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Abstract

Detecting anomalies in multivariate time-series data is an essential task across vari-
ous domains, yet there are unresolved challenges such as (1) severe class imbalance
between normal and anomalous data due to rare anomaly availability in the real
world; (2) limited adaptability of the static graph-based methods to dynamically
changing inter-variable correlations; and (3) neglect of subtle anomalies due to
overfitting to normal patterns in reconstruction-based methods. To tackle these
issues, we propose Self-Perturbed Anomaly-Aware Graph Dynamics (SPAGD), a
framework for time-series anomaly detection. SPAGD employs a self-perturbation
module that generates self-perturbed time series from the reconstruction process of
normal ones, which provide auxiliary signals to alleviate class imbalance during
training. Concurrently, an anomaly-aware graph construction module is proposed
to dynamically adjust the graph structure by leveraging the reconstruction residuals
of self-perturbed time series, thereby emphasizing the inter-variable disruptions
induced by anomalous candidates. A unified spatio-temporal anomaly detection
module then integrates both spatial and temporal convolutions to train a classifier
that distinguishes normal time series from the auxiliary self-perturbed samples.
Extensive experiments across multiple benchmark datasets demonstrate the effec-
tiveness of SPAGD compared to state-of-the-art baselines.

1 Introduction

Time-series anomaly detection (TSAD) [Blázquez-García et al., 2021; Zamanzadeh Darban et al.,
2024] is an essential machine learning task with significant influence in various domains, such as
cybersecurity, industrial systems, healthcare, and finance [Veeravalli et al., 2017; Cook et al., 2019;
Schmidl et al., 2022; Zhang et al., 2024b; Qi et al., 2025; Fang et al., 2025]. It aims to identify
patterns that deviate from expected behavior over a period of time, and to alert to potential faults,

∗Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Pr
ed

ic
to

r

𝐶 Te
mporal 

Chunks

𝑝̂
Self loop

Neighbor
Aggregation

Encoder Decoder

Graph 
Construction

Anomaly 
Aware Module

Relation Graph Adjusted Relation Graph

Normal Time-series

Perturbed Time-series Spatial Convolution Temporal Convolution

Time-Series Data Reconstructed Time-Series
Reconstruction Residuals

Anomaly 
Prediction

Figure 1: An illustration of the proposed SPAGD framework, which contains three main components:
(1) Self-perturbation time-series generation; (2) Anomaly-aware graph construction; and (3) Spatio-
temporal modeling for anomaly detection.

intrusions, or critical events. Multivariate time-series anomaly detection, in particular, presents a
significant challenge due to the complex spatial and temporal inter-variable dependencies among
multiple time-series data.

Over the past decades, TSAD has witnessed significant progress. Early methods are mainly based on
proximity [Breunig et al., 2000; Qi and Chen, 2022], linear model [Wold et al., 1987; Schölkopf et
al., 2001], clustering [Chen et al., 2022b; Liu et al., 2022; Chen et al., 2022a; Liang et al., 2025; Fu
et al., 2025] or outlier ensembles [Liu et al., 2008]. These methods rely on strong assumptions and
often struggle with large-scale or high-dimensional data. In recent years, deep learning has emerged
as a powerful alternative [Zamanzadeh Darban et al., 2024], with various types of approaches being
proposed. For example, the reconstruction-based methods [Audibert et al., 2020; Yang et al., 2023;
Wang et al., 2023] employ deep neural network architectures [Baldi, 2012; Goodfellow et al., 2020]
to learn latent representations of normal behavior. Anomalies are detected as instances exhibiting
significant reconstruction errors, reflecting their deviation from learned norms. Concurrently, forecast-
based methods [Tuli et al., 2022; Xu et al., 2022; Wu et al., 2023a] have leveraged sequence modeling
techniques [Medsker et al., 2001; Vaswani et al., 2017; Fang et al., 2023] to capture temporal
dependencies and predict future values, where anomalies are flagged when observed values diverge
from predictions. Although these approaches exhibited effectiveness, they generally treat each
variable or time stamp independently, neglecting the rich inter-variable dependencies in multivariate
time series. Therefore, recent endeavors [Zhao et al., 2020; Deng and Hooi, 2021] have explored
the potential of graph neural networks (GNNs) [Kipf and Welling, 2017; Liu et al., 2023; Wu et al.,
2023b; Cai et al., 2024a, 2025b; Liu et al., 2025b] to explicitly model inter-variable dependencies,
where variables (e.g., sensors) are represented as nodes in a graph, with edges encoding spatial
relationships. Advanced methods [Zheng et al., 2023; Chen et al., 2024] further incorporate GNNs
with temporal convolution to capture temporal dynamics for detecting anomalies.

Although these advanced methods provide a promising solution for detecting anomalies in multivariate
time-series data, several key challenges still persist:

1. Time-series anomalies are rare or even unavailable in real-world scenarios. The severe imbalance
between normal and anomalous time series [Zamanzadeh Darban et al., 2024] could bias the
model towards normal patterns during training, thus significantly weakening its generalizability.

2. Existing graph-based methods [Deng and Hooi, 2021; Zheng et al., 2023] typically rely on a
static graph construction strategy to model spatial dependencies of time-series data, yet these
dependencies may significantly alter due to dynamic anomaly-induced distortion.
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3. The “anomaly reconstruction” problem [Audibert et al., 2020; Song et al., 2023] indicates that
certain anomalies may inadvertently be well-reconstructed in reconstruction-based methods due to
the overfit towards normal patterns, thereby overlooking anomalies with low reconstruction error.

To address these challenges, we propose a new TSAD framework named Self-Perturbed Anomaly-
aware Graph Dynamics (SPAGD). SPAGD introduces a self-perturbation module that leverages
inherent deviations during the process of reconstructing normal time series to generate self-perturbed
time series. These generated time-series data subsequently serve as the auxiliary signal for training
the anomaly detection model, where the model is exposed to diverse potential anomalous patterns for
alleviating the imbalance problem. Simultaneously, an anomaly-aware graph construction scheme
is introduced to learn dynamic inter-variable correlations derived from the evolving reconstruction
residuals of self-perturbed time series. Then, we developed a spatio-temporal anomaly detection
module to distinguish the self-perturbed time series from normal ones, which effectively integrates
both spatial dependencies and temporal dynamics to yield holistic representations for TSAD. SPAGD
is trained in an end-to-end manner for the mutual improvement of all components during training.
Extensive experiments compared to state-of-the-art TSAD baselines demonstrate the superiority of
the proposed SPAGD method. We summarize the main contributions of this paper as follows:

• We introduce a self-perturbation module that generates diverse auxiliary anomalous time series
through the evolving reconstruction process of the normal time-series data, which alleviates the
severe imbalance problem without relying on any external anomalous data.

• We propose an anomaly-aware graph construction module that dynamically adjusts the graph
structure based on the reconstruction residuals of the self-perturbed time series, thus reflecting the
changing inter-variable correlations that traditional static strategies fail to capture.

• We build an anomaly detection framework that trains a classifier by exploiting both spatial and
temporal dependencies to distinguish normal time series from auxiliary self-perturbed ones, which
jumps out of the reconstruction-based framework and mitigates the anomaly reconstruction problem.

2 Related Works

Multivariate TSAD [Blázquez-García et al., 2021; Zamanzadeh Darban et al., 2024; Zhang et
al., 2024a] is a complex and challenging research area, with a variety of methods emerging in
recent years. The sequence-centric models primarily leverage the temporal dynamics of time series,
such as Anomaly Transformer [Xu et al., 2022] and TranAD [Tuli et al., 2022], which utilize a
Transformer architecture to capture long-term dependencies, while TimesNet [Wu et al., 2023a]
enhances detection accuracy through multi-scale temporal decomposition. These methods excel at
modeling temporal patterns within individual channels, however, they typically process each variable
channel independently, overlooking inter-variable correlations. In recent years, graph-based models
have been widely explored to address this limitation, where a graph is constructed to represent the
relationships between multiple variables, with GNNs [Cai et al., 2024b; Liu et al., 2024; Cai et al.,
2025a] employed for anomaly detection. For instance, GDN [Deng and Hooi, 2021] pre-constructs
a similarity graph to help predict anomalies, and GRELEN [Zhang et al., 2022] integrates graph
relational learning to improve feature extraction. Moreover, recent approaches [Zheng et al., 2023;
Ding et al., 2023] have proposed learning comprehensive representations by incorporating both
spatial and temporal dependencies. However, their reliance on fixed graph structures renders them
less effective in scenarios where time-series relationships evolve dynamically. Although a few studies
have investigated dynamic graph learning [Jin et al., 2024], the graph construction in them is generally
decoupled from the anomaly detection optimization process.

The proposed SPAGD method exhibits differences from existing TSAD methods in the following
aspects: (1) Rather than relying on random imposed noise [Wang et al., 2023] or traditional augmen-
tation techniques [Yang et al., 2023], SPAGD employs a self-perturbation mechanism to generate
auxiliary self-perturbed time-series data, where the perturbations are adaptive and closely tied to
anomaly detection. (2) Unlike static graph-based methods [Deng and Hooi, 2021], SPAGD adapts to
dynamic changes in inter-variable correlations caused by evolving anomalous candidates. (3) SPAGD
leverages the generated auxiliary time series data to train a classifier, which is more flexible and does
not require a hand-crafted anomaly-scoring function in reconstruction-based approaches [Song et al.,
2023]. (4) SPAGD unifies all components in an end-to-end framework, so that auxiliary time series
generation and anomaly detection mutually improve each other.
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3 Methodology

3.1 Problem Formulation

In multivariate time-series anomaly detection, we consider a time series X = [x1,x2, . . . ,xT ]
collected across T discrete time steps. Each feature vector xt ∈ Rd denotes multidimensional
observations at timestamp t, where d > 1 denotes the feature dimensions of the multivariate time-
series data. Typically, a time-series dataset D = {X1,X2, . . . ,XN} with N samples is constructed
by applying a sliding window of length T to sample a long time series collected from different
sources, e.g., industrial sensors. The dataset D serves as the training foundation for building an
anomaly detection model that generalizes to an unknown test dataset Dtest. Our goal is to train an
anomaly detection model FΘ : Rd×T → {0, 1} parameterized by Θ based on D, where the model is
able to predict the anomaly state ŷ ∈ {0, 1} for each test time sequence X̂i ∈ Dtest. Here, ŷ = 1 and
ŷ = 0 denote anomalous and normal states, respectively.

Despite the abundance of normal time-series data in the real world, current TSAD methods still
face several fundamental challenges, such as the severe data imbalance, static spatio-temporal
correlation modeling, and anomaly reconstruction problem (refer to Section 1). To tackle these
challenges, we propose SPAGD, an end-to-end TSAD framework composed of: (i) self-perturbation
time-series generation to alleviate data imbalance; (ii) graph construction to model dynamical inter-
variable correlations; and (iii) a spatio-temporal anomaly detection module to mitigate the anomaly
reconstruction problem. We will detail each component of SPAGD in the following subsections.

3.2 Time-Series Generation via Self-Perturbation

To alleviate the severe data imbalance inherent in multivariate time-series anomaly detection, we
propose a self-perturbation mechanism that harnesses the intrinsic imperfections of reconstruction
models to generate pseudo-anomalous samples. Our approach is motivated by two key observations.
First, during early training stages, the reconstruction model tends to produce systematic errors when
replicating the input X ∈ Rd×T due to its limited representational capacity. We argue that these
reconstruction errors, which manifest as deviations from the normal data, can serve as effective
proxies for genuine anomalies. Second, as the reconstruction model is progressively trained, the
magnitude of these errors diminishes, exposing the anomaly detection model to a continuum of
deviations, i.e., from large, obvious discrepancies to subtle differences. By incorporating these
generated auxiliary samples into the training process as supervised signals, the anomaly detection
model is able to progressively refine its decision boundary by identifying a broader spectrum of
potential anomalous patterns.

Formally, given an input time series X, we employ a Transformer-based model for reconstruction:

X̃ = Trand

(
Trane(X; Θe); Θd

)
, (1)

where X̃ ∈ Rd×T denotes the reconstructed time series, and Trane(·) and Trand(·) are the encoder
and decoder networks parameterized by Θe and Θd, respectively. The reconstruction model is trained
on the dataset D = {Xi}Ni=1 by minimizing:

Lsp =

N∑
i=1

∥∥∥Xi − Trand

(
Trane(Xi; Θe); Θd

)∥∥∥2
F
. (2)

Initially, X̃ deviates substantially from X, and these deviations are treated as auxiliary anomalous
patterns for training the subsequent anomaly detection model. As training progresses and reconstruc-
tion quality improves, X̃ will gradually converge towards X, providing the anomaly detection model
with increasingly subtle deviation signals. Particularly, this progressive refinement can dynamically
update the quality of pseudo-anomalous samples throughout the training process, which ensures that
the anomaly detection model does not overfit to specific types of anomalies but instead generalizes to
a broader range of potential anomalies.

3.3 Anomaly-Aware Graph Construction

Existing graph-based TSAD approaches [Deng and Hooi, 2021; Zheng et al., 2023] encode each
variable (e.g., sensor) as a node (V ) and pairwise affinities as edges (E), allowing GNNs to exploit
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cross-variable dependencies via graph G = (V,E), which is unavailable to purely sequence-centric
models. However, these methods typically rely on static similarity measures (e.g., cosine similarity)
to construct the graph, and keep it fixed throughout training and inference. A static topology
can accurately reflect normal correlations, yet it fails to capture dynamic disruptions induced by
self-perturbed time-series data. To overcome this limitation, we propose an anomaly-aware graph
construction (AAGC) mechanism, which can dynamically adjust the graph structure based on the
reconstruction residuals of the self-perturbed time series, thereby ensuring that the influence of
potential anomalies on the spatial relationships can be emphasized.

Initial Graph Construction Given a normal time-series X ∈ Rd×T from a dataset D =
{X1,X2, . . . ,XN}, we first construct an adjacency matrix A to capture baseline inter-variable
correlations. For variables i and j, we compute pairwise cosine similarity as follows:

Sij = Sigmoid
(

⟨Xi,:,Xj,:⟩
∥Xi,:∥ · ∥Xj,:∥

)
, (3)

where Xi,: ∈ RT represents the time-series for variable i, and Sigmoid(·) is the Sigmoid function
mapping similarity scores to [0, 1], indicating connection strength. To ensure sparsity and focus on
the most informative relationships, we retain only the top-K neighbors for each variable:

Aij =

{
Sij , if j ∈ top-K neighbors of i,
0, otherwise.

(4)

This step ensures the graph remains sparse, reducing computational complexity while preserving
the most relevant inter-variable correlations. The initial graph A serves as a static representation of
interactions between normal multivariate time series.

Dynamic Adjustment with Reconstruction Residuals While static graphs are suitable for cap-
turing inter-variable correlations between normal time-series pairs, they cannot reflect the transient
changes (e.g., sensor failures or external disturbances) in dynamic time series. To adapt to dynamic
anomalous patterns introduced via generated self-perturbed time series, we construct a dynamically
adjusted graph Ã to reflect the influence of anomalous candidates on the learned graph structure. To
achieve this, we first compute the node-specific reconstruction residual score ri for each variable:

ri =
1

T

T∑
t=1

|Xi,t − X̃i,t|, (5)

where Xi,t and X̃i,t are the input and reconstructed values for time series i at time t, respectively.
The reconstruction residual ri quantifies the anomalous degree of the i-th variable within the self-
perturbed samples, with higher values indicating greater deviation from normal behavior. Next, we
identify the top-m% variables ranked by their residual scores r as anomalous candidates. The affinity
matrix for the self-perturbed time-series is then dynamically adjusted to emphasize these variables:

S̃ij = Sij + I(i ∈ M)ϕ(ri) + I(j ∈ M)ϕ(rj), (6)
where ϕ(ri) = 1

1+e−ri
normalizes the anomaly score to a bounded interval [0, 1], and I(·) is the

indicator function. Particularly, for i = j, we add ϕ(ri) only once. Following a similar procedure
in Eq. (4), we can obtain the adjusted adjacency Ãij . Note that we symmetrize the dynamically
enhanced similarity before sparsification to ensure numerical stability and a well-posed enhanced
structure. This adjustment adaptively boosts the connection strength between any two nodes where at
least one is an anomalous candidate. Essentially, compared to static graph construction, the proposed
AAGC strategy leverages the node-specific reconstruction residuals ri to dynamically emphasize
connections involving anomalous candidates (M), thereby adapting the graph structure to reflect
anomaly-induced changes in inter-variable correlations.

3.4 Spatio-Temporal Modeling for TSAD

With the auxiliary time-series dataset D̃ = {X̃1, X̃2, . . . , X̃N} generated via self-perturbation
(Section 3.2) and learned graph structures A and Ã (Section 3.3), we propose a spatio-temporal
anomaly detection module designed to effectively capture both instantaneous variable interactions
and their temporal dynamics for TSAD. Specifically, the module leverages a unified spatio-temporal
representation learning framework and trains a classifier that distinguishes between normal and
self-perturbed (auxiliary anomalous) time-series data.
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Dual-Graph Spatial Message Propagation To effectively model spatial inter-variable dependen-
cies, we employ a graph attention network (GAT) layer. Let H(l) and H̃(l) be the matrices containing
node representations for normal and self-perturbed time series at layer l. The GAT updates these
representations based on learned attention weights. For each node i, the attention coefficient α(l)

ij
regarding neighbor j is computed by:

α
(l)
ij =

exp(LeakyReLU(⃗a(l)⊤[h
(l)
i W(l)||h(l)

j W(l)]⊤))∑
u∈N (i)∪{i} exp(LeakyReLU(⃗a(l)⊤[h

(l)
i W(l)||h(l)

u W(l)]⊤))
, (7)

where W(l) and a⃗(l) are shared learnable parameters for layer l, || denotes concatenation, and N (i)

is the neighborhood of node i based on graph A. Similarly, α̃(l)
ij is computed using h̃

(l)
i , h̃(l)

j (rows
of H̃(l)) and the neighborhood Ñ (i) derived from Ã, using the same parameters W(l) and a⃗(l). The
GAT layer then aggregates neighbor information using these attention weights to produce the output
matrices H(l+1) and H̃(l+1) for the next layer. This operation, applied node-wise for all nodes i, can
be represented as:

H
(l+1)
i,: = σ(

∑
j∈N (i)∪{i}

α
(l)
ij H

(l)
j,:W

(l)), H̃
(l+1)
i,: = σ(

∑
j∈Ñ (i)∪{i}

α̃
(l)
ij H̃

(l)
j,:W

(l)), (8)

where H(l+1)
i,: denotes the i-th row of H(l+1), and similarly for H̃(l+1)

i,: . σ(·) is the activation function,
such as ReLU. Particularly, H(0) = X and H̃(0) = X̃. This mechanism ensures the model learns
stable normal spatial relationships via A while adapting to dynamically changing inter-variable
correlations through Ã.

Chunk-Wise Temporal Dependency Aggregation Following the spatial convolution process,
we adopt a chunk-wise temporal graph convolution strategy. For the learned spatial feature H(L)

derived from the final spatial convolutional layer, we partition the temporal axis T into C chunks, i.e.,
H(L) = {H(L)

1 ,H
(L)
2 , . . .H

(L)
C }. Similarly, we can apply the same operation to partition the spatial

representation H̃(L) = {H̃(L)
1 , H̃

(L)
2 , . . . , H̃

(L)
C } for the self-perturbed time series. Subsequently,

these spatial features are separately processed via a temporal convolution network T (·) to capture the
temporal dependencies:

Zc = T (H(L)
c ; ΘTem), Z̃c = T (H̃(L)

c ; ΘTem), (9)

where c denotes the c-th chunk of spatial features, ΘTem denotes the parameters of the temporal
convolution network. Zc and Z̃c are the learned temporal representations for the c-th chunk of normal
time series and self-perturbed time series, respectively. We then horizontally concatenate the features
learned from each chunk to form comprehensive chunk-wise temporal representations:

ZT =
[
Z1,Z2, . . . ,ZC ], Z̃T =

[
Z̃1, Z̃2, . . . , Z̃C ]. (10)

End-to-End Anomaly Detection The final spatio-temporal features ZT and Z̃T are then vertically
stacked as Zstack = [ZT ; Z̃T ] and passed through a predictor P(·), which outputs the final prediction
for both normal and self-perturbed time series:

p̂ = P(Zstack; ΘP), (11)

where p̂ ∈ [0, 1]2N denotes the predicted anomaly probability for the normal and self-perturbed
time series, and ΘP comprises the network parameters of the predictor. Finally, we train the entire
model in an end-to-end manner by jointly optimizing the self-perturbation loss Lsp (Eq. (2)) and the
following anomaly detection loss:

Lad = − 1

2N

2N∑
i=1

[
yi log(p̂i) + (1− yi) log(1− p̂i)

]
. (12)

For training the model, we simply set the label for the normal and self-perturbed time series to 0 and
1, respectively. We summarize the overall objective function of the proposed SPAGD framework as:

L = Lsp + β Lad, (13)
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where the hyperparameter β controls the trade-off between the reconstruction and anomaly detection
losses. Particularly, the self-perturbation module is trained with randomly initialized weights, and
we explicitly avoid pre-training because the evolution of the reconstruction model is crucial to our
proposed learning paradigm. This end-to-end design framework ensures mutual enhancement across
the auxiliary time-series generation and spatio-temporal anomaly detection. In the inference stage,
we use the output of the trained anomaly detector as the anomaly scores for evaluation. We also
provide a detailed algorithm description in the Appendix C.

4 Experiment

4.1 Experimental Configuration

Datasets In this paper, we evaluate the proposed SPAGD method on three public time-series datasets
collected from different real-world scenarios, including (1) Secure Water Treatment (SWaT) [Mathur
and Tippenhauer, 2016], (2) Soil Moisture Active Passive (SMAP) [Hundman et al., 2018], and (3)
Mars Science Laboratory (MSL) [Hundman et al., 2018]. Table 1 summarizes the main attributes of
these datasets, and we also detail the information of each dataset in the Appendix A.

Table 1: Statistics of the three time-series datasets. “AR” denotes anomaly-point ratio in the test split.

Dataset Domain # Channels # Train samples # Test samples AR (%)(Dimensions) (Normal) (Mixed)

SWaT Water treatment ICS 51 496,800 449,919 11.98
SMAP Spacecraft telemetry 25 135,183 427,617 13.13
MSL Spacecraft telemetry 55 58,317 73,729 10.72

Experimental Settings For a fair evaluation, all baseline methods were trained and tested using
identical data splits for each dataset. For SPAGD, we employed a Transformer-based reconstruction
model comprising 8 attention heads and 3 encoder layers for self-perturbation learning. During the
spatio-temporal modeling stage, each time series sample first undergoes spatial graph convolution
that contains 2 graph attention network (GAT) [Veličković et al., 2018] layers with a latent dimension
of 256. The learned spatial features were subsequently partitioned into 5 equal-length segments for
temporal convolution processing. Aggregated spatio-temporal features were then passed through
a predictor consisting of two fully-connected layers to produce final anomaly scores. For other
experimental settings and training details, please refer to the Appendix B.

Baselines We compared SPAGD with extensive state-of-the-art baselines, including: k-NN [Ra-
maswamy et al., 2000], OCSVM [Schölkopf et al., 2001], LOF [He et al., 2003], IForest [Liu et al.,
2008], Deep-SVDD [Ruff et al., 2018], COPOD [Li et al., 2020], USAD [Audibert et al., 2020],
GDN [Deng and Hooi, 2021], TcnED [Garg et al., 2021], TranAD [Tuli et al., 2022], Anomaly-
Trans [Xu et al., 2022], NCAD [Carmona et al., 2022], Deep IF [Xu et al., 2023], TimesNet [Wu
et al., 2023a], DCdetector [Yang et al., 2023], COUTA [Xu et al., 2024]. Note that we ensured a
fair comparison by reproducing the performance of each baseline using the publicly available codes
under the same experiment setting and following the default settings provided in the related papers.

Evaluation Metrics To comprehensively evaluate the anomaly detection performance of SPAGD
and other baselines, we employ three widely recognized evaluation metrics, including Area Under
the ROC Curve (AUC), Area Under the Precision-Recall Curve (AUPRC), and F1-score (F1). We
want to specifically highlight that we did not use the point-adjustment strategy in our evaluation due
to its overestimation of model performance [Kim et al., 2022; Liu and Paparrizos, 2024].

4.2 Comparison with State-of-the-Art TSAD methods

We comprehensively evaluated SPAGD against extensive state-of-the-art TSAD baselines. Table 2
summarizes the experimental results across multiple benchmark datasets. The key insights are:
(1) We can observe that SPAGD showed competitive performance in all three metrics across all
datasets. As shown in Table 2, SPAGD achieved AUCs of 86.30% (SWaT), 62.38% (SMAP), and
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Table 2: Anomaly detection performance of SPAGD and baseline methods in terms of AUC, AUPRC,
and F1 (in %). Note that the best two results are marked in bold and underline, respectively.

Model SWaT SMAP MSL Avg.
AUC AUPRC F1 AUC AUPRC F1 AUC AUPRC F1

k-NN [Ramaswamy et al., 2000] 77.30 68.28 71.95 39.73 11.48 25.08 59.32 17.55 32.46 44.79
OCSVM [Schölkopf et al., 2001] 76.06 67.27 71.79 39.87 11.46 25.08 59.33 17.58 32.61 44.56
LOF [He et al., 2003] 73.33 45.23 53.18 42.94 12.35 25.40 56.37 20.06 27.61 39.61
IForest [Liu et al., 2008] 78.74 66.87 66.24 39.78 11.21 25.08 56.91 16.85 29.59 43.47
Deep-SVDD [Ruff et al., 2018] 82.55 73.49 74.88 52.00 13.87 25.06 56.65 12.23 21.36 45.78
COPOD [Li et al., 2020] 81.66 71.57 70.85 40.04 12.02 25.08 60.56 18.17 32.77 45.85
USAD [Audibert et al., 2020] 79.67 70.24 72.60 39.51 11.41 22.69 61.67 12.86 27.12 44.19
GDN [Deng and Hooi, 2021] 81.55 71.33 75.23 58.09 16.97 19.24 49.73 12.13 22.68 45.22
TcnED [Garg et al., 2021] 82.38 72.38 76.26 53.57 12.03 19.65 48.54 12.80 23.23 44.53
TranAD [Tuli et al., 2022] 81.85 71.62 76.45 56.44 15.24 26.51 42.97 10.03 19.35 44.49
AnomalyTrans [Xu et al., 2022] 79.77 62.28 73.03 40.03 11.39 22.78 52.19 11.33 19.25 41.33
NCAD [Carmona et al., 2022] 19.00 8.77 21.76 39.67 11.69 22.68 59.40 14.13 21.98 24.34
Deep IF [Xu et al., 2023] 80.77 70.67 72.97 60.89 17.33 28.48 55.97 10.98 23.09 46.79
TimesNet [Wu et al., 2023a] 32.45 14.21 21.80 39.90 11.36 22.69 55.06 11.79 21.26 25.61
DCdetector [Yang et al., 2023] 49.68 12.20 21.97 49.79 12.76 22.70 50.10 10.55 19.09 27.64
COUTA [Xu et al., 2024] 82.95 74.78 78.68 47.20 12.56 22.69 52.17 11.84 19.08 44.66

SPAGD 86.30 77.20 78.77 62.38 18.15 27.32 66.50 21.45 30.89 52.11

66.50% (MSL), outperforming the runner-up baselines, i.e., COUTA, DeepIF, and USAD by 3.35%,
1.49%, and 4.83%, respectively. This observation suggests that the auxiliary signals provided by
the generated self-perturbed time series during training ensure the stable performance of SPAGD
achieved on different datasets. (2) SPAGD also outperformed reconstruction-based approaches, such
as TranAD and AnomalyTrans. This significant performance improvement can be attributed to the
designed spatio-temporal anomaly detection module, which leverages the self-perturbed samples
to train a classifier instead of reconstruction-based strategies, which helped address the “anomaly
reconstruction” problem. (3) Compared to graph-based methods such as GDN, SPAGD demonstrated
superior performance. This comparison highlights the significance of the AAGC strategy in SPAGD,
which leverages reconstruction residuals induced by self-perturbed time series to dynamically adjust
the graph structure, thereby enabling the model to adapt to changing inter-variable correlations that
static graph-based methods cannot.

4.3 Parameter Analysis

Figure 2: Anomaly detection performance under different window
sizes and β values on SWaT. Note that we vary the window size
and β value in a wide range of [20, 200] and [10−4, 102], respec-
tively.

We perform a parameter sensi-
tivity analysis to evaluate the in-
fluence of several critical hyper-
parameters on the performance
of SPAGD. Figure 2 illustrates
the impact of window size and
trade-off parameter β on the
performance. The experimen-
tal results shown in Figure 2(a)
revealed that smaller or exces-
sively large window sizes de-
grade performance to a certain
extent, whereas window sizes
in the range of [80, 100] consis-
tently yield optimal performance.
This is due to the fact that too
short a window is not conducive to capturing temporal dependencies, while too long a window leads
to difficulties in long-term dependencies learning. Additionally, Figure 2(b) presents the performance
under different β values, which control the contributions of self-perturbation and anomaly detection
losses during training. We can observe a steady performance improvement as β increases from
β = 10−3 towards β = 10−2. Though beyond this point, all metrics slightly decrease, the model
maintains relatively stable performance under varying β in general. This suggests that overempha-
sizing anomaly detection loss can lead to overlooking the learning of informative self-perturbed
samples for training, which highlights the importance of balancing informative reconstruction and
discriminative anomaly detection in practice.

8



(a) Ground Truth (b) TranAD (c) AnomalyTrans (d) SPAGD

V
al

u
e

Figure 3: Anomaly score visualization on the MSL dataset. We randomly sampled data of length 500
and compared SPAGD with several baselines. The red area indicates the ground truth anomaly.

Table 3: Ablation study results on the three datasets. The best results are marked in bold.

Dataset SWaT SMAP MSL Avg.
Metric AUC AUPRC F1 AUC AUPRC F1 AUC AUPRC F1

w/o SP 80.30 70.34 74.04 51.31 12.49 13.25 61.37 18.75 10.54 43.60
SP w/ Recon 76.82 61.95 62.11 46.19 11.35 22.68 51.38 14.39 19.07 40.66
w/o AAGC (Spatial) 81.51 70.07 74.20 57.86 15.72 15.79 62.63 18.95 15.68 45.82
w/o AAGC (Temporal) 83.16 72.18 75.11 60.60 17.12 16.33 59.19 13.08 14.04 45.65
w/o AAGC (Both) 80.54 70.59 74.28 55.34 16.01 23.84 54.74 12.27 19.78 45.27
w/o JT 82.97 72.01 73.83 38.60 9.98 12.79 52.09 11.45 11.21 40.55

SPAGD 86.30 77.20 78.77 62.38 18.15 27.32 66.50 21.45 30.89 52.11

4.4 Anomaly Score Visualization

We provide a visualization of anomaly scores for an intuitive detection capability comparison.
Figure 3 presents the visualization results on MSL, where we compare SPAGD with several baseline
methods such as TranAD and AnomalyTrans. We can observe that the anomaly scores of SPAGD
are more distinguishable, and the predictions are closely aligned with the ground truth anomaly in
Figure 3(a). Other baseline methods exhibit higher detection uncertainty, characterized by frequent
false alarms or overlooked anomalies. In particular, we can observe that reconstruction-based methods,
such as TranAD, exhibit low reconstruction errors in anomalous events, which further validates the
aforementioned “anomaly reconstruction” problem. In contrast, SPAGD is capable of detecting
anomalies at these locations. These comparisons visually demonstrate the superior practical detection
capability and reliability of SPAGD in real-world scenarios.

4.5 Ablation Study

We conducted ablation experiments to evaluate the contribution of each component in the proposed
SPAGD method by comparing the SPAGD model against the following variants that shared the same
backbones and hyperparameter settings:

1. w/o Self-Perturbed Generation (SP): This variant removes the self-perturbation module so that
no auxiliary signals are available during training. In this case, the model detects anomalies by
solely relying on reconstruction errors.

2. SP w/ Recon: This variant retains the self-perturbation module, and uses a traditional reconstruc-
tion model to reconstruct both the input and generate auxiliary time series. In the testing stage, the
anomaly score is defined by the reconstruction error of a test sample.

3. w/o Anomaly-Aware Strategy (AAGC): This variant preserves the self-perturbation module but
disables the anomaly-aware strategy in graph construction. Note that we build three variants using
a static graph instead of the AAGC strategy for (1) spatial, (2) temporal, and (3) both spatial and
temporal modeling, respectively.

4. w/o Joint Training (JT): This variant employs a two-stage pipeline where the reconstruction
model is pre-trained and then generates the self-perturbed time series once to train the spatio-
temporal anomaly detector.

Table 3 shows the experimental results, with the following observations. (1) Removing the self-
perturbation module generally leads to a performance drop across all datasets, such as AUCs dropping
by 6.00% (SWaT), 11.07% (SMAP), and 5.13% (MSL). This is because the self-perturbation module
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provides rich auxiliary potential anomalous signals for model training, which mitigates the class im-
balance problem and improves the generalizability. (2) The performance of the "SP w/ Recon" variant
significantly decreases, which indicates that a purely reconstruction-based objective encourages the
model to fit the self-perturbed patterns rather than distinguish them. Consequently, true anomalies
receive lower reconstruction errors and are more difficult to detect in the testing stage, which is
a classic example of the “anomaly reconstruction” problem. (3) The performance also decreases
when we remove the spatial/temporal or both of them from the AAGC strategy. For example, on
the MSL dataset, the performance of the variant that disables AAGC in spatial modeling decreases
by 3.87% (AUC), 2.50% (AUPRC), and 15.21% (F1), respectively. This can be attributed to the
failure of the model to capture the dynamically changing inter-variable correlations, resulting in
the anomaly-induced information within self-perturbed time series being modeled inappropriately.
(4) We also observed a significant performance decrease in three datasets after replacing the joint
training with a two-stage training paradigm. Generated samples cannot be optimized for the anomaly
detection task without joint training, and they are too similar to normal time-series data, which
presents significant challenges for the model to distinguish normal time series from them. All in all,
the ablation study results provided clear and strong evidence of the effectiveness of each component
in SPAGD.

4.6 More Experimental Analysis

We further provide more experimental analysis in the Appendix, such as extra parameter analysis and
visualization results, comparison with different backbone networks and different graph construction
methods, comparison with the random-perturbation strategy, and point-adjusted results and more
evaluation metrics (VUS-AUC/PR) for reference.

5 Conclusion

In this paper, we introduced SPAGD, a new TSAD framework to address several inherent challenges
of multivariate time-series anomaly detection. By integrating a self-perturbation module, SPAGD
generates diverse auxiliary time-series samples, effectively mitigating the class imbalance as well as
providing rich auxiliary potential anomalous signals for training. An adaptive anomaly-aware graph
construction method is proposed to dynamically adjust inter-variable correlations for evolving self-
perturbed time series. We then train an anomaly detector to distinguish the normal time series from
the self-perturbed ones by modeling both spatial and temporal dependencies. Through comprehensive
experiments on several benchmark datasets compared to state-of-the-art TSAD methods, SPAGD
consistently achieved competitive performance. The parameter analysis, visualization, and ablation
study further justify the effectiveness of SPAGD. Despite these advances, SPAGD presumes a
relatively homogeneous sensing landscape, which may not be applicable under highly heterogeneous
streams [Shao et al., 2024; Jia et al., 2024; Liu et al., 2025a] with asynchronous sensors or weak
inter-variable dependencies. Future work could explore heterogeneity-aware graph learning and
domain-adaptive perturbation strategies to extend SPAGD to address heterogeneous problems.

Broader Impact Statement

We provide the broader impact of our work from the following two aspects:

• Positive social impacts: Our work has significant potential for enhancing the safety and reliability
of critical cyber-physical systems. For instance, early anomaly detection can prevent catastrophic
equipment failures, ensuring worker safety and preventing environmental damage. In aerospace
applications, it can improve mission success and safety by flagging potential faults in spacecraft
telemetry.

• Potential negative risks: (1) Over-reliance on the system could lead operators to dismiss their own
expertise. Mitigation: We advocate for deploying SPAGD as a decision-support tool that provides
interpretable outputs (e.g., highlighting anomalous sensors and their correlations) rather than as
a fully autonomous system. (2) A sophisticated adversary could potentially craft inputs to either
evade detection or trigger false alarms. Mitigation: This is a critical area for future work, focusing
on improving the model’s adversarial robustness.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction have accurately reflected
the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work have been discussed in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have provided the relevant theoretical analysis of the proposed method in
the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has fully disclosed all the information needed to reproduce the main
experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper has provided open access to the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper has specified all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper has conducted Student’s t-test to demonstrate the statistical signifi-
cance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper has provided sufficient information on the computer resources for
each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have properly discussed the societal impact of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and the license and terms of use explicitly are mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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