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Abstract
Molecular property prediction (MPP) is a crucial
task in the drug discovery pipeline, which has re-
cently gained considerable attention thanks to ad-
vances in deep neural networks. However, recent
research has revealed that deep models struggle
to beat traditional non-deep ones on MPP. In this
study, we benchmark 12 representative models
(3 non-deep models and 9 deep models) on 14
molecule datasets. Through the most comprehen-
sive study to date, we make the following key ob-
servations: (i) Deep models are generally unable
to outperform non-deep ones; (ii) The failure of
deep models on MPP cannot be solely attributed
to the small size of molecular datasets. What mat-
ters is the irregular molecule data pattern; (iii)
In particular, tree models using molecular finger-
prints as inputs tend to perform better than other
competitors. Furthermore, we conduct extensive
empirical investigations into the unique patterns
of molecule data and inductive biases of various
models underlying these phenomena.

1. Introduction
Molecular Property Prediction (MPP) is a critical task in
drug discovery, aimed at identifying molecules with desir-
able pharmacological and ADMET (absorption, distribu-
tion, metabolism, excretion, and toxicity) properties. Ma-
chine learning models have been widely used in this fast-
growing field, with two types of models being commonly
employed: traditional non-deep models and deep models.
In non-deep models, molecules are fed into traditional ma-
chine learning models such as Random Forest and Support
Vector Machine in the format of computed or handcrafted
molecular fingerprints (Todeschini & Consonni, 2010). The
other group utilizes deep models to extract expressive repre-
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sentations for molecules in a data-driven manner. Specifi-
cally, the Multi-Layer Perceptron (MLP) could be applied to
computed or handcrafted molecular fingerprints; Sequence-
based neural architectures including Recurrent Neural Net-
works (RNNs) (Medsker & Jain, 1999), 1D Convolutional
Neural Networks (1D CNNs) (Gu et al., 2018), and Trans-
formers (Honda et al., 2019; Rong et al., 2020) are exploited
to encode molecules represented in Simplified Molecular-
Input Line-Entry System (SMILES) strings (Weininger
et al., 1989). Later, it is argued that molecules can be natu-
rally represented in graph structures with atoms as nodes and
bonds as edges. This inspires a line of works to leverage
such structured inductive bias for better molecular repre-
sentations (Gilmer et al., 2017; Xiong et al., 2019; Yang
et al., 2019; Song et al., 2020). The key advancements
underneath these approaches are Graph Neural Networks
(GNNs), which consider graph structures and attributive
features simultaneously by recursively aggregating node
features from neighborhoods (Kipf & Welling, 2017; Velick-
ovic et al., 2018; Hamilton et al., 2017). More recently,
researchers incorporate 3D conformations of molecules into
their representations for better performance, whereas prag-
matic considerations such as calculation cost, alignment
invariance, and uncertainty in conformation generation lim-
ited the practical applicability of these models (Axen et al.,
2017; Gasteiger et al., 2020; Schuett et al., 2017; Gasteiger
et al., 2021; Liu et al., 2022). We summarize the widely-
used molecular descriptors and their corresponding mod-
els in our benchmark, as shown in Figure 1. Despite the
fruitful progress, previous studies (Mayr et al., 2018; Yang
et al., 2019; Valsecchi et al., 2022; Jiang et al., 2021; van
Tilborg et al., 2022; Janela & Bajorath, 2022) have observed
that deep models struggled to outperform non-deep ones
on molecules. However, these studies neither consider the
emerging powerful deep models (e.g., Transformer (Honda
et al., 2019), SphereNet (Liu et al., 2021)) nor explore vari-
ous molecular descriptors (e.g., 3D molecular graph). Also,
they did not investigate the reasons why deep models often
fail on molecules.

To narrow this gap, we present the most comprehensive
benchmark study on molecular property prediction to date,
with a precise methodology for dataset inclusion and hy-
perparameter tuning. Our empirical results confirm the
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Figure 1. Exemplary molecular descriptors and their corresponding models in our benchmark. SVM: Support Vector Machine (Zernov
et al., 2003); RF: Random Forest (Svetnik et al., 2003); XGB: eXtreme Gradient Boosting (Chen & Guestrin, 2016); MLP: Multi-Layer
Perceptron; CNN: 1D Convolution Neural Network (Kimber et al., 2021); RNN: Recurrent Neural Network (GRU) (Mulder et al., 2015);
TRSF: TRanSFormer (Vaswani et al., 2017); GCN: Graph Convolution Network (Kipf & Welling, 2017); MPNN: Message-Passing
Neural Network (Gilmer et al., 2017); GAT: Graph Attention neTwork (Velickovic et al., 2018); AFP: Attentive FP (Xiong et al., 2020);
SPN: SPhereNet (Liu et al., 2022). The above-mentioned abbreviations are applicable throughout the entire paper.

observations of previous studies, namely that deep models
generally cannot outperform traditional non-deep counter-
parts. Moreover, we observe several interesting phenom-
ena that challenge the prevailing beliefs of the community,
which can guide optimal methodology design for future
studies. Furthermore, we transform the original molecular
data to observe the performance changes of various models,
uncovering the unique patterns of molecular data and the
differing inductive biases of various models. These in-depth
empirical studies shed light on the benchmarking results.

2. Benchmarking Results.
In this section, we present a benchmark on 14 molecular
datasets with 12 representative models.

2.1. Observations

Table 1 documents the benchmark results for various mod-
els and datasets, from which we can make the following
Observations:

Observation 1. Deep models underperform non-deep
counterparts in most cases.
As can be observed in Table 1, non-deep models rank as the
top one on 10/14 datasets. On some datasets such as MUV,
QM7, and BACE, three non-deep models can even beat any
deep models.

Observation 2. It is irregular data patterns, NOT solely
the small size of molecular datasets to blame for the fail-
ure of deep models!
Intuitively, many previous works (Goh et al., 2017; Yang
et al., 2019) pointed out that the small size of molecular
datasets could be a bottleneck for deep learning models.
Here, we provide a second voice to such pre-dominant be-
liefs with empirical evidence. As shown in Table 1, all the
non-deep models can outperform any deep ones on some
larger-scale datasets (e.g., MUV and QM 7). However, in
some small datasets (e.g., ClinTox and ESOL), some deep
models can beat partial non-deep ones. Therefore, what

matters is the irregular molecule data pattern, not solely the
dataset size. We will provide an in-depth analysis to the
unique molecule data pattern in Sec. 3.

Observation 3. Tree models (XGB and RF) exhibit a par-
ticular advantage over other models.
In the experiments shown in Table 1, we can see that the
tree-based models consistently rank among the top three
on each dataset. Additionally, tree models rank as the top
one on 8/15 datasets. We will explore why tree models are
well-suited for molecular fingerprints in Sec. 3.

3. Why above phenomena would occur?
In this section, we attempt to understand which characteris-
tics of molecular data lead to the failure of powerful deep
models. Also, we aim to understand the inductive biases of
tree models that make them well-suited for molecules, and
how they differ from the inductive biases of deep models.

Explanation 1. Unlike image data, molecular data pat-
terns are non-smooth. Deep models struggle to learn
non-smooth target functions that map molecules to prop-
erties.
We design two experiments to verify the above explanation,
i.e., increasing or decreasing the level of data smoothing in
the molecular datasets. Firstly, we transform the molecular
data by smoothing the labels based on similarities between
molecules. Specifically, let D denote the molecular dataset
and (xi, yi) ∈ D be i-th molecule and its label, we smooth
the target function as follows,

ŷi =

∑
xj∈Nxi

s(xi, xj)yj∑
xj∈Nxi

s(xi, xj)
, (1)

where s(·, ·) denotes the Tanimoto coefficient of the
extended connectivity fingerprints (ECFP) between two
molecules that can be considered as their structural sim-
ilarity. Nxi

is the k-nearest neighbor set of xi (includ-
ing xi) picked from the whole dataset based on the struc-
tural similarities. ŷi denotes the label after smoothing. We
smooth all the molecules in the dataset in this way and use
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Table 1. The comparison of representative models on multiple molecular datasets. The standard deviations can be seen in the appendix for
the limited space. No.: Number of the molecules in the datasets. The top-3 performances on each dataset are highlighted with the grey
background. The best performance is highlighted with bold. Kindly note that ‘TRSF’ denotes the transformer that has been pre-trained
on 861, 000 molecular SMILES strings. The results on QM 9 can be seen in the appendix.

Dataset (No.) Metric SVM XGB RF CNN RNN TRSF MLP GCN MPNN GAT AFP SPN

BACE (1,513) AUC ROC 0.886 0.896 0.890 0.815 0.559 0.835 0.887 0.880 0.846 0.886 0.879 0.882

HIV (40,748) AUC ROC 0.817 0.823 0.826 0.733 0.639 0.748 0.791 0.834 0.814 0.812 0.819 0.818

BBBP (2,035) AUC ROC 0.913 0.926 0.923 0.760 0.693 0.897 0.918 0.915 0.872 0.902 0.893 0.905

ClinTox (1,475) AUC ROC 0.879 0.919 0.933 0.685 0.813 0.963 0.890 0.889 0.868 0.891 0.907 0.912

SIDER (1,366) AUC ROC 0.626 0.638 0.644 0.591 0.515 0.641 0.617 0.633 0.603 0.614 0.620 0.613

Tox21 (7,811) AUC ROC 0.820 0.837 0.838 0.766 0.734 0.817 0.834 0.830 0.816 0.829 0.845 0.827

ToxCast (8,539) AUC ROC 0.725 0.785 0.778 0.735 0.74 0.780 0.781 0.767 0.736 0.768 0.788 0.772

MUV (93,087) AUC PRC 0.093 0.072 0.069 0.045 0.094 0.059 0.018 0.056 0.019 0.055 0.044 0.058

SARS-CoV-2 (14,332) AUC ROC 0.599 0.700 0.686 0.688 0.649 0.643 0.638 0.646 0.640 0.683 0.651 0.663

ESOL (1,127) RMSE 0.676 0.583 0.647 2.569 1.511 0.718 0.653 0.773 0.695 0.661 0.594 0.671

Lipop (4,200) RMSE 0.683 0.585 0.626 1.016 1.207 0.947 0.633 0.665 0.669 0.680 0.664 0.630

FreeSolv (639) RMSE 1.063 0.715 1.014 2.275 2.205 1.504 1.046 1.316 1.327 1.304 1.139 1.159

QM7 (6,830) MAE 42.814 52.726 51.403 81.165 158.160 64.363 86.060 64.530 107.013 78.217 59.973 55.727

QM8 (21,786) MAE 0.0364 0.0126 0.0098 0.0205 0.0295 0.0232 0.0104 0.0154 0.0109 0.0187 0.0098 0.0103
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Figure 2. The performance of various models on the smoothed datasets. Left: ESOL (Regression); Middle: Lipop (Regression); Right:
QM7 (Regression). We only smooth the regression datasets because the labels of classification datasets are not suitable for smoothing.

the smoothed label ŷi to train the models. The results are
shown in Figure 2, where ‘0-smooth’ denotes the original
datasets. ‘10-smooth’ and ‘20-smooth’ mean k = 10 and
k = 20, respectively. As can be observed, the performance
of deep models improves dramatically as the level of dataset
smoothing increases, and many deep models including MLP,
GCN, and AFP can even beat non-deep ones after smooth-
ing. These phenomena indicate that deep models are more
suitable for the smoothed datasets.

Figure 3. Examplary of Activity Cliffs (ACs) on the target named
dopamine D3 receptor (D3R). Ki means the bioactivity values.
This figure is adapted from Derek van Tilborg’s work (van Tilborg
et al., 2022).

Secondly, we decrease the level of data smoothing using
the concept of activity cliff (Maggiora, 2006; Stumpfe &
Bajorath, 2012) from chemistry, which means a situation
where small changes in the chemical structure of a drug lead
to significant changes in its bioactivity. We provide an ex-
ample activity cliff pairs in Figure 3. Apparently, the target
function of activity cliffs that map molecules to the activity
values is less smooth than normal molecular datasets. We
then evaluate the models on the activity cliff datasets (van
Tilborg et al., 2022). The test set contains molecules that
are chemically similar to those in the training set but exhibit
either a large difference in bioactivity (cliff molecules) or
similar bioactivity (non-cliff molecules). As shown in Ta-
ble 2, the non-deep models consistently outperform deep
ones on these activity cliff datasets. Furthermore, it is worth
noting that deep models exhibit a similar level of perfor-
mance on both non-cliff and cliff molecules, while non-deep
models experience significant changes in performance when
transitioning from non-cliff to cliff molecules. These phe-
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Table 2. RMSEnc and RMSEc are the prediction RMSE on non-cliff molecules and cliff molecules, respectively. ∆R = (RMSEc -
RMSEnc) / RMSEnc ×100%. The top-3 performances and the best performance are highlighted with grey background and bold.

Target name
(Response type)

Metric SVM XGB RF CNN RNN TRSF MLP GCN MPNN GAT AFP

CB1

(Agonism EC50)

RMSEnc 0.652 0.623 0.619 0.934 0.712 0.785 0.707 0.932 0.938 0.960 0.909

RMSEc 0.773 0.767 0.770 0.944 0.823 0.888 0.807 0.992 0.989 0.975 0.967

∆R 18.55% 23.11% 24.39% 1.15% 15.59% 13.12% 14.1% 6.37% 5.47% 1.55% 6.35%

DAT

(Inhibition Ki)

RMSEnc 0.589 0.579 0.577 0.871 0.692 0.801 0.664 0.927 0.820 0.995 0.865

RMSEc 0.744 0.696 0.730 0.894 0.783 0.934 0.792 1.003 0.921 1.042 0.995

∆R 26.30% 20.18% 26.64% 2.48% 13.15% 16.70% 19.40% 8.23% 12.38% 4.74% 15.11%

PPARα

(Agonism EC50)

RMSEnc 0.535 0.552 0.561 0.854 0.696 0.799 0.606 0.856 0.833 0.892 0.749

RMSEc 0.671 0.678 0.685 0.962 0.825 0.968 0.713 0.870 0.872 0.929 0.823

∆R 25.42% 22.83% 22.10% 12.69% 15.64% 21.26% 17.77% 1.72% 4.78% 4.21% 9.90%

DOR

(Inhibition Ki)

RMSEnc 0.598 0.592 0.591 0.938 0.893 0.873 0.663 1.095 0.958 1.102 1.018

RMSEc 0.861 0.854 0.836 1.098 1.036 1.032 0.874 1.259 1.152 1.281 1.179

∆R 43.98% 44.14% 41.46% 17.06% 16.01 % 18.26% 31.85% 14.93% 20.27% 16.26% 15.83%

nomena indicate that deep models are less sensitive to subtle
structural changes and struggle to learn non-smooth target
functions compared with tree models, especially the activity
cliff cases. Our explanation is consistent with the conclu-
sions in deep learning theory (Rahaman et al., 2019), i.e.,
deep models struggle to learn high-frequency components
of the target functions. However, tree models can learn
piece-wise target functions, and do not exhibit such bias.
Our explorations uncover several promising avenues to en-
hance deep models’ performance on molecules: smoothing
the target functions or improving deep models’ ability to
learn the non-smooth target functions.

Explanation 2. Deep models mix different dimensions of
molecular features, whereas tree models make decisions
based on each dimension of the features separately.
Typically, features in molecular data carry meanings indi-
vidually. Each dimension of molecular fingerprints often
indicates whether a certain substructure is present in the
molecule; each dimension of nodes/edges features in molec-
ular graph data indicates a specific characteristic of the
atoms/bonds (e.g., atom/bond type, atom degree). To verify
the above explanation, we mix the different dimensions of
molecular features xi ∈ Rd using an orthogonal transforma-
tion before feeding them into various models,

x̂i = Qxi, (2)

where Q ∈ Rd×d is the orthogonal matrix and x̂i is the
molecular feature after transformation. Kindly note that the
meaning of xi depends on the input molecular descriptors
in the experiments. Specifically, for SVM, XGB, RF, and
MLP, xi denotes the molecular fingerprints; for GNN mod-
els, xi can denote the atom features and bond features in
the molecular graphs, i.e., we apply orthogonal transforma-
tions to both the atom features and bond features. As can
be observed in Figure 4, the performance of tree models
deteriorates dramatically and falls behind most deep models

after the orthogonal transformation. It is because each di-
mension of x̂i is a convex combination of all the dimensions
of xi according to the matrix-vector product rule. In other
words, the molecular features after orthogonal transforma-
tion no longer carry meanings individually, accounting for
the failure of tree models that make decisions based on each
dimension of the features separately. The learning style of
tree models is more suitable for molecular data because only
a handful of features (e.g., certain substructures) are most
indicative of molecular properties. On the other hand, the
performance decreases of deep models are less significant,
and most deep models can beat tree models after the trans-
formations. We explain this observation as follows. Without
the loss of generality, we assume that a linear layer of deep
models can map the original molecular feature xi to the
label yi,

yi = W⊤xi + b, (3)

where W and b denote the parameter matrix and the bias
term of the linear layer, respectively. And then, we aim to
learn a new linear layer mapping the transformed model
feature x̂i to label yi,

yi = Ŵ⊤x̂i + b = Ŵ⊤Qxi + b̂, (4)

where Ŵ and b̂ denote the parameter matrix and the bias
term of the new linear layer, respectively. Apparently, to
achieve the same results as the original feature, we only
have to learn Ŵ so that Ŵ = QW because Q−1 = Q⊤

as an orthogonal matrix, and also b̂ = b. Therefore, ap-
plying the orthogonal transformation to molecular features
barely impacts the performance of deep models. The em-
pirical results in Figure 4 confirm this point although some
performance changes are observable due to uncontrollable
random factors. This explanation inspires us not to mix the
molecular features before feeding them into models.
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tional message passing for molecular graphs. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=B1eWbxStPH.

Gasteiger, J., Becker, F., and Günnemann, S. Gemnet: Uni-
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A. The performance of various models on the orthogonally transformed dataset
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Figure 4. The performance of various models on the orthogonally transformed datasets. Left: FreeSolv (Regression); Middle: ClinTox
(Classification); Right: Tox21 (Classification). Kindly note that we did not evaluate CNN, RNN, and TRSF on the transformed datasets
because we cannot apply the orthogonal transformations to the input SMILES strings.

B. Experimental Setups
Fingerprints 7−→ SVM, XGB, RF, and MLP. Following the common practice (Tian et al., 2022; Pattanaik & Coley,
2020), we feed the concatenation of various molecular fingerprints including 881 PubChem fingerprints (PubchemFP),
307 substructure fingerprints (SubFP), and 206 MOE 1-D and 2-D descriptors (Yap, 2011) to SVM, XGB, RF, and MLP
models to comprehensively represent molecular structures, with some pre-processing procedures to remove features (1)
with missing values; (2) with extremely low variance (variance < 0.05); (3) have a high correlation (Pearson correlation
coefficient > 0.95) with another feature. The retained features are normalized to the mean value of 0 and variance of 1.
Additionally, considering that traditional machine models (SVM, RF, XGB) cannot be directly applied in the multi-task
molecular datasets, we split the multi-task dataset into multiple single-task datasets and use each of them to train the models.
Finally, we report the average performance of these single tasks.

SMILES strings 7−→ CNN, RNN, and TRSF. We adopt the 1D CNNs from a recent study (Kimber et al., 2021), which
include a single 1D convolutional layer with a step size equal to 1, followed by a fully connected layer. As for the RNN, we
use a 3-layer bidirectional gated recurrent units (GRUs) (Cho et al., 2014) with 256 hidden vector dimensions. Additionally,
we use the pre-trained SMILES transformer (Honda et al., 2019) with 4 basic blocks and each block has 4-head attentions
with 256 embedding dimensions and 2 linear layers. The SMILES are split into symbols (e.g., ‘Br’, ‘C’, ‘=’, ‘(’,‘2’) and
then fed into the transformer together with the positional encoding (Vaswani et al., 2017).

2D Graphs 7−→ GCN, MPNN, GAT, and AFP. As in previous studies (Xiong et al., 2019), we exhaustively utilized all
readily available atom/bond features in our 2D graph-based descriptors. Specifically, we have incorporated 9 atom features,
including atom symbol, degree, and formal charge, using a one-hot encoding scheme. In addition, we included 4 bond
features, such as type, conjugation, ring, and stereo. The resulting encoded graphs were then fed into GCN, MPNN, GAT,
and AFP models. Further details on the graph descriptors used in our experiments can be found in (Xiong et al., 2019).

3D Graphs 7−→ SPN. We employ the recently proposed SphereNet (Liu et al., 2022) for molecules with 3D geometry.
Specifically, for quantum mechanics datasets (QM7 and QM8) that contain 3D atomic coordinates calculated with ab initio
Density Functional Theory (DFT), we feed them into SphereNet directly. For other datasets without labeled conformations,
we used RDKit (Landrum, 2013)-generated conformations to satisfy the request of SphereNet.

Datasets splits, evaluation protocols and metrics, hyper-parameters tuning. Firstly, we randomly split the training,
validation, and test sets at a ratio of 8:1:1. And then, we tune the hyper-parameters based on the performance of the validation
set. Specifically, we select the optimal hyper-parameters set using the Tree of Parzen Estimators (TPE) algorithm (Ozaki
et al., 2020) in 50 evaluations. Due to the heavy computational overhead, GNNs-based models on the HIV and MUV datasets
are in 30 evaluations; all the models on the QM7 and QM8 are in 10 evaluations. And then, we conduct 50 independent
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runs with different random seeds for dataset splitting to obtain more reliable results, using the optimal hyper-parameters
determined before. Similarly, GNNs-based models on the HIV and MUV datasets are in 30 evaluations; all the models on
the QM7 and QM8 are in 10 evaluations. Following MoleculeNet benchmark (Wu et al., 2018), we evaluate the classification
tasks using the area under the receiver operating characteristic curve (AUC-ROC), except the area under the precision curve
(AUC-PRC) on MUV dataset due to its extreme biased data distribution. The performance on the regression task are reported
using root mean square error (RMSE) or mean absolute error (MAE). kindly note that we report the average performance
across multi-tasks on some datasets because they contain more than one task. Additionally, to avoid the overfitting issue,
all the deep models are trained with an early stopping scheme if no validation performance improvement is observed in
successive 50 epochs. We set the maximal epoch as 300 and the batch-size as 128.

C. Related Work
In this section, we elaborate on various molecular descriptors and their respective learning models.

C.1. Fingerprints-based Molecular Descriptors

Molecular fingerprints (FPs) serve as one of the most important descriptors for molecules. Typical examples include
Extended-Connectivity Fingerprints (ECFP) (Rogers & Hahn, 2010) and PubChemFP (Wang et al., 2017). These fingerprints
encode the neighboring environments of heavy atoms in a molecule into a fixed bit string with a hash function, where each
bit indicates whether a certain substructure is present in the molecule. Traditional models (e.g., tree or SVM-based models)
and MLPs can take these fingerprints as ‘raw’ input. However, the high-dimensional and sparse nature of FPs introduces
additional efforts for feature selection when they are fed into certain models. Additionally, it is difficult to interpret the
relationship between properties and structures because the hash functions are non-invertible.

C.2. Linear Notation-based Molecular Descriptors

Another option for molecules is linear notations, among which SMILES (Weininger et al., 1989) is the most frequently-used
one owing to its versatility and interpretability. In SMILES, each atom is represented as a respective ASCII symbol;
Chemical bonds, branching, and stereochemistry are denoted by specific symbols. However, a significant fraction of
SMILES strings does not correspond to chemically valid molecules. As a remedy, a new language named SELF-referencIng
Embedded Strings (SELFIES) for molecules was introduced in 2020 (Krenn et al., 2020). Every SELFIES string corresponds
to a valid molecule, and SELFIES can represent every molecule. Naturally, RNNs, 1D CNN, and Transformers are powerful
deep models for processing such sequences (Wang et al., 2019; Zheng et al., 2019; Honda et al., 2019; Ross et al., 2022;
Yüksel et al., 2023). However, the poor scalability of the sequential notations and the loss of spatial information limit the
performances of these approaches.

C.3. 2D and 3D Graph-based Molecular Descriptors

Molecules can be represented with graphs naturally, with nodes as atoms and edges as chemical bonds. Initially, (Duvenaud
et al., 2015) first adopted convolutional layers to encode molecular graphs to neural fingerprints. Following this work, (Coley
et al., 2017) employs the atom-based message-passing scheme to learn expressive molecular graph representations. To
complement the atom’s information, (Kearnes et al., 2016) utilized both the atom’s and bonds’ attributes, and MPNN (Gilmer
et al., 2017) generalized it to a unified framework. Also, multiple variants of the MPNN framework are developed to
avoid unnecessary loops (DMPNN (Yang et al., 2019)), to strengthen the message interactions between nodes and edges
(CMPNN (Song et al., 2020)), to capture the complex inherent quantum interactions of molecules (MGCN (Lu et al., 2019)),
or take the longer-range dependencies (Attentive FP (Xiong et al., 2019)). More recently, some hybrid architectures (Rong
et al., 2020; Ying et al., 2021; Min et al., 2022) of GNNs and transformers are emerging to capture the topological structures
of molecular graphs. Additionally, given that the available labels for molecules are often expensive or incorrect (Xia et al.,
2021; Tan et al., 2021; Xia et al., 2022a), the emerging self-supervised pre-training strategies (You et al., 2020; Xia et al.,
2022c;b;e; Yue et al., 2022; Liu et al., 2023) on graph-structured data are promising for molecular graph data (Hu et al.,
2020; Xia et al., 2023a;b; Gao et al., 2022), just like the overwhelming success of pre-trained language models in natural
language processing community (Devlin et al., 2019; Zheng et al., 2022).

The 3D molecular graph is composed of nodes (atoms), and their positions in 3D space and edges (bonds). The advantage of
using 3D geometry is that the conformer information is critical to many molecular properties, especially quantum properties.
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In addition, it is also possible to directly leverage stereochemistry information such as chirality given the 3D geometries.
Recently, multiple works (Schuett et al., 2017; Satorras et al., 2021; Du et al., 2022; Liu et al., 2022; Atz et al., 2021) have
developed message-passing mechanisms tailored for 3D geometries, which enable the learned molecular representations
to follow certain physical symmetries, such as equivariance to translations and rotations. However, the calculation cost,
alignment invariance, uncertainty in conformation generation, and unavailable conformations of target molecules limited the
applicability of these models in practice.

D. Discussion and Conclusion
In this paper, we perform a comprehensive benchmark of representative models on molecular property prediction. Our
results reveal that traditional machine learning models, especially tree models, can easily outperform well-designed deep
models in most cases. These phenomena can be attributed to the unique patterns of molecular data and different inductive
biases of various models. Specifically, the target function mapping molecules to properties are non-smooth, and some
small changes can incur significant property variance. Deep models struggle to learn such patterns. Additionally, molecular
features carry meanings individually and deep models would undesirably mix different dimensions of molecular features.
Our study leaves an open question for future research: Can our findings and methods be generalized to other AIDD tasks
including drug-target interactions (DTIs) prediction (Ozturk et al., 2018; Xia et al., 2022d), drug-drug interactions (DDIs)
prediction (Li et al., 2021), and protein representation learning (Hu et al., 2022; Tan et al., 2023)?
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