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Abstract

We consider augmenting graph data with counterfactual generation in order to achieve
fairness on downstream tasks. While this direction has been explored previously, existing
methods invariably consider oversimplified causal relationships. Moreover, they often rely
on unidentifiable models to encode causal relationships, making it hard to identify the true
joint distribution and thus recover counterfactual graphs. To tackle these challenges, we
introduce a causal model with hidden confounders on graphs, which considers the existence
of hidden confounders affecting both node features and graph structures. We use an identifi-
able graph VAE model to simultaneously estimate hidden confounders and learn generation
functions of the causal model. By incorporating a Gaussian mixture prior distribution, we
improve the identifiability of our model to recover the joint distribution of observed data
and hidden confounders. Using the generated counterfactual graphs, we enforce consis-
tency in the predictions of classifiers for different counterfactual graphs, thereby achieving
graph counterfactual fairness in these classifiers. Experimental results demonstrate the ef-
fectiveness of our method in improving the counterfactual fairness of classifiers on various
graph tasks. Moreover, theoretical analysis, coupled with empirical results, illustrates the
capability of our method to successfully identify hidden confounders.

1 Introduction

Graph neural networks (GNNs) have been used to solve problems across a wide range of domains (Gao
et al., 2021; Gao & Ji, 2019; Ling et al., 2023a), from social network analysis (Hamilton et al., 2017; Han
et al., 2022) to drug discovery (Liu et al., 2022). As with many other machine learning methods, GNNs
sometimes make biased predictions (Dai & Wang, 2021; Ling et al., 2023b; Jiang et al., 2022a), thus raising
cautions in real-world high-stakes tasks, such as healthcare (Rajkomar et al., 2018), finance (Feldman et al.,
2015; Petrasic et al., 2017), and criminal justice (Suresh & Guttag, 2019). Traditional statistical fairness
notions (Kang et al., 2020; Dong et al., 2021; Petersen et al., 2021; Jiang et al., 2022b), such as demographic
parity (Dwork et al., 2012) and equalized odds (Hardt et al., 2016), have been proposed to quantify and
address prediction bias. However, those fairness notions cannot guarantee fair predictions across various
dimensions. For example, when demographic parity is equal or close to 0, it may still allow for unfair
treatment of individuals within the same ‘protected’ category, who may have different characteristics such
as varying educational backgrounds or personal attributes. In contrast, counterfactual fairness (Kusner
et al., 2017; Wu et al., 2019a;b; Nilforoshan et al., 2022) uses causality to present a more comprehensive and
intuitive approach to defining fairness. A model is counterfactually fair if its prediction for an individual
remains the same in the real world and in a counterfactual world where the individual belongs to a different
demographic group. This approach allows for the modeling of intricate relationships inherent in real-world
data. For instance, in a loan approval scenario, node features such as income and employment history, as
well as relationships with others (represented as edges in a graph), may be causally influenced by a sensitive
attribute like gender. A counterfactual graph adjusts these causally dependent node features and edges
to reflect the hypothetical change in the sensitive attribute. The model is counterfactually fair if its loan
decision remains consistent between the real and counterfactual graphs. By considering what would have
happened under different conditions, counterfactual fairness offers a different understanding of fairness that
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can potentially tackle such complex scenarios. Given the potential advantages of counterfactual fairness in
addressing the limitations of statistical fairness notions, it is desirable to explore the counterfactual fairness
of GNNs to mitigate potential biases.

Counterfactual fairness of GNNs presents significant challenges, particularly in inferring counterfactuals
from observable data. This difficulty stems from the reliance on causal models, which must capture the
intricate relationships among sensitive attributes, node features, and graph structures. Existing methods
often simplify these causal relationships. For example, NIFTY (Agarwal et al., 2021) assumes that sensitive
attributes are independent of both node features and graph structures. On the other hand, GEAR (Ma
et al., 2022) assumes that the sensitive attribute serves as the sole confounder linking node features and
graph structures. However, these oversimplified assumptions fail to account for the complexities of real-
world data, where hidden confounders, that influence both node features and graph structures, are likely
to exist. Such hidden confounders introduce additional complexity that remains unaddressed in prior work,
highlighting the need for methods that can effectively model and mitigate their impact. Moreover, existing
studies use unidentifiable variational autoencoders (VAE) to model causal relationships (Madras et al., 2018;
Ma et al., 2022; Louizos et al., 2017; Foster et al., 2022). Due to their non-identifiability (Roeder et al., 2021;
Wang et al., 2021; Kivva et al., 2022; Khemakhem et al., 2020a; Foster et al., 2022), it is generally hard to
recover the true joint distribution of data. This makes it challenging to accurately recover counterfactual
graphs, limiting the effectiveness of these models in achieving counterfactual fairness.

In this work, we introduce GraphCFF, a novel approach designed to address the challenges of counterfac-
tual fairness in graph data. We propose a causal model that considers the role of sensitive attributes as
confounders that causally influence both node features and graph structures. Importantly, we also account
for the presence of hidden confounders that simultaneously affect both node features and graph structures,
thereby providing more realistic modeling of the underlying complexities in graph data. A primary challenge
is that only graph data is observed, while the hidden confounders and the generation mechanisms of the
causal model remain unknown. To tackle these challenges, we use an identifiable graph VAE to estimate
hidden confounders and learn the generation functions simultaneously. To enhance the identifiability of the
model, we incorporate a Gaussian mixture model (GMM) as a prior distribution, enabling more accurate
recovery of the joint distribution of observed data and hidden confounders. This allows us to reliably recover
counterfactuals. We then use the generated counterfactual graphs to enforce consistency in the predictions
of classifiers across different counterfactual graphs, thereby achieving graph counterfactual fairness in these
classifiers. Experimental results demonstrate the effectiveness of our method in improving the counterfactual
fairness of classifiers on various graph tasks. Furthermore, both theoretical analysis and empirical results
highlight the potential of our method to successfully recover hidden confounders.

2 Background and Related Work

We denote a graph with n nodes as G = {A, X, S}. Here, A ∈ {0, 1}n×n is the adjacency matrix, and
Aij = 1 if and only if there exists an edge between nodes i and j. X = [X1, · · · , Xn]T ∈ Rn×p is the node
feature matrix, where each Xi ∈ Rp is the p-dimensional feature vector of node i. S = [s1, · · · , sn]T ∈ {0, 1}n

is the vector containing binary sensitive attributes of nodes, such as gender or race. Here, si denotes the
sensitive attribute of node i. Furthermore, we assume that each node i is associated with a latent variable
Zi ∈ Rq and these variables are included in a matrix Z = [Z1, · · · , Zn]T ∈ Rn×q. In node classification tasks,
the labels of nodes are denoted as Y = [y1, · · · , yn]T , where yi ∈ {0, 1} is the label of node i.

2.1 Causal Models and Counterfactuals

We follow Pearl et al. (2000) to define a causal model as a triple (U , V, F), where V denotes the set of
observable variables, U denotes the set of unobservable variables, and F = {F1, · · · , F|V |} denotes the set of
functions that assign values to each variable Vi ∈ V. Any variable Ui ∈ U cannot be caused by any variable
in V. For each variable Vi ∈ V, the corresponding function Fi expresses how Vi is dependent on its direct
causes as Vi = Fi(pai, Upai

), where pai ⊆ V \ {Vi} represents the observed direct causes of Vi, and Upai
⊆ U

represents unobserved variables that directly cause Vi.
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Causal models enable us to perform counterfactual inferences in order to answer questions about what would
have happened in a counterfactual world if certain conditions were altered. For example, for two observable
variables V1 and V2, a common counterfactual query is “What would the V1 have been if V2 were V ′2”. The
solution to this query, denoted as V1(V2←V ′

2 ), can be obtained through three steps (Glymour et al., 2016) as
follows. 1) Abduction: Infer the unobserved variables U from observed data V. 2) Action: Substitute V2
with V ′2 . 3) Prediction: Compute the value of remaining element V1 using corresponding function F1 and
latent variables U .

2.2 Counterfactual Fairness on Graphs

Counterfactual fairness is a notion of fairness based on counterfactuals (Kusner et al., 2017; Zuo et al.,
2022; Nilforoshan et al., 2022; Wu et al., 2019b; Kilbertus et al., 2017). The prediction of a classifier for an
individual is counterfactually fair if the prediction remains consistent in both the actual and the counterfac-
tual worlds, where the individual belongs to a different demographic group. Recent studies have explored
counterfactual fairness on graph data (Agarwal et al., 2021; Ma et al., 2022). These studies aim to develop
a counterfactually fair encoder to ensure that the learned representations from the original graph and those
of the counterfactual graphs are identical. NIFTY proposes to generate counterfactual graphs by flipping
the sensitive attributes of nodes while leaving other node features and graph structures unchanged (Agarwal
et al., 2021). A triplet-based objective is then used to maximize agreement between the original and counter-
factual graphs in order to learn counterfactually fair representations. However, a major limitation of NIFTY
is its focus on a simplified case, where the sensitive attribute has no causal effect on other node features
or graph structures. Instead of ignoring all causal relationships, GEAR addresses the case where sensitive
attributes are the cause of both node features and graph structures (Ma et al., 2022). GEAR uses VAEs to
model these causal relationships and generate counterfactual graphs by perturbing sensitive attributes. A
Siamese network is then used to minimize discrepancies between representations learned from the original
graph and counterfactual graphs, leading to counterfactually fair representations. Nevertheless, GEAR oper-
ates under the assumption that there are no hidden confounders (Pearl, 2009; Greenland et al., 1999; Mickey
& Greenland, 1989) of node features and graph structures, which could oversimplify the complexities of
real-world graph data. Furthermore, VAE models are generally non-identifiable (Khemakhem et al., 2020a;
Kivva et al., 2022; Wang et al., 2021; Foster et al., 2022), posing challenges in accurately recovering the true
latent variables of the causal model and thus generating noisy counterfactual data.

3 Methodology

Existing methods typically adopt a two-stage approach to achieve counterfactual fairness. They first learn
counterfactually fair graph representations and then train a downstream classifier using these representations
as input (Ma et al., 2022; Agarwal et al., 2021). In contrast, We propose GraphCFF, a novel method that
directly achieves counterfactual fairness by augmenting graph data through counterfactual generation. This
approach enables a more direct solution to counterfactual fairness in graph data. In this section, we first
conceptualize and describe our proposed causal model, which takes into account the existence of hidden
confounders. We then introduce how we use variational inference to learn both a generative model, which
approximates the functions of the causal model, and an inference model, which estimates hidden confounders.
We next explain how we generate counterfactual graphs by flipping the sensitive attributes of nodes. Using
these generated counterfactual graphs, we are able to train a classifier that achieves counterfactual fairness.

We provide a formal definition of graph counterfactual fairness as follows:
Definition 1 (Graph Counterfactual Fairness). Given a graph G = {A, X, S}, the prediction Ŷ of a classifier
is counterfactually fair if, for any node i,

P (Ŷi|A, X, S) = P (Ŷi(S←S′)|A, X, S) (1)

where

s′j =
{

sj , i ̸= j

1 − sj , i = j
for j = 1, · · · , n,
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Figure 1: Comparison of different approaches for modeling the causal relations among sensitive attributes
S, node features X, and graph structures A. Grey and white nodes represent observed and unobserved
variables, respectively. (a) NIFTY Agarwal et al. (2021) assumes that sensitive attribute has no causal effect
on other node features or graph structures. (b) GEAR Ma et al. (2022) models sensitive attributes S as the
sole confounder of node features X and graph structures A without any hidden confounders. (c) GraphCFF
(ours) explicitly models hidden confounders Z for both node features X and graph structures A.

and Ŷi is the prediction for node i.

In other words, the prediction of a classifier for a node is counterfactually fair if it remains the same in both
the actual world and the counterfactual world where the sensitive attribute of this node is assigned to a
different demographic group. Note that obtaining counterfactual data in the real world is almost impossible.
Moreover, the causal relationships between the sensitive attribute S, node features X, and adjacency matrix
A remain unknown, making it hard to perform counterfactual inference directly. Therefore, how to obtain
counterfactuals is one of the primary challenges to be addressed in counterfactual fairness on graphs.

3.1 Causal Model with Hidden Confounders

In this section, we present our proposed causal model, accounting for the presence of hidden confounders
in graph data such as social networks. We first introduce independent latent factors Z, which generate the
observed graph data. The latent factors of different nodes are independent and identically distributed. We
assume that the latent factors Z serve as hidden confounders for both node features X and adjacency matrix
A. For example, an individual’s ‘personality’ could influence his/her ‘health’ and his/her social relationships
with others. Since Z does not necessarily correspond to tangible objects in the world, it is reasonable to
consider hidden confounders as independent of sensitive attributes in our model. Moreover, we assume
sensitive attributes S have no parent variables in the causal graph, implying that they can only be the cause
of other variables. Specifically, sensitive attributes S are not caused by Z, while they are the cause of both
node features X and adjacency matrix A. In fairness problems, sensitive attributes are typically determined
at birth, making it reasonable to treat them as root nodes in a causal graph. For example, the sensitive
attribute ‘gender’ cannot be caused by other features like ‘height’, while ‘gender’ can cause ‘height’. This
assumption has been widely adopted in recent studies (Kusner et al., 2017; Zuo et al., 2022; Ma et al., 2022;
Madras et al., 2019).

To model the topological structures of graphs, we assume that the edge between node i and node j only
depends on the factors of these two nodes and is independent of other nodes. We also explicitly account
for sensitive homophily in graphs, indicating that nodes with the same sensitive attribute are more likely to
connect than nodes with different sensitive attributes. In other words, our causal model is similar to stochastic
block models with higher intra-connection and lower inter-connection probabilities. This is consistent with
recent studies (Jiang et al., 2022a; Dong et al., 2022; Kose & Shen, 2022; Dai & Wang, 2021). Formally, the
process of generating the adjacency matrix A = FA(Z, S) can be expressed as

Aij =


1, if si ̸= sj and sim(Zi, Zj) > 1 − Pinter

1, if si = sj and sim(Zi, Zj) > 1 − Pintra

0, otherwise
, for i, j = 1, · · · , n, (2)
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where sim(·) computes the similarity between two nodes. Pinter and Pintra represent thresholds for the
intra-connection and inter-connection, respectively, with Pinter < Pintra.

Furthermore, one of the most significant challenges in graph data is the non-independence of nodes, which
means altering one node could affect another node. For example, if all friends of an individual adopt a diet,
it is likely that the individual will also start a diet. Instead of treating each node as an independent data
point (Agarwal et al., 2021), we explicitly consider the causal relationship between nodes, meaning that the
node features of node i can be influenced by its neighbors. We rely on a widely accepted local-dependence
assumption for graph-structured data (Wu et al., 2020); that is, given data related to neighbors within a
certain number of hops of node i, the data in the rest of the graph is independent of node i. In other words,
a node depends on its k-hop neighbors but is independent of nodes outside its k-hop neighborhood. In this
work, we consider cases where k = 1, which should provide a good approximation of real-world scenarios.
Formally, the generation process of node features X = FX(Z, A, S) can be expressed as

Xi = FX1(Zi, si) + AGG({FX2(Zj , sj) : j ∈ Ni}), for i = 1, · · · , n, (3)
where Ni denotes the set of the nodes connected to the node i in the graph, and AGG(·) denotes an
aggregation function that maps the messages from all neighboring nodes to a single vector. FX1 and FX2 are
two piecewise affine transformation functions, such as multilayer perceptrons with leaky ReLU activations.
In summary, our proposed causal model can be formally defined as follows:
Definition 2 (Causal Model with Hidden Confounders on Graphs). A causal model on graphs with hidden
confounders can be represented as a tuple (U , V, F), where V ≡ {A, X, S} and U ≡ {Z}. F = {FA, FX}
corresponds to the generating mechanism of A and X, defined as A = FA(Z, S) and X = FX(Z, A, S).
Remark 1. Different from the simple scenario (Ma et al., 2022), where S is the only confounder of A and X,
and no hidden confounders exist, we consider a more realistic scenario where hidden confounders of A and
X exist, which has been overlooked in the literature. See Figure 1 for a comparison between our proposed
causal model with the causal models in existing works. More discussions are given in Appendix C.

3.2 Learning Method

A primary challenge in performing counterfactual inferences on our causal model lies in the fact that only
graph data G = {A, X, S} is observed, while the hidden confounders Z are unobserved and generation
functions F are unknown. As demonstrated by Louizos et al. (2017); Madras et al. (2019), counterfactuals
can be recovered if we can recover the joint distribution P (Z, A, X, S) among node features X, graph
structures A, sensitive attributes S, and the hidden confounders Z. Therefore, we need to learn two
models; namely (1) a generative model approximating the generation functions F , and (2) an inference
model approximating the distribution of Z given A, X, S.

We use variational inference parameterized by deep neural networks to learn the parameters of both models
jointly. In variational inference, we aim to learn an approximation of the joint distribution P (Z, A, X, S), by
maximizing a variational lower bound on the log-probability of the observed graph data (A, X, S). Specifi-
cally, we introduce a variational distribution Q(Z|A, X, S) which uses a parametric family of distributions
to approximate the intractable posterior distribution P (Z|A, X, S). The parameters of both the generative
model and the inference model are learned simultaneously by maximizing the evidence lower bound (ELBO)
of the marginal data likelihood.

To learn a generative model that is consistent with our proposed causal model, we model the joint probability
P (Z, A, X, S) using the following factorization:

P (Z, A, X, S) = P (Z)P (S)P (A|Z, S)P (X|A, Z, S), (4)
where P (A|Z, S) and P (X|A, Z, S) correspond to the generation functions FA and FX , respectively. To
learn the parameters of both the generative model and the inference model, we maximize the ELBO as

log P (A, X|S) ≥EQ(Z|A,X,S)[log P (A|Z, S) + log P (X|A, Z, S)
− log Q(Z|A, X, S) + log P (Z)].

(5)

We provide detailed derivations of ELBO in Appendix B. The ELBO can be maximized using the Stochastic
Gradient Variational Bayes estimator and the reparameterization trick (Kingma & Welling, 2014).
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3.3 Gaussian Mixture as Prior Distribution

It is important to note that the conclusion by Louizos et al. (2017); Madras et al. (2019) is based on the
assumption that learning with VAEs can recover the true joint distribution P (Z, A, X, S). However, due
to the non-identifiability of VAE models (Khemakhem et al., 2020a; Wang et al., 2021; Foster et al., 2022),
it is generally impossible to recover the true joint distribution P (Z, A, X, S). This non-identifiable issue
undermines the conclusion by Louizos et al. (2017); Madras et al. (2019). To address this issue, we follow
Kivva et al. (2022) to incorporate a Gaussian mixture model (GMM) prior in our framework. We use the
same GMM to model the prior distribution of hidden confounders Zi for any node i. Specifically, we model
the prior distribution of the hidden confounders Zi as a weighted sum of K Gaussian components, where
each component c has a mixture weight πc ∈ R+. These mixture weights are themselves probabilities that
satisfy the constraints

∑K
c=1 πc = 1 and πc > 0. Thus, the probabilities of the components can be modeled

using a categorical distribution as P (c) ∼ Cat(π1, . . . , πK). Each Gaussian component is parameterized by
a mean vector µc ∈ Rq and a covariance matrix Σc ∈ Rq×q. The covariance matrix Σc is a diagonal matrix
with diagonal elements σ2

c,1, σ2
c,2, . . . , σ2

c,q. Formally, the prior distribution of the hidden confounders Zi can
be described as Zi ∼

∑K
c=1 πcN (µc, Σc), where N (µc, Σc) denotes a Gaussian distribution with mean µc

and covariance matrix Σc. Let C denote the vector containing the component values of all nodes in the
graph. The updated ELBO of our framework can be formally described as

log P (A, X|S) ≥EQ(Z,C|A,X,S)[log P (A|Z, S) + log P (X|A, Z, S) + log P (C)
+ log P (Z|C) − log Q(Z|A, X, S) − log Q(C|A, X, S)].

(6)

Note that we assume the variational distribution Q(Z, C|A, X, S) can be factorized as Q(Z, C|A, X, S) =
Q(Z|A, X, S)Q(C|A, X, S). This assumption is also used in VaDE (Jiang et al., 2016). By incorporating
the GMM prior, we enhance the ability of our model to recover the distribution of the hidden confounders,
resulting in accurate counterfactual inferences on our model. Besides, we provide theoretical support for
identifying the true distribution of the hidden confounders in Section 4.

3.4 Counterfactual Generation

In this section, we discuss the process of generating counterfactual graphs using well-trained generative and
inference models, enabling the learning of counterfactually fair downstream classifiers. Once the learning
process is complete, the generative model can generate new graph data consistent with the generation mech-
anism as our proposed causal model. Meanwhile, the inference model can estimate the hidden confounders
given the observed graph data. The process of generating a counterfactual graph, in which the sensitive
attribute of node i is assigned to a different group, consists of three main steps. Given the observed graph
data G = {A, X, S}, we first estimate the hidden confounders Z using the inference model. Next, we swap
the sensitive attribute of node i to create a new vector S′, where

s′j =
{

sj , i ̸= j

1 − sj , i = j
for j = 1, · · · , n.

With the obtained hidden confounders Z and the new sensitive attribute vector S′, we use the generative
model to generate the counterfactual graph G(S←S′) = {A(S←S′), X(S←S′), S′}, where A(S←S′) = FA(Z, S′)
and X(S←S′) = FX(Z, A(S←S′), S′).

The generated counterfactual graphs can then be used to train counterfactually fair downstream classifiers.
Intuitively, we augment the observed graph dataset with counterfactual graphs while keeping the labels the
same, ensuring that downstream classifiers make consistent predictions for different counterfactual graphs.
This encourages the graph counterfactual fairness in the downstream classifiers. In practice, during each
training step, we randomly select a node i and generate a counterfactual graph where the sensitive attribute
of node i is flipped. Along with the node labels Y , the generated counterfactual graph G(S←S′) is used to
train the downstream classifiers.
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4 Identifiability Analysis

As we mentioned in Section 3.3, one primary issue of learning with VAE models is that they are non-
identifiable. In other words, multiple parameter sets can result in models having identical marginal data
and prior distributions, but entirely different latent factors Z. This makes it hard to recover the true joint
distribution P (Z, A, X, S) and, in turn, makes it difficult to recover counterfactuals. Therefore, ensuring
the identifiability of our model becomes important for recovering counterfactuals. A model is considered
identifiable if there is only one unique set of parameter values corresponding to the true data-generating
process. Nevertheless, this strict definition of identifiability may be overly restrictive in practical applications.
Instead, we consider a relaxed notion of identifiability. Following Kivva et al. (2022), we provide a formal
definition of identifiability as follows:

Definition 3 (Identifiability). Let P be a family of probability distributions on the latent factors and F be
a family of the generation functions. We use F♯P to denote the pushforward measure of P by F . For a pair
(P, F ) ∈ P × F, we say that the distribution P is identifiable from F♯P up to an affine transformation if
for any (P ′, F ′) ∈ P × F such that F♯P ≡ F ′♯P ′ there exists an invertible affine transformation h such that
P ′ = h♯P .

This identifiability definition can be easily extended to other invertible transformations, such as permutations
and translations. See Khemakhem et al. (2020a;b); Roeder et al. (2021) for different notions of identifiability
in deep latent variable models. To show the identifiability of our model, we make a mild assumption on the
generating function F , defined as follows.

Definition 4 (Weakly Injective Function). Let B(x, δ) denote a ball centered at a point x and with a
radius of δ. We say that a function F : S → T is weakly injective if (i) there exists x0 ∈ T and δ > 0 s.t.
|F−1({x})| = 1 for every x ∈ B(x0, δ) ∩ F (S), and (ii) {x : |F−1({x})| = ∞} ⊆ F (S) has measure zero with
respect to the Lebesgue measure on F (S).

Remark 2. The assumption that functions are weakly injective is indeed a weaker condition than the as-
sumption that functions are injective. Note that ReLU network networks are generically weakly injective
under simple assumptions on their architecture. See Appendix H of Kivva et al. (2022) for more details.

With a mild assumption that the generation function F is weakly injective, we show the identifiability of
our model as the following Theorem.

Theorem 1. Let F be the generation function of our proposed causal model with hidden confounders on
graphs, defined as F (Z, S) = (A, X) = (FA(Z, S), FX(Z, FA(Z, S), S)). If F is weakly injective and GMM
is used as the prior distribution, then we have P (Z, C) to be identifiable from P (A, X, S) up to permutation,
scaling, and/or translation.

We first show that identifying the joint distribution P (Z, C) from P (A, X, S) can be reduced to identifying
P (Z) from P (A, X, S). Then we show that P (Z) is identifiable from P (A, X, S) up to permutation, scaling,
and/or translation of Z. The complete proof of this theorem is given in Appendix A. Theorem 1 establishes
that incorporating a GMM as the prior distribution ensures that the learned hidden confounders recover
the true ones to a certain extent. This implies that we can better recover the ground truth of the joint
distribution P (Z, A, X, S) among node features X, graph structures A, sensitive attributes S, and the
hidden confounders Z, enabling us to recover the true counterfactual graphs. See Section 5.3 for empirical
studies.

Remark 3. Kivva et al. (2022) delves into the decoders of VAE models, primarily addressing tabular data.
In contrast, our approach uses a conditional graph VAE consistent with our proposed causal model, enabling
the generation of counterfactual graph data conditioned on sensitive attributes. The non-iid nature of graph
data, combined with the need for conditioning on sensitive attributes, introduces significant challenges to the
existing identifiability theories, making it non-trivial to extend to our case. We provide theoretical evidence
demonstrating that GMM can enhance the identifiability of conditional VAEs when applied to graph data.
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Table 1: Comparisons between our method and baselines on node classification tasks in terms of accuracy
and counterfactual fairness. The best results are shown in bold.

Dataset
No augmentation NIFTY GEAR GraphCFF

ACC ↑ ∆CF ↓ ACC ↑ ∆CF ↓ ACC ↑ ∆CF ↓ ACC ↑ ∆CF ↓

Synthetic Linear 90.00 ± 1.41 9.63 ± 0.61 88.20 ± 0.47 6.63 ± 0.46 85.60 ± 2.05 4.60 ± 1.56 88.20 ± 0.47 3.47 ± 0.19

Synthetic NonLinear 89.00 ± 0.82 14.27 ± 0.98 89.50 ± 0.47 6.57 ± 0.29 86.20 ± 1.41 6.70 ± 1.81 90.00 ± 0.82 2.60 ± 0.43

Synthetic Noise 92.60 ± 0.94 7.17 ± 1.35 91.6 ± 0.47 6.40 ± 0.64 85.40 ± 4.03 4.33 ± 1.71 90.40 ± 1.25 2.47 ± 0.90

German 68.00 ± 1.41 18.93 ± 1.75 67.00 ± 0.82 8.67 ± 1.76 67.60 ± 1.89 6.60 ± 2.44 68.30 ± 1.70 1.50 ± 0.70

Credit 79.94 ± 0.24 25.31 ± 17.88 79.60 ± 0.30 8.78 ± 0.26 79.27 ± 0.21 8.49 ± 1.16 77.48 ± 0.37 1.76 ± 0.32

Bail 94.67 ± 0.11 65.05 ± 0.12 94.17 ± 0.20 65.38 ± 0.22 88.31 ± 0.10 55.72 ± 15.61 82.73 ± 4.84 38.01 ± 1.84

5 Experiments

In this section, we evaluate the proposed method on both synthetic and real-world graphs. Experimental
results show that our method outperforms many baselines on node classification tasks in terms of both fairness
and accuracy. Furthermore, we conduct experiments on synthetic datasets to verify the identifiability of our
model. More experimental results are given in Appendix E.

5.1 Experimental Settings

Setup. To compare our method with other baselines, we train a GCN (Kipf & Welling, 2017) based
classification model with different augmentations. We evaluate the performance of our method and other
baselines by the averaged testing accuracy and counterfactual fairness of the classification model over five
runs. For a fair comparison, we use the same architecture of the classification model. See more experimental
details in Appendix D.

Evaluation Metrics. We use accuracy to evaluate the prediction performance of the classification model
on node classification tasks. To quantify counterfactual fairness, we define the metric as

∆CF = 1
n

∑
i

|P (Ŷi|A, X, S) − P (Ŷi(S←S(i))|A, X, S)| (7)

where S(i) denotes the vector obtained by flipping the sensitive attribute of node i, and Ŷi is the prediction
for node i. See more evaluation metrics in Appendix E.1.

Baselines. We compare our method with the following baseline methods, including (1) No augmentation,
which only uses the original graph to train the downstream classifier; (2) NIFTY (Agarwal et al., 2021),
which creates counterfactual graphs by flipping the sensitive attribute while leaving other node features
and graph structures unchanged; (3) GEAR (Ma et al., 2022), which uses a graph auto-encoder trained
with fairness constraints to generate counterfactuals. Note that both NIFTY and GEAR use contrastive
objectives to ensure counterfactual fairness of the learned representations, but we only use the counterfactual
generation part of both approaches to augment datasets and train the downstream classifier.

Synthetic Datasets. We use our proposed causal model to create three synthetic datasets, namely Syn-
thetic Linear, Synthetic NonLinear, and Synthetic Noise. The value of hidden confounders Z, sensitive
attribute S, the adjacency matrix A and node feature X are computed by ancestral sampling. In Synthetic
Linear, FX1 and FX2 are full-rank linear transformations created by repeatedly initializing a matrix with
elements sampled from a standard normal distribution until a non-singular matrix with a non-zero deter-
minant is obtained. For Synthetic NonLinear, we use random initialized multi-layer perceptrons (MLPs)
for FX1 and FX2 . Synthetic Noise is generated by randomly flipping adjacency matrix entries and adding
exponential noise to node features. Each dataset is randomly partitioned into training, validation, and test
sets, at proportions of 80%, 10%, and 10%, respectively. In the synthetic datasets, we can fully manipulate
the data generation process and thus easily generate the counterfactual graphs. For each node, we flip its
sensitive attribute to get a new sensitive attribute vector S′. Counterfactual graphs are then generated as
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G(S←S′) = {A(S←S′), X(S←S′), S′}, where A(S←S′) = FA(Z, S′) and X(S←S′) = FX(Z, A(S←S′), S′). See
Appendix D.1 for more details.

Real-world Datasets. We further demonstrate the advance of our method using three real-world datasets
Agarwal et al. (2021), including German, Credit, and Bail. The German dataset contains 1000 nodes, with
each node representing a client of a German bank. The edges between these nodes represent similarities
between their corresponding credit accounts. The dataset uses gender as the sensitive attribute, and the
task is to predict the credit risk status of clients, categorizing them as either good or bad risks. Next, the
Credit dataset consists of 30,000 nodes, with each node representing an individual with features such as
education, credit history, and age. The edges between these nodes represent the similarities in spending
and payment patterns among these individuals. Age is treated as the sensitive attribute in this dataset,
and the task is to predict whether an individual is likely to default on a credit card payment. Finally, the
Bail dataset includes 18,876 nodes, with each node representing a defendant who was released on bail from
U.S. state courts between 1990 and 2009. The edges between these nodes represent the similarities in their
criminal histories and demographics. In this dataset, race is the sensitive attribute, and the task is to predict
whether defendants will bail, i.e., the individuals who are less likely to commit a violent crime if released.
For all three datasets, we randomly split 80%/10%/10% for training, validation, and test datasets. See more
details in Appendix D.1.

5.2 Experimental Results

Fairness and Accuracy Performance. Table 1 shows accuracy and counterfactual fairness metrics of
our method, compared with baselines in Section 5.1 on both the synthetic datasets and the real-world
datasets. Our method consistently achieves the best counterfactual fairness performance on all six datasets.
For example, compared to only using the observed graph data without any augmentations, our method
reduces counterfactual fairness by 63.9%, 81.8%, and 65.6% on Synthetic Linear, Synthetic NonLinear, and
Synthetic Noise, respectively, with comparable accuracy performance. It is worth noting that in some cases,
our method can improve counterfactual fairness with little sacrifice to accuracy performance, or even enhance
the accuracy performance. For example, compared to no augmentations, our method can achieve a higher
accuracy performance on Synthetic NonLienar and German datasets. Such observations demonstrate the
advance of our proposed method.

Fairness and Accuracy Trade-off. We further compare the fairness and accuracy trade-off performance
of our method with baselines on both the synthetic datasets and the real-world datasets. As shown in
Figure 2, we create Pareto front curves by assigning different weights to the counterfactual graphs generated
by each method during the training process of the classifier model. The upper-left corner point represents the
ideal performance, i.e., the highest accuracy and lowest prediction bias. The results show that our method
achieves a good fairness and accuracy trade-off on the datasets.

5.3 Identifiability Evaluation

Table 2: Identifiability study of our model.

Dataset
GraphCFF w/o GMM GraphCFF

MCCgt MCCself MCCgt MCCself

Synthetic Linear 0.66 0.68 0.88 0.92

Synthetic NonLinear 0.55 0.56 0.71 0.85

Synthetic Noise 0.62 0.58 0.87 0.88

In this section, we investigate the identifiability
of our model. We conduct experiments to sup-
port our theoretical analysis in Section 4. To
quantify identifiability, we use the mean corre-
lation coefficient (MCC) metric, as in previous
studies (Khemakhem et al., 2020b; Kivva et al.,
2022; Khemakhem et al., 2020a). Given two
multivariate random variables, the MCC met-
ric calculates the maximum linear correlations
up to a permutation of components. We compute two types of MCC values. The first, denoted as MCCgt,
measures the MCC value between the learned and ground truth hidden confounders Z. We report the
average MCC value of ten different runs. A high MCCgt value indicates successful recovery of the true
hidden confounders. The second, denoted as MCCself, involves training the same model multiple times and
calculating the MCC for every pair of learned hidden confounders. Specifically, let Z(1), · · · , Z(N) be the
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Figure 2: Accuracy and counterfactual fairness trade-off on the six datasets. A better trade-off is achieved
when the performance appears in the upper left corner where higher accuracy and lower prediction bias are
obtained simultaneously.

learned hidden confounders of different runs. We compute the MCC value for every pair Z(i), Z(j) and re-
port the average MCC value. A high MCCself value indicates that the learned hidden confounders converge
to a unique solution. We evaluate our model’s identifiability using three synthetic datasets. We compare
our identifiable model, ‘GraphCFF’, with a non-identifiable variant, ‘GraphCFF w/o GMM’. In this variant,
we replace the GMM prior with a standard Gaussian distribution, so the identifiability of ‘GraphCFF w/o
GMM’ is not guaranteed. The results in Table 2 demonstrate that our model achieves MCCself over 0.85
for all three datasets, indicating stable learned hidden confounders. On the synthetic linear dataset, our
model achieves an MCCgt value of 0.88, showing its capability to accurately recover hidden confounders.
Furthermore, GraphCFF outperforms ‘GraphCFF w/o GMM’ in terms of both MCCgt and MCCself values,
indicating the importance of GMM prior.

6 Conclusions

In this work, we propose a method, known as GraphCFF, to address the fairness issue of GNNs by augmenting
graph data with counterfactual generation. We introduce a causal model with hidden confounders on graphs,
which considers the existence of hidden confounders affecting both node features and graph structures. We
use an identifiable graph VAE model with a Gaussian mixture prior distribution to recover counterfactuals,
enabling the learning of counterfactually fair downstream classifiers. Through experimental results, we
demonstrate that our method can significantly improve counterfactual fairness while not sacrificing much
accuracy. Furthermore, theoretical analysis and empirical results provide convincing evidence for the ability
of our method to accurately identify hidden confounding factors.
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A Proof of Identifiability

Theorem 2. Let F be the generation function of our proposed causal model with hidden confounders on
graphs, defined as F (Z, S) = (A, X) = (FA(Z, S), FX(Z, FA(Z, S), S)). If F is weakly injective, then we
have P (Z, C) to be identifiable from P (A, X, S) up to permutation, scaling, and/or translation.

Proof. The proof of this Theorem is done in the following three steps.

In the first step, we aim to show that the problem of identifying the joint distribution P (Z, C) from
P (A, X, S) can be reduced to identifying P (Z) from P (A, X, S). This reduction is based on the well-
known fact that finite Gaussian mixture distributions are identifiable up to permutations of the Gaussian
components (Yakowitz & Spragins, 1968; Teicher, 1963). Specifically, since finite mixtures of Gaussian dis-
tributions are identifiable up to a permutation of the Gaussian components, we can recover both the mixture
weights P (C) and the corresponding Gaussian components P (Z|C). This implies that P (Z, C) can be
identified from P (Z). Therefore, it is sufficient to prove that P (Z) is identifiable from P (A, X, S) up to
permutation, scaling, and/or translation.

In the second step, we show that P (Z) is identifiable from P (A, X, S) up to an affine transformation of Z.
It is proved by Theorem 7.

In the third step, we show that using the assumption that Z are independent latent factors, then P (Z) is
identifiable from P (A, X, S) up to permutation, scaling, and/or translation of Z. Since P (Z) is identifiable
up to an affine transformation by the second step, the claim follows from Theroem 8.

A.1 Identifiability of Latent Factors

Lemma 3. Let Z = [Z1, Z2, . . . , Zn] ∈ Rn×q be the matrix of latent factors, where each Zi ∈ Rq. The latent
factors of different nodes are independent of each other. Suppose that for each Zi, the probability distribution
follows the same Gaussian Mixture Model (GMM) with K components and diagonal covariance matrices:

P (Zi) =
K∑

k=1
πkN (Zi|µk, Σk), (8)

where πk is the mixture weight for the k-th Gaussian distribution, µk is the mean vector, and Σk =
diag(σ2

k,1, σ2
k,2, . . . , σ2

k,q) is the diagonal covariance matrix.
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Then, when we consider the whole matrix Z as a vector of size n × q (reshaped from the matrix), the joint
distribution P (vec(Z)) can be expressed as a Gaussian Mixture Distribution.

Proof. Consider the reshaped matrix Zvec = [ZT
1 , ZT

2 , · · · , ZT
n ]T . Let’s compute the joint probability P (Zvec):

P (Zvec) = P (Z1, Z2, . . . , Zn) =
n∏

i=1
P (Zi). (9)

Since Σk is diagonal, we can express the Gaussian distribution as a product of q univariate Gaussian distri-
butions:

N (Zi|µk, Σk) =
q∏

j=1
N (Zij |µkj , σ2

kj). (10)

Now, substituting this expression for P (Zi):

P (Zvec) =
n∏

i=1

 K∑
k=1

πk

q∏
j=1

N (Zij |µkj , σ2
kj)

 . (11)

Now, let’s look at one entry of Zvec, say Zuw, which is the element in the u-th row and w-th column of Z.
Its probability distribution can be written as:

P (Zuw) =
K∑

k=1
πkN (Zuw|µkw, σ2

kw). (12)

Since each entry Zuw is independent, the joint distribution of Zvec is indeed a product of Gaussian Mixture
Distributions, and each term is a mixture of univariate Gaussian distributions:

P (Zvec) =
n∏

i=1

q∏
j=1

P (Zij) =
n∏

i=1

q∏
j=1

[
K∑

k=1
πkN (Zij |µkj , σ2

kj)
]

. (13)

Thus, when the covariance matrices are diagonal, the joint distribution of the reshaped matrix Zvec can be
expressed as a single Gaussian mixture distribution.

Lemma 4. Let F be the generation function of our proposed causal model with hidden confounders on
graphs, defined as F (Z, S) = (A, X) = (FA(Z, S), FX(Z, FA(Z, S), S)). We have F is a piecewise affine
function.

Proof. When extra inputs are used to combine piecewise affine functions, the resulting function remains a
piecewise affine function. These additional inputs can be used to determine which linear segment or piece to
use for a particular input value. In other words, if F is a piecewise affine function for every fixed S, then F
is indeed a piecewise affine function. Therefore, it is sufficient to show that, when S is fixed, F is a piecewise
affine function.

We first consider the output A. Recall that A is computed as

Aij =


1, if si ̸= sj and sim(Zi, Zj) > 1 − Pinter

1, if si = sj and sim(Zi, Zj) > 1 − Pintra

0, otherwise
for i, j = 1, · · · , n, (14)
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where sim(·) computes the similarity between latent factors of two nodes. Pinter and Pintra are two constants
that represent the intra-connection and inter-connection thresholds, respectively. For fixed S, A is deter-
mined by applying a comparison operation to the similarity measure sim(Zi, Zj) against thresholds 1−Pinter
and 1 − Pintra. Within each piece of the domain, defined by the conditions, the output Aij is constant.
Therefore, A is a piecewise constant function with respect to Z when S is held constant, which can be
considered a special case of a piecewise affine function.

Next, we consider the output X. Recall that X is computed as

Xi = FX1(Zi, si) + AGG({FX2(Zj , sj) : j ∈ Ni}) for i = 1, · · · , n, (15)

where Ni denotes the set of the nodes connected to the node i in the graph, AGG(·) denotes an aggregation
function, and FX1 and FX2 are two piecewise affine transformation functions. Then FX1 and FX2 divide the
input space to multiple intervals r1, r2, · · · . In the interval r1, FX1 and FX2 are affine functions and can be
denoted as FX1(Z, s) = W1Z + B1s + B′1 and FX2(Z, s) = W2Z + B2s + B′2 respectively, where W1 and
W2 are some matrices, and B1, B′1, B2, and B′2 are some vectors. Then we have Xi = W1Zi + B1si +
B′1 + AGG({W2Zj + B2sj + B′2) : j ∈ Ni}). If we consider each possible configuration of A as defining a
different ‘piece’ of the domain, then within each piece, the aggregation function, such as mean operation, is
a linear function. Therefore, each element of X can be considered as the result of a piecewise affine function,
implying that the generation of matrix X as a whole can be considered a piecewise affine process.

Therefore, we conclude that the overall function F can be considered a piecewise affine function.

Lemma 5. Consider a pair of finite GMMs

P =
J∑

j=1
λjN (µj , Σj) and P ′ =

J′∑
j=1

λ′jN (µ′j , Σ′j). (16)

Assume that there exists a ball B(x0, δ) such that P and P ′ induce the same measure on B(x0, δ). Then
P ≡ P ′, i.e., J = J ′ and for some permutation τ we have λi = λ′τ(i) and (µi, Σi) = (µ′τ(i), Σ′τ(i)).

Proof. We first show that the GMMs are real analytic functions. This step is straightforward. It is well
known that the multivariate Gaussian density function is a real analytic function, and a finite sum of real
analytic functions is also real analytic. Therefore, both P and P ′ are real analytic functions.

Next, we use the identity theorem for real analytic functions in our case. The identity theorem for real
analytic functions states that if a real analytic function is equal to another real analytic function on an open
subset of its domain, then the two functions are equal everywhere on their common domain. In our case, P
and P ′ are equal on the ball B(x0, δ). By the identity theorem, we can conclude that P ≡ P ′.

In the last step, we need to show that the Gaussian components are the same between P and P ′. First,
we argue that J = J ′. Since P and P ′ are equal everywhere, the number of Gaussian components must
be the same, because each component contributes uniquely to the overall shape of the GMM. Next, assume
without loss of generality that λ1 ≥ λ2 ≥ ... ≥ λJ and λ′1 ≥ λ′2 ≥ ... ≥ λ′J′ . We argue that λj = λ′j for all j.
Suppose for contradiction that there exists some j such that λj ̸= λ′j . Then there must exist k ̸= j such that
λk ̸= λ′k, because these mixture weights are themselves probabilities that satisfy the constraints

∑J
i=1 λi = 1

and λi > 0. Without loss of generality, we assume that λj > λ′j . Then we have λ′k > λk. However, in the
neighborhood of the mode of the k-th Gaussian component, P ′ should be greater than P , which contradicts
the fact that P = P ′ everywhere. Finally, we show that for each j, (µj , Σj) = (µ′j , Σ′j). This is due to the
fact that the mean and covariance completely characterize a Gaussian distribution, and two Gaussians that
are equal everywhere must have the same mean and covariance.

This completes the proof. We have shown that if two GMMs induce the same measure on a ball, then they
must be identical, up to a permutation of the components.
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Theorem 6. (Kivva et al., 2022) Let f, g be two piecewise affine functions that are weakly injective. Let

Z ∼
J∑

i=1
λiN (µi, Σi) and Z ′ ∼

J′∑
j=1

λ′jN (µ′j , Σ′j) be a pair of GMMs. Suppose that f(Z) and g(Z ′) are equally

distributed. Then there exists an invertible affine transformation h such that h(Z) ≡ Z ′, i.e., J = J ′ and for
some permutation τ ∈ SJ we have λi = λ′τ(i) and h♯N (µi, Σi) = N (µ′τ(i), Σ′τ(i)).

Here, we outline the key idea of the proof. Initially, given that both piecewise affine functions f and g
demonstrate are weak injective, it can be inferred that f and g are invertible in a neighborhood of a specific
point. Following this, based on Lemma 5, it can be demonstrated that there exists an invertible affine
transformation between Z and Z ′. See complete proof of this theorem in Appendix A of Kivva et al. (2022).
Theorem 6 implies that a mixture model whose components are piecewise affine transformations of a Gaussian
is identifiable.

Theorem 7. Assume that (Z, A, X, S) are distributed according to our proposed causal model with hidden
confounders on graphs. If the generation function F is weakly injective, then P (Z) is identifiable from
P (A, X, S) up to an affine transformation.

Proof. Assume we have two models, including (1) (Z, A, X, S) and a geneartion function F , and (2)
(Z′, A′, X′, S′) and a geneartion function F ′. If two models are well trained, then we have P (A′, X′|S′) =
P (A, X|S) and P (S) = P (S′). In other words, F (Z) and F ′(Z′) have the same distribution. According to
lemma 3, we know Z and Z′ are a pair of GMMs. Moreover, by lemma 4, F and F ′ are piecewise affine
functions. Therefore, by Theorem 6, there exists an invertible affine transformation h such that h(Z) ≡ Z ′.
In other words, P (Z) is identifiable up to an invertible affine transformation.

A.2 Identifiability up to a Permutation, Scaling, and Translation

Theorem 8. (Kivva et al., 2022) Let J ≥ 2, and λk > 0 for k = 1, · · · , J . Let Z be given by

Z ∼
J∑

k=1
λkN (µk, Σk) (17)

Assume that Σk is diagonal for k = 1, · · · , J . Let Y = WZ + B for some matrix W and some vector B.
Moreover, assume that there exist indices i1, i2 ∈ [J ], such that all numbers ((Σi1)tt / (Σi2)tt | t ∈ [m]) are
distinct. Given Y , one can recover an invertible linear map W ′, such that (W ′)−1W = QD, where Q is a
permutation matrix and D is a diagonal matrix with positive entries.

See the complete proof of this Theorem in Appendix E of Kivva et al. (2022).

Consider h as an invertible affine transformation, and let Z′ be defined as Z′ ≡ h(Z). By Theorem 8, we
have that Z can be recovered from Z′ up to a permutation, scaling, and translation. In other words, given
that every covariance matrix Σk is diagonal, we can extend the conclusion that Z can be recovered up to
an affine transformation to a more refined conclusion where Z can be recovered subject to a permutation,
scaling, and translation.
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B ELBO

In this section, we provide detailed derivations of ELBO.

log P (A, X|S) =EQ(Z|A,X,S)

[
log P (A, X, Z|S)

P (Z|A, X, S)

]
=EQ(Z|A,X,S)

[
log P (A, X, Z|S)Q(Z|A, X, S)

P (Z|A, X, S)Q(Z|A, X, S)

]
≥EQ(Z|A,X,S)

[
log P (A, X, Z|S)

Q(Z|A, X, S)

]
=EQ(Z|A,X,S)

[
log P (A, X|Z, S)P (Z|S)

Q(Z|A, X, S)

]
(a)=EQ(Z|A,X,S)

[
log P (A|Z, S)P (X|A, Z, S)P (Z|S)

Q(Z|A, X, S)

]
=EQ(Z|A,X,S)[log P (A|Z, S) + log P (X|A, Z, S)

+ log P (Z|S) − log Q(Z|A, X, S)]
(b)=EQ(Z|A,X,S)[log P (A|Z, S) + log P (X|A, Z, S)

+ log P (Z) − log Q(Z|A, X, S)]

Equation (a) holds because of the factorization of joint probability P (Z, A, X, S) =
P (Z, S)P (A|Z, S)P (X|A, Z, S), and Equation (b) holds due to the independence between sensitive
attribute S and latent factors Z.

log P (A, X|S) =EQ(Z,C|A,X,S)

[
log P (A, X, Z, C|S)

P (Z, C|A, X, S)

]
=EQ(Z,C|A,X,S)

[
log P (A, X, Z, C|S)Q(Z, C|A, X, S)

P (Z, C|A, X, S)Q(Z, C|A, X, S)

]
≥EQ(Z,C|A,X,S)

[
log P (A, X, Z, C|S)

Q(Z, C|A, X, S)

]
=EQ(Z,C|A,X,S)

[
log P (A, X|Z, S, C)P (Z, C|S)

Q(Z, C|A, X, S)

]
=EQ(Z,C|A,X,S)

[
log P (A, X|Z, S)P (Z, C|S)

Q(Z, C|A, X, S)

]
=EQ(Z,C|A,X,S)

[
log P (A|Z, S)P (X|A, Z, S)P (Z, C|S)

Q(Z, C|A, X, S)

]
=EQ(Z,C|A,X,S)[log P (A|Z, S) + log P (X|A, Z, S) + log P (Z, C|S)

− log Q(Z|A, X, S) − log Q(C|A, X, S)]
=EQ(Z,C|A,X,S)[log P (A|Z, S) + log P (X|A, Z, S) + log P (Z, C)

− log Q(Z|A, X, S) − log Q(C|A, X, S)]
=EQ(Z,C|A,X,S)[log P (A|Z, S) + log P (X|A, Z, S) + log P (Z|C)

+ log P (C) − log Q(Z|A, X, S) − log Q(C|A, X, S)]

C More Discussions

C.1 Fairness-aware Graph Augmentations

Fairness-aware graph data augmentation is an essential strategy in mitigating bias in graph neural networks
(GNNs). A primary issue in fairness is that the bias in training datasets is a significant source of discrimina-
tive behavior in models (Mehrabi et al., 2021; Olteanu et al., 2019). GNN models may inherit or even amplify
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bias from training data (Dai & Wang, 2021). This process can result in potentially discriminatory predictions,
adversely impacting groups defined by sensitive attributes such as race and gender. Hence, Fairness-aware
graph data augmentation, which reduces bias in the training data, emerges as a highly effective strategy
for enabling models to learn fair representations. Spinelli et al. (2021) propose that the existence of edges
connecting nodes with identical sensitive attributes can lead to prediction discrimination. To tackle this
issue, they propose a biased edge drop algorithm that mitigates this tendency in graphs, thereby enhancing
fairness in prediction tasks. Kose & Shen (2022) study correlations between sensitive attributes and learned
node representations. They propose a series of graph augmentations aimed at minimizing the upper bounds
of these correlations, resulting in improving fairness in GNNs. While previous methods rely on manually dis-
covered properties of fair graph data in order to design fixed strategies, Ling et al. (2023b) propose learning
fair representations via automated graph data augmentations. Their proposed Graphair can automatically
identify and implement fairness-aware augmentations from input graphs, circumventing sensitive informa-
tion while preserving other useful information. However, a significant shortcoming of these fairness-aware
augmentation methods is that they ignore causal relationships in the augmented data. This omission could
lead to a situation where the augmented data does not adhere to realistic scenarios. For instance, in order
to achieve fair prediction outcomes for both females and males, these methods may generate a lot of tall and
heavy female samples, a distribution that does not accurately reflect real-world demographics. This prob-
lem highlights the importance of incorporating causality into fairness-aware data augmentation strategies to
ensure the creation of realistic and representative datasets for training GNNs.

C.2 Identifiability of Latent-variable Models

Deep latent-variable models, such as VAEs, have been extensively used for unsupervised learning of latent
representations. However, traditional results from nonlinear Independent Component Analysis (ICA) reveal
a fundamental issue in VAEs, namely the lack of identifiability, where different latent variables can generate
the same observed variables (Hyvärinen & Pajunen, 1999). This issue hinders the approximation of the
true joint distribution over observed and latent variables. A recent breakthrough by Khemakhem et al.
(2020a) demonstrates that the identifiability of VAES can be achieved up to certain nonlinear equivalences
when side information is available. Building upon this idea, several methods have been proposed to achieve
identifiability with some form of auxiliary information (Khemakhem et al., 2020b; Mita et al., 2021; Yang
et al., 2021; Li et al., 2019; Sorrenson et al., 2020). For example, Yang et al. (2021) proposes to incorporate
a Structural Causal Model (SCM) into a VAE model. During training, the true causal variables are used
as labels, which guide the learning process to disentangle the latent representations and encourage the
model to learn a meaningful and identifiable latent representation. Furthermore, Ahuja et al. (2022; 2021)
propose methods that reduce the reliance on additional information. They show that if the underlying
mechanisms guiding the evolution of latent variables are known, the latent variables can be identified up to the
equivariances of these mechanisms. In contrast, some approaches avoid using additional forms of supervision
and aim to enforce identifiability in a purely unsupervised setting (Kivva et al., 2022; Wang et al., 2021).
These works demonstrate that identifiability is achievable under commonly adopted assumptions, indicating
that auxiliary information may not be necessary. Another line of research focuses on restricting the selection
of the variational family and prior distribution to improve identifiability (Kumar & Poole, 2020).

While we follow Kivva et al. (2022) to incorporate a GMM prior in our framework to solve the non-identifiable
issue of VAE, we would like to highlight the difference between Kivva et al. (2022) and our work. The
fundamental difference between Kivva et al. (2022) and our work is that the identifiability problem in
deep latent variable models is different from identifying the hidden confounders. Given that a VAE is a
generative model, its latent variable can follow any prior distribution, as long as we can sample the latent
variable from the prior distribution to generate new data. Kivva et al. (2022) aims to improve stability,
consistency, and robustness of deep generative models. However, in our work, the latent factors are hidden
confounders, which are integral to the ground truth data generation process of observed graph data. To
address this challenge, our goal is to identify these hidden confounders, thereby facilitating a more reliable
recovery of counterfactuals. In other words, we aim to recover the causal model generating the observed
graph data to improve counterfactual fairness, while Kivva et al. (2022) focus on learning a stable and robust
deep generative model. From a technical perspective, Kivva et al. (2022) delves into deep latent variable
generative models with a particular focus on the decoders of VAE models. In contrast, our approach uses
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a conditional graph VAE which is consistent with our proposed causal model, generating counterfactual
graph data conditioned on sensitive attributes. This focus differs from the theoretical foundation of Kivva
et al. (2022), which primarily addresses tabular data. The inherent non-iid nature of graph data and the
conditioning on sensitive attributes present challenges to the identifiability theory posited by Kivva et al.
(2022), making it non-trivial to extend to our case. We provide theoretical evidence that GMM can facilitate
the identifiability of conditional VAEs when applied to graph data, marking a theoretical advancement in
the field.

C.3 Relation with Previous Studies about Counterfactual Fairness on Graphs

In comparison to prior research on counterfactual fairness in graphs, our causal model is more general. For
example, NIFTY (Agarwal et al., 2021) considers a simple scenario where sensitive attributes are independent
of both node features and the adjacency matrix. This situation is merely a special case within our broader
setting. Specifically, if both functions FX and FA remain unchanged with respect to S, then sensitive
attributes will not influence node features or the adjacency matrix. Similarly, GEAR (Ma et al., 2022)
considers the scenario where S is the only confounder for both A and X. This is also a special case within
our broader setting. Specifically, if both functions FX and FA are invariant with respect to Z, then our
causal model is equivalent to GEAR’s scenario.

Moreover, we consider one of the significant challenges in graph data, namely the non-independence of
nodes. This implies that modifications to one node could potentially impact another. In contrast, prior
studies assume node features cannot be influenced by their neighbors. This more simplistic view is yet
another specific instance within our broader framework. Specifically, if FX2 in Eq. (3) consistently returns
zero, then the node features remain unaffected by their neighbors. To further validate our approach, we
provide experimental results, detailed in Appendix E.2, which demonstrate its effectiveness even in this
specific scenario.

C.4 Assumption about Independence Between Hidden Confounders and Sensitive Attributes

Our primary objective is to derive trustworthy counterfactuals. Importantly, we can obtain accurate coun-
terfactuals without the explicit computation of latent factors influenced by S. This means that we can
produce consistent counterfactuals using just S and Z. Let Z′ denote those latent factors influenced by S.
Two causal relationships need to be considered.

1. In the causal graph, Z′ is solely a child of sensitive attribute S, meaning Z′ is only causally affected by S.
In this case, the value of Z′ can be expressed as Z′ = FZ′(S), where FZ′(·) describes how Z′ is dependent
on S. The generation process of observed graph data can be expressed as (A, X) = F (S, Z, Z′), where
F corresponds to the generating mechanism from S, Z, Z′. Given Z′ = FZ′(S), we have (A, X) =
F (S, Z, Z′) = F (S, Z, FZ′(S)) = F ′(S, Z), where F ′ is an alternative function. This implies that the
generation process can be expressed only using S and Z. Therefore, our proposed method can generate
identical counterfactuals, as F (S′, Z, FZ′(S′)) = F ′(S′, Z).

2. In the causal graph, Z′ is the child of both sensitive attribute S and other latent factors independent of S.
This implies Z′ is causally affected by both S and Z. The value of Z′ can be expressed as Z′ = FZ′(S, Z),
where FZ′(·) describes how Z′ is dependent on both S and Z. The generation process of observed graph
data can be expressed as (A, X) = F (S, Z, Z′), where F corresponds to the generating mechanism of
graph data from S, Z, Z′. Given Z′ = FZ′(S, Z), we have (A, X) = F (S, Z, Z′) = F (S, Z, FZ′(S, Z)) =
F ′(S, Z), where F ′ is an alternative function. In this scenario as well, our proposed method can generate
the same counterfactuals, as F (S′, Z, FZ′(S′, Z)) = F ′(S′, Z).

In summary, even though there exist latent factors that can be affected by sensitive attributes, independence
between Z and S is reasonable. This assumption suffices to recover reliable counterfactuals.
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C.5 Assumption about Gaussian Mixture Prior of Hidden Confounders

While existing works (Madras et al., 2018; Ma et al., 2022; Louizos et al., 2017; Foster et al., 2022) use
a normal distribution as the prior distribution of latent factors, we use GMM as the prior distribution of
hidden confounders. It’s essential to note that a GMM with a single Gaussian component is equivalent to a
normal distribution. This makes the normal distribution a special case of GMM. Therefore, our framework
offers a more generalized approach compared to existing works. Moreover, GMM is a universal approximator
of densities (Goodfellow et al., 2016; Carreira-Perpinan, 2000; Scott, 2015), meaning it can represent a wide
variety of continuous density functions. With enough mixture components, any smooth density can be
approximated by a GMM to a specific nonzero level of accuracy. This highlights the adaptability of GMM
in capturing various density distributions. In other words, our model can recover hidden confounders with
diverse distributions, implying its superior applicability in real-world scenarios compared to existing works.

D More Details on Experimental Settings

D.1 Datasets

We create three synthetic datasets, including Synthetic Linear, Synthetic NonLinear, and Synthetic Noise.
For all three datasets, we generate a graph with n = 1000 nodes. We use a Gaussian mixture model with
K = 5 components to generate the hidden confounders Z. For each Gaussian component, each component
of mean vector µk take a value between −10 and 10, and covariance matrix Σk is a diagonal matrix with
diagonal values equal to 0.1. The sensitive attribute for each node is sampled from a Bernoulli distribution
as Si ∼ Bernoulli(ps), where ps = 0.5 is the probability of Si = 1. Afterwards, we generate the adjacency
matrix A and node feature X using Eqs. (2) and (3), respectively. Node labels are generated in the same
way as node features and then mapped to binary values. To be more specific, we generate the adjacency
matrix as follows,

Aij =


1, if si ̸= sj and sim(Zi, Zj) > 1 − Pinter

1, if si = sj and sim(Zi, Zj) > 1 − Pintra

0, otherwise
for i, j = 1, · · · , n,

where we use cosine similarity as the sim(·) function and set Pinter = 5 × 10−4, Pintra = 5 × 10−3. We use
mean pooling as the aggregation function in all three datasets. In Synthetic Linear, we set functions FX1

and FX2 as two linear transformations. To create a linear transformation, we generate a full-rank matrix.
Specifically, we initialize a matrix, denoted W , wherein each element is independently sampled from a
standard normal distribution N (0, 1). Then we check the determinant of the matrix W . If the determinant
is zero, indicating that the matrix is singular, we repeat the previous step to generate a new matrix until
a non-singular matrix is obtained. The resulting matrix W represents the desired linear transformation.
In Synthetic NonLinear, we set FX1 and FX2 as two non-linear transformations. These transformations are
achieved by using randomly initialized MLPs. Specifically, we use three-layer MLPs with Leaky-ReLU as
the activation function. In Synthetic Noise, we introduce randomness to the adjacency matrix entries and
add exponential noise to node features. Specifically, we use a Bernoulli distribution with a probability of
0.05 to decide whether each entry in the adjacency matrix should be flipped. Furthermore, we add noise ϵi

to each node’s feature, where ϵi is sampled from the exponential distribution as ϵi ∼ exp(0.2).

For the real-world datasets, we use German, Credit, and Bail. The German dataset contains 1000 nodes,
with each node representing a client of a German bank. The edges between these nodes represent similarities
between their corresponding credit accounts. The Credit dataset consists of 30, 000 nodes, with each node
representing an individual with features such as education, credit history, and age. The edges between
these nodes represent the similarities in spending and payment patterns among these individuals. Bail
dataset includes 18, 876 nodes, with each node representing a defendant who was released on bail from
U.S. state courts between 1990 and 2009. The edges between these nodes represent the similarities in
their criminal histories and demographics. For the ground-truth counterfactual, we use causal discovery
methods implemented in Tetrad Ramsey et al. (2018) to generate the counterfactual data. To be more
specific, generating ground-truth counterfactuals involves two main steps: generating the node attributes
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Table 3: Comparisons between our method and baselines on node classification tasks in terms of ROC AUC,
F1 score, DP, and EO. The best results are shown in bold.

Dataset Method ROC AUC ↑ F1 ↑ DP ↓ EO ↓

Synthetic Linear

No augmentation 95.96 ± 0.39 88.75 ± 2.09 10.55 ± 0.94 12.02 ± 3.49
NIFTY 96.26 ± 1.62 89.14 ± 0.79 11.18 ± 1.89 15.72 ± 1.75
GEAR 94.20 ± 1.82 86.61 ± 2.05 5.90 ± 2.85 13.26 ± 5.01
GraphCFF 95.02 ± 0.76 85.40 ± 0.44 2.05 ± 1.70 13.29 ± 3.11

Synthetic NonLinear

No augmentation 93.27 ± 1.18 90.76 ± 1.02 20.21 ± 2.05 9.72 ± 1.96
NIFTY 92.51 ± 0.90 91.86 ± 0.56 14.20 ± 1.80 5.56 ± 1.36
GEAR 86.30 ± 3.86 87.62 ± 1.57 7.76 ± 3.04 3.89 ± 2.75
GraphCFF 88.17 ± 1.60 92.58 ± 0.57 5.77 ± 1.98 3.89 ± 1.42

Synthetic Noise

No augmentation 97.35 ± 0.43 93.45 ± 1.41 4.43 ± 2.18 5.56 ± 1.57
NIFTY 96.47 ± 0.55 93.18 ± 0.74 1.82 ± 1.14 3.33 ± 1.70
GEAR 91.35 ± 6.02 87.91 ± 4.15 2.83 ± 1.22 2.22 ± 1.57
GraphCFF 95.40 ± 0.96 91.55 ± 0.46 3.21 ± 0.95 1.11 ± 1.36

German

No augmentation 64.68 ± 2.26 78.52 ± 1.41 16.96 ± 6.58 14.18 ± 6.88
NIFTY 63.79 ± 3.40 78.54 ± 1.79 6.19 ± 2.06 7.25 ± 5.67
GEAR 63.81 ± 1.38 81.67 ± 1.57 6.56 ± 2.77 5.83 ± 2.03
GraphCFF 61.56 ± 2.22 82.35 ± 1.81 2.15 ± 2.04 1.45 ± 2.05

Credit

No augmentation 75.93 ± 1.27 87.97 ± 1.13 1.91 ± 1.60 1.03 ± 2.20
NIFTY 75.91 ± 0.67 88.13 ± 0.78 1.36 ± 0.49 1.27 ± 0.49
GEAR 73.42 ± 2.13 88.03 ± 2.43 0.75 ± 0.89 0.74 ± 0.44
GraphCFF 72.36 ± 1.12 87.20 ± 0.73 0.24 ± 0.34 0.41 ± 0.58

Bail

No augmentation 96.45 ± 1.18 91.54 ± 1.32 6.76 + 1.51 2.26 ± 1.02
NIFTY 96.19 ± 0.50 91.53 ± 0.70 6.15 ± 0.34 1.49 ± 1.33
GEAR 89.05 ± 1.09 83.35 ± 1.01 6.69 ± 0.74 2.54 ± 1.02
GraphCFF 88.97 ± 1.38 82.83 ± 1.85 5.53 ± 1.23 2.07 ± 0.77

and constructing the adjacency matrix. For the node attributes, we use the Peter-Clark algorithm to identify
causal relationships among the attributes. We then flip the sensitive attribute and leverage these causal
relationships to compute the counterfactual node attributes. For the adjacency matrix, the datasets (German,
Credit, and Bail) use the Minkowski distance as the similarity measure to determine connections between
nodes. Specifically, two nodes are connected if their similarity exceeds a certain threshold. The thresholds
are set as follows: for German, 80% of the maximum similarity between all nodes; for Bail, 60%; and for
Credit, 60%. We follow the same procedure to generate edges in the counterfactual graphs.

D.2 Implementation Details

For a fair comparison, we use the same classification model to evaluate all methods. For the classification
model, we use a GCN model. The number of GCN layers is two, and we use a global mean pooling as
the readout function. We set the hidden size as 16. The activation function is ReLU. We use the Adam
optimizer (Kingma & Ba, 2015) to train the classification model with 1 × 10−4 learning rate and 1 × 10−4

weight decay. We use NVIDIA RTX A6000 GPUs for all our experiments. In our experiments on synthetic
datasets, we set the dimensionality of the hidden confounders and the number of components to match the
data generation process’s ground truth. For real-world datasets, we align the dimensionality of the hidden
confounders with that of the node features, setting the number of components to eight.
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Table 4: Comparisons between our method and baselines on Synthetic 0-hop dataset. The best results are
shown in bold.

Synthetic 0-hop ACC ↑ ROC AUC ↑ CF ↓
No augmentation 73.67 ± 2.05 77.84 ± 3.11 16.20 ± 2.56
NIFTY 70.67 ± 1.25 75.65 ± 0.63 13.13 ± 1.54
GEAR 72.67 ± 2.05 76.46 ± 0.63 7.60 ± 2.66
GraphCFF 72.00 ± 1.41 79.21 ± 1.21 5.33 ± 1.35

E More Experimental Results

E.1 More Evaluation Metrics

In this section, we provide experimental results with more evaluation metrics. Beyond merely assessing
accuracy, we incorporate the F1 score and ROC AUC as additional performance evaluation metrics, offering
a more comprehensive evaluation of model performance. To provide a comprehensive evaluation of fairness,
we also include two metrics that are commonly used in statistical fairness, namely demographic parity (DP)
and equal opportunity (EO). DP quantifies the disparity in positive prediction rates between two distinct
groups and is mathematically expressed as ∆DP = |P(Ŷ = 1|S = 0) − P(Ŷ = 1|S = 1)|. On the other
hand, EO focuses on fairness concerning true positive rates and is defined as ∆EO = |P(Ŷ = 1|S = 0, Y =
1) − P(Ŷ = 1|S = 1, Y = 1)|. It’s worth noting that group fairness is different from counterfactual fairness.
While group fairness metrics, such as DP and EO, provide valuable insights into potential group-level biases,
they don’t directly measure counterfactual fairness.

We conduct experiments on all six datasets using performance metrics ROC AUC and F1 score, as well
as fairness metrics DP and EO. Results in Table 3 show that our proposed GraphCFF has comparable
performance compared to ‘No augmentation’ in terms of both ROC AUC and F1 score in the majority
of scenarios. Furthermore, even though DP and EO don’t directly measure counterfactual fairness, our
GraphCFF generally demonstrates a reduction in prediction bias in terms of DP and EO. Overall, our
GraphCFF can significantly improve fairness while not sacrificing much performance of the model. It is
worth noting that in some cases, our approach not only enhances fairness but also improves performance.
For example, in the Synthetic NonLinear dataset, our GraphCFF outperforms the ‘No augmentation’ with
a higher F1 score and lower DP and EO.

E.2 More Experiments on Synthetic Datasets

To verify our discussion in Appendix C.3, we conduct additional experiments to demonstrate the effectiveness
of our method in the specific scenario that node features cannot be influenced by their neighbors. As we
mentioned in Appendix C.3, the independence between node features can be achieved by setting FX2 to zero
functions. Specifically, we generate a new synthetic dataset, namely Synthetic 0-hop. The generation process
of Synthetic 0-hop is the same as Synthetic Linear, except that FX2 is a zero function rather than a full-rank
linear transformation in this case. The results in Table 4 show that our GraphCFF outperforms all baselines
in terms of counterfactual fairness and ROC AUC. This means that scenarios, where node features remain
uninfluenced by their neighbors, are specific cases within our broader setting. Consequently, our proposed
GraphCFF proves to be adept at handling these special cases.
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