774 0.3154
HC indexer 0.2428 0.2387 0.2729

LMINDEXER 0.3563 0.4163 0.3536

Quantitative results. We conduct a quantitative evaluation
to measure the quality of self-supervised learned seman-
tic IDs. Semantic IDs of high quality should capture the
semantic similarity between documents. In other words,
documents of similar IDs should be of similar semantics.
In this section, we calculate the AMI (Vinh et al., 2009)
score between item semantics IDs and ground truth item category (which can serve as ground truth
semantics) in Amazon datasets. The results are shown in Table 1. From the result, LMINDEXER
outperforms baseline methods consistently, which demonstrates that the IDs learned by LMINDEXER
are more semantic-indicative.

(a) Semantic ID 1 (b) Semantic ID 2
Figure 3: Qualitative study.

Qualitative results. We conduct case studies on the learned
semantic IDs from LMINDEXER on Amazon-Toys. We ran-
domly select two semantic ID prefixes and print out the shared
keywords of the items corresponding to the two IDs. The
results are shown in Figure 3, where we can find that items in

6



Under review as a conference paper at ICLR 2024

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000

M
ac
ro
-F
1

Step

no recon warmup recon warmup

(a) RC: Macro-F1

0

100

200

300

400

500

0 1000 2000 3000 4000

Pe
rp
le
xi
ty

Step

no codebook warmup codebook warmup

(b) PC: perplexity

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000

M
ac
ro
-F
1

Step

no codebook warmup codebook warmup

(c) PC: Macro-F1

0
20
40
60
80

100
120
140
160

0 5000 10000 15000

Pe
rp
le
xi
ty

Step

no contrastive contrastive

(d) CL: perplexity

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000

Di
ffe

re
nc

e 
Ra

tio

Step

no contrastive contrastive

(e) CL: diff ratio

Figure 4: Semantic indexer training analysis on Amazon-sports. x-axis denotes the training step
and y-axis denotes the evaluation metrics. Reconstructor collapse analysis (a): The reconstructor
suffers from low reconstruction Macro-F1 without reconstructor warm-up (blue). Posterior collapse
analysis (b,c): The semantic indexer suffers from generating homogeneous and meaningless IDs (low
perplexity), and results in low reconstruction Macro-F1, without encoder and codebook warm-up
(blue). Contrastive learning analysis (d,e): Documents sharing prefix ID tend to have similar next
position ID (low diff ratio) and low diversity (low perplexity) without contrastive objective (blue).

the two groups are related to beach/sand set toys, and star war toys respectively. This demonstrates
that the IDs acquired through LMIndexer convey a higher degree of semantic relevance.

4.3 TRAINING STUDY

In this section, we study the optimization process (reconstructor collapse, posterior collapse, and
contrastive loss discussed in Sec 3.2) of our semantic indexer from two perspectives: reconstruction
quality and semantic ID diversity. We serve token reconstruction Macro-F1 (Opitz & Burst, 2019)
and semantic ID perplexity of all the documents (Horgan, 1995) as the main evaluation metrics. A
high-quality semantic indexer should contribute to a high reconstruction quality (high Macro-F1) and
a high semantic ID diversity (high perplexity). We conduct model studies on Amazon-sports shown in
Figure 4 and have the following findings: 1) Reconstructor collapse: The reconstruction Macro-F1 is
low without reconstructor warm-up, shown in Figure 4(a). In this case, the reconstructor suffers from
low reconstruction capability and cannot provide meaningful signals to train the semantic indexer.
2) Posterior collapse: The semantic ID perplexity is low without semantic encoder and codebook
warm-up, shown in Figure 4(b). This indicates that the semantic indexer fails to provide diverse and
meaningful signals to the reconstructor and thus results in low reconstruction macro-F1 in Figure
4(c). 3) Contrastive loss: We propose the contrastive loss in Section 3.2 to push documents sharing
the same semantic ID prefix to obtain different IDs at the current step. We show the effectiveness
of this design in Figure 4(d)(e). Difference ratio (diff ratio) refers to the ratio of # (document pairs
sharing the same ID prefix but having different current step IDs) / # (document pairs sharing the same
ID prefix). From the result, we can find that the difference ratio is high with contrastive loss, which
makes the semantic IDs more distinguishable for different documents.

5 EXPERIMENTS: DOWNSTREAM TASKS

5.1 SEQUENTIAL RECOMMENDATION

Task definitions. Given the historical data of user u’s interacted items Iu, the task is to predict which
next item v the user will interact with in the future.

Datasets. We conduct experiments on three domains from Amazon review dataset (He & McAuley,
2016): Amazon-Beauty, Amazon-Sports, and Amazon-Toys. We keep the users and items that have
at least 5 interactions in their history in the Amazon review dataset. We treat the last interacted item
by each user as the testing sample, the last second interacted item as the validation sample, and the
previous items as training samples. The statistics of the datasets can be found in Appendix Table 6.

Baselines. We compare our method with both popular sequential recommendation models including
HGN (Ma et al., 2019), GRU4Rec (Hidasi et al., 2016), BERT4Rec (Sun et al., 2019) and FDSA
(Zhang et al., 2019), as well as generative recommendation methods with semantic IDs (Rajput et al.,
2023; Tay et al., 2022): rq-VAE indexer and hierarchical clustering (HC) indexer.

Implementation details. For generative recommendation methods (rq-VAE indexer, hierarchical
clustering indexer, and LMINDEXER), we concatenate the textual information (title & description) of
the user’s previously interacted items, serve it as the input text into the generative language model and
ask the model to generate the ID for next item. The baselines are using the same T5-base checkpoint.
We train all the compared generative recommendation methods for 10,000 steps with the learning
rate searched in {1e-2, 1e-3, 1e-4}. The batch size is set to 32, the maximum input text length is set
to 1024 and all experiments are run on an 8 A100 40G machine. The number of beams for beam
search is set to 20.

7



Under review as a conference paper at ICLR 2024

Table 2: Next item recommendation.
Amazon-Beauty Amazon-Sports Amazon-Toys

Model Recall@5 NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@5

HGN 0.0325 0.0206 0.0189 0.0120 0.0321 0.0221
GRU4Rec 0.0164 0.0099 0.0129 0.0086 0.0097 0.0059
BERT4Rec 0.0203 0.0124 0.0115 0.0075 0.0116 0.0071
FDSA 0.0267 0.0163 0.0182 0.0122 0.0228 0.0140

rq-VAE indexer 0.0136 0.0086 0.0067 0.0040 0.0084 0.0055
HC indexer 0.0129 0.0078 0.0076 0.0050 0.0082 0.0054

LMINDEXER 0.0415 0.0262 0.0222 0.0142 0.0404 0.0268

Table 3: Product search.
Amazon-Beauty Amazon-Sports Amazon-Toys

Model NDCG@5 MAP@5 NDCG@5 MAP@5 NDCG@5 MAP@5

bm25 0.2490 0.2152 0.1898 0.1581 0.2085 0.1760
Dual Encoder 0.2565 0.2096 0.2556 0.2223 0.2805 0.2420

rq-VAE indexer 0.2710 0.2469 0.2606 0.2354 0.2511 0.2287
HC indexer 0.2172 0.1959 0.1979 0.1812 0.2379 0.2156

LMINDEXER 0.3187 0.2888 0.2870 0.2607 0.2865 0.2592

Main result. The performance comparisons of different methods are shown in Table 2. From the
results, we can find that: 1) LMINDEXER performs consistently better than all the baseline methods
on all datasets. 2) Although other generative recommendation methods employing semantic IDs
share a similar encoding approach with LMINDEXER, their performance is hampered by limitations
in the quality of their semantic indexers and item IDs.

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

1 2 3

Re
ca

ll@
5

ID length

Figure 5: Semantic ID length
study on Amazon-beauty.

Semantic ID length study. In this section, we analyze how the
length of the semantic IDs affects the downstream recommendation
performance. We conduct experiments with the length of item se-
mantic IDs to be 1, 2, and 3. The results on the Amazon-Beauty
dataset are shown in Figure 5. From the result, we can find that the
model performance increases as the semantic ID length increases.
The result is intuitive, since the longer the semantic ID is, the more
semantic information it can contain.

5.2 PRODUCT SEARCH

Task definitions. Given a query q provided by a user, retrieve relevant item v he/she will be interested
in from the product collection.

Datasets. We conduct experiments on three domains from the Amazon product search dataset (Reddy
et al., 2022): Amazon-Beauty, Amazon-Sports, and Amazon-Toys. To verify if the learned semantic
IDs can generalize to different downstream tasks, we keep the product corpus in the three domains
the same as those in Section 5.1. We select the queries in the original product search dataset (Reddy
et al., 2022) which correspond to ground truth products in the product corpus and use the original
train/test split. The statistics of the datasets can be found in Appendix Table 6.

Baselines. We compare our method with traditional retrieval method bm25 (Robertson et al., 2009),
dual encoder DPR (Karpukhin et al., 2020), as well as generative retrieval methods with semantic
IDs (Rajput et al., 2023; Tay et al., 2022): rq-VAE indexer, and hierarchical clustering (HC) indexer.

Implementation Details. For generative retrieval methods (rq-VAE indexer, hierarchical clustering
indexer, and LMINDEXER), we serve the query as the input text into the generative language model
and ask the model to generate the ID for the relevant items. All baselines initially load the same
T5-base checkpoint. We train all the compared generative retrieval methods for 10,000 steps with
the learning rate searched in {1e-2, 1e-3, 1e-4}. The batch size is set to 32, the maximum input text
length is set to 1024 and all experiments are run on an 8 A100 40G machine. The number of beams
for beam search is set to 20.

Main result. The performance comparisons of different methods are shown in Table 3. From the
results, we can find that: 1) LMINDEXER performs consistently better than all the baseline methods

8



Under review as a conference paper at ICLR 2024

Table 5: Document retrieval.
NQ320k TREC-DL 1M MACRO 1M

Model Recall@1 Recall@10 Recall@10 NDCG@10 MRR@10

bm25 0.2970 0.6030 0.2756 0.2995 0.3144
Dual Encoder 0.5360 0.8300 0.3612 0.3941 0.5561
rq-VAE indexer 0.6480 0.8322 0.4199 0.4579 0.5159
HC indexer 0.6439 0.8213 0.4265 0.4571 0.5126

LMINDEXER 0.6631 0.8589 0.4519 0.4695 0.5485

on all datasets. 2) The dual encoder model DPR is a strong approach, outperforming semantic indexer
baselines (rq-VAE indexer and hierarchical clustering indexer) in many cases.

Table 4: Zero-shot study.
Model Recall@50 Recall@100

rq-VAE indexer 0.0000 0.0105
HC indexer 0.0000 0.0070

LMINDEXER 0.0455 0.0524

Zero-shot study. We conduct zero-shot product search
experiments on the Amazon beauty domain to test if the
semantic indexer finetuned on downstream tasks can gen-
eralize to items that are not seen during semantic index
self-supervised training and downstream finetuning. The
results are shown in Table 4. From the results, we can find
that compared with other semantic indexer methods, LMINDEXER can generalize better to unseen
documents, demonstrating its strong semantic capturing capability.
5.3 DOCUMENT RETRIEVAL

Task definitions. Given a query q, retrieve relevant documents v from a document corpus.

Datasets. We conduct experiments on Natural Question (Kwiatkowski et al., 2019) and MS MACRO
(Nguyen et al., 2016). MS MACRO dev and TREC-DL (Craswell et al., 2020) are used as the
evaluation set for MS MACRO. Following Pradeep et al. (2023), we construct an MS MACRO-1M
by extracting a 1 million document subset from the original collection and keeping the original
training and validation labels. We merge the TREC-DL 2019 and TREC-DL 2020 datasets, keep the
documents appearing in MACRO 1M, and develop a larger TREC-DL dataset. The detailed statistics
of all the datasets can be found in Appendix Table 7.

Baselines. We compare our method with traditional retrieval method bm25 (Robertson et al., 2009),
dual encoder DPR (Karpukhin et al., 2020), as well as generative retrieval methods with semantic
IDs (Rajput et al., 2023; Tay et al., 2022): rq-VAE indexer and hierarchical clustering indexer.

Implementation Details. For generative retrieval with semantic ID methods (rq-VAE indexer,
hierarchical clustering indexer, and LMINDEXER), we serve the query as the input text into the
semantic indexer and ask the model to generate the ID for the relevant documents. Following (Wang
et al., 2022), we use docT5query (Nogueira et al., 2019) to generate pseudo queries for each document
in NQ and MS MACRO for training augmentation. The number of pseudo queries for each document
is set to 15 and 20 respectively. We train all the compared generative retrieval methods for 250,000
and 500,000 steps in NQ and MS MACRO respectively, with the learning rate searched in {5e-4, 1e-3,
5e-3}. The batch size is set to 256, the maximum input text length is set to 32 and all experiments are
run on an 8 A100 40G machine. The number of beams for beam search is set to 20. All baselines
initially load the same T5-base checkpoint.

Main result. The performance comparisons of different methods are shown in Table 5. From the
results, we can find that: 1) LMINDEXER performs consistently better than all the baseline methods
except on MACRO 1M. 2) In the large corpus dataset MACRO 1M, the dual encoder method, i.e.,
DPR, is still the best choice, leaving room for better semantic indexer methods to be developed.

6 CONCLUSIONS
In this paper, we introduce LMINDEXER, a self-supervised framework to learn semantic IDs with a
generative language model, learning the document’s discrete semantic embeddings and its hierarchical
structure simultaneously. We address the challenge of sequential discrete ID by introducing a semantic
indexer capable of generating neural discrete representations with progressive training and contrastive
learning. In response to the semantic supervision deficiency, we propose to train the model using a
self-supervised objective focused on reconstructing documents. The learned semantic indexer can
be fine-tuned for various downstream tasks, such as recommendation and retrieval. We conduct
experiments across three tasks including recommendation, product search, and document retrieval,
using five datasets from diverse domains, where LMINDEXER outperforms competitive baselines
significantly and consistently.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Normand J Beaudry and Renato Renner. An intuitive proof of the data processing inequality. Quantum
Information & Computation, 12(5-6):432–441, 2012.

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Scott Yih, Sebastian Riedel, and Fabio
Petroni. Autoregressive search engines: Generating substrings as document identifiers. Advances
in Neural Information Processing Systems, 35:31668–31683, 2022.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. ICLR, 2020.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M Voorhees. Overview of
the trec 2019 deep learning track. arXiv preprint arXiv:2003.07820, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. NAACL, 2019.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In EMNLP, 2021.

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging inference
networks and posterior collapse in variational autoencoders. In International Conference on
Learning Representations, 2018.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In WWW, pp. 507–517, 2016.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In ICLR, 2016.

John Horgan. From complexity to perplexity. Scientific American, 272(6):104–109, 1995.

Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. How to index item ids for recom-
mendation foundation models. arXiv preprint arXiv:2305.06569, 2023.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2016.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, 2020.

Kayvan Kousha and Mike Thelwall. Google scholar citations and google web/url citations: A
multi-discipline exploratory analysis. Journal of the American Society for Information Science
and Technology, 58(7):1055–1065, 2007.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

10



Under review as a conference paper at ICLR 2024

Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed Malik, Zhicheng Dou, Paul Bennett, Tie-Yan
Liu, and Arnold Overwijk. Less is more: Pretrain a strong siamese encoder for dense text retrieval
using a weak decoder. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 2780–2791, 2021.

Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential recommendation. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 825–833, 2019.

Xinyu Ma, Ruqing Zhang, Jiafeng Guo, Yixing Fan, and Xueqi Cheng. A contrastive pre-training
approach to discriminative autoencoder for dense retrieval. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, pp. 4314–4318, 2022.

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. Ms marco: A human-generated machine reading comprehension dataset. 2016.

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. From doc2query to doctttttquery. Online preprint,
6:2, 2019.

Juri Opitz and Sebastian Burst. Macro f1 and macro f1. arXiv preprint arXiv:1911.03347, 2019.

Ronak Pradeep, Kai Hui, Jai Gupta, Adam D Lelkes, Honglei Zhuang, Jimmy Lin, Donald Metzler,
and Vinh Q Tran. How does generative retrieval scale to millions of passages? arXiv preprint
arXiv:2305.11841, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H Keshavan, Trung Vu, Lukasz Heldt,
Lichan Hong, Yi Tay, Vinh Q Tran, Jonah Samost, et al. Recommender systems with generative
retrieval. arXiv preprint arXiv:2305.05065, 2023.

Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
ESCI benchmark for improving product search, 2022.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the
28th ACM international conference on information and knowledge management, pp. 1441–1450,
2019.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin
Chen, Dawei Yin, Maarten de Rijke, and Zhaochun Ren. Learning to tokenize for generative
retrieval. arXiv preprint arXiv:2304.04171, 2023.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe
Zhao, Jai Gupta, et al. Transformer memory as a differentiable search index. Advances in Neural
Information Processing Systems, 35:21831–21843, 2022.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

11



Under review as a conference paper at ICLR 2024

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In Proceedings of the 26th annual international
conference on machine learning, pp. 1073–1080, 2009.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Qi Chen, Yuqing Xia, Cheng-
min Chi, Guoshuai Zhao, Zheng Liu, et al. A neural corpus indexer for document retrieval.
Advances in Neural Information Processing Systems, 35:25600–25614, 2022.

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. Retromae: Pre-training retrieval-oriented
language models via masked auto-encoder. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 538–548, 2022.

Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Deqing Wang, Guanfeng Liu,
Xiaofang Zhou, et al. Feature-level deeper self-attention network for sequential recommendation.
In IJCAI, pp. 4320–4326, 2019.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DATASETS

For recommendation and product search, we conduct experiments on three domains from the Amazon
review dataset (He & McAuley, 2016): Amazon-Beauty, Amazon-Sports, and Amazon-Toys. For
recommendation, we keep the users and items with at least 5 interactions in their history in the
Amazon review dataset. We treat the last interacted item by each user as the testing sample, the last
second interacted item as the validation sample, and the previous items as training samples. For
product search, to verify if the learned semantic IDs can be generalized to different downstream
tasks, we keep the product corpus in the three domains the same as those in the recommendation
experiments. We keep the queries in the original product search dataset (Reddy et al., 2022) which
correspond to ground truth products in the product corpus. We use the original train/test split and
randomly select 1/8 queries from the training set to be the validation set.

The statistics of the recommendation and product search datasets can be found in Table 6.

Table 6: Dataset Statistics
Dataset # Items # Users # Rec history (train/dev/test) # Search query (train/dev/test) # Search labels (train/dev/test)

Amazon-Beauty 12,101 22,363 111,815 / 22,363 / 22,363 1,049 / 150 / 338 1,907 / 268 / 582
Amazon-Sports 18,357 35,598 177,990 / 35,598 / 35,598 1,299 / 186 / 443 2,209 / 311 / 764
Amazon-Toys 11,924 19,412 97,060 / 19,412 / 19,412 1,010 / 145 / 351 1,653 / 250 / 594

For document retrieval, we conduct experiments on Natural Question (NQ) (Kwiatkowski et al., 2019)
and MS MACRO (Nguyen et al., 2016). For NQ, we keep the original training and testing labels
and put all the documents together to form the text corpus. For MS MACRO, following Pradeep
et al. (2023), we construct an MS MACRO-1M by extracting a 1 million document subset from the
original collection and keeping the original training and validation labels. For TREC-DL, we merge
the TREC-DL 2019 and TREC-DL 2020 datasets and keep the documents appearing in MACRO
1M. MS MACRO dev and TREC-DL Craswell et al. (2020) are used as the evaluation set for MS
MACRO.

The statistics of the document retrieval datasets can be found in Table 7.

Table 7: Dataset Statistics
Dataset # Documents # Query (train/test) # Search labels (train/test)

NQ320k 109,739 307,373 / 7,830 307,373 / 7,830
MACRO 1M 1,000,000 502,939 / 6,980 532,751 / 7437
TREC-DL 1M 1,000,000 502,939 / 93 532,751 / 1,069

A.2 SUMMARY OF LMINDEXER’S SELF-SUPERVISED ID LEARNING PROCEDURE

A.3 IMPLEMENTATION DETAILS

In self-supervised semantic indexer training, we use T5-base (Raffel et al., 2020) as our base model.
The length of the semantic IDs is set as T “ 3. The final position is added to distinguish documents
sharing the first two position ID prefixes. For t “ 1 and t “ 2, we provide 50% hints and 30% hints
for reconstruction respectively. We have different codebook embeddings initialized for different
positions t and the size of the codebook is set to be in {512, 5,120, 51,200} depending on the size of
the document corpus. We optimize the model with AdamW and search the learning rate in {1e-3, 2e-3,
5e-3}. The training epochs are set to be 30, 10, and 5 for Amazon datasets, NQ, and MS MACRO
respectively. The hyper-parameter configuration for self-supervised semantic indexer training can be
found in Table 8.

In the downstream recommendation task, for generative recommendation methods with semantic
IDs (rq-VAE indexer, hierarchical clustering indexer, and LMINDEXER), we concatenate the textual
information (title & description) of the user’s previously interacted items, serve it as the input text into
the generative language model and ask the model to generate the ID for next item. The baselines are
using the same T5-base checkpoint. We train all the compared generative recommendation methods

13



Under review as a conference paper at ICLR 2024

Algorithm 1: Self-supervised ID Learning Procedure of LMINDEXER

Input :The document corpus tdu.
Output :The semantic IDs tcdu of the documents tdu. A semantic indexer SemIndexerp¨q which contains a

semantic encoder SemEncθp¨q and codebooks tEt
ut. A reconstruction model Reconϕp¨q.

begin
// initialize semantic encoder
SemEncθp¨q Ð T5-base ;
// reconstructor warm up
minϕ L0

recon “ ´
ř

d

ř

wPdzd0
h

logPreconpw|d0h q ;
for t “ 1, ..., T do

// semantic encoder & codebook warm up
ht

d Ð SemEncθpd, căt
d q ;

zw Ð Reconϕpq “ tcăt
d ,ht

du, k “ dt
h, v “ dt

hq ;
minθ,ϕ Lt

“ Lt
recon ` Lt

contrastive ` Lt
commitment ;

ht
d Ð SemEncθpd, căt

d q ;
Et

Ð KMeansptht
duq ;

// whole framework training
zw Ð Reconϕpq “ tcăt

d , ĉtdu, k “ dt
h, v “ dt

hq ;
minθ,ϕ,Et Lt

“ Lt
recon ` Lt

contrastive ` Lt
commitment ;

ctd Ð argmaxjPspctd “ j|căt
d , dq ;

end
return tcdu, SemIndexerp¨q ;

end

Table 8: Hyper-parameter configuration for self-supervised semantic ID learning.
Parameter Amazon-Beauty Amazon-Sports Amazon-Toys NQ MACRO-1M

Optimizer Adam Adam Adam Adam Adam
Adam ϵ 1e-6 1e-6 1e-6 1e-6 1e-6

Adam pβ1, β2q (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Batch size 128 128 128 128 128

Max epochs 30 30 30 10 5
Max sequence length 512 512 512 512 128

ID length 3 3 3 3 3
Codebook size 512 512 512 5120 51200

Hint ratio 50%, 30% 50%, 30% 50%, 30% 50%, 30% 50%, 30%
Learning rate searched in {1e-3, 2e-3, 5e-3}
Backbone LM T5-base

for 10,000 steps with the learning rate searched in {1e-2, 1e-3, 1e-4}. The batch size is set to be
32, the maximum input text length is set to be 1024 and all experiments are run on an 8 A100 40G
machine. The number of beams for beam search is set to 20. The hyper-parameter configuration for
generative recommendation training can be found in Table 9.

In the downstream product search task, for generative retrieval methods with semantic IDs (rq-VAE
indexer, hierarchical clustering indexer, and LMINDEXER), we serve the query as the input text
into the generative language model and ask the model to generate the ID for the relevant items. All
baselines initially load the same T5-base checkpoint. We train all the compared generative retrieval
methods for 10,000 steps with the learning rate searched in {1e-2, 1e-3, 1e-4}. The batch size is set
to 32, the maximum input text length is set to be 1024 and all experiments are run on an 8 A100 40G
machine. The number of beams for beam search is set to 20. The hyper-parameter configuration for
generative product search training can be found in Table 10.

In the downstream document retrieval task, for generative retrieval methods with semantic IDs (rq-
VAE indexer, hierarchical clustering indexer, and LMINDEXER), we serve the query as the input text
into the semantic indexer and ask the model to generate the ID for the relevant documents. Following
(Wang et al., 2022), we use docT5query (Nogueira et al., 2019) to generate pseudo queries for each
document in NQ and MS MACRO for training augmentation. The number of pseudo queries for each
document is set to be 15 and 20 respectively. We train all the compared generative retrieval methods
for 250,000 and 500,000 steps in NQ and MS MACRO respectively, with the learning rate searched
in {5e-4, 1e-3, 5e-3}. The batch size is set to 2048, the maximum input text length is set to 32 and
all experiments are run on an 8 A100 40G machine. The number of beams for beam search is set to

14



Under review as a conference paper at ICLR 2024

Table 9: Hyper-parameter configuration for generative recommendation.
Parameter Amazon-Beauty Amazon-Sports Amazon-Toys

Optimizer Adam Adam Adam
Adam ϵ 1e-6 1e-6 1e-6

Adam pβ1, β2q (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Batch size 32 32 32
Max steps 10,000 10,000 10,000

Max sequence length 1024 1024 1024
Bean size 20 20 20

Learning rate searched in {1e-2, 1e-3, 1e-4}
Backbone LM T5-base

Table 10: Hyper-parameter configuration for generative product search.
Parameter Amazon-Beauty Amazon-Sports Amazon-Toys

Optimizer Adam Adam Adam
Adam ϵ 1e-6 1e-6 1e-6

Adam pβ1, β2q (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Batch size 32 32 32
Max steps 10,000 10,000 10,000

Max sequence length 1024 1024 1024
Bean size 20 20 20

Learning rate searched in {1e-2, 1e-3, 1e-4}
Backbone LM T5-base

20. All baselines initially load the same T5-base checkpoint. The hyper-parameter configuration for
generative document retrieval training can be found in Table 11.

A.4 SEMANTIC ID LENGTH STUDY

In this section, we analyze how the length of the semantic IDs affects the downstream recommendation
performance. We conduct experiments with the length of item semantic IDs to be 1, 2, and 3. The
results on the Amazon-Beauty, Amazon-Sports, and Amazon-Toys datasets are shown in Figure 6.
From the result, we can find that the model performance increases as the semantic ID length increases.
The result is intuitive, since the longer the semantic ID is, the more semantic information it can
contain.

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

1 2 3

Re
ca

ll@
5

ID length

(a) beauty

0

0.005

0.01

0.015

0.02

0.025

1 2 3

Re
ca

ll@
5

ID length

(b) sports

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

1 2 3

Re
ca

ll@
5

ID length

(c) toys

Figure 6: Semantic ID length study on recommendation.

A.5 COMPARISON WITH SEAL

We add experiments to compare our method with SEAL (Bevilacqua et al., 2022) on Amazon product
search datasets and NQ320k dataset. SEAL is an autoregressive search engine that uses Ngrams
as document identifiers. The results are shown in Table 12. From the result, we can find that our
method outperforms SEAL significantly. The main reason is that after the self-supervised semantic
ID learning, LMIndexer can generate higher quality semantic ID as identifiers for documents than
Ngrams used in SEAL.

15



Under review as a conference paper at ICLR 2024

Table 11: Hyper-parameter configuration for generative retrieval.
Parameter NQ MACRO-1M

Optimizer Adam Adam
Adam ϵ 1e-6 1e-6

Adam pβ1, β2q (0.9, 0.999) (0.9, 0.999)
Batch size 2,048 2,048
Max steps 250,000 500,000

Max sequence length 32 32
Bean size 20 20

Learning rate searched in {5e-4, 1e-3, 5e-3}
Backbone LM T5-base

Table 12: Comparison with SEAL (Bevilacqua et al., 2022). Recall@1 and NDCG@5 are used as
metrics for NQ320K and Amazon datasets respectively.

Model NQ320k Amazon-Beauty Amazon-Sports Amazon-Toys

bm25 0.2970 0.2490 0.1898 0.2085
Dual Encoder 0.5360 0.2565 0.2556 0.2805

rq-VAE indexer 0.6480 0.2710 0.2606 0.2511
HC indexer 0.6439 0.2172 0.1979 0.2379
SEAL 0.5698 0.1271 0.2011 0.1035

LMINDEXER 0.6631 0.3187 0.2870 0.2865

A.6 DUPLICATION STUDY OF SEMANTIC IDS

The duplication issue is very important in learning self-supervised semantic IDs. To alleviate this
issue, we propose a contrastive objective in Section 3.2 to promote distinction between documents
that previously shared the same prefix and encourage them to obtain different ID for the next position
(alleviate duplication). The effectiveness of this design is shown in Figure 8. We can find that during
self-supervised learning, if the contrastive objective is added, the difference ratio on next ID position
of documents sharing ID prefix is larger and the diversity (perplexity) of IDs on the next position is
larger, which means that the duplication issue is alleviated.

We also plot the density curve of the number of documents assigned to each semantic ID after
self-supervised learning. The results are shown in Figure 7 We can find that the semantic IDs learned
by LMIndexer are quite distinguishable since most IDs contain less than 5 documents. While it
is nearly impossible to guarantee zero duplication after self-supervised training since there can be
documents that have nearly the same semantics, we simply add another final ID position to distinguish
them.

0 10 20 30 40 50
#Doc in each ID

0.0

0.1

0.2

0.3

0.4

De
ns

ity

(a) Beauty

0 10 20 30 40 50 60 70 80
#Doc in each ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

(b) Sports

0 5 10 15 20 25 30 35
#Doc in each ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

(c) Toys

Figure 7: Study of LMINDEXER’s semantic ID duplication problem.

A.7 MORE QUALITY STUDIES OF SEMANTIC ID

In this section, we conduct a detailed study on the quality of the learned semantic IDs from LMIN-
DEXER on Amazon-Beauty dataset. For each product d in the dataset, its learned semantic ID is

16



Under review as a conference paper at ICLR 2024

0
20
40
60
80

100
120
140
160

0 5000 10000 15000

Pe
rp
le
xi
ty

Step

no contrastive contrastive

(a) CL: perplexity

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000

Di
ffe

re
nc

e 
Ra

tio

Step

no contrastive contrastive

(b) CL: diff ratio

Figure 8: Contrastive learning analysis: Documents sharing prefix ID tend to have similar next
position ID (low diff ratio) and low diversity (low perplexity) without contrastive objective (blue).

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Probability

Sets & Kits

Maternity

Eyes

Hair Color

Lips

Face

Body

Styling Products

Cleansers

Conditioners

Scrubs & Body Treatments

Bath

Bags & Cases

Makeup Brushes & Tools

Makeup Sets

Nails

Nail Tools

Hands & Nails

Ca
te

go
ry

Probabilities by Category and Semantic ID
(0, *, *)
(1, *, *)
(2, *, *)
(3, *, *)

Figure 9: The ground-truth category distribution for all the items in the Amazon-Beauty dataset is
colored by the value of the first ID c1.

represented as cd “ c1dc
2
dc

3
d. We randomly select four c1d values (i.e., 0, 1, 2, 3) and analyze the

products whose c1d P t0, 1, 2, 3u. The results are shown in Figure 9 and Figure 10.

In Figure 9, we summarize each item’s category using c1 to visualize c1-specific categories in the
overall category distribution of the dataset. As shown in Figure 9, c1 captures the coarse-grained
category of the item. For example, c1 “ 1 contains most of the products related to “Bath”. Similarly,
majority of items with c1 “ 0 are “Tool” and “Make-up” products for nails.

We also visualize the hierarchical structure of LMINDEXER learned Semantic IDs by fixing c1 and
visualizing the category distribution for all possible values of c2 in Figure 10. We again found that
the second ID c2 further categorizes the coarse-grained semantics captured with c1 into fine-grained
categories.

A.8 CODEBOOK SIZE STUDY

The codebook size is set as a hyperparameter in our model design. We conduct experiments on
Amazon-Beatuy dataset to study how codebook size will influence the quality of the learned semantic
indexer LMINDEXER. The results are shown in Figure 11. From the result, we can find that the

17



Under review as a conference paper at ICLR 2024

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Probability

Cosmetic Bags

Nail Art

Nail Art Equipment

Nail Brushes

Nail Files & Buffers

Nail Polish

Nail Treatments

Refillable Containers

Sets & Kits

Top & Base Coats

Ca
te

go
ry

Probabilities by Category and Semantic ID
Semantic ID

(0, 0, *)
(0, 1, *)
(0, 2, *)
(0, 3, *)
(0, 4, *)
(0, 5, *)
(0, 6, *)
(0, 7, *)
(0, 8, *)
(0, 9, *)
(0, 10, *)
(0, 11, *)
(0, 12, *)
(0, 13, *)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Probability

Body Scrubs

Body Washes

Bubble Bath

Cleansers

Creams & Moisturizers

Creams, Gels & Lotions

Exfoliators & Scrubs

Moisturizers

Soaps

Treatments & Masks

Ca
te

go
ry

Probabilities by Category and Semantic ID
Semantic ID

(1, 0, *)
(1, 1, *)
(1, 2, *)
(1, 3, *)
(1, 4, *)
(1, 5, *)
(1, 6, *)
(1, 7, *)
(1, 8, *)
(1, 9, *)
(1, 10, *)
(1, 11, *)
(1, 12, *)
(1, 13, *)
(1, 14, *)
(1, 15, *)
(1, 16, *)
(1, 17, *)
(1, 18, *)

0.00 0.05 0.10 0.15 0.20 0.25
Probability

Blush

Chemical Hair Dyes

Concealers & Neutralizers

Eye Shadow

Foundation

Liner & Shadow Combinations

Lip Glosses

Lip Stains

Lipstick

Lipstick Primers

Mascara

Nail Polish

Powder

Ca
te

go
ry

Probabilities by Category and Semantic ID
Semantic ID

(2, 0, *)
(2, 1, *)
(2, 2, *)
(2, 3, *)
(2, 4, *)
(2, 5, *)
(2, 6, *)
(2, 7, *)
(2, 8, *)
(2, 9, *)
(2, 10, *)
(2, 11, *)
(2, 12, *)
(2, 13, *)
(2, 14, *)
(2, 15, *)
(2, 16, *)
(2, 17, *)
(2, 18, *)
(2, 19, *)
(2, 20, *)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Probability

Combinations

Creams

Creams & Moisturizers

Dark Circle Treatments

Fillers

Moisturizers

Oils & Serums

Puffiness Treatments

Sets & Kits

Treatments & Masks

Ca
te

go
ry

Probabilities by Category and Semantic ID
Semantic ID

(3, 0, *)
(3, 1, *)
(3, 2, *)
(3, 3, *)
(3, 4, *)
(3, 5, *)
(3, 6, *)
(3, 7, *)
(3, 8, *)
(3, 9, *)
(3, 10, *)
(3, 11, *)
(3, 12, *)
(3, 13, *)
(3, 14, *)
(3, 15, *)
(3, 16, *)
(3, 17, *)
(3, 18, *)

Figure 10: The category distributions for items having the Semantic ID as (c1, ˚, ˚), where c1 P {0, 1,
2, 3}. The categories are colored based on the second semantic token c2.

18



Under review as a conference paper at ICLR 2024

downstream task performance increases as codebook size increases. It is intuitive, since the larger the
codebooks are, the more information they can contain.

0

0.01

0.02

0.03

0.04

0.05

0.06

128 256 512

Re
ca

ll@
5

Codebook Size

(a) Recommendation

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

128 256 512

N
DC

G
@

5

Codebook Size

(b) Product Search

Figure 11: Codebook size study on Amazon-Beauty.

A.9 DEFINITION OF AMI

The Adjusted Mutual Information (AMI) score (Vinh et al., 2009) is a measure used in statistics
and information theory to quantify the agreement between two clusters (in our experiments, the two
clusters refer to ground truth category clusters and Semantic ID clusters) while correcting for chance.
It is an adjustment of the Mutual Information (MI) score that accounts for the fact that MI is generally
higher for clusters with a larger number of clusters, thus providing a normalized score that is more
comparable across different clusters.

A.10 LATENCY ANALYSIS

We conduct latency analysis to compare the time cost of search inference for different methods on
Amazon-Beauty dataset. We measure the total latency of product search on the whole Amazon-Beauty
test set. The results are shown in Table 13. From the result, the inference latency of our method is
comparable with rq-VAE indexer and HC indexer and is much smaller than SEAL.

Table 13: Latency analysis.
Model Latency

rq-VAE indexer 13.66s
HC indexer 12.85s
SEAL 21min

LMINDEXER 12.21s

A.11 MORE BASELINES FOR SEMANTIC ID QUALITY STUDY (SECTION 4.2)

In this section, we advance the rq-VAE indexer and HC indexer by adopting embeddings from
dual-encoder trained on target corpus with contrastive learning Gao et al. (2021) rather than adopting
embeddings from off-the-shelf text encoders. In this case, the embeddings are adapted to the target
corpus domain and are of better quality. We show the quantitative evaluation of semantic IDs
generated by these baselines in Table 14. From the result, we can find that the semantic IDs generated
by embeddings obtained after in-domain contrastive learning are better than those generated by
embeddings from off-the-shelf text encoders. However, LMIndexer can outperform both baselines,
which demonstrates its effectiveness in learning semantic IDs with self-supervision.

A.12 STUDY OF THE NUMBER OF LAYERS IN THE RECONSTRUCTOR

We conduct a study to explore how the reconstructors of different capabilities can affect the learned
semantic indexer in the self-supervised ID learning phase. We try reconstructors with 2 layers and 3
layers in Amazon-beauty dataset and the results are shown in Table 15. From the result, we can find
that as the reconstructor layer increases (the reconstructor becomes more powerful), the quality of

19



Under review as a conference paper at ICLR 2024

Table 14: More baselines on ID quantitative study (AMI).
Model Beauty Sports Toys

rq-VAE indexer (BERT) 0.2654 0.2774 0.3154
HC indexer (BERT) 0.2428 0.2387 0.2729
rq-VAE indexer (In-domain Contrastive) 0.3100 0.2695 0.3126
HC indexer (In-domain Contrastive) 0.2771 0.2622 0.2968

LMINDEXER 0.3563 0.4163 0.3536

the semantic indexer and its generated semantic IDs decreases. This is because more knowledge is
learned inside the reconstructor rather than in the semantic indexer during self-supervised learning.

Table 15: Study of the number of layers in reconstructor on Amazon-Beauty dataset. AMI, Recall@5,
and NDCG@5 are used as metrics for ID quality study, recommendation, and retrieval.

Model ID quality Recommendation Retrieval

LMINDEXER (Recon 1 layer) 0.3563 0.0415 0.3187
Recon 2 layers 0.2390 0.0284 0.2528
Recon 3 layers 0.1679 0.0281 0.2522

A.13 HUMAN EVALUATION OF SEMANTIC ID QUALITY

In this section, we conduct a human evaluation of the learned semantic IDs from different methods.
We adopt a three-step pipeline to conduct the evaluation: 1) We Randomly select product pairs in the
Amazon-sports dataset that share the first two IDs că2 “ c1c2 (20 pairs for each method). 2) We ask
four trained annotators to evaluate if the two products in each pair are semantically related to each
other. 3) We finally calculate the accuracy of each method. The results are shown in Figure 16. From
the result, our LMIndexer can outperform baseline methods by a large margin.

Table 16: Human Evaluation of Semantic ID quality.
Model Accuracy

rq-VAE indexer 0.7375
HC indexer 0.5375

LMINDEXER 0.7750

20


	Introduction
	Related Work
	The LMIndexer Framework
	Learning semantic IDs with sequential discrete auto-reconstruction
	Training self-supervised semantic indexer
	Finetuning semantic indexer on downstream tasks

	Experiments: Learning self-supervised semantic ID
	Experimental setup
	Semantic ID Quality Analysis
	Training Study

	Experiments: Downstream tasks
	Sequential recommendation
	Product search
	Document retrieval

	Conclusions
	Appendix
	Datasets
	Summary of LMIndexer's Self-supervised ID Learning Procedure
	Implementation details
	Semantic ID length study
	Comparison with SEAL
	Duplication study of Semantic IDs
	More Quality Studies of Semantic ID
	Codebook size Study
	Definition of AMI
	Latency Analysis
	More baselines for Semantic ID Quality Study (Section 4.2)
	Study of the number of layers in the reconstructor
	Human evaluation of Semantic ID quality


