Self-Perturbed Anomaly-Aware Graph Dynamics for Multivariate Time-Series Anomaly Detection

Jinyu Cai

Institute of Data Science National University of Singapore jinyucai@nus.edu.sg

Glynnis Lim

Institute of Data Science National University of Singapore glynnis@nus.edu.sg

Roger Zimmermann

School of Computing National University of Singapore dcsrz@nus.edu.sg

Yuan Xie*

School of Computing National University of Singapore xieyuan_sss@outlook.com

Yifang Yin

Institute for Infocomm Research A*STAR, Singapore yin_yifang@i2r.a-star.edu.sg

See-Kiong Ng

Institute of Data Science National University of Singapore seekiong@nus.edu.sg

Abstract

Detecting anomalies in multivariate time-series data is an essential task across various domains, yet there are unresolved challenges such as (1) severe class imbalance between normal and anomalous data due to rare anomaly availability in the real world; (2) limited adaptability of the static graph-based methods to dynamically changing inter-variable correlations; and (3) neglect of subtle anomalies due to overfitting to normal patterns in reconstruction-based methods. To tackle these issues, we propose Self-Perturbed Anomaly-Aware Graph Dynamics (SPAGD), a framework for time-series anomaly detection. SPAGD employs a self-perturbation module that generates self-perturbed time series from the reconstruction process of normal ones, which provide auxiliary signals to alleviate class imbalance during training. Concurrently, an anomaly-aware graph construction module is proposed to dynamically adjust the graph structure by leveraging the reconstruction residuals of self-perturbed time series, thereby emphasizing the inter-variable disruptions induced by anomalous candidates. A unified spatio-temporal anomaly detection module then integrates both spatial and temporal convolutions to train a classifier that distinguishes normal time series from the auxiliary self-perturbed samples. Extensive experiments across multiple benchmark datasets demonstrate the effectiveness of SPAGD compared to state-of-the-art baselines.

1 Introduction

Time-series anomaly detection (TSAD) [Blázquez-García *et al.*, 2021; Zamanzadeh Darban *et al.*, 2024] is an essential machine learning task with significant influence in various domains, such as cybersecurity, industrial systems, healthcare, and finance [Veeravalli *et al.*, 2017; Cook *et al.*, 2019; Schmidl *et al.*, 2022; Zhang *et al.*, 2024b; Qi *et al.*, 2025; Fang *et al.*, 2025]. It aims to identify patterns that deviate from expected behavior over a period of time, and to alert to potential faults,

^{*}Corresponding Author

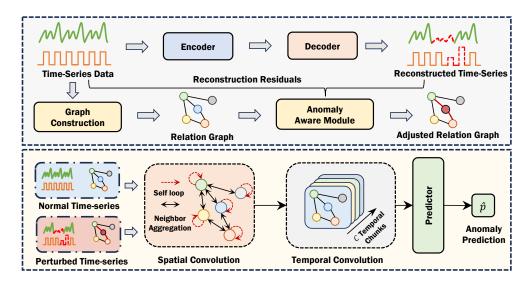


Figure 1: An illustration of the proposed SPAGD framework, which contains three main components: (1) Self-perturbation time-series generation; (2) Anomaly-aware graph construction; and (3) Spatiotemporal modeling for anomaly detection.

intrusions, or critical events. Multivariate time-series anomaly detection, in particular, presents a significant challenge due to the complex spatial and temporal inter-variable dependencies among multiple time-series data.

Over the past decades, TSAD has witnessed significant progress. Early methods are mainly based on proximity [Breunig et al., 2000; Qi and Chen, 2022], linear model [Wold et al., 1987; Schölkopf et al., 2001], clustering [Chen et al., 2022b; Liu et al., 2022; Chen et al., 2022a; Liang et al., 2025; Fu et al., 2025] or outlier ensembles [Liu et al., 2008]. These methods rely on strong assumptions and often struggle with large-scale or high-dimensional data. In recent years, deep learning has emerged as a powerful alternative [Zamanzadeh Darban et al., 2024], with various types of approaches being proposed. For example, the reconstruction-based methods [Audibert et al., 2020; Yang et al., 2023; Wang et al., 2023] employ deep neural network architectures [Baldi, 2012; Goodfellow et al., 2020] to learn latent representations of normal behavior. Anomalies are detected as instances exhibiting significant reconstruction errors, reflecting their deviation from learned norms. Concurrently, forecastbased methods [Tuli et al., 2022; Xu et al., 2022; Wu et al., 2023a] have leveraged sequence modeling techniques [Medsker et al., 2001; Vaswani et al., 2017; Fang et al., 2023] to capture temporal dependencies and predict future values, where anomalies are flagged when observed values diverge from predictions. Although these approaches exhibited effectiveness, they generally treat each variable or time stamp independently, neglecting the rich inter-variable dependencies in multivariate time series. Therefore, recent endeavors [Zhao et al., 2020; Deng and Hooi, 2021] have explored the potential of graph neural networks (GNNs) [Kipf and Welling, 2017; Liu et al., 2023; Wu et al., 2023b; Cai et al., 2024a, 2025b; Liu et al., 2025b] to explicitly model inter-variable dependencies, where variables (e.g., sensors) are represented as nodes in a graph, with edges encoding spatial relationships. Advanced methods [Zheng et al., 2023; Chen et al., 2024] further incorporate GNNs with temporal convolution to capture temporal dynamics for detecting anomalies.

Although these advanced methods provide a promising solution for detecting anomalies in multivariate time-series data, several key challenges still persist:

- 1. Time-series anomalies are rare or even unavailable in real-world scenarios. The severe imbalance between normal and anomalous time series [Zamanzadeh Darban *et al.*, 2024] could bias the model towards normal patterns during training, thus significantly weakening its generalizability.
- 2. Existing graph-based methods [Deng and Hooi, 2021; Zheng *et al.*, 2023] typically rely on a static graph construction strategy to model spatial dependencies of time-series data, yet these dependencies may significantly alter due to dynamic anomaly-induced distortion.

3. The "anomaly reconstruction" problem [Audibert *et al.*, 2020; Song *et al.*, 2023] indicates that certain anomalies may inadvertently be well-reconstructed in reconstruction-based methods due to the overfit towards normal patterns, thereby overlooking anomalies with low reconstruction error.

To address these challenges, we propose a new TSAD framework named Self-Perturbed Anomaly-aware Graph Dynamics (SPAGD). SPAGD introduces a self-perturbation module that leverages inherent deviations during the process of reconstructing normal time series to generate self-perturbed time series. These generated time-series data subsequently serve as the auxiliary signal for training the anomaly detection model, where the model is exposed to diverse potential anomalous patterns for alleviating the imbalance problem. Simultaneously, an anomaly-aware graph construction scheme is introduced to learn dynamic inter-variable correlations derived from the evolving reconstruction residuals of self-perturbed time series. Then, we developed a spatio-temporal anomaly detection module to distinguish the self-perturbed time series from normal ones, which effectively integrates both spatial dependencies and temporal dynamics to yield holistic representations for TSAD. SPAGD is trained in an end-to-end manner for the mutual improvement of all components during training. Extensive experiments compared to state-of-the-art TSAD baselines demonstrate the superiority of the proposed SPAGD method. We summarize the main contributions of this paper as follows:

- We introduce a self-perturbation module that generates diverse auxiliary anomalous time series through the evolving reconstruction process of the normal time-series data, which alleviates the severe imbalance problem without relying on any external anomalous data.
- We propose an anomaly-aware graph construction module that dynamically adjusts the graph structure based on the reconstruction residuals of the self-perturbed time series, thus reflecting the changing inter-variable correlations that traditional static strategies fail to capture.
- We build an anomaly detection framework that trains a classifier by exploiting both spatial and temporal dependencies to distinguish normal time series from auxiliary self-perturbed ones, which jumps out of the reconstruction-based framework and mitigates the anomaly reconstruction problem.

2 Related Works

Multivariate TSAD [Blázquez-García et al., 2021; Zamanzadeh Darban et al., 2024; Zhang et al., 2024a] is a complex and challenging research area, with a variety of methods emerging in recent years. The sequence-centric models primarily leverage the temporal dynamics of time series, such as Anomaly Transformer [Xu et al., 2022] and TranAD [Tuli et al., 2022], which utilize a Transformer architecture to capture long-term dependencies, while TimesNet [Wu et al., 2023a] enhances detection accuracy through multi-scale temporal decomposition. These methods excel at modeling temporal patterns within individual channels, however, they typically process each variable channel independently, overlooking inter-variable correlations. In recent years, graph-based models have been widely explored to address this limitation, where a graph is constructed to represent the relationships between multiple variables, with GNNs [Cai et al., 2024b; Liu et al., 2024; Cai et al., 2025a] employed for anomaly detection. For instance, GDN [Deng and Hooi, 2021] pre-constructs a similarity graph to help predict anomalies, and GRELEN [Zhang et al., 2022] integrates graph relational learning to improve feature extraction. Moreover, recent approaches [Zheng et al., 2023; Ding et al., 2023] have proposed learning comprehensive representations by incorporating both spatial and temporal dependencies. However, their reliance on fixed graph structures renders them less effective in scenarios where time-series relationships evolve dynamically. Although a few studies have investigated dynamic graph learning [Jin et al., 2024], the graph construction in them is generally decoupled from the anomaly detection optimization process.

The proposed SPAGD method exhibits differences from existing TSAD methods in the following aspects: (1) Rather than relying on random imposed noise [Wang et al., 2023] or traditional augmentation techniques [Yang et al., 2023], SPAGD employs a self-perturbation mechanism to generate auxiliary self-perturbed time-series data, where the perturbations are adaptive and closely tied to anomaly detection. (2) Unlike static graph-based methods [Deng and Hooi, 2021], SPAGD adapts to dynamic changes in inter-variable correlations caused by evolving anomalous candidates. (3) SPAGD leverages the generated auxiliary time series data to train a classifier, which is more flexible and does not require a hand-crafted anomaly-scoring function in reconstruction-based approaches [Song et al., 2023]. (4) SPAGD unifies all components in an end-to-end framework, so that auxiliary time series generation and anomaly detection mutually improve each other.

3 Methodology

3.1 Problem Formulation

In multivariate time-series anomaly detection, we consider a time series $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T]$ collected across T discrete time steps. Each feature vector $\mathbf{x}_t \in \mathbb{R}^d$ denotes multidimensional observations at timestamp t, where d > 1 denotes the feature dimensions of the multivariate timeseries data. Typically, a time-series dataset $\mathcal{D} = \{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N\}$ with N samples is constructed by applying a sliding window of length T to sample a long time series collected from different sources, e.g., industrial sensors. The dataset \mathcal{D} serves as the training foundation for building an anomaly detection model that generalizes to an unknown test dataset $\mathcal{D}_{\text{test}}$. Our goal is to train an anomaly detection model $\mathcal{F}_{\Theta} : \mathbb{R}^{d \times T} \to \{0,1\}$ parameterized by Θ based on \mathcal{D} , where the model is able to predict the anomaly state $\hat{y} \in \{0,1\}$ for each test time sequence $\hat{\mathbf{X}}_i \in \mathcal{D}_{\text{test}}$. Here, $\hat{y} = 1$ and $\hat{y} = 0$ denote anomalous and normal states, respectively.

Despite the abundance of normal time-series data in the real world, current TSAD methods still face several fundamental challenges, such as the **severe data imbalance**, **static spatio-temporal correlation modeling**, and **anomaly reconstruction problem** (refer to Section 1). To tackle these challenges, we propose SPAGD, an end-to-end TSAD framework composed of: (i) self-perturbation time-series generation to alleviate data imbalance; (ii) graph construction to model dynamical intervariable correlations; and (iii) a spatio-temporal anomaly detection module to mitigate the anomaly reconstruction problem. We will detail each component of SPAGD in the following subsections.

3.2 Time-Series Generation via Self-Perturbation

To alleviate the severe data imbalance inherent in multivariate time-series anomaly detection, we propose a self-perturbation mechanism that harnesses the intrinsic imperfections of reconstruction models to generate pseudo-anomalous samples. Our approach is motivated by two key observations. First, during early training stages, the reconstruction model tends to produce systematic errors when replicating the input $\mathbf{X} \in \mathbb{R}^{d \times T}$ due to its limited representational capacity. We argue that these reconstruction errors, which manifest as deviations from the normal data, can serve as effective proxies for genuine anomalies. Second, as the reconstruction model is progressively trained, the magnitude of these errors diminishes, exposing the anomaly detection model to a continuum of deviations, *i.e.*, from large, obvious discrepancies to subtle differences. By incorporating these generated auxiliary samples into the training process as supervised signals, the anomaly detection model is able to progressively refine its decision boundary by identifying a broader spectrum of potential anomalous patterns.

Formally, given an input time series X, we employ a Transformer-based model for reconstruction:

$$\tilde{\mathbf{X}} = \operatorname{Tran}_{d} \left(\operatorname{Tran}_{e}(\mathbf{X}; \Theta_{e}); \Theta_{d} \right),$$
 (1)

where $\tilde{\mathbf{X}} \in \mathbb{R}^{d \times T}$ denotes the reconstructed time series, and $\mathrm{Tran_e}(\cdot)$ and $\mathrm{Tran_d}(\cdot)$ are the encoder and decoder networks parameterized by Θ_{e} and Θ_{d} , respectively. The reconstruction model is trained on the dataset $\mathcal{D} = \{\mathbf{X}_i\}_{i=1}^N$ by minimizing:

$$\mathcal{L}_{sp} = \sum_{i=1}^{N} \left\| \mathbf{X}_{i} - \operatorname{Tran}_{d} \left(\operatorname{Tran}_{e}(\mathbf{X}_{i}; \Theta_{e}); \Theta_{d} \right) \right\|_{F}^{2}.$$
 (2)

Initially, $\tilde{\mathbf{X}}$ deviates substantially from \mathbf{X} , and these deviations are treated as auxiliary anomalous patterns for training the subsequent anomaly detection model. As training progresses and reconstruction quality improves, $\tilde{\mathbf{X}}$ will gradually converge towards \mathbf{X} , providing the anomaly detection model with increasingly subtle deviation signals. Particularly, this progressive refinement can dynamically update the quality of pseudo-anomalous samples throughout the training process, which ensures that the anomaly detection model does not overfit to specific types of anomalies but instead generalizes to a broader range of potential anomalies.

3.3 Anomaly-Aware Graph Construction

Existing graph-based TSAD approaches [Deng and Hooi, 2021; Zheng et al., 2023] encode each variable (e.g., sensor) as a node (V) and pairwise affinities as edges (E), allowing GNNs to exploit

cross-variable dependencies via graph G=(V,E), which is unavailable to purely sequence-centric models. However, these methods typically rely on static similarity measures (e.g., cosine similarity) to construct the graph, and keep it fixed throughout training and inference. A static topology can accurately reflect normal correlations, yet it fails to capture dynamic disruptions induced by self-perturbed time-series data. To overcome this limitation, we propose an anomaly-aware graph construction (AAGC) mechanism, which can dynamically adjust the graph structure based on the reconstruction residuals of the self-perturbed time series, thereby ensuring that the influence of potential anomalies on the spatial relationships can be emphasized.

Initial Graph Construction Given a normal time-series $\mathbf{X} \in \mathbb{R}^{d \times T}$ from a dataset $\mathcal{D} = \{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N\}$, we first construct an adjacency matrix \mathbf{A} to capture baseline inter-variable correlations. For variables i and j, we compute pairwise cosine similarity as follows:

$$S_{ij} = \text{Sigmoid}\left(\frac{\langle \mathbf{X}_{i,:}, \mathbf{X}_{j,:} \rangle}{\|\mathbf{X}_{i,:}\| \cdot \|\mathbf{X}_{j,:}\|}\right),\tag{3}$$

where $\mathbf{X}_{i,:} \in \mathbb{R}^T$ represents the time-series for variable i, and Sigmoid (\cdot) is the Sigmoid function mapping similarity scores to [0,1], indicating connection strength. To ensure sparsity and focus on the most informative relationships, we retain only the top-K neighbors for each variable:

$$\mathbf{A}_{ij} = \begin{cases} S_{ij}, & \text{if } j \in \text{top-}K \text{ neighbors of } i, \\ 0, & \text{otherwise.} \end{cases} \tag{4}$$

This step ensures the graph remains sparse, reducing computational complexity while preserving the most relevant inter-variable correlations. The initial graph A serves as a static representation of interactions between normal multivariate time series.

Dynamic Adjustment with Reconstruction Residuals While static graphs are suitable for capturing inter-variable correlations between normal time-series pairs, they cannot reflect the transient changes (e.g., sensor failures or external disturbances) in dynamic time series. To adapt to dynamic anomalous patterns introduced via generated self-perturbed time series, we construct a dynamically adjusted graph $\tilde{\bf A}$ to reflect the influence of anomalous candidates on the learned graph structure. To achieve this, we first compute the node-specific reconstruction residual score r_i for each variable:

$$r_i = \frac{1}{T} \sum_{t=1}^{T} |\mathbf{X}_{i,t} - \tilde{\mathbf{X}}_{i,t}|, \tag{5}$$

where $\mathbf{X}_{i,t}$ and $\mathbf{X}_{i,t}$ are the input and reconstructed values for time series i at time t, respectively. The reconstruction residual r_i quantifies the anomalous degree of the i-th variable within the self-perturbed samples, with higher values indicating greater deviation from normal behavior. Next, we identify the top-m% variables ranked by their residual scores r as anomalous candidates. The affinity matrix for the self-perturbed time-series is then dynamically adjusted to emphasize these variables:

$$\tilde{S}_{ij} = S_{ij} + \mathbb{I}(i \in \mathcal{M})\phi(r_i) + \mathbb{I}(j \in \mathcal{M})\phi(r_j), \tag{6}$$

where $\phi(r_i) = \frac{1}{1+e^{-r_i}}$ normalizes the anomaly score to a bounded interval [0,1], and $\mathbb{I}(\cdot)$ is the indicator function. Particularly, for i=j, we add $\phi(r_i)$ only once. Following a similar procedure in Eq. (4), we can obtain the adjusted adjacency $\tilde{\mathbf{A}}_{ij}$. Note that we symmetrize the dynamically enhanced similarity before sparsification to ensure numerical stability and a well-posed enhanced structure. This adjustment adaptively boosts the connection strength between any two nodes where at least one is an anomalous candidate. Essentially, compared to static graph construction, the proposed AAGC strategy leverages the node-specific reconstruction residuals r_i to dynamically emphasize connections involving anomalous candidates (\mathcal{M}) , thereby adapting the graph structure to reflect anomaly-induced changes in inter-variable correlations.

3.4 Spatio-Temporal Modeling for TSAD

With the auxiliary time-series dataset $\tilde{\mathcal{D}} = \{\tilde{\mathbf{X}}_1, \tilde{\mathbf{X}}_2, \dots, \tilde{\mathbf{X}}_N\}$ generated via self-perturbation (Section 3.2) and learned graph structures \mathbf{A} and $\tilde{\mathbf{A}}$ (Section 3.3), we propose a spatio-temporal anomaly detection module designed to effectively capture both instantaneous variable interactions and their temporal dynamics for TSAD. Specifically, the module leverages a unified spatio-temporal representation learning framework and trains a classifier that distinguishes between normal and self-perturbed (auxiliary anomalous) time-series data.

Dual-Graph Spatial Message Propagation To effectively model spatial inter-variable dependencies, we employ a graph attention network (GAT) layer. Let $\mathbf{H}^{(l)}$ and $\tilde{\mathbf{H}}^{(l)}$ be the matrices containing node representations for normal and self-perturbed time series at layer l. The GAT updates these representations based on learned attention weights. For each node i, the attention coefficient $\alpha_{ij}^{(l)}$ regarding neighbor j is computed by:

$$\alpha_{ij}^{(l)} = \frac{\exp(\text{LeakyReLU}(\vec{a}^{(l)\top}[\mathbf{h}_i^{(l)}\mathbf{W}^{(l)}||\mathbf{h}_j^{(l)}\mathbf{W}^{(l)}]^\top))}{\sum_{u \in \mathcal{N}(i) \cup \{i\}} \exp(\text{LeakyReLU}(\vec{a}^{(l)\top}[\mathbf{h}_i^{(l)}\mathbf{W}^{(l)}||\mathbf{h}_u^{(l)}\mathbf{W}^{(l)}]^\top))},$$
(7)

where $\mathbf{W}^{(l)}$ and $\vec{a}^{(l)}$ are shared learnable parameters for layer l, || denotes concatenation, and $\mathcal{N}(i)$ is the neighborhood of node i based on graph \mathbf{A} . Similarly, $\tilde{\alpha}_{ij}^{(l)}$ is computed using $\tilde{\mathbf{h}}_i^{(l)}$, $\tilde{\mathbf{h}}_j^{(l)}$ (rows of $\tilde{\mathbf{H}}^{(l)}$) and the neighborhood $\tilde{\mathcal{N}}(i)$ derived from $\tilde{\mathbf{A}}$, using the same parameters $\mathbf{W}^{(l)}$ and $\vec{a}^{(l)}$. The GAT layer then aggregates neighbor information using these attention weights to produce the output matrices $\mathbf{H}^{(l+1)}$ and $\tilde{\mathbf{H}}^{(l+1)}$ for the next layer. This operation, applied node-wise for all nodes i, can be represented as:

$$\mathbf{H}_{i,:}^{(l+1)} = \sigma(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{ij}^{(l)} \mathbf{H}_{j,:}^{(l)} \mathbf{W}^{(l)}), \quad \tilde{\mathbf{H}}_{i,:}^{(l+1)} = \sigma(\sum_{j \in \tilde{\mathcal{N}}(i) \cup \{i\}} \tilde{\alpha}_{ij}^{(l)} \tilde{\mathbf{H}}_{j,:}^{(l)} \mathbf{W}^{(l)}), \tag{8}$$

where $\mathbf{H}_{i,:}^{(l+1)}$ denotes the i-th row of $\mathbf{H}^{(l+1)}$, and similarly for $\tilde{\mathbf{H}}_{i,:}^{(l+1)}$. $\sigma(\cdot)$ is the activation function, such as ReLU. Particularly, $\mathbf{H}^{(0)} = \mathbf{X}$ and $\tilde{\mathbf{H}}^{(0)} = \tilde{\mathbf{X}}$. This mechanism ensures the model learns stable normal spatial relationships via \mathbf{A} while adapting to dynamically changing inter-variable correlations through $\tilde{\mathbf{A}}$.

Chunk-Wise Temporal Dependency Aggregation Following the spatial convolution process, we adopt a chunk-wise temporal graph convolution strategy. For the learned spatial feature $\mathbf{H}^{(L)}$ derived from the final spatial convolutional layer, we partition the temporal axis T into C chunks, i.e., $\mathbf{H}^{(L)} = \{\mathbf{H}_1^{(L)}, \mathbf{H}_2^{(L)}, \dots \mathbf{H}_C^{(L)}\}$. Similarly, we can apply the same operation to partition the spatial representation $\tilde{\mathbf{H}}^{(L)} = \{\tilde{\mathbf{H}}_1^{(L)}, \tilde{\mathbf{H}}_2^{(L)}, \tilde{\mathbf{H}}_2^{(L)}, \dots, \tilde{\mathbf{H}}_C^{(L)}\}$ for the self-perturbed time series. Subsequently, these spatial features are separately processed via a temporal convolution network $\mathcal{T}(\cdot)$ to capture the temporal dependencies:

$$\mathcal{Z}_c = \mathcal{T}(\mathbf{H}_c^{(L)}; \Theta_{\text{Tem}}), \ \tilde{\mathcal{Z}}_c = \mathcal{T}(\tilde{\mathbf{H}}_c^{(L)}; \Theta_{\text{Tem}}),$$
 (9)

where c denotes the c-th chunk of spatial features, Θ_{Tem} denotes the parameters of the temporal convolution network. \mathcal{Z}_c and $\tilde{\mathcal{Z}}_c$ are the learned temporal representations for the c-th chunk of normal time series and self-perturbed time series, respectively. We then horizontally concatenate the features learned from each chunk to form comprehensive chunk-wise temporal representations:

$$\mathcal{Z}_T = \left[\mathcal{Z}_1, \mathcal{Z}_2, \dots, \mathcal{Z}_C \right], \quad \tilde{\mathcal{Z}}_T = \left[\tilde{\mathcal{Z}}_1, \tilde{\mathcal{Z}}_2, \dots, \tilde{\mathcal{Z}}_C \right]. \tag{10}$$

End-to-End Anomaly Detection The final spatio-temporal features \mathcal{Z}_T and $\tilde{\mathcal{Z}}_T$ are then vertically stacked as $\mathcal{Z}_{\text{stack}} = [\mathcal{Z}_T; \tilde{\mathcal{Z}}_T]$ and passed through a predictor $\mathcal{P}(\cdot)$, which outputs the final prediction for both normal and self-perturbed time series:

$$\hat{\mathbf{p}} = \mathcal{P}(\mathcal{Z}_{\text{stack}}; \Theta_{\mathcal{P}}), \tag{11}$$

where $\hat{\mathbf{p}} \in [0,1]^{2N}$ denotes the predicted anomaly probability for the normal and self-perturbed time series, and $\Theta_{\mathcal{P}}$ comprises the network parameters of the predictor. Finally, we train the entire model in an end-to-end manner by jointly optimizing the self-perturbation loss \mathcal{L}_{sp} (Eq. (2)) and the following anomaly detection loss:

$$\mathcal{L}_{ad} = -\frac{1}{2N} \sum_{i=1}^{2N} \left[y_i \log(\hat{p}_i) + (1 - y_i) \log(1 - \hat{p}_i) \right]. \tag{12}$$

For training the model, we simply set the label for the normal and self-perturbed time series to 0 and 1, respectively. We summarize the overall objective function of the proposed SPAGD framework as:

$$\mathcal{L} = \mathcal{L}_{sp} + \beta \, \mathcal{L}_{ad},\tag{13}$$

where the hyperparameter β controls the trade-off between the reconstruction and anomaly detection losses. Particularly, the self-perturbation module is trained with randomly initialized weights, and we explicitly avoid pre-training because the evolution of the reconstruction model is crucial to our proposed learning paradigm. This end-to-end design framework ensures mutual enhancement across the auxiliary time-series generation and spatio-temporal anomaly detection. In the inference stage, we use the output of the trained anomaly detector as the anomaly scores for evaluation. We also provide a detailed algorithm description in the **Appendix C**.

4 Experiment

4.1 Experimental Configuration

Datasets In this paper, we evaluate the proposed SPAGD method on three public time-series datasets collected from different real-world scenarios, including (1) Secure Water Treatment (SWaT) [Mathur and Tippenhauer, 2016], (2) Soil Moisture Active Passive (SMAP) [Hundman *et al.*, 2018], and (3) Mars Science Laboratory (MSL) [Hundman *et al.*, 2018]. Table 1 summarizes the main attributes of these datasets, and we also detail the information of each dataset in the **Appendix A**.

Table 1: Statistics of the three time-series datasets. "AR" denotes anomaly-point ratio in the test split.

Dataset	Domain	# Channels (Dimensions)	# Train samples (Normal)	# Test samples (Mixed)	AR (%)
SWaT	Water treatment ICS	51	496,800	449,919	11.98
SMAP	Spacecraft telemetry	25	135,183	427,617	13.13
MSL	Spacecraft telemetry	55	58,317	73,729	10.72

Experimental Settings For a fair evaluation, all baseline methods were trained and tested using identical data splits for each dataset. For SPAGD, we employed a Transformer-based reconstruction model comprising 8 attention heads and 3 encoder layers for self-perturbation learning. During the spatio-temporal modeling stage, each time series sample first undergoes spatial graph convolution that contains 2 graph attention network (GAT) [Veličković *et al.*, 2018] layers with a latent dimension of 256. The learned spatial features were subsequently partitioned into 5 equal-length segments for temporal convolution processing. Aggregated spatio-temporal features were then passed through a predictor consisting of two fully-connected layers to produce final anomaly scores. For other experimental settings and training details, please refer to the **Appendix B**.

Baselines We compared SPAGD with extensive state-of-the-art baselines, including: k-NN [Ramaswamy et al., 2000], OCSVM [Schölkopf et al., 2001], LOF [He et al., 2003], IForest [Liu et al., 2008], Deep-SVDD [Ruff et al., 2018], COPOD [Li et al., 2020], USAD [Audibert et al., 2020], GDN [Deng and Hooi, 2021], TcnED [Garg et al., 2021], TranAD [Tuli et al., 2022], Anomaly-Trans [Xu et al., 2022], NCAD [Carmona et al., 2022], Deep IF [Xu et al., 2023], TimesNet [Wu et al., 2023a], DCdetector [Yang et al., 2023], COUTA [Xu et al., 2024]. Note that we ensured a fair comparison by reproducing the performance of each baseline using the publicly available codes under the same experiment setting and following the default settings provided in the related papers.

Evaluation Metrics To comprehensively evaluate the anomaly detection performance of SPAGD and other baselines, we employ three widely recognized evaluation metrics, including Area Under the ROC Curve (AUC), Area Under the Precision-Recall Curve (AUPRC), and F1-score (F1). We want to specifically highlight that we *did not* use the point-adjustment strategy in our evaluation due to its overestimation of model performance [Kim *et al.*, 2022; Liu and Paparrizos, 2024].

4.2 Comparison with State-of-the-Art TSAD methods

We comprehensively evaluated SPAGD against extensive state-of-the-art TSAD baselines. Table 2 summarizes the experimental results across multiple benchmark datasets. The key insights are: (1) We can observe that SPAGD showed competitive performance in all three metrics across all datasets. As shown in Table 2, SPAGD achieved AUCs of 86.30% (SWaT), 62.38% (SMAP), and

Table 2: Anomaly detection performance of SPAGD and baseline methods in terms of AUC, AUPRC,
and F1 (in %). Note that the best two results are marked in bold and underline, respectively.

Model	SWaT			SMAP			MSL			Avg.
	AUC	AUPRC	F1	AUC	AUPRC	F1	AUC	AUPRC	F1	
k-NN [Ramaswamy et al., 2000]	77.30	68.28	71.95	39.73	11.48	25.08	59.32	17.55	32.46	44.79
OCSVM [Schölkopf et al., 2001]	76.06	67.27	71.79	39.87	11.46	25.08	59.33	17.58	32.61	44.56
LOF [He et al., 2003]	73.33	45.23	53.18	42.94	12.35	25.40	56.37	20.06	27.61	39.61
IForest [Liu et al., 2008]	78.74	66.87	66.24	39.78	11.21	25.08	56.91	16.85	29.59	43.47
Deep-SVDD [Ruff et al., 2018]	82.55	73.49	74.88	52.00	13.87	25.06	56.65	12.23	21.36	45.78
COPOD [Li et al., 2020]	81.66	71.57	70.85	40.04	12.02	25.08	60.56	18.17	32.77	45.85
USAD [Audibert et al., 2020]	79.67	70.24	72.60	39.51	11.41	22.69	61.67	12.86	27.12	44.19
GDN [Deng and Hooi, 2021]	81.55	71.33	75.23	58.09	<u>16.97</u>	19.24	49.73	12.13	22.68	45.22
TcnED [Garg et al., 2021]	82.38	72.38	76.26	53.57	12.03	19.65	48.54	12.80	23.23	44.53
TranAD [Tuli et al., 2022]	81.85	71.62	76.45	56.44	15.24	26.51	42.97	10.03	19.35	44.49
AnomalyTrans [Xu et al., 2022]	79.77	62.28	73.03	40.03	11.39	22.78	52.19	11.33	19.25	41.33
NCAD [Carmona et al., 2022]	19.00	8.77	21.76	39.67	11.69	22.68	59.40	14.13	21.98	24.34
Deep IF [Xu et al., 2023]	80.77	70.67	72.97	60.89	17.33	28.48	55.97	10.98	23.09	46.79
TimesNet [Wu et al., 2023a]	32.45	14.21	21.80	39.90	11.36	22.69	55.06	11.79	21.26	25.61
DCdetector [Yang et al., 2023]	49.68	12.20	21.97	49.79	12.76	22.70	50.10	10.55	19.09	27.64
COUTA [Xu et al., 2024]	82.95	<u>74.78</u>	<u>78.68</u>	47.20	12.56	22.69	52.17	11.84	19.08	44.66
SPAGD	86.30	77.20	78.77	62.38	18.15	<u>27.32</u>	66.50	21.45	30.89	52.11

66.50% (MSL), outperforming the runner-up baselines, *i.e.*, COUTA, DeepIF, and USAD by 3.35%, 1.49%, and 4.83%, respectively. This observation suggests that the auxiliary signals provided by the generated self-perturbed time series during training ensure the stable performance of SPAGD achieved on different datasets. (2) SPAGD also outperformed reconstruction-based approaches, such as TranAD and AnomalyTrans. This significant performance improvement can be attributed to the designed spatio-temporal anomaly detection module, which leverages the self-perturbed samples to train a classifier instead of reconstruction-based strategies, which helped address the "anomaly reconstruction" problem. (3) Compared to graph-based methods such as GDN, SPAGD demonstrated superior performance. This comparison highlights the significance of the AAGC strategy in SPAGD, which leverages reconstruction residuals induced by self-perturbed time series to dynamically adjust the graph structure, thereby enabling the model to adapt to changing inter-variable correlations that static graph-based methods cannot.

4.3 Parameter Analysis

We perform a parameter sensitivity analysis to evaluate the influence of several critical hyperparameters on the performance of SPAGD. Figure 2 illustrates the impact of window size and trade-off parameter β on the performance. The experimental results shown in Figure 2(a) revealed that smaller or excessively large window sizes degrade performance to a certain extent, whereas window sizes in the range of [80, 100] consistently yield optimal performance. This is due to the fact that too

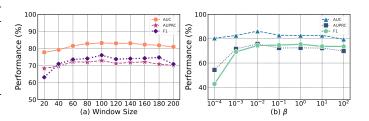


Figure 2: Anomaly detection performance under different window sizes and β values on SWaT. Note that we vary the window size and β value in a wide range of [20,200] and $[10^{-4},10^2]$, respectively.

short a window is not conducive to capturing temporal dependencies, while too long a window leads to difficulties in long-term dependencies learning. Additionally, Figure 2(b) presents the performance under different β values, which control the contributions of self-perturbation and anomaly detection losses during training. We can observe a steady performance improvement as β increases from $\beta=10^{-3}$ towards $\beta=10^{-2}$. Though beyond this point, all metrics slightly decrease, the model maintains relatively stable performance under varying β in general. This suggests that overemphasizing anomaly detection loss can lead to overlooking the learning of informative self-perturbed samples for training, which highlights the importance of balancing informative reconstruction and discriminative anomaly detection in practice.

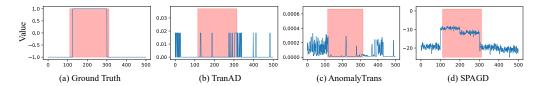


Figure 3: Anomaly score visualization on the MSL dataset. We randomly sampled data of length 500 and compared SPAGD with several baselines. The red area indicates the ground truth anomaly.

Table 3: Ablation study results on the three datasets. The best results are marked in **bold**.

Dataset		SWaT			SMAP			MSL		Avg.
Metric	AUC	AUPRC	F1	AUC	AUPRC	F1	AUC	AUPRC	F1	
w/o SP	80.30	70.34	74.04	51.31	12.49	13.25	61.37	18.75	10.54	43.60
SP w/ Recon	76.82	61.95	62.11	46.19	11.35	22.68	51.38	14.39	19.07	40.66
w/o AAGC (Spatial)	81.51	70.07	74.20	57.86	15.72	15.79	62.63	18.95	15.68	45.82
w/o AAGC (Temporal)	83.16	72.18	75.11	60.60	17.12	16.33	59.19	13.08	14.04	45.65
w/o AAGC (Both)	80.54	70.59	74.28	55.34	16.01	23.84	54.74	12.27	19.78	45.27
w/o JT	82.97	72.01	73.83	38.60	9.98	12.79	52.09	11.45	11.21	40.55
SPAGD	86.30	77.20	78.77	62.38	18.15	27.32	66.50	21.45	30.89	52.11

4.4 Anomaly Score Visualization

We provide a visualization of anomaly scores for an intuitive detection capability comparison. Figure 3 presents the visualization results on MSL, where we compare SPAGD with several baseline methods such as TranAD and AnomalyTrans. We can observe that the anomaly scores of SPAGD are more distinguishable, and the predictions are closely aligned with the ground truth anomaly in Figure 3(a). Other baseline methods exhibit higher detection uncertainty, characterized by frequent false alarms or overlooked anomalies. In particular, we can observe that reconstruction-based methods, such as TranAD, exhibit low reconstruction errors in anomalous events, which further validates the aforementioned "anomaly reconstruction" problem. In contrast, SPAGD is capable of detecting anomalies at these locations. These comparisons visually demonstrate the superior practical detection capability and reliability of SPAGD in real-world scenarios.

4.5 Ablation Study

We conducted ablation experiments to evaluate the contribution of each component in the proposed SPAGD method by comparing the SPAGD model against the following variants that shared the same backbones and hyperparameter settings:

- w/o Self-Perturbed Generation (SP): This variant removes the self-perturbation module so that
 no auxiliary signals are available during training. In this case, the model detects anomalies by
 solely relying on reconstruction errors.
- 2. **SP w/ Recon:** This variant retains the self-perturbation module, and uses a traditional reconstruction model to reconstruct both the input and generate auxiliary time series. In the testing stage, the anomaly score is defined by the reconstruction error of a test sample.
- 3. **w/o Anomaly-Aware Strategy (AAGC):** This variant preserves the self-perturbation module but disables the anomaly-aware strategy in graph construction. Note that we build three variants using a static graph instead of the AAGC strategy for (1) spatial, (2) temporal, and (3) both spatial and temporal modeling, respectively.
- 4. **w/o Joint Training (JT):** This variant employs a two-stage pipeline where the reconstruction model is pre-trained and then generates the self-perturbed time series once to train the spatio-temporal anomaly detector.

Table 3 shows the experimental results, with the following observations. (1) Removing the self-perturbation module generally leads to a performance drop across all datasets, such as AUCs dropping by 6.00% (SWaT), 11.07% (SMAP), and 5.13% (MSL). This is because the self-perturbation module

provides rich auxiliary potential anomalous signals for model training, which mitigates the class imbalance problem and improves the generalizability. (2) The performance of the "SP w/ Recon" variant significantly decreases, which indicates that a purely reconstruction-based objective encourages the model to fit the self-perturbed patterns rather than distinguish them. Consequently, true anomalies receive lower reconstruction errors and are more difficult to detect in the testing stage, which is a classic example of the "anomaly reconstruction" problem. (3) The performance also decreases when we remove the spatial/temporal or both of them from the AAGC strategy. For example, on the MSL dataset, the performance of the variant that disables AAGC in spatial modeling decreases by 3.87% (AUC), 2.50% (AUPRC), and 15.21% (F1), respectively. This can be attributed to the failure of the model to capture the dynamically changing inter-variable correlations, resulting in the anomaly-induced information within self-perturbed time series being modeled inappropriately. (4) We also observed a significant performance decrease in three datasets after replacing the joint training with a two-stage training paradigm. Generated samples cannot be optimized for the anomaly detection task without joint training, and they are too similar to normal time-series data, which presents significant challenges for the model to distinguish normal time series from them. All in all, the ablation study results provided clear and strong evidence of the effectiveness of each component in SPAGD.

4.6 More Experimental Analysis

We further provide more experimental analysis in the **Appendix**, such as extra parameter analysis and visualization results, comparison with different backbone networks and different graph construction methods, comparison with the random-perturbation strategy, and point-adjusted results and more evaluation metrics (VUS-AUC/PR) for reference.

5 Conclusion

In this paper, we introduced SPAGD, a new TSAD framework to address several inherent challenges of multivariate time-series anomaly detection. By integrating a self-perturbation module, SPAGD generates diverse auxiliary time-series samples, effectively mitigating the class imbalance as well as providing rich auxiliary potential anomalous signals for training. An adaptive anomaly-aware graph construction method is proposed to dynamically adjust inter-variable correlations for evolving self-perturbed time series. We then train an anomaly detector to distinguish the normal time series from the self-perturbed ones by modeling both spatial and temporal dependencies. Through comprehensive experiments on several benchmark datasets compared to state-of-the-art TSAD methods, SPAGD consistently achieved competitive performance. The parameter analysis, visualization, and ablation study further justify the effectiveness of SPAGD. Despite these advances, SPAGD presumes a relatively homogeneous sensing landscape, which may not be applicable under highly heterogeneous streams [Shao *et al.*, 2024; Jia *et al.*, 2024; Liu *et al.*, 2025a] with asynchronous sensors or weak inter-variable dependencies. Future work could explore heterogeneity-aware graph learning and domain-adaptive perturbation strategies to extend SPAGD to address heterogeneous problems.

Broader Impact Statement

We provide the broader impact of our work from the following two aspects:

- Positive social impacts: Our work has significant potential for enhancing the safety and reliability
 of critical cyber-physical systems. For instance, early anomaly detection can prevent catastrophic
 equipment failures, ensuring worker safety and preventing environmental damage. In aerospace
 applications, it can improve mission success and safety by flagging potential faults in spacecraft
 telemetry.
- **Potential negative risks:** (1) Over-reliance on the system could lead operators to dismiss their own expertise. **Mitigation:** We advocate for deploying SPAGD as a decision-support tool that provides interpretable outputs (e.g., highlighting anomalous sensors and their correlations) rather than as a fully autonomous system. (2) A sophisticated adversary could potentially craft inputs to either evade detection or trigger false alarms. **Mitigation:** This is a critical area for future work, focusing on improving the model's adversarial robustness.

Acknowledgement

This research is supported by the National University of Singapore, Institute of Data Science. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National University of Singapore.

References

- Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad: Unsupervised anomaly detection on multivariate time series. In *Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 3395–3404, 2020.
- Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In *Proceedings of ICML Workshop on Unsupervised and Transfer Learning*, pages 37–49. JMLR Workshop and Conference Proceedings, 2012.
- Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. A review on outlier/anomaly detection in time series data. *ACM Computing Surveys (CSUR)*, 54(3):1–33, 2021.
- Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-based local outliers. In *Proceedings of the ACM SIGMOD International Conference on Management of Data*, pages 93–104, 2000.
- Jinyu Cai, Yunhe Zhang, Jicong Fan, and See-Kiong Ng. Lg-fgad: An effective federated graph anomaly detection framework. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pages 3760–3769, 2024.
- Jinyu Cai, Yunhe Zhang, Zhoumin Lu, Wenzhong Guo, and See-Kiong Ng. Towards effective federated graph anomaly detection via self-boosted knowledge distillation. In *Proceedings of the ACM International Conference on Multimedia*, pages 5537–5546, 2024.
- Jinyu Cai, Yunhe Zhang, and Jicong Fan. Self-discriminative modeling for anomalous graph detection. In *Proceedings of the International Conference on Machine Learning*, 2025.
- Jinyu Cai, Yunhe Zhang, Fusheng Liu, and See-Kiong Ng. Leveraging diffusion model as pseudoanomalous graph generator for graph-level anomaly detection. In *Proceedings of the International Conference on Machine Learning*, 2025.
- Chris U Carmona, François-Xavier Aubet, Valentin Flunkert, and Jan Gasthaus. Neural contextual anomaly detection for time series. In *Proceedings of the International Joint Conference on Artificial Intelligence*, 2022.
- Mansheng Chen, Tuo Liu, Chang-Dong Wang, Dong Huang, and Jian-Huang Lai. Adaptively-weighted integral space for fast multiview clustering. In *Proceedings of the ACM International Conference on Multimedia*, pages 3774–3782. ACM, 2022.
- Mansheng Chen, Chang-Dong Wang, Dong Huang, Jian-Huang Lai, and Philip S. Yu. Efficient orthogonal multi-view subspace clustering. In *Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pages 127–135. ACM, 2022.
- Yutong Chen, Hongzuo Xu, Guansong Pang, Hezhe Qiao, Yuan Zhou, and Mingsheng Shang. Self-supervised spatial-temporal normality learning for time series anomaly detection. In *Proceedings* of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 145–162. Springer, 2024.
- Andrew A Cook, Göksel Mısırlı, and Zhong Fan. Anomaly detection for iot time-series data: A survey. *IEEE Internet of Things Journal*, 7(7):6481–6494, 2019.
- Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time series. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 4027–4035, 2021.

- Chaoyue Ding, Shiliang Sun, and Jing Zhao. Mst-gat: A multimodal spatial–temporal graph attention network for time series anomaly detection. *Information Fusion*, 89:527–536, 2023.
- Xiang Fang, Daizong Liu, Pan Zhou, Zichuan Xu, and Ruixuan Li. Hierarchical local-global transformer for temporal sentence grounding. *IEEE Transactions on Multimedia*, 2023.
- Xiang Fang, Arvind Easwaran, and Blaise Genest. Adaptive multi-prompt contrastive network for few-shot out-of-distribution detection. In *Proceedings of the International Conference on Machine Learning*, 2025.
- Lele Fu, Bowen Deng, Sheng Huang, Tianchi Liao, Chuanfu Zhang, and Chuan Chen. Learn from global rather than local: Consistent context-aware representation learning for multi-view graph clustering. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pages 5145–5153, 2025.
- Astha Garg, Wenyu Zhang, Jules Samaran, Ramasamy Savitha, and Chuan-Sheng Foo. An evaluation of anomaly detection and diagnosis in multivariate time series. *IEEE Transactions on Neural Networks and Learning Systems*, 33(6):2508–2517, 2021.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):139–144, 2020.
- Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers. *Pattern Recognition Letters*, 24(9-10):1641–1650, 2003.
- Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In *Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 387–395, 2018.
- Chentao Jia, Ming Hu, Zekai Chen, Yanxin Yang, Xiaofei Xie, Yang Liu, and Mingsong Chen. Adaptivefl: Adaptive heterogeneous federated learning for resource-constrained aiot systems. In *Proceedings of ACM/IEEE Design Automation Conference*, pages 1–6, 2024.
- Yixuan Jin, Yutao Wei, Zhangtao Cheng, Wenxin Tai, Chunjing Xiao, and Ting Zhong. Multi-scale dynamic graph learning for time series anomaly detection (student abstract). In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 23523–23524, 2024.
- Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rigorous evaluation of time-series anomaly detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 7194–7201, 2022.
- Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *Proceedings of the International Conference on Learning Representations*, 2017.
- Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier detection. In *Proceedings of the IEEE International Conference on Data Mining*, pages 1118–1123. IEEE, 2020.
- Ke Liang, Lingyuan Meng, Hao Li, Jun Wang, Long Lan, Miaomiao Li, Xinwang Liu, and Huaimin Wang. From concrete to abstract: Multi-view clustering on relational knowledge. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(10):9043–9060, 2025.
- Qinghua Liu and John Paparrizos. The elephant in the room: Towards a reliable time-series anomaly detection benchmark. *Advances in Neural Information Processing Systems*, 37:108231–108261, 2024.
- Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In *Proceedings of the IEEE International Conference on Data Mining*, pages 413–422. IEEE, 2008.
- Jiyuan Liu, Xinwang Liu, Yuexiang Yang, Xifeng Guo, Marius Kloft, and Liangzhong He. Multiview subspace clustering via co-training robust data representation. *IEEE Transactions on Neural Networks and Learning Systems*, 33(10):5177–5189, 2022.

- Yixin Liu, Kaize Ding, Qinghua Lu, Fuyi Li, Leo Yu Zhang, and Shirui Pan. Towards self-interpretable graph-level anomaly detection. Advances in Neural Information Processing Systems, 36:8975– 8987, 2023.
- Yixin Liu, Shiyuan Li, Yu Zheng, Qingfeng Chen, Chengqi Zhang, and Shirui Pan. Arc: A generalist graph anomaly detector with in-context learning. *Advances in Neural Information Processing Systems*, 37:50772–50804, 2024.
- Ruixuan Liu, Ming Hu, Zeke Xia, Xiaofei Xie, Jun Xia, Pengyu Zhang, Yihao Huang, and Mingsong Chen. Fedgraft: Memory-aware heterogeneous federated learning via model grafting. *IEEE Transactions on Mobile Computing*, 2025.
- Yixin Liu, Guibin Zhang, Kun Wang, Shiyuan Li, and Shirui Pan. Graph-augmented large language model agents: Current progress and future prospects. *arXiv preprint arXiv:2507.21407*, 2025.
- Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training on ics security. In *Proceedings of the International Workshop on Cyber-Physical Systems for Smart Water Networks*, pages 31–36. IEEE, 2016.
- Larry R Medsker, Lakhmi Jain, et al. Recurrent neural networks. Design and Applications, 5(64-67):2, 2001.
- Zhuang Qi and Xiaming Chen. A novel density-based outlier detection method using key attributes. *Intelligent Data Analysis*, 26(6):1431–1449, 2022.
- Zhuang Qi, Junlin Zhang, Xiaming Chen, and Xin Qi. Comparative study of neighbor-based methods for local outlier detection. *Journal of Ambient Intelligence and Smart Environments*, page 18761364251359900, 2025.
- Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining outliers from large data sets. In *Proceedings of the ACM SIGMOD International Conference on Management of Data*, pages 427–438, 2000.
- Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *Proceedings of the International Conference on Machine Learning*, pages 4393–4402. PMLR, 2018.
- Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: a comprehensive evaluation. *Proceedings of the VLDB Endowment*, 15(9):1779–1797, 2022.
- Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson. Estimating the support of a high-dimensional distribution. *Neural Computation*, 13(7):1443–1471, 2001.
- Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Tao Sun, Guangyin Jin, Xin Cao, et al. Exploring progress in multivariate time series forecasting: Comprehensive benchmarking and heterogeneity analysis. *IEEE Transactions on Knowledge and Data Engineering*, 2024.
- Junho Song, Keonwoo Kim, Jeonglyul Oh, and Sungzoon Cho. Memto: Memory-guided transformer for multivariate time series anomaly detection. Advances in Neural Information Processing Systems, 36:57947–57963, 2023.
- Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: deep transformer networks for anomaly detection in multivariate time series data. *Proceedings of the VLDB Endowment*, 15(6):1201–1214, 2022.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems*, 30, 2017.
- Bharadwaj Veeravalli, Chacko John Deepu, and DuyHoa Ngo. Real-time, personalized anomaly detection in streaming data for wearable healthcare devices. *Handbook of Large-Scale Distributed Computing in Smart Healthcare*, pages 403–426, 2017.

- Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In *Proceedings of the International Conference on Learning Representations*, 2018.
- Chengsen Wang, Zirui Zhuang, Qi Qi, Jingyu Wang, Xingyu Wang, Haifeng Sun, and Jianxin Liao. Drift doesn't matter: dynamic decomposition with diffusion reconstruction for unstable multivariate time series anomaly detection. Advances in Neural Information Processing Systems, 36:10758–10774, 2023.
- Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3):37–52, 1987.
- Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation modeling for general time series analysis. In *Proceedings of the International Conference on Learning Representations*, 2023.
- Zhihao Wu, Zhao Zhang, and Jicong Fan. Graph convolutional kernel machine versus graph convolutional networks. *Advances in Neural Information Processing Systems*, 36:19650–19672, 2023.
- Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series anomaly detection with association discrepancy. In *Proceedings of the International Conference* on Learning Representations, 2022.
- Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. Deep isolation forest for anomaly detection. *IEEE Transactions on Knowledge and Data Engineering*, 35(12):12591–12604, 2023.
- Hongzuo Xu, Yijie Wang, Songlei Jian, Qing Liao, Yongjun Wang, and Guansong Pang. Calibrated one-class classification for unsupervised time series anomaly detection. *IEEE Transactions on Knowledge and Data Engineering*, 2024.
- Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun. Dcdetector: Dual attention contrastive representation learning for time series anomaly detection. In *Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pages 3033–3045, 2023.
- Zahra Zamanzadeh Darban, Geoffrey I Webb, Shirui Pan, Charu Aggarwal, and Mahsa Salehi. Deep learning for time series anomaly detection: A survey. *ACM Computing Surveys (CSUR)*, 57(1):1–42, 2024.
- Weiqi Zhang, Chen Zhang, and Fugee Tsung. Grelen: Multivariate time series anomaly detection from the perspective of graph relational learning. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pages 2390–2397, 2022.
- Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Y Zhang, Yuxuan Liang, Guansong Pang, Dongjin Song, et al. Self-supervised learning for time series analysis: Taxonomy, progress, and prospects. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(10):6775–6794, 2024.
- Yunhe Zhang, Yan Sun, Jinyu Cai, and Jicong Fan. Deep orthogonal hypersphere compression for anomaly detection. In *Proceedings of the International Conference on Learning Representations*, 2024.
- Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph attention network. In *Proceedings of the IEEE International Conference on Data Mining*, pages 841–850. IEEE, 2020.
- Yu Zheng, Huan Yee Koh, Ming Jin, Lianhua Chi, Khoa T Phan, Shirui Pan, Yi-Ping Phoebe Chen, and Wei Xiang. Correlation-aware spatial—temporal graph learning for multivariate time-series anomaly detection. *IEEE Transactions on Neural Networks and Learning Systems*, 35(9):11802–11816, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction have accurately reflected the contributions and scope of the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work have been discussed in the conclusion.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided the relevant theoretical analysis of the proposed method in the Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has fully disclosed all the information needed to reproduce the main experimental results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper has provided open access to the data and code.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper has specified all the training and test details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper has conducted Student's t-test to demonstrate the statistical significance of the experiments.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper has provided sufficient information on the computer resources for each experiment.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We have properly discussed the societal impact of our work.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the paper, are properly credited and the license and terms of use explicitly are mentioned and properly respected.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.