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Abstract

We propose a framework for hypothesis testing on conditional probability distribu-
tions, which we then use to construct statistical tests of functionals of conditional
distributions. These tests identify the inputs where the functionals differ with high
probability, and include tests of conditional moments or two-sample tests. Our key
idea is to transform confidence bounds of a learning method into a test of condi-
tional expectations. We instantiate this principle for kernel ridge regression (KRR)
with subgaussian noise. An intermediate data embedding then enables more general
tests — including conditional two-sample tests — via kernel mean embeddings of
distributions. To have guarantees in this setting, we generalize existing pointwise-
in-time or time-uniform confidence bounds for KRR to previously-inaccessible yet
essential cases such as infinite-dimensional outputs with non-trace-class kernels.
These bounds also circumvent the need for independent data, allowing for instance
online sampling. To make our tests readily applicable in practice, we introduce
bootstrapping schemes leveraging the parametric form of testing thresholds iden-
tified in theory to avoid tuning inaccessible parameters. We illustrate the tests
on examples, including one in process monitoring and comparison of dynamical
systems. Overall, our results establish a comprehensive foundation for conditional
testing on functionals, from theoretical guarantees to an algorithmic implementa-
tion, and advance the state of the art on confidence bounds for vector-valued least
squares estimation.

1 Introduction and related work

Deciding whether the inputs and outputs of two phenomena obey the same conditional relationship is
essential in many areas of science. In control and robotics, one may want to detect changes in the
dynamics over time or detect unusual perturbations; in industrial monitoring, to identify the perfor-
mance of an equipment in varying operating conditions; and in medical studies, to compare treatment
responses based on patient characteristics. These examples exhibit the common characteristic that
they concern the conditional distribution of an output (next state, performance, treatment response,
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...) given an input parameter, which we call the covariate (current state, patient characteristics, ...).
The functional of interest is the aspect of the output distribution we care about (expectation, other
moment, full distribution, ...). While there are methods to detect global changes or mismatches
between (functionals of) probability distributions, they generally have at least one of the following
limitations: (i) they already detect a mismatch if the marginal distributions of the covariates differ
while the conditional ones coincide [1]; (ii) they already detect a mismatch if they detect a global
difference between the conditional distributions, disallowing questions such as at what covariate they
differ or whether they differ at specific points of interest [2–8]; or (iii) they only provide guarantees in
the infinitely-many samples limit [2–9]. In contrast, we propose a framework enabling finite-sample
guarantees for conditional hypothesis testing at arbitrary covariates, generalizing such guarantees
for classical hypothesis testing in the sense of Neyman-Pearson [10, Sections 8.1–8.3.1]. To our
knowledge, we are the first to formalize guarantees on the accuracy of the covariate rejection region,
which is the set of points where the null hypothesis is rejected. This region and guarantees thereon
enable identifying pointwise discrepancies between functionals of conditional distributions, rather
than global discrepancies between joint or conditional distributions.

Regardless of the covariate rejection region, conditional testing is notoriously hard — there exists no
nontrivial test with prescribed level against all alternatives [3, 4]. This should be highly unsurprising
to readers familiar with no-free-lunch theorems in statistical learning theory [11], as conditional
testing typically requires making (high-probability) statements about conditional distributions at
covariates where no samples were observed, and thus requires extrapolation power. We provide a
systematic way to escape this negative result by making explicit the ties between conditional testing
and learning theory: learning precedes testing, as confidence bounds of learning algorithms yield
guarantees for conditional tests. This connection enables turning source conditions in statistical
learning into “prior sets”, that is, classes of alternatives for which a conditional test has guarantees.
To our knowledge, we are the first to formalize this connection.

The natural assumption on the data in conditional testing is that outputs are sampled according to
conditional distributions given inputs. In particular, outputs are not necessarily identically distributed.
They may even not be independent; e.g., in the online setting [12], where data is generated sequentially
as future sampling locations depend on previous measurements. This is a technical challenge for
finite-sample guarantees and contrasts starkly with classical hypothesis testing [10, Chapter 8], where
data is independent and identically distributed (i.i.d.) [1], approximately i.i.d. (mixing, ...) [13],
or at least identically distributed given previous samples (online setting) [14, 15]. A common
approach in learning theory is to rely on a measure along which the covariates concentrate [16–18].
We must alleviate such assumptions, however, as we seek answers that are pointwise rather than
measure-dependent. We achieve this by relying on confidence bounds of learning algorithms, that
is, pointwise probabilistic bounds on the error of the learned functions. This allows us not only to
provide finite-sample guarantees, but also to operate on non-i.i.d. data, whereas previous studies are
confined to asymptotic tests with i.i.d. data [2–9]. From a practical point of view, sequential data
generation calls for repeated testing as more data becomes available, often requiring time-uniform
or anytime confidence bounds [12, 19–21]. The specific test we propose is based on such a bound,
which we generalize to previously inaccessible cases thanks to a new assumption we introduce and a
strengthening of subgaussianity [22]. In particular, our bound is directly time-uniform.

The learning problems involved in conditional testing require mapping covariates to the functional of
interest. In some cases, this may be the full conditional distribution; e.g., in two-sample or indepen-
dence testing [4]. Distributional learning usually addresses this by embedding said distributions as
expectations in Hilbert spaces [23, 24]. We leverage this idea by casting general conditional functional
test as a comparison of conditional expectations with correspondingly-embedded data. It requires,
however, confidence bounds applicable to such outputs. For instance, kernel ridge regression (KRR)
admits a well-known time-uniform confidence bound for scalar outputs [12, 21], but its only extension
to infinite-dimensional outputs [20] requires strong assumptions on the kernel which exclude the
data embeddings that allow testing for complex functionals such as those we identify for two-sample
tests. We address this by establishing a time-uniform bound that holds under significantly weaker
assumptions — this is our main technical contribution. It is the first bound to hold under such
general assumptions to our knowledge, and recovers exactly the ones of Abbasi-Yadkori [12] and
Chowdhury and Gopalan [20] in their settings. As a result, it also enjoys the interpretation of being
a frequentist correction of the Bayesian uncertainty bound obtained when interpreting KRR as a
Gaussian process (GP) posterior mean [25, 26].
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Our guarantees depend on quantities common in learning theory but inaccessible in practice. Further-
more, learning-theoretic bounds are commonly conservative as they are worst-case in the prior set,
resulting in overly cautious tests. Estimation schemes for sharper bounds are thus essential. To that
end, we provide heuristic bootstrapping schemes using the parametric structure of the testing thresh-
old identified in theory. One is adapted from Singh and Vijaykumar [27] by modifying their standard
error term in accordance with our results. In principle, they can be replaced by any alternative.

Finally, our approach is connected to several other methods, like multiple testing [28], though the
hypotheses we test simultaneously are connected (through the prior set). Due to the uniform bounds,
our test also enables sequential testing [29] and drift detection [30, 31], though the latter is generally
performed on marginal distributions; e.g., by testing for independence between a time process and
the process of interest. In addition, our tools can be used to perform anomaly detection [32], which
we illustrate on an example, cf. Section 5. Finally, our general framework can be instantiated also to
conditional independence testing, which in turn is known to be equivalent to conditional two-sample
testing in some instances [4]. Further such investigations are left for future work.

Contributions and outline We provide a general framework for conditional testing and its finite-
sample guarantees, and instantiate it for KRR together with bootstrapping schemes. Specifically:

1. We formalize the covariate rejection region and guarantees thereon, laying a basis for
finite-sample conditional tests (Section 3).

2. We turn confidence bounds of learning algorithms into statistical tests comparing conditional
expectations (Theorem 4.2). Our instantiation for KRR (Theorem 4.4) is the first to enjoy
finite-sample guarantees, and also to allow non-i.i.d. data.

3. We specialize the KRR instantiation to a test for functionals of conditional distributions
which allows conditional two-sample tests (Section 4.3).

4. We provide and implement heuristic bootstrapping schemes of the resulting test.
5. We prove confidence bounds for KRR with infinite-dimensional outputs under unprecedent-

edly weak assumptions (Theorem 4.3); specifically, Definition 2.4. The interest of this result
exceeds conditional testing.

We expand on Contribution 3 above in Appendix A with its theoretical grounding and supporting ex-
periments. The bootstrapping schemes and their numerical investigation are presented in Appendix B.
Explicit algorithms for the test, and computing the effective test statistic and bootstrapped thresholds
are in Appendix C. Appendix D further elaborates on how Theorem 4.3 relates to existing bounds in
the literature. It relies on the more general Theorem E.23 on vector-valued least squares in separable
Hilbert spaces, which we show and present as a standalone result in Appendix E. Appendix F is the
proof of Theorem 4.2, and Appendix G has further information on our numerical experiments.

2 Preliminaries and notation

The set of positive integers is denoted by N>0, and for all n ∈ N>0 ∪ {∞}, [n] is the interval of
integers between 1 and n, with [∞] := N>0. If u is a sequence and m,n ∈ N>0, with m ≤ n,
we write um:n for the tuple with n −m + 1 elements (um, . . . , un). If m = 1, we simply write
u:n. If H,G are Hilbert spaces, L(H,G) (resp., Lb(H,G)) is the space of linear operators (resp.,
bounded linear operators) fromH to G. If G = H, we simply write L(H) and Lb(H). Finally, for a
self-adjoint A ∈ Lb(H), we define ⟨g, h⟩A = ⟨Ag, h⟩, and denote the induced seminorm by ∥ · ∥A.

Markov kernels, conditional expectations We consider a complete probability space (Ω,A,P)
and input and output measurable spaces (X ,AX ) and (Y,AY), respectively. We assume that Y ⊂ G
as metric and measurable spaces, where G is a separable Hilbert space equipped with its Borel σ-
algebra, and that Y is closed. We defineM+

1 (Z) as the set of probability measures on a measurable
space Z . We identify measures on Y with their unique extension to G with support contained in Y .
Then, a Markov kernel from X to Y is a map p : AY ×X → [0, 1] such that p(·, x) is a probability
measure on Y for all x ∈ X and p(A, ·) is a measurable function for all A ∈ AY [33]. If P ∈M+

1 (G)
is a probability measure such that the identity on G is (Bochner-)integrable w.r.t. P , we introduce
its first moment E(P ) =

∫
Y ydP (y) ∈ G. We say that a Markov kernel p from X to Y has a first

moment if p(·, x) does so for all x ∈ X . Then, we use the shorthand E(p)(x) := E(p(·, x)). Finally,
we define the prior set Θ as a set of Markov kernels from X to Y . Section 3 allows any such choice
of Θ, and we specify in Section 4 assumptions on it under which we can provide guarantees.
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Stochastic processes, subgaussianity A family of data-generating processes is a family D =
{Dp | p ∈ Θ}, where Dp is an X × Y-valued process indexed by N>0. Such a Dp is called a
data-generating process. If, additionally, Dp := [(Xp,n, Yp,n)]n∈N>0 satisfies

P[Yp,n ∈ · | Xp,:n, Yp,:n−1] = p(·, Xp,n), ∀n ∈ N>0 (1)

almost surely (a.s.), we say that Dp is a process of transition pairs, and that D is family of processes
of transition pairs if (1) holds for all p ∈ Θ. Finally, we say that Dp is a process of independent
transition pairs if (1) holds and (Xp,n, Yp,n)n∈N>0

is an independent process, and similarly for D
itself. For all n ∈ N>0, we introduce Dn = (X ×Y)n and D =

⋃∞
n=1Dn. Elements of D are called

data sets, and for D := [(xn, yn)]n∈[N ] ∈ D we define len(D) = N . Finally, a core assumption
of our results is subgaussian noise. We consider the strengthening introduced in Mollenhauer and
Schillings [22]. In contrast to the reference, however, we do not require that the variance proxy is
trace-class, as our results only require a weakening of that condition.
Definition 2.1. Let R ∈ Lb(G) be self-adjoint, positive semi-definite. We say that a G-valued process
η = (ηn)n∈N>0

adapted to a filtration F = (Fn)n∈N>0
is R-subgaussian conditionally on F if

E [exp (⟨g, ηn⟩G) | Fn] ≤ exp
(
∥g∥2R

)
, ∀g ∈ G, ∀n ∈ N>0, a.s. (2)

If (2) holds with R = ρ idG for some ρ ∈ R≥0, we say that η is ρ-subgaussian conditionally on F .
Similarly, we say that a Markov kernel p ∈ Θ from X to Y ⊂ G is R-subgaussian if∫

Y
exp (⟨g, y − E(p)(x)⟩G) p(dy, x) ≤ exp

(
∥g∥2R

)
, ∀g ∈ G, ∀x ∈ X , (3)

and that it is ρ-subgaussian if (3) holds with R = ρ idG .

Kernel ridge regression We only provide a minimal treatment of reproducing kernel Hilbert
spaces (RKHSs) and KRR and refer the reader to dedicated references [34, 35] for details.
Definition 2.2. A G-valued RKHS H on X is a Hilbert space (H, ⟨·, ·⟩H) of functions from X to
G such that for all x ∈ X , the evaluation operator Sx : f ∈ H 7→ f(x) ∈ G is bounded. Then, we
define2 K(·, x) := S⋆

x and K(x, x′) = SxS
⋆
x′ , for all x, x′ ∈ X . The map K : X × X → Lb(G) is

called the (operator-valued) (reproducing) kernel ofH.
Theorem 2.3. Let H be a G-valued RKHS with kernel K. Then, K is Hermitian, positive semi-
definite3, and the reproducing property holds for all x ∈ X , f ∈ H, and g ∈ G: ⟨f(x), g⟩G =
⟨f,K(·, x)g⟩H.

It is well known that, for every Hermitian, positive semi-definite function K : X × X → Lb(G),
there exists a unique G-valued RKHS of which K is the unique reproducing kernel. The kernel
thus fully characterizes the RKHS, and we write (H, ⟨·, ·⟩H) =: (HK , ⟨·, ·⟩K). We say that a kernel
is trace-class if K(x, x′) is, for all (x, x′) ∈ X . We assume throughout that kernels are strongly
measurable. We also introduce the following notion, which is new to the best of our knowledge and
generalizes the common choice of a diagonal kernel, K = k · idG .
Definition 2.4. We say that the kernel K of a G-valued RKHSHK is uniform-block-diagonal (UBD)
(with isometry ιG) if there exists separable Hilbert spaces G̃ and V , an isometry ιG ∈ Lb(G̃ ⊗ V,G),
and a kernel K0 : X × X → Lb(G̃) (called an elementary block) such that

K = ιG(K0 ⊗ idV)ι
−1
G .

In the following, we often assume that K0 is trace-class; this is weaker than K itself being trace-class.
Informally, uniform-block-diagonality is equivalent to the existence of a base of G where, for all
(x, x′) ∈ X 2, the operator K(x, x′) has the block-diagonal, operator-valued matrix representation

K(x, x′) ≈


K0(x, x

′) 0 . . .

0 K0(x, x
′)

. . .
...

. . . . . .


2We emphasize that we deviate from the usual convention as, formally, K(·, x) is not defined as the function

x′ ∈ X 7→ K(x′, x) := Sx′S⋆
x ∈ Lb(G), but as an element of Lb(G,H).

3Recall that a bivariate function ϕ : X × X → Lb(G) is Hermitian if ϕ(x, x′) = ϕ(x′, x)⋆. It is positive
semi-definite if for all n ∈ N>0, (xi)

n
i=1 ∈ Xn, and (gi)

n
i=1 ∈ Gn,

∑n
i=1

∑n
j=1⟨gi, ϕ(xi, xj)gj⟩G ≥ 0.
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Finally, given a kernel K, data set D = [(xn, yn)]n∈[N ] ∈ D, and regularization coefficient λ ∈ R>0,
we define fD,λ as the unique solution of the KRR problem, which has an explicit form,

fD,λ = arg min
f∈HK

N∑
n=1

∥yn − f(xn)∥2G + λ∥f∥2K = M⋆
D(MDM⋆

D + λidGN )−1y:N , (4)

where MD =
(
h ∈ HK 7→ (h(xn))n∈[N ] ∈ GN

)
∈ Lb(HK ,GN ) is the sampling operator.

3 Conditional testing

We formalize conditional testing and introduce guarantees on the covariate rejection region.

Setup and outcome The general goal of conditional testing is to decide based on data whether a
specific statement about a conditional distribution holds at any user-specified conditioning location
x ∈ X , which we call the covariate (parameter). Formally, a (conditional) hypothesis is a map
H : X × Θ → {0, 1} such that, for every p ∈ Θ, the fulfillment region of H for p, defined as
φH(p) := {x ∈ X | H(x, p) = 1}, is measurable. Hypothesis testing then involves two hypotheses
H0 and H1, called the null and alternative hypothesis, respectively. We assume throughout that
H1(x, p) = ¬H0(x, p), where ¬ denotes the logical negation. A conditional test is then a measurable
map T : X ×D → {0, 1}, interpreted as T (x,D) = 1 if, and only if, we reject the null hypothesis
H0 at the covariate x ∈ X based on the data D ∈ D.

Types of guarantees The outcome of a conditional test T is the function T (·, D), which is
equivalently characterized by the covariate rejection region.
Definition 3.1. The covariate rejection region of a conditional test T is the subset of X on which the
null hypothesis is rejected based on the data. It is defined for all D ∈ D as

χ(D) = T (·, D)−1({1}) ∈ AX .

We emphasize that this definition is finer-grained than most related approaches [2–8], which corre-
spond to taking maxX T (·, D) for the outcome of the test. A conditional test has a “perfect” outcome
when the covariate rejection region χ(D) exactly recovers the complement of the fulfillment region of
H0, which satisfies φ0(p)

C = φ1(p) and where we introduced the shorthands φi := φHi
, i ∈ {0, 1}.

It follows that a test can make two “types” of errors at a covariate x ∈ X , corresponding respectively
to whether the covariate belongs to the sets

EI(p,D) = χ(D) ∩ φ0(p), or EII(p,D) = χ(D)C ∩ φ1(p).

We call the first kind a type I error and the second kind a type II error; the sets EI(p,D) and
EII(p,D) are called the error regions of the corresponding type. This terminology is consistent
with the case of non-conditional hypothesis testing [10]; indeed, EI(p,D) contains the covariates
where we incorrectly reject the null hypothesis, and EII(p,D) contains those where we fail to reject
it. Then, a “guarantee” is a probabilistic bound on the accuracy of χ(D); that is, on whether one of
these regions intersects a region of interest at times of interest.
Definition 3.2. Let D = (Dp)p∈Θ be a family of data-generating processes and i ∈ {I, II}. The
error function of type i for D is the function ηi : Θ×AX × 2N>0 → [0, 1] defined as

ηi(p,S,N ) = P[∃n ∈ N ,S ∩ Ei(p,Dp,:n) ̸= ∅], ∀(p,S,N ) ∈ Θ×AX × 2N>0

For (S,N ) ∈ AX × 2N>0 , we say that the test T has type i (S,N )-guarantee α ∈ (0, 1) if
supp∈Θ ηi(p,S,N ) ≤ α. A type I (S,N )-guarantee is called an (S,N )-level. Finally, if S = {x}
or N = {n}, we abuse notation in the above definitions and replace the subset by its only element.

We emphasize the difference between having an (x, ·)-guarantee for all x ∈ X and an (X , ·)-guarantee.
The former allows using the test at a single arbitrary covariate, whereas the latter guarantees the
performance when using the test jointly on arbitrary covariates and enables trusting the rejection
region as a whole. Similarly, (·, n)-guarantees for all n ∈ N>0 allow for a one-time use of the test
at an arbitrary time n ∈ N>0, whereas a (·,N>0)-guarantee allows for sequential testing. Our tests
have (X ,N>0)- or (X , n)-guarantees, depending on which assumptions are made.
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While the formal definitions of type I and type II error functions are symmetric, their reasonable
targets are not. Type I errors are those we seek to control; their frequency must be less than the
prescribed level everywhere in S, including in regions with little data. A false rejection of H0 must
not be caused by lack of information. As a result, control of type II errors is only achievable in
regions of the covariate space where samples provide sufficient information (either through local
sample mass or extrapolation enabled by the prior set). In other words, the type II error function can
only be low where the data actually enable distinguishing the alternative from the null.

4 Testing of conditional expectations and functionals

We specialize the preceding developments to tests of conditional expectations with finite-sample
guarantees. We are interested in testing the null hypothesis4

H0(x, p1, p2) : E(p1)(x) = E(p2)(x) v.s. H1(x, p1, p2) : E(p1)(x) ̸= E(p2)(x), (5)
where (p1, p2) ∈ Θ1 × Θ2 and Θi is a set of Markov kernels from X to Y with first moments,
i ∈ {1, 2}. First, we provide an abstract result to go from confidence bounds of a learning algorithm
to a test of conditional expectations (Theorem 4.2). We then specialize it to KRR in the well-
specified case, obtaining two tests (Theorem 4.4) with similar thresholds but differing guarantees and
assumptions; they are based on new confidence bounds for KRR which we present first (Theorem
4.3). We finally show how to specialize the test to functionals other than the expectation, allowing
(among others) a conditional two-sample test. This last point is further developed in Appendix A.
Remark 4.1. The hypothesis (5) can be equivalently reformulated into the setup of Section 3, but we
forego doing it explicitly for brevity. We emphasize, however, that we abuse notation and redefine the
test T , covariate rejection region χ, error regions Ei, and error functions ηi, i ∈ {I, II}, to take as
inputs (where applicable) two data sets D1 and D2, Markov kernels p1 and p2, and sets of integers
of interest N1 and N2. Specifically, they are now defined as χ(D1, D2) = T (·, D1, D2)

−1({1}),
EI(p1, p2, D1, D2) = χ(D1, D2) ∩ φ0(p1, p2), EII(p1, p2, D1, D2) = χ(D1, D2)

C ∩ φ1(p1, p2),
and

ηi(p1, p2,S,N1,N2) = P
[
∃(n1, n2) ∈ N1 ×N2, S ∩ Ei(p1, p2, D

(1)
p1,:n1

, D(2)
p2,:n2

) ̸= ∅
]
,

respectively, where i ∈ {I, II} and D(j) = (D
(j)
p )p∈Θj

, j ∈ {1, 2}, are the considered families of
data-generating processes.

4.1 From confidence bounds to hypothesis testing

We now provide an abstract result that connects finite-sample confidence bounds of a learning
algorithm to type I guarantees for a conditional two-sample test. For this, recall that a learning
method L is a map from data sets D ∈ D to functions fD : X → Y .

Theorem 4.2. For i ∈ {1, 2}, let Li : D ∈ D 7→ f
(i)
D be a measurable5 learning method, and

D(i) be a family of data-generating processes. For S ∈ AX , Ni ⊆ N>0, and δi ∈ (0, 1), let
Bi := B

(δi,S,Ni)
i : D ×X → R>0 be a measurable function such that for all p ∈ Θi

P
[
∀(x, n) ∈ S ×Ni,

∥∥∥∥f (i)

D
(i)
p,:n

(x)− E(p)(x)
∥∥∥∥ ≤ Bi

(
D(i)

p,:n, x
)]
≥ 1− δi, ∀p ∈ Θi. (6)

Let T := T(B1,B2) be the test defined as

T : (x,D1, D2) ∈ X ×D ×D 7→

{
1, if ∥f (1)

D1
(x)− f

(2)
D2

(x)∥ >
∑2

i=1 Bi (Di, x) ,

0, otherwise.
(7)

Then, T is a test of H0 with (S,N1,N2)-level δ1 + δ2 when used on the families D(1) and D(2).

The proof is in Appendix F. In more intuitive terms, this theorem guarantees that if one has two
learning methods that come with associated confidence bounds (6) for a specific data-generating
process (given by the functions Bi) uniformly in Θ, then one can leverage these intervals for a
conditional two-sample test with (covariate-dependent) statistic ∥f (1)

D1
(x)− f

(2)
D2

(x)∥. This result is
very natural, and its value resides in clarifying the simple relationship between estimation and testing.

4Formally, H0(x, p1, p2) = 1 if, and only if, E(p1)(x) = E(p2)(x).
5See Steinwart and Christmann [11, Definition 6.2].
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4.2 A kernel test of conditional expectations

We now turn our attention to a specific learning method for which we show that the assumptions of
Theorem 4.2 hold under sufficient regularity of the elements of Θ. Specifically, we consider KRR
with kernel K : X × X → Lb(G), as introduced in Section 2. The estimate fD,λ for a data set
D ∈ D and regularization coefficient λ > 0 is given by (4).

4.2.1 Confidence bounds for vector-valued KRR

Section 4.1 has established that it suffices to provide confidence bounds for KRR with G-valued
outputs. We provide such bounds in the following result.
Theorem 4.3. Let L : D ∈ D 7→ fD be KRR with regularization coefficient λ > 0 and kernel
K : X ×X → Lb(G). Let p be a Markov kernel fromX to G such that E(p) ∈ HK , S ∈ R>0 be such
that ∥E[p]∥K ≤ S, and R ∈ Lb(G) be self-adjoint and positive semi-definite. Let D = [(Xn, Yn)]n
be a process of transition pairs of p. Introduce the usual notations for evaluations of the kernel on
sequences:

K(·, X:n) =

(
(gm)m∈[n] ∈ Gn 7→

n∑
m=1

K(·, Xm)gm ∈ HK

)
∈ Lb(Gn,HK),

K(x,X:n) = K(·, x)⋆K(·, X:n), K(X:n, x) = K(x,X:n)
⋆,

K(X:n, X:n) = K(·, X:n)
⋆K(·, X:n),

(8)

for all x ∈ X and n ∈ N>0, as well as the shorthands

ΣD:n,λ(x) = K(x, x)−K(x,X:n)(K(X:n, X:n) + λidGN )−1K(X:n, x),

and σD:n,λ(x) =
√
∥ΣD:n,λ(x)∥Lb(HK).

(9)

Assume that p is R-subgaussian, and assume one of the following and define βλ and N accordingly:

1. the kernel K is UBD with trace-class elementary block K0 and isometry ιG ∈ Lb(G̃ ⊗V,G),
and there exist ρ ∈ R>0 and RV ∈ Lb(V) of trace class such that R = ρ2ιG(idG̃ ⊗RV)ι

−1
G .

Then, define N = N>0 and, for all (n, δ) ∈ N>0 × (0, 1),

βλ(D:n, δ) = S +
ρ√
λ

√√√√2Tr(RV) ln

[
1

δ

{
det

(
idG̃n +

1

λ
K0(X:n, X:n)

)}1/2
]
; (10)

2. R is of trace class, and D is a process of independent transition pairs of p. Then, define
N = {N} for some N ∈ N>0 and, for all (n, δ) ∈ N>0 × (0, 1),

βλ(D:n, λ) = S+
1√
λ

√√√√Tr(TD:n,λ) + 2

√
ln

(
1

δ

)
∥TD:n,λ∥2 + 2 ln

(
1

δ

)
∥TD:n,λ∥Lb(H),

(11)
where we introduced TD:n,λ = (VD:n

+λidHK
)−1/2K(·, X:n)(R⊗idRn)K(·, X:n)

⋆(VD:n
+

λidHK
)−1/2, with VD:n

= K(·, X:n)K(·, X:n)
⋆.

In both cases, for all δ ∈ (0, 1), it holds that

P
[
∀n ∈ N ,∀x ∈ X , ∥fD:n

(x)− E[p](x)∥G ≤ βλ(D:n, δ) · σD:n,λ(x)
]
≥ 1− δ.

For the readers familiar with GP regression [36, 37, 26], this result guarantees that the graph of
the ground truth lies in a tube centered at the GP posterior mean with width the posterior variance
scaled by βλ, with high probability. The bound is frequentist, however; the standard Bayesian
assumption of a GP prior is replaced by the one that the conditional expectation lies in the RKHS.
This result follows from Theorem E.23, which provides confidence bounds for vector-valued least-
squares (not necessarily in an RKHS) under general assumptions. Theorem 4.3 and its generalization
Theorem E.23 are — together with the general setup of Section 3 — the main theoretical contributions
of this work. A detailed discussion of the connections between Theorems 4.3 and E.23 and similar
bounds is available in Appendix D.
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Figure 1: Analytical and bootstrapped tests on a toy example. The tests reject H0 (green thick line)
when the confidence intervals (shaded regions) do not overlap, and accept it (red thick line) otherwise.

4.2.2 Application to testing

We can immediately apply the previous bounds to obtain kernel-based tests.
Theorem 4.4. In the setup of Theorem 4.2 and for all i ∈ {1, 2}, assume that Li is KRR with
regularization coefficient λi > 0 and kernel K : X × X → Lb(G). Also assume that there exists
Si > 0 and Ri ∈ Lb(G), self-adjoint, positive semi-definite, such that any p ∈ Θi is Ri-subgaussian
and E(p) ∈ HK with ∥E(p)∥K ≤ Si. Let D(i) be a family of processes of transition pairs, and
introduce the shorthands (9). Let αi ∈ (0, 1). Assume one of the following and define βi, Bi, and Ni

accordingly:

(i) The assumptions of Case 1 in Theorem 4.3 hold for Ri and K. Then, define Ni = N>0, and
take Bi(D,x) = βi(D,αi) · σD,λi(x), for all (D,x) ∈ D ×X , where βi := βλi is defined
in (10) with the corresponding choice of parameters.

(ii) The assumptions of Case 2 in Theorem 4.3 hold for Ri and D
(i)
p for all p ∈ Θ. Then,

define Ni = {Ni} for some Ni ∈ N>0, and take Bi(D,x) = βi(D,αi) · σD,λi(x), for
all (D,x) ∈ D × X , where βi := βλi

is defined in (11) with the corresponding choice of
parameters.

Then, with this choice for Bi in (6) for all i ∈ {1, 2}, (7) is a test of H0 with (X ,N1,N2)-level
α1 + α2 when used on the families D(1) and D(2).

This result formalizes the natural idea of comparing the norm difference between outcomes of KRR
ran on both data sets to the sum of the (appropriately scaled) posterior variances of the associated
Gaussian processes. The test is not fully distribution-free [1] since it requires subgaussian Markov
kernels, but allows data generated online. It also allows pointwise testing with guarantees — regardless
of the input data distribution — thanks to the RKHS membership assumption. In practice, we leverage
the bootstrapping schemes described in Appendix B to avoid tuning βi.

4.3 From conditional expectations to functionals

We now consider the announced case where we are interested in testing for equality of a functional F
of the conditional distributions; that is, we are interested in a test of the null hypothesis

H0(x, p1, p2) : F(p1(·, x)) = F(p2(·, x)) v.s. H1(x, p1, p2) : F(p1(·, x)) ̸= F(p2(·, x)).
(12)

Examples involve F being moments of the distributions, or even the identity. Our core idea is to
make (12) amenable to the abstract test of Theorem 4.2 by reformulating it as a test of conditional
expectations. Specifically, we make the following assumption on F . For consistency, we assume in
this section that p1 and p2 are Markov kernels from (X ,AX ) to a measurable set (Z,AZ) which we
call the measurement set, instead of mapping to Y directly.
Assumption 4.5. There exists a separable Hilbert space G and a map ΦF : Z → G called a
representation map of F such that Y := ΦF (Z) ⊂ G is closed, ΦF is Bochner-integrable w.r.t. any
probability measure on Z , and

∀(P,Q) ∈M+
1 (Z)2,

(
F(P ) = F(Q) ⇐⇒

∫
Z
ΦF (z)dP (z) =

∫
Z
ΦF (z)dQ(z)

)
.

8



0.0 0.5 1.0
0.0

0.5

1.0
Ty

pe
 I 

Er
ro

r

0.0 0.5 1.0

Ty
pe

 II
 E

rro
r

0.0 0.5 1.0

Ty
pe

 II
 E

rro
r

Ours
Baseline

= 0.10
= 1.0%

= 0.25
= 2.0%

= 0.50
= 4.0%
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Middle: Larger difference ξ between conditional expectations decrease the type II error. Right: Our
local test can confidently detect a difference in rarely (probability θ) sampled regions.

Under Assumption 4.5, (12) reduces to (5) where the Markov kernels involved are the push-
forward kernels of p1 and p2 through ΦF , which we denote with q1 and q2. Crucially, if a
process of transition pairs D(i) := ((Xn, Zn))n∈N>0

of pi is available, the modified process
D

(i)
ΦF

:= ((Xn,ΦF (Zn)))n∈N>0
is of transition pairs of qi. In other words, any learning method with

guarantees for G-valued outputs can be used to test (12) via the data transformation Yn = ΦF (Zn).

Assumption 4.5 is satisfied for many functionals of common interest, such as the ones extracting the
moments of distributions or the identity — the latter makes (12) a conditional two-sample test. The
test of Theorem 4.4 remains tractable even with infinite-dimensional G: its complexity is exactly that
of KRR. Furthermore, its assumptions such as subgaussianity are now on the pushforward kernels qi
instead of the kernels pi, i ∈ {1, 2}. We detail this and provide numerical examples in Appendix A.

5 Numerical results

We begin with an example illustrating the different components. We then evaluate performance (type
I and II errors) in controlled settings compared to the baseline of Hu and Lei [5]. Next, we illustrate
benefits of our test and its pointwise answers compared to global conditional tests, thanks to the
covariate rejection region and the fact that we obtain lower type II error when the tested functions
differ only in rarely-sampled covariate regions. Finally, we showcase an application on change
detection for a linear dynamical system. We remind the reader that Appendices A and B contain
further numerical studies respectively comparing more general functionals (such as the two-sample
one) and investigating our bootstrapping schemes. Finally, we emphasize that the purpose of this
numerical study is not to establish dominance over other methods, but to investigate numerically
how the framework works in well-understood scenarios. Additional information on experiments,
hyperparameters, and the link to the code are in Appendix G.

Metrics and setup We refer below to “type I or II errors” and “positive rates” without referring
to the corresponding triple (S,N1,N2). They are meant as (S, n, n)-errors of type I or II and as
the positive rate of the test triggering anywhere in the subset of interest S with data sets of lengths
n ∈ N>0. We approximate triggering anywhere in S by evaluating the test at the locations present in
the data set. A trigger is a type II error if it occurs in regions where H0 is not enforced. We say we
“pick” a function when we randomly choose it from the unit sphere of the RKHSHK on X . Except
in the last experiment, K is the scalar Gaussian kernel with bandwidth γ2 = 0.25 [38]. Unless stated,
data sets have 100 uniformly-sampled points, and all results use the “naive” bootstrap (Algorithm 2).

Illustrative example With X = [−1, 1], we pick two functions taking the role of conditional means
to compare and generate two data sets of 25 noisy measurements. Figure 1 shows the outcome of
KRR and of the test with analytical (left) and bootstrapped (right) confidence intervals (α = 0.05).
The test rejects the null hypothesis exactly where the confidence intervals do not overlap. The
bootstrapped intervals are much tighter, yielding higher power. Though we do not guarantee it, we
find empirically that the true functions lie in the bootstrapped shaded region.
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Figure 3: Left: Ratio between test statistic and threshold for the process monitoring example for
various dimensions (d) and perturbation magnitudes (ξ). Triggers correspond to exceeding 1. Solid
lines are means; shaded regions are 5% and 95% quantiles. Right: Ratio of σD,λ(x) in (9) on the
reference data D between x in the window and the initial state at t = 0, averaged over the window.

Empirical type I and II errors With X = [−1, 1]2, we pick f1 and f2, with ∥f2∥K = ξ. We
perform the boostrapped test between noisy data sets twice: first, with both sets generated from f1
(evaluating the type I error), and then with one set generated from f1 and the other from f1 + f2
(evaluating the type II error). Figure 2 (left, middle) shows the empirical type I and II errors as
functions of α and ξ, as well as the baseline [5] parameterized by density estimators using the same
KRR estimate as ours, together with the ground truth noise distribution. We uphold the type I level
everywhere, have similar type I and II errors as the baseline without informing our test of the noise
distribution, and achieve decreasing type II errors with increasing function difference.

Local sensitivity We now set X = [−3, 3]2, pick f1, and set f2(·) = k(·, 0). We generate data from
f1 and f1 + f2, which differ on Xdiff := {x ∈ X | f2(x) ≥ 10−2} and (approximately) coincide on
Xsame := X \ Xdiff . Data is sampled via a mixture of uniform distributions on Xsame and on Xdiff .
Figure 2 (right) shows the type II error as a function of θ, the weight of Xdiff in the mixture. Densities
are not estimated but set to their ground truth for the baseline [5]. Still, our test achieves higher power
for low values of θ. This directly results from the locality of our tests (whereas the baseline computes
one aggregated statistic), which is enabled by the local guarantees of learning-theoretic bounds.

Process monitoring We illustrate how the test allows dependent sampling by testing on the
trajectories of a linear dynamical system on X = Rd; the goal is to detect a change in the dynamics.
We consider a fixed reference data set of the transition pairs of 5 trajectories of length 400 with a
fixed initial state. We compare it to a sliding window of length 50 of the transition pairs of the current
trajectory by performing the test at every point in the window. We perturb the dynamics after 200
steps with a magnitude controlled monotonically by a scalar parameter ξ. The results are shown in
Fig. 3. We successfully detect the change reliably, even before the window is completely filled with
data from the perturbed dynamics. This supports that the test performs well despite correlations in
sampling locations. We hypothesize based on Fig. 3 (right) and the interpretation of σD,λ(x) as a GP
posterior variance [37] that the degraded performance for a fixed ξ as d increases is mainly due to the
perturbed dynamics driving the system in regions underexplored before the perturbation.

6 Conclusion

We rigorously introduce a framework for testing conditional distributions with local guarantees.
The framework is broadly applicable and provides a general recipe for turning learning-theoretic
bounds into statistical tests. We instantiate it for conditional two-sample testing with KRR, enabling
the comparison of not only expectations but other functionals such as arbitrary moments or full
conditional distributions. The guarantees are based on a generalization we show of popular confidence
bounds for KRR and regularized least squares to accommodate UBD kernels. To our knowledge,
this is the first generalization to support such a broad class of possibly non-trace-class kernels. We
present a complete pipeline from conceptual foundations and theoretical analysis to an algorithmic
implementation, and validate the approach through numerical experiments. Our framework offers a
principled foundation for developing powerful, flexible, and theoretically grounded conditional tests,
laying a basis for a wide range of future applications or theoretical investigations.
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A Elaboration on functional tests

The goal of this section is to expand on the observation of Section 4.3 that Theorem 4.2 provides a
test for the generalized hypothesis H0 defined in (12) for any functional F satisfying Assumption
4.5. Specifically, we show and explain the following:

1. There are many functionals F that satisfy Assumption 4.5.

2. There is a general catalog of representation maps ΦF of functionals capturing specific
properties of interest of the Markov kernels — such as moments or full distributions.
The catalog consists of kernel functions, and the properties are the ones captured by the
corresponding kernel mean embeddings (KMEs). This is summarized in Observation A.2.

3. Using KRR with a diagonal kernel K = k · idG as the underlying learning algorithm enables
computing of the thresholds and statistics even when the space G is infinite-dimensional. This
last point is the reason why it is essential that Theorem 4.3 applies to infinite-dimensional
outputs with non-trace-class kernels.

Together, these explanations show that we can specialize the test of conditional expectations into a
test of more complex functionals of Markov kernels — including a conditional two-sample test —
while preserving computational feasibility. Indeed, the resulting computational cost is equivalent to
that of KRR (with the chosen bootstrapping scheme, if thresholds are boostrapped). We conclude
this section with a numerical study highlighting the effectiveness of the test for different functionals.

We now study whether there are many functionals of interest that satisfy Assumption 4.5, and how to
pick or find the corresponding map ΦF . We begin with an example exhibiting a suitable map ΦF
for the functional F extracting the conditional expectation and variance, and see how to leverage
KMEs of distributions to capture a large class of functionals with explicit maps ΦF , as it is required
in the test procedure. Then, we explain how using KRR with a diagonal kernel together with this
idea yields the popular framework of conditional mean embeddings (CMEs) [38], enabling tractable
computations even when G is infinite-dimensional. We conclude this section with a numerical study
highlighting how different choices of F and ΦF affect the test outcome.

A.1 Example: conditional expectation and variance

We begin with an example exhibiting a suitable representation map ΦF of the functional F extracting
the conditional expectation and variance. Assume that Z ⊂ R, and that p1(·, x) and p2(·, x) have
well-defined first and second moments for all x ∈ X . This is for instance the case if Z is bounded.
Introduce for i ∈ {1, 2} the first two conditional moments:

µ
(i)
1 (x) = EZ∼pi(·,x)[Z], and µ

(i)
2 (x) = EZ∼pi(·,x)[Z

2],

for all x ∈ X . Now define the functional F that maps a measure to the vector of its first two moments.
For i ∈ {1, 2}, we have

F(pi(·, x)) :=

(
µ
(i)
1 (x)

µ
(i)
2 (x)

)

=

(
EZ∼pi(·,x)[Z]
EZ∼pi(·,x)[Z

2]

)
=

( ∫
Z zpi(dz, x)∫
Z z2pi(dz, x)

)
=

∫
Z
ΦF (z)pi(dz, x),

where we introduced ΦF : z ∈ Z 7→
(
z z2

)⊤
. This shows that the functional F satisfies

Assumption 4.5 with G = R2.

Let us now spell out the method summarized in Section 4.3 to obtain a test of equality of the first two
moments. Assuming that one has access to processes of transition pairs D(i) = ((X

(i)
n , Z

(i)
n ))n∈N>0

,
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replace them with the processes

D
(i)
ΦF

= ((X(i)
n , Y (i)

n ))n∈N>0
:= ((X(i)

n ,ΦF (Z
(i)
n )))n∈N>0

=

((
X(i)

n ,

(
Z

(i)
n

Z
(i)
n

2

)))
n∈N>0

,

and use a learning algorithm to learn the map from (X
(i)
n )n to (Y

(i)
n )n for each i ∈ {1, 2} (formally,

the learning algorithm should seek to approximate the conditional expectation function of Y (i)
n condi-

tioned on X
(i)
n , which we assume is independent of n). As a consequence of the data augmentation

step y = ΦF (z), notice that the output of this learning algorithm should be 2-dimensional. Theorem
4.2 then guarantees that comparing the distance between the predictions of the two models to the sum
of confidence bounds on the models’ accuracy provides a test with prescribed level of the hypothesis
that the first and second moments of p1 and p2 coincide.

A.2 Generalization via kernel mean embeddings of distributions

We now generalize the ideas of the above example to find appropriate representation maps ΦF of
functionals of interest, as the testing procedure requires knowing these maps. The generalization
is based on the observation that, for a rich class of functions Φ : Z → G, the integrals involved in
Assumption 4.5 are well-studied objects and capture specific properties of the underlying distributions.
Furthermore, we argue that any functional F satisfying Assumption 4.5 has a feature map belonging
to the aforementioned class (Proposition A.1), justifying restricting our interest to this class.

Let us begin with this second point and assume that we have a map Φ : Z → G available, where
G is a Hilbert space, and let F be a functional of which Φ is a representation map. Another name
for such a Φ is a feature map on Z , as it can be thought of as extracting information from a point
z ∈ Z and representing it in G. Readers familiar with RKHS theory may now recognize that the
pair (Φ,G) is a feature map/feature space pair, and it defines a unique RKHS on Z via the usual
canonical isomorphism between a feature space and the associated RKHS [11, Theorem 4.21]. In
more practical terms, the function Φ defines a kernel

κ(z, z′) = ⟨Φ(z),Φ(z′)⟩G ,

and its RKHSHκ is isometrically isomorphic to the closed span of the family {Φ(z) | z ∈ Z} in G.
It follows immediately that the map

Φκ : z ∈ Z 7→ κ(·, z) ∈ Hκ

also is a representation map of the same functional F . Summarizing, it is always possible to pick G
to be an RKHS in Assumption 4.5, and Φ the associated canonical feature map. We formalize this in
the following result.
Proposition A.1. Let F be a functional satisfying Assumption 4.5, and denote by Φ0 : Z → G0 a
representation map of F . Let

κ : (z, z′) ∈ Z 7→ ⟨Φ0(z),Φ0(z
′)⟩G0

.

Then, κ is a kernel, and the map

Φκ : z ∈ Z 7→ κ(·, z) ∈ Hκ (13)

also satisfies Assumption 4.5 for F .

Consequences Given a functional F satisfying Assumption 4.5, let us take a kernel function κ such
that Φκ is a representation map of F . The assumption guarantees that, for any P,Q ∈M+

1 (Z), we
have F(P ) = F(Q) if, and only if,∫

Z
κ(·, z)dP (z) =

∫
Z
κ(·, z)dQ(z), (14)

where the Bochner integrals are assumed to exist. We can immediately recognize that (14) is an
equality between the KMEs of the measures P and Q for the kernel κ. Introducing the KME map

Πκ : M ∈M+
1 (Z) 7→

∫
Z
κ(·, z)dM(z),
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the condition (14) simply rewrites as Πκ(P ) = Πκ(Q). This observation is essential in practice, as
the question of what information about a distribution is captured by its KME is a well-studied area of
research [38]. For instance, the inhomogeneous polynomial kernel of order m ∈ N>0 captures the
first m moments of a distribution; the exponential kernel captures the moment-generating function;
and the Gaussian kernel captures the full distribution as it is characteristic [38, Sections 3.1.1 and
3.3.1]. In other words — and this is the concluding observation of this section:
Observation A.2 (Picking Φ in Assumption 4.5). When the map Φ is chosen as the partial evaluation
of a kernel function κ as in (13), the corresponding hypothesis (12) asserts the equality of the
corresponding KMEs of the conditional distributions. Therefore, the properties being tested are
directly the ones these KMEs capture, and they depend on the choice of the kernel function κ.

A.3 The special case of KRR with a diagonal kernel: CMEs and their implementation

The challenge when following Observation A.2 and picking the representation map to be a kernel
canonical feature map is that the data is now composed of functions; specifically, the data sets have
the form ((X

(i)
n , κ(·, Z(i)

n )))n, and the model output should be an element of Hκ. This may be
impossible to handle for some learning methods; e.g., feedforward neural networks, which need an
output of fixed, finite dimension. Furthermore, even when it is possible to train and evaluate the
algorithm with such data, computing the test statistic or threshold in (7) may still reveal intractable.

Fortunately, both of these concerns are void for KRR with a diagonal kernel K = k · idHκ
(with k a

scalar kernel): it accepts functional data seamlessly, and the computations are tractable. As a matter
of fact, KRR with a diagonal kernel and such data recovers exactly the popular framework of CMEs
[39].

Before proceeding, we emphasize that we now have two distinct kernel functions: the kernel K, which
is used to perform KRR, and the kernel κ, which is chosen depending on the functional we wish to
test for in (12) accordingly to the developments of the previous section. The two are connected by
the relation K = k · idHκ

, where k is a freely-chosen scalar kernel.

Computation of statistic and thresholds We are interested in evaluating the statistic and threshold
involved in (7). The computations to achieve this are commonly known [38, Section 4.1.2], and we
report them here for completeness.

A first observation is that the quantities involved in the threshold — specifically, those defined in
(8)–(11) — only involve the kernel K. This kernel indirectly depends on κ since K takes values
in Lb(Hκ), but we assume that we are able to compute the quantities involved for K. In particular,
under the UBD assumption, this assumption directly translates to the feasibility of these computations
for K0, which is trivially satisfied if G̃ is finite-dimensional. This is the case in the standard case
where K = k · idHκ , since G̃ is simply R.

Next is the computation of the statistic, ∥fD1,λ1
(x)− fD2,λ2

(x)∥Hκ
, x ∈ X . Importantly, for every

x ∈ X , ignoring the subscripts 1 and 2 indexing over the two processes at hand for readability,

fD,λ(x) = K(x,X:N )(K(X:N , X:N ) + λidHN
κ
)−1

κ(·, Z1)
...

κ(·, ZN )

 .

We now leverage the fact that K = k · idHκ . The identity operator onHκ factors out and we obtain

fD,λ(x) =

z ∈ Z 7→ k(x,X:N )(k(X:N , X:N ) + λidRN )−1

κ(z, Z1)
...

κ(z, ZN )


 .

Introducing now the coefficients

α(i)
n (x) = (k(X

(i)
:N , X

(i)
:N ) + λiidRN )−1k(X

(i)
:N , x),
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for all i ∈ {1, 2} and with N = len(Di), we obtain

∥fD1,λ1
(x)− fD2,λ2

(x)∥2Hκ

=

len(D1)∑
n,m=1

α(1)
n (x)α(1)

m (x)κ(Z(1)
n , Z(1)

m ) +

len(D2)∑
n,m=1

α(2)
n (x)α(2)

m (x)κ(Z(2)
n , Z(2)

m )

− 2

len(D1)∑
n=1

len(D2)∑
m=1

α(1)
n (x)α(2)

m (x)κ(Z(1)
n , Z(2)

m ).

Here, we used the identity κ(z, z′) = ⟨κ(·, z), κ(·, z′)⟩Hκ
, for all z, z′ ∈ Z . Concluding, if the

underlying learning algorithm is KRR with kernel K = k · idHκ
, it is possible to evaluate the statistic

and threshold of the test of Theorem 4.4. We provide in Appendix C algorithms that summarize these
computations for implementation purposes.

A.3.1 Numerical study

We illustrate the preceding ideas by showcasing how the choice of kernel κ influences what is being
tested, and the power of the test for a fixed amount of data. The metrics and vocabulary used in the
setup are identical to those introduced in Section 5, which we recommend to read first.

We consider the Gaussian kernel k on X = [−1, 1]2, pick a function in the RKHS of k, and generate
measurements with two different additive noises: one is N (0, s2), and the other is a mixture of
N (−µ, s2) andN (µ, s2), for different values of µ but fixed s2. This choice guarantees that the noise
distributions have both zero means, but differ for higher moments. We embed the measurements in
G = Hκ, where κ is either the inhomogeneous linear or the Gaussian kernel. The corresponding
conditional expectations in G differ for the Gaussian kernel (since it is characteristic [38]), but
coincide for the linear kernel. As a result, a test with such data should trigger with κ the Gaussian
kernel, and not trigger with κ the linear one. We run vector-valued KRR with kernel K = k · idHκ

,
bootstrap test thresholds, and run the test on the locations present in the data set. Figure 4 shows the
resulting empirical positive rate for different α-levels, confirming that the Gaussian kernel confidently
sees a difference between the distributions, whereas the linear kernel only compares means and
therefore does not reject more often than by chance.

However, a rich kernel like the Gaussian one can be less efficient at comparing lower moments
of distributions. We show this by comparing empirical error rates of the test for inhomogeneous
polynomial kernels of different degrees and Gaussian kernels of different bandwidths for κ. We
use the same setup as before, but this time report type I and II errors instead of just the positive
rate. For the type I error, we use the same function from X to Z and noise distribution to generate
both data sets. For the type II error, we use different functions from X to Z , but the same additive
Gaussian noise distribution, so that the distributions on Z differ by their means but higher moments
coincide. Figure 5 shows that rich kernels (like the Gaussian one with small bandwidth) — which see
fine-grained distributional differences — are less efficient at recognizing differences in the mean than
less rich kernels (e.g., linear kernel) tailored to that particular moment of the distribution.

17



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0
Po

sit
iv

e r
ate

Gaussian Linear = 0.050 = 0.075 = 0.100

Figure 4: Comparing the Gaussian and inhomogeneous linear kernels on different distributions
having the same conditional mean on the measurement set Z . A trigger is a true positive for the
Gaussian kernel, and a false positive for the linear one. The results are averaged over 100 runs of the
experiment, with the shaded regions reporting the 2.5% and 97.5% quantiles.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

Ty
pe

 I 
Er

ro
r

0.0 0.2 0.4 0.6 0.8 1.0

Ty
pe

 II
 E

rro
r

Gaussian
Polynomial

2 = 0.05
d = 1

2 = 0.10
d = 2

2 = 0.15
d = 3

Figure 5: Empirical type I and II errors for different output kernels. For the type II error, conditional
expectations in Z differ but higher moments coincide. We see that Gaussian kernels are more
conservative and achieve higher type II error. The results are averaged over 100 runs of the experiment,
with the shaded regions reporting the 2.5% and 97.5% quantiles.
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B Bootstrapping

The general outcome of Theorem 4.4 is that, under the appropriate assumptions on both Θi and the
sampling process or kernel, a suitable choice for Bi(D,x) has the form Bi(D,x) = βi · σD,λi(x),
where βi > 0. There are three main reasons, however, for which the practical use of the specific
expression of βi may be limited. First, it significantly depends on parameters that are hard to infer,
such as the RKHS norm upper bound Si and the sub-gaussianity constant or operator Ri [25, 40].
Second, even when such parameters are known, evaluating the constant numerically may still be
challenging due to the presence of (possibly) infinite-dimensional objects in the expression. Finally,
these bounds may be very conservative, as they are essentially worst-case in Θi. This last point is
well-known in practice and is further illustrated by our numerical experiments below.

These considerations motivate bootstrapping values of β1 and β2 suitable for the problem at hand.
Let D1 and D2 denote the observed data sets of transition pairs from p1 and p2, with respective
sample sizes n1 = len(D1) and n2 = len(D2). We assume a sufficiently dense finite subset
M = {xj | j ∈ [J ]} ⊂ S , obtained for instance by gridding or random sampling, on which we want
the type I error calibration to hold. We neglect bootstrapping over time, meaning that the resulting
values are only meaningful for (S, n1, n2)-guarantees. We further fix Bi = βi ·σDi,λi

so that the test
T is parameterized by the vector β = (β1, β2) ∈ R2

>0. Our goal is finding numerically a minimally
conservative value for β as measured by the empirical type II error on test scenarios while preserving
a type I error of at most α.

In the following, we detail two possible approaches that calibrate β1 and β2 independently of each
other. The first one essentially bootstraps each value by applying the test on resamplings of the same
data set. The second one bootstraps the confidence bounds of the underlying KRR. Both methods
work by generating M bootstrap replicates, obtaining statistics (β̄i,m)m∈[M ] for each i ∈ {1, 2}, and
taking

β1 = (1− αt)-quantile of {β̄1,m}, β2 = (1− α(1− t))-quantile of {β̄2,m},

with a user-specified t ∈ (0, 1). When needed, grid-search over t is inexpensive. We use t = 1
2 in all

simulations.

The following two schemes now differ only in how the families (β̄i,m)m∈[M ] are generated. Table 1
summarizes the difference in computational complexity.

Naive resampling A straightforward approach is to resample the data directly. For each i ∈ {1, 2},
we draw with replacement M pairs of data sets ((∆m,∆′

m))m∈[M ] from Di, where each data set in
the pair has the same size as Di. For each m, we then compute β̄i,m as the minimal β̄m ∈ R>0 such
that ∥∥f∆m,λi

(x)− f∆′
m,λi

(x)
∥∥ ≤ β̄m

(
σ∆m,λi

(x) + σ∆′
m,λi

(x)
)

for all x ∈M. See Algorithm 2 for more details.

Wild bootstrap A more scalable alternative is the wild bootstrap, which replaces repeated resam-
pling and re-fitting by random perturbations of the residuals of the nominal KRR estimate. Following
Singh and Vijaykumar [27], we adopt anti-symmetric multipliers, which in the scalar-output case
were shown to mitigate regularization bias and improve calibration accuracy. Such an analysis is un-
available in our more general setting, but we apply the same construction by straightforward extension
to multi-dimensional outputs. However, we use the standard error term σD,λ(x) defined in (9) for
studentization to remain consistent with the theory-backed form of the confidence bounds identified
in Theorem 4.3. For each i ∈ {1, 2}, draw independent mean-zero multipliers (q(m) ∈ Rni)m∈[M ]

with covariance Ini
− 11⊤/ni and collect the perturbed residual data set

∆m =
((

Xj , q
(m)
j · (Yj − fDi,λi(xj))

))
(Xj ,Yj)∈Di

,

from which β̄i,m is obtained as the minimal β̄m ∈ R>0 satisfying

∥f∆m,λi
(x)∥ ≤ β̄m σ∆m,λi

(x)

for all x ∈M. This method requires only a single KRR fit since the Gram matrix for any ∆m is the
same as for Di. See Algorithm 3 for more details.
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Table 1: Asymptotic time complexity for computing the test threshold with different calibration
methods, in excess of fitting the models fDi,λi

, for i ∈ {1, 2}, and evaluating the test statistic
∥fD1,λ1

(x)− fD2,λ2
(x)∥ over all x ∈ S. Here ni denotes the data set size, m = |M| the grid size,

and M the number of bootstrap replicates.

Method Analytical bound Naive bootstrap Wild bootstrap

Runtime O
(
1
)

O
(
Mn3

i +Mmn2
i

)
O
(
Mmn2

i

)
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(a) Influence of data set size n = n1 = n2.
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(b) Influence of regularization parameter λ = λ1 = λ2.

Figure 6: Type I and II errors for the test with different bootstrapping schemes, at varying data set
sizes n and regularization levels λ. Type I error becomes faithful to the level α when n and λ are
sufficiently large. Power increases for larger n and smaller λ. The results are averaged over 100
runs of each experiment. Confidence intervals are omitted for readability. “Singh et al.” refers to the
method proposed in [27].

Validation We assess calibration and power for three bootstrapping schemes: (i) our naive resam-
pling bootstrap; (ii) our wild bootstrap; and (iii) the wild bootstrap of Singh and Vijaykumar [27],
which differs from our wild bootstrap only in the studentization term, using

σDi,λi
=

∥∥∥∥((k(X(i)
:ni

, X(i)
:ni

) + λiIni

)−1

k(X(i)
:ni

, x))

)
diag (ε1, ..., εni

)

∥∥∥∥
Gni

,

where Di = ((X
(i)
j , Y

(i)
j ))ni

j=1 is the data set and εj = Y
(i)
j − fDi,λi

(X
(i)
j ) are the residuals as in

our wild bootstrap.

We compare the performance of these methods in varying conditions on synthetic data sets generated
in a way that either satisfies the null (for the type I error), or violates it (for the type II error). For
that, we set X = [−1, 1]2, take k as the Gaussian kernel with bandwidth γ2 = 0.25, and generate
data as measurements of functions inHk with additive Gaussian noise. For the type I error, we use
equal mean functions with Gaussian noise, and for the type II error use different mean functions with
the same noise distribution. For each configuration, we bootstrap the confidence thresholds and run
the test.
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Figure 7: Type I and II errors for the test with the bootstrapped and analytical thresholds. Analytical
thresholds yield a very conservative test (level is less than α, but the type I and II errors are
independent of α. In contrast, bootstrapping preserves the guarantee and increases power. The results
are averaged over 100 runs of the experiment, with the shaded regions reporting the 2.5% and 97.5%
quantiles.

Varying data set size Figure 6a reports results for data set sizes n = n1 = n2 ∈ {20, 50, 100}.
Type I error increases with α and improves with n. They all uphold the level, except for the naive
method with n = 20. For fixed regularization λ = 0.5, all methods become more conservative as n
grows. Accordingly, type II error improves for increasing α and n.

Varying regularization In Figure 6b, we now vary the regularization λ = λ1 = λ2 ∈
{10−3, 10−1, 1}. At a fixed data set size n = 500, larger λ yields more conservative calibration,
while smaller λ result in overly aggressive bootstraps and the type I error exceeding the prescribed
level α.

Put together, these results indicate that sufficient data and a suitable choice of λ are critical for good
calibration. Across both experiments, naive resampling is more aggressive (higher type I and lower
type II error), our wild bootstrap is more conservative (lower type I and higher type II error), and the
variant by Singh and Vijaykumar [27] lies in between.

Power against analytical calibration To confirm the increase in power gained by bootstrapping
relative to analytical thresholds, we now fix n and λ, and vary the noise variance σ. Because the
outputs of functions inHk are one-dimensional, the sub-Gaussian noise operator reduces to a scalar,
which we set to the ground-truth variance. For the bootstrapping scheme, we only compare against
our naive resampling method. Figure 7 shows that the analytical thresholds are markedly conservative:
type I error remains well below α and both errors are essentially independent of α. In contrast, the
type I error of the bootstrap tracks the level α more faithfully and achieves significantly lower type II
error. Overall, this indicates that bootstrap calibration yields strictly higher power at fixed α without
sacrificing control of the type I error.

For more details on the experiments in this section, see Appendix G.
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C Summary of algorithms

Algorithm 1 summarizes our implementation of the test of Theorem 4.4. The bootstrapping of the
multiplicative constants βi, i ∈ {1, 2} it relies on is detailed in Appendix B, and summarized in
Algorithms Algorithms 2 and 3. We emphasize that, in principle, any other bootstrapping algorithm
for KRR can be used. All routines assume the form K = k · idκ (c.f Appendix A). Algorithm 4 shows
how to compute the test statistic, called the conditional maximum mean discrepancy (CMMD).

Algorithm 1 Kernel conditional two-sample test

Require: data sets D1, D2; tested covariate region S ⊆ X ; bootstrap covariate regionM⊆ X
Ensure: Covariate rejection subregion of S, with type I error at most α

1: β̃1 ← Bootstrap(D1,M) ▷ use either Algorithm 2 or 3
2: β̃2 ← Bootstrap(D2,M)

3: return {x ∈ S | CMMD(D1, D2, k, κ, λ, x) > β̃1 · σD1,λ(x) + β̃2 · σD2,λ(x)}

Algorithm 2 Naive bootstrap

Require: data set D; gridM
Ensure: Chooses β̃ s.t. test does not reject onM for an (1− α)-fraction of bootstrapped data sets

1: for j ← 1 to M do
2: D1, D2 ∼ D ▷ resample D1, D2 from D uniformly with replacement
3: Bj ← maxx∈M

(
CMMD(D1,D2,k,κ,λ,x)

σD1,λ(s)+σD2,λ(s)

)
▷ smallest β̃ s.t. test does not reject on D1, D2

4: return (1− α)-quantile of {Bj | j ∈ [M ]}

Algorithm 3 Wild bootstrap

Require: data set D; gridM
Ensure: Chooses β̃ s.t. test does not reject onM for an (1− α)-fraction of bootstrapped data sets

1: K← [k(x, x′)]
(x′,·)∈Di

(x,·)∈Di

2: L ← [κ(z, z′)]
(·,z′)∈Di

(·,z)∈Di

3: kx← [k(x, x′)]⊤(x′,·)∈Di
∀x ∈M

4: A←
(
K+ λI|D|

)−1
K

5: vx←
(
K+ λI|D|

)−1
kx ∀x ∈M

6: for j ← 1 to M do
7: q ∼ N (0, I|D| − 1

|D|11
⊤) ▷ wild multipliers

8: ξx ← q⊙ vx ∀x ∈M ▷ ⊙ denotes Hadamard product
9: Bj ← maxx∈M

(
1

σD,λ(x)

(
ξ⊤(I|D| −A)⊤L(I|D| −A)ξ

)1/2)
10: return (1− α)-quantile of {Bj | j ∈ [M ]}

Algorithm 4 CMMD: Conditional maximum mean discrepancy

Require: covariate x ∈ X ; data sets D1;D2

Ensure: Computes ∥fD1,λ(x)− fD2,λ(x)∥Hκ

1: Ki ← [k(x, x′)]
(x′,·)∈Di

(x,·)∈Di
∀ i ∈ {1, 2}

2: ki ← [k(x, x′)]⊤(x′,·)∈Di
∀ i ∈ {1, 2}

3: ai ←
(
Ki + λI|Di|

)−1
ki ∀ i ∈ {1, 2}

4: Cij← [κ(z, z′)]
(·,z′)∈Dj

(·,z)∈Di
∀ i, j ∈ {1, 2}

5: return
(
a⊤1 C11a1 − 2 · a⊤1 C12a2 + a⊤2 C22a2

)1/2
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D Connections between Theorem 4.3 and existing bounds

Case 1 in Theorem 4.3 generalizes Corollary 3.4 in Abbasi-Yadkori [12] to outputs in separable
Hilbert spaces without introducing conservatism, as it recovers exactly the same bound as in this
reference under the assumptions there. It also generalizes Theorem 1 in Chowdhury and Gopalan
[20] by removing the regularity assumptions connecting the input set X and the kernel K (in the
reference, X is compact and K is bounded). It further generalizes this same result in yet another
way by removing the assumption that K should be trace-class, replacing it by the (significantly
milder) assumption that K0 should be so and hereby allowing the special case of a diagonal kernel
K = k · idG . To the best of our knowledge, this is the first time-uniform uncertainty bound for KRR
allowing this essential case.

The assumption that the kernel K is UBD in Case 1 above is the central methodological contribution of
the proof. It enables us to generalize the proof method of Abbasi-Yadkori [12] by leveraging a tensor
factorization of the RKHSHK (Proposition E.12). Specifically, Proposition E.12 allows avoiding
the usual problems encountered with non-trace-class kernels — more precisely, that trace-dependent
quantities explode — by replacing them with the corresponding quantities for the elementary block
K0. Intuitively, all of the “estimation machinery” is performed in the RKHS of K0, which is a
trace-class kernel and for which classical methods work well, and we simply need to ensure that the
noise is “compatible” with this structure. Here, this compatibility takes the form of the operator RV
being trace-class. Interestingly, a special case of Proposition E.12 has been used in Li et al. [41]
(Theorem 1) to identify HK with a space of Hilbert-Schmidt operators in the case K = k · idG ,
hereby avoiding problems with the trace of K by working with that of k, similarly to us. While
Li et al. [41] is focused on learning rates for conditional mean embeddings, the subsequent work
[42] investigates (in some settings minimax optimal) learning rates for vector-valued KRR, utilizing
essentially the same strategy of identifying KRR using a kernel of the form K = k · idG with
regularized estimation of Hilbert-Schmidt operators. Conceptually, both [41, 42] and our work use a
tensor space construction to avoid problems with quantities related to trace-class operators, however,
the technical details significantly differ. First, [41, 42] uses an identification with Hilbert-Schmidt
operators, whereas we work with more general tensor product structures, that allow us formulate our
results using UBD kernels. Second, [41, 42] aim at learning rates in a typical supervised learning
setup, in particular, with random covariates, whereas we are interested in uniform (in the covariates)
confidence bounds, and hence the proof techniques are rather different. Finally, the regularized
least-squares algorithm analyzed by [41, 42] is not affected by whether the used kernel is trace-class
or not, only the analysis needs to take this into account. In contrast, we need the tensor structure
as formalized by our UBD assumption to even have a well-defined expression for the confidence
bound due to appearance of the Fredholm determinant. We would like to remark that it appears that
many arguments of Li et al. [41, 42] also hold under the more general assumption that K is UBD. An
interesting avenue for future work is thus to investigate to what extent this generalization carries over,
and whether the derived learning rates, e.g., [41, Theorem 2], hold under UBD. Summarizing, we
believe the UBD assumption and the resulting structure of the RKHS identified in Proposition E.12
is a relevant new idea to handle a large class of non-trace-class kernels and can be used in other areas
of kernel methods such as learning theory with loss functions compatible with the structure.

We emphasize that the subgaussianity assumption of Case 1 is in general a strengthening of the
assumption that p is ρ̄-subgaussian for ρ̄ ∈ R>0, but also a weakening of the one that p is R′-
subgaussian for R′ ∈ Lb(G) self-adjoint, positive semi-definite, and of trace class. This last case
was first introduced in Mollenhauer and Schillings [22], to which we refer for an interpretation. The
structure we require on R clearly identifies how much control we need on each of the components
of the noise: those that are handled by the RKHS of the trace-class kernel K0 may be simply ρ-
subgaussian, while the those that are not must have a trace-class variance operator. In fact, if the
kernel K is itself of trace class, we may take K0 = K in the theorem and the assumption simplifies
to p being ρ-subgaussian.

Finally, Case 2 does not require any structural assumptions on K (such as trace-class or UBD), but
assumes independent transition pairs (excluding online sampling) and yields a time-local bound
(since N = {N}). It is thus of independent interest to Case 1, as they apply in different settings. It is
also worth noting that the proof of Case 2 is considerably simpler than that of Case 1, as it follows
directly from results on concentration of quadratic forms of subgaussian vectors with independent
coefficients [22].
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E Generalized confidence bounds in vector-valued least squares

We provide in this section the proof of Theorem 4.3. Specifically, we show a more general result
which does not assume that the space HK in which the estimator lies is an RKHS; only that it is
a generic Hilbert space H. The result we show is given later in this section in Theorem E.23 and
pertains to confidence bounds in vector-valued least squares estimation under general assumptions on
the sampling operators; KRR is then obtained for a specific choice of the measurement operators and
Hilbert space where estimation is performed.

This section is organized as follows. We first provide in Section E.1 the general setup of vector-valued
least squares estimation, and identify that the main challenge for confidence bounds is bounding a
specific term involving the noise. We then provide in Sections E.2 and E.3 methods to bound this
term under different assumptions that we formalize. The main intermediate results of those sections
are Lemma E.4, Theorem E.14, and Corollary E.20, and are essential in the proof of Theorem E.23,
which we only state and prove in Section E.4 as we provide a gentle introduction to its assumptions
first. We finally leverage it in Section E.5 to show Theorem 4.3.

E.1 Setup and goal

Let H and G be separable Hilbert spaces, and D = [(Ln, yn)]n∈N>0
be an Lb(H,G) × G-valued

stochastic process. The operators Ln are called the (random) evaluation operators and the vectors yn
the evaluations (or measurements), n ∈ N>0. We assume that there exists h⋆ ∈ H and a centered
G-valued process η = (ηn)n∈N>0 such that yn = Lnh

⋆ + ηn. Let now λ > 0 and define the
regularized least-squares problem with data D at time N ∈ N>0 as

argmin
h∈H

N∑
n=1

∥yn − Lnh∥2G + λ∥h∥2H. (15)

This optimization problem has a well-known solution, which we recall below together with the proof
for completeness.

Lemma E.1. For all N ∈ N>0, the optimization problem (15) has a unique solution hN,λ, and

hN,λ = (M⋆
NMN + λidH)−1M⋆

Ny:N , (16)

where we introduced the operator MN and its adjoint as

MN : h ∈ H 7→ (Lnh)n∈[N ] ∈ GN , and M⋆
N : (g1, . . . , gN ) ∈ GN 7→

N∑
n=1

L⋆
ngn. (17)
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Proof. Rewriting the objective function and completing the square leads to

N∑
n=1

∥yn − Lnh∥2G + λ∥h∥2H =

N∑
n=1

⟨yn − Lnh, yn − Lnh⟩G + λ⟨h, h⟩H

=

N∑
n=1

∥yn∥2G − 2

N∑
n=1

⟨yn, Lnh⟩G +

N∑
n=1

⟨Lnh, Lnh⟩G + λ⟨h, h⟩H

=

〈(
N∑

n=1

L∗
nLn + idH

)
h, h

〉
H

− 2

〈
N∑

n=1

L∗
nyn, h

〉
H

+

N∑
n=1

∥yn∥2G

= ∥h∥2∑N
n=1 L∗

nLn+λidH
− 2

〈(
N∑

n=1

L∗
nLn + λidH

)−1 N∑
n=1

L∗
nyn, h

〉
∑N

n=1 L∗
nLn+λidH

+

∥∥∥∥∥∥
(

N∑
n=1

L∗
nLn + λidH

)−1 N∑
n=1

L∗
nyn

∥∥∥∥∥∥
2

∑N
n=1 L∗

nLn+idH

−

∥∥∥∥∥∥
(

N∑
n=1

L∗
nLn + λidH

)−1 N∑
n=1

L∗
nyn

∥∥∥∥∥∥
2

∑N
n=1 L∗

nLn+λidH

+

N∑
n=1

∥yn∥2G

=

∥∥∥∥∥∥h−
(

N∑
n=1

L∗
nLn + λidH

)−1 N∑
n=1

L∗
nyn

∥∥∥∥∥∥
2

∑N
n=1 L∗

nLn+λidH

+ Terms without h

Since
∑N

n=1 L
∗
nLn + λidH = M∗

NMN + λidH is positive definite, and
∑N

n=1 L
∗
nyn = M⋆

Ny:N ,
this shows that the unique solution to the optimization problem (15) is indeed given by (16).

Our general goal is to obtain a finite-sample confidence region for the estimator hN,λ of h⋆. While
we only state the precise result in Section E.4, we want — in short — a high-probability bound on
the quantity ∥L̄hN,λ − L̄h⋆∥Ḡ . Here Ḡ is a Hilbert space and L̄ ∈ Lb(H, Ḡ) is a bounded operator
capturing an appropriate property we are interested in; they are degrees of freedom of the problem.
We begin with the following observation. This result, which is well-known in the case of KRR
(see for example Abbasi-Yadkori [12, Chapter 3] or Chowdhury and Gopalan [19]), results from
elementary algebraic manipulations, the triangle inequality, and properties of the operator norm.

Lemma E.2. For any N ∈ N>0 and λ ∈ R>0, it holds that

hN,λ = h⋆ − λ(M⋆
NMN + λidH)−1h⋆ + (M⋆

NMN + λidH)−1M⋆
Nη:N . (18)

Consequently, for any Hilbert space Ḡ, bounded operator L̄ ∈ Lb(H, Ḡ), and N ∈ N>0, the
following holds:

∥L̄hN,λ − L̄h⋆∥Ḡ ≤ ∥L̄(VN + λidH)−1/2∥Lb(H,Ḡ)
(
∥SN∥(VN+λidH)−1 + λ∥h⋆∥(VN+λidH)−1

)
,

(19)

where we introduced
VN = M⋆

NMN , and SN = M⋆
Nη:N .

The general strategy to bound ∥L̄hN,λ − L̄h⋆∥Ḡ is to bound the two terms involved in the right-hand
side (RHS) of (19) independently. The term involving h⋆ is bounded as follows:

∥h⋆∥(M⋆
NMN+λidH)−1 ≤ λ−1/2∥h⋆∥H, (20)
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and we will assume a known upper-bound on ∥h⋆∥H. Indeed, λidH ⪯ M⋆
NMN + λidH since

M⋆
NMN is positive semi-definite. Similarly, the operator norm rewrites as

∥L̄(M⋆
NMN + λidH)−1/2∥Lb(H,Ḡ)

=

√∥∥∥L̄(M⋆
NMN + λidH)−1/2

(
L̄(M⋆

NMN + λidH)−1/2
)⋆∥∥∥

Lb(H)

=

√
1

λ

∥∥L̄ (idH − (M⋆
NMN + λidH)−1M⋆

NMN ) L̄⋆
∥∥
Lb(H)

.

(21)

Introducing the shorthands

ΣD:N ,λ(L̄) = L̄
(
idH − (M⋆

NMN + λidH)−1M⋆
NMN

)
L̄⋆, and

σD:N ,λ(L̄) =
√
∥ΣD:n,λ(L̄)∥Lb(H),

we have
∥L̄(M⋆

NMN + λidH)−1/2∥Lb(H,Ḡ) =
1√
λ
σD:N ,λ(L̄). (22)

We are thus left with bounding the noise-dependent term ∥SN∥(M⋆
NMN+λidH)−1 . Importantly,

since this term is independent of L̄, such a method naturally yields a high-probability bound of
∥L̄hN,λ − L̄h⋆∥Ḡ where the high-probability set where the bound holds is independent of L̄.

E.2 Noise bound for deterministic sampling

The first assumption under which we are able to provide a bound on ∥SN∥(M⋆
NMN+λidH)−1 is that

of deterministic sampling, meaning that the sampling operators are not random and the noise is
independent.
Assumption E.3 (Deterministic sampling). The process L = (Ln)n∈N>0 is not random, and η is an
independent process.

The bound is based on Corollary 2.6 in Mollenhauer and Schillings [22], which pertains to the
concentration of quadratic forms of R-subgaussian random variables. We recall it here with our
notations for completeness.
Lemma E.4. Assume that η is an independent process and that ηn is R-subgaussian for all n ∈ N>0,
with R ∈ Lb(G), positive semi-definite and trace-class. Let A ∈ Lb(GN ,H). Then, η:N is R⊗ idRN -
subgaussian, and for all δ ∈ (0, 1), it holds with probability at least 1− δ that

∥Aη:N∥2 ≤ Tr(T ) + 2

√
ln

1

δ
∥T∥2 + 2 ln

1

δ
∥T∥Lb(H), (23)

where T = A · (R ⊗ idRN ) · A⋆ ∈ Lb(H) is of trace class and ∥B∥2 =
√
Tr(TT ⋆) is its Hilbert-

Schmidt norm.

E.3 Noise bound for online sampling with coefficients-transforming sampling operators

The previous case makes the central assumption that (Ln) is a deterministic process. While it is
possible to extend it to the case where (Ln)n is a uniformly bounded random process independent of
η (leveraging Lemma 4.1 in Mollenhauer and Schillings [22]), this still excludes online sampling,
formalized as follows:
Assumption E.5 (Online sampling). We have access to a filtration F = (FN )N∈N>0

for which L is
predictable and η is adapted.

Under this assumption, the choice of LN+1 is random and depends on L:N and on y:N . The main
difficulty then resides in the fact that SN and (M⋆

NMN + λidH)−1 are now correlated random
variables.

We address this correlation by showing a self-normalized concentration inequality for

∥SN∥(M⋆
NMN+λidH)−1 .
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The inequality is also time-uniform, meaning that the high-probability set on which the bound holds
does not depend on the time N ∈ N>0. It is a generalization of Theorem 3.4 (and Corollary 3.6) in
Abbasi-Yadkori [12] from G = R to a general separable Hilbert space G. These results are based
on the method of mixtures [43]. While we mostly follow the proof strategy from Abbasi-Yadkori
[12], we introduce a general structural assumption on the sampling operators (Definition E.11 and
Proposition E.12) to handle the case where the sampling operators are not trace-class (in the RKHS
case, the case where the kernel is not trace-class). Furthermore, in contrast to Abbasi-Yadkori [12]
we do not employ an explicit stopping-time construction to obtain time uniformity, but rather use
Ville’s inequality as in Whitehouse et al. [21].

E.3.1 Challenge and goal

For the sake of discussion, let us assume that H = HK , where K is an operator-valued kernel.
While extending Corollary 3.6 of Abbasi-Yadkori [12] to the case where K is trace-class is relatively
straightforward by following the proof technique, the method breaks if K is not trace-class. In
fact, it is not even clear what the corresponding bound on ∥SN∥(λidH+VN )−1 is in that case, as
using the expression given in Corollary 3.5 in the reference and replacing the scalar kernel with the
operator-valued one yields a bound involving the quantity

det

[
idGN +

1

λ
MNM⋆

N

]
, (24)

which is meaningless since MNM⋆
N is not of trace class. However, in the special case where K

is UBD with trace-class block decomposition K0, we have a meaningful candidate to replace the
determinant above: that involving K0. Our goal then becomes upper bounding ∥SN∥(VN+λidH)−1 by
a quantity involving det(idG̃N + λ−1M̃NM̃⋆

N ), where M̃N ∈ Lb(HK0 , G̃N ) is defined as M̃N h̃ =

(h̃(xn))n∈[N ] ∈ G̃N for all h̃ ∈ HK0 . Finally, while the discussion above assumesH = HK and the
regularizer V = λidHK

, we aim at providing a noise bound for general spaces and regularizers.

Proof summary Our proof is based on the method of mixtures of Abbasi-Yadkori [12]. A close
look at the proof of Theorem 3.4 in the reference reveals that the problematic determinant (24) arises
when integrating the function GN (in the notations of the reference) against a Gaussian measure on
HK . We circumvent this integration by leveraging a factorization ofHK as a tensor space. While
such a factorization HK

∼= H1 ⊗H2 trivially exists for choices of separable H1 and H2 based on
dimensional arguments (i.e., dim(HK) = dim(H1) · dim(H2)), we choose one in which all of the
sampling operators Ln, n ∈ N>0, admit themselves the simple form Ln

∼= L̃n ⊗ idH2
, and for

which L̃n has nice properties (specifically, L̃⋆
nL̃n is trace-class). In the case of a diagonal kernel —

that is, K = k · idG and Ln = K(·, xn), this construction is known and natural: the RKHS HK is
the (closure of the) span of vectors of the form f · g, where f ∈ Hk and g ∈ G; see for instance
Paulsen and Raghupathi [35, Exercise 6.3]. Then, for any h =

∑∞
m=1 fm · gm ∈ Hk·idG , introducing

h⊗ =
∑∞

m=1 fm ⊗ gm ∈ HK0
⊗ G,

Lnh =

∞∑
m=1

fm(xn) · gm ∼=
∞∑

m=1

(L̃n ⊗ idG)(fm ⊗ gm) = (L̃n ⊗ idG)h⊗,

In the more general case where K is only UBD instead of diagonal, we prove that such a factorization
also exists (Proposition E.12). In any case, this factorization allows us to writeHK

∼= HK0 ⊗V . This
enables evaluating (a modification of) the function GN on pure tensors h̃⊗ v, where h̃ ∈ HK0

and
v ∈ V . We then leverage a double mixture argument: one for the variable h̃, and one for the variable v.
The one on h̃ is the same as in Abbasi-Yadkori [12]: a Gaussian measure onHK0 , which outputs the
desired determinant involving K0. The one on v is not Gaussian and enables recovering the norm we
wish to bound, ∥SN∥(VN+λidHK

)−1 (up to some regularization term), when combined with Jensen’s
inequality. Our double mixture strategy is fundamentally different from what is used for Chowdhury
and Gopalan [19, Theorem 1], since we use two different types of mixture distributions, and the
second mixture enters in a multiplicative manner (instead of an additive one). We can then conclude
using standard arguments involving Ville’s inequality for positive supermartingales, similarly to
Whitehouse et al. [21]. Summarizing, this method enables showing the following result, which is a
specialization of the main outcome of this section to the caseH = HK and Ln = K(·, xn)

⋆.
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Theorem E.6 (Theorem E.14, RKHS case). Under the notations of Sections E.1 and E.3.1, assume
that H = HK , where K is UBD with block decomposition K0 : X × X → G̃ and isometry
ιG ∈ Lb(G̃ ⊗ V,G), where G̃ and V are separable Hilbert spaces. Assume that K0 is of trace class,
that Assumption E.5 holds, that Ln = K(·, xn)

⋆, n ∈ N>0, and that η is 1-subgaussian. Then,
there exists an isometry ιHK

: HK0
⊗ V → HK such that, for all Q ∈ Lb(V) self-adjoint, positive

semi-definite, and trace-class, and Ṽ ∈ L(HK0
) self-adjoint, positive definite, diagonal, and with

bounded inverse, it holds for all δ ∈ (0, 1) that

P

[
∀N ∈ N>0, ∥ι−1

HK
SN∥(Ṽ+ṼN )−1⊗Q ≤

√
2Tr(Q)

[
det
(
idG̃N + M̃N Ṽ −1M̃⋆

N

)]1/2]
≥ 1− δ,

where ṼN = M̃⋆
NM̃N .

Proof. This follows immediately from Theorem E.14, since Proposition E.12 guarantees that its
assumptions hold.

This result has two consequences that can be immediately leveraged for KRR.
Corollary E.7 (Corollary E.20, RKHS case). Under the setup and assumptions of Theorem E.6, do
not assume that η is 1-subgaussian, but rather that there exists ρ ∈ R>0 and RV ∈ Lb(V) self-adjoint,
positive semi-definite, and trace-class, such that η is R-subgaussian, where R := ρ2ιG(idG̃⊗RV)ι

−1
G .

Then, for all δ ∈ (0, 1),

P

[
∀N ∈ N>0, ∥SN∥(V+VN )−1 ≤ ρ

√
2Tr(RV) ln

(
1

δ

[
det(idG̃N + M̃N Ṽ −1M̃⋆

N )
]1/2)]

≥ 1−δ,

where V = ιH(Ṽ ⊗ idV)ι
−1
H .

Corollary E.8 (Corollary E.20, RKHS with trace-class kernel case). Under the setup and assumptions
of Theorem E.6, assume that K itself is of trace class. Also, do not assume that η is 1-subgaussian,
but rather that it is ρ-subgaussian for some ρ ∈ R>0. Then, we can take K0 = K, G̃ = G, V = R,
and Q = idR in Theorem E.6. In particular, for all δ ∈ (0, 1),

P

[
∀N ∈ N>0, ∥SN∥(V+VN )−1 ≤ ρ

√
2 ln

(
1

δ
[det(idGN +MNV −1M⋆

N )]
1/2

)]
≥ 1− δ,

where V = Ṽ .

Proofs of Corollaries E.7 and E.8. These results follow immediately from Corollary E.20.

The next two sections are dedicated to stating and proving Theorem E.14 and Corollary E.20, which
generalize Theorem E.6 and its corollaries to the case whereH is not necessarily an RKHS. It relies
on assuming the existence of the aforementioned appropriate factorization ofH and of the operators
(Ln)n, similarly as in the case of a UBD kernel. We thus begin by formalizing the assumption.

E.3.2 Tensor factorization of Hilbert spaces and coefficients transformations

We have identified that, in the case H = Hk·idG , the core assumption for Theorem E.6 was that
both H was the closure of the span of vectors of the form f · g, with f ∈ Hk and g ∈ G, and that
Ln could be identified with L̃n ⊗ idG . This is the idea we generalize with the construction of this
section. Specifically, we rigorously introduce tensor factorizations of Hilbert spaces, and formalize
the assumption we make on the operators (Ln)n: they should have an appropriate form in the chosen
factorization.
Definition E.9. Let H be a separable Hilbert space. A (tensor) factorization of H is a tuple
(H1, H2, ιH) such that H1 and H2 are separable Hilbert spaces and ιH ∈ Lb(H1 ⊗ H2,H) is an
isometric isomorphism. We writeH ∼=ιH H1 ⊗H2. The spaces H1 and H2 are respectively called
the coefficient and base spaces of the factorization. If G is another separable Hilbert space, a tensor
factorization of H and G with common base space consists of factorizations H ∼=ιH H̃ ⊗ V and
G ∼=ιG G̃ ⊗ V .
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H G

H1 ⊗H2 G1 ⊗G2

L

ι−1
H ιG

L1 ⊗ L2

Figure 8: Action of a tensor-factorizable operator L expressed as a commutative diagram. If K is a
UBD kernel with block K0, then the RKHSHK and sampling operator K(·, x)⋆ can be factorized
as such with L1 = K0(·, x)⋆ and L2 = idV , with V := H2 = G2, as per Proposition E.12.

The existence of an isometry ιH such that H ∼=ιH H1 ⊗H2 for given (separable) H, H1, and H2

can be assessed based on purely dimensional arguments: there exists such an ιH if, and only if,
dim(H) = dim(H1) · dim(H2) (with 0 · ∞ := 0 and∞ · ∞ := ∞). For instance, there always
exists the trivial factorization of a Hilbert space H ∼=ι1 R⊗H, and if n = p · q, Rn ∼=ι2 Rp ⊗ Rq.
It follows that the relationship H ∼=ιH H1 ⊗ H2 does not impose a lot of constraints on any of
the spaces involved. The main interest of the notion is when relating it to operators, as operators
between Hilbert spaces may have a “nice” form when seen as operators between their factorizations,
as illustrated in Figure 8:

Definition E.10. Let H and G be separable Hilbert spaces, with respective factorizations H ∼=ιH
H1⊗H2 and G ∼=ιG G1⊗G2, and let L ∈ Lb(H,G). We say that L is (ιH, ιG)-tensor-factorizable6

if there exists a pair (L1, L2) ∈ Lb(H1, G1)× Lb(H2, G2) such that

L = ιG(L1 ⊗ L2)ι
−1
H .

The pair (L1, L2) is called an (ιH, ιG)-factorization of L. If now (Ln)n∈N>0 ⊂ Lb(H,G) is a
family of operators, we say that they are co-(ιH, ιG)-factorizable if Ln is (ιH, ιG)-factorizable, for
all n ∈ N>0.

Intuitively, an operator L that is (ιH, ιG)-factorizable can be written as a pure tensor operator whenH
and G are identified with the tensor spaces H1 ⊗H2 and G1 ⊗G2. It is clear from this interpretation
that factorizability is not an intrinsic property of an operator, but largely depends on the chosen
factorizations of the Hilbert spaces. For instance, every operator is factorizable for the trivial
factorizations of H and G. Co-factorizability enforces that a family of operators consists of pure
tensor operators when the factorizations ofH and G are uniform in the choice of the operator in the
family. Finally, we state the assumption the we require for the generalization of Theorem E.6 to hold.

Definition E.11. LetH ∼=ιH H̃ ⊗ V and G ∼=ιG G̃ ⊗ V be separable Hilbert spaces with joint base
space factorizations. Let L ∈ Lb(H,G). We say that L is an (ιH, ιG)-coefficients transformation if
there exists L̃ ∈ Lb(H̃, G̃) such that (L̃, idV) is an (ιH, ιG)-factorization of L.

Crucially, in an RKHS with UBD kernel, the sampling operators Ln = K(·, xn) are co-factorizable
and consist of coefficients transformations. This is formalized in the following result, which justifies
that the setup we just introduced is indeed a generalization of the caseH = HK with K UBD.

Proposition E.12. Let H = HK , where K : X × X → Lb(G) is a kernel. Assume that K is
UBD with block decomposition K0 : X × X → Lb(G̃) for the isometry ιG ∈ Lb(G̃ ⊗ V,G), where
G̃ and V are separable Hilbert spaces. Then, there exists an isometry ιK ∈ Lb(HK0

⊗ V,HK)

such that H ∼=ιK HK0 ⊗ V , G ∼=ιG G̃ ⊗ V , and the family L = (Lx)x∈X = (K(·, x)⋆)x∈X is
co-(ιK , ιG)-factorizable and consists of coefficients transformations

Lx = ιG(L̃x ⊗ idV)ι
−1
K ,

where L̃x = K0(·, x)⋆ for all x ∈ X .

Proof. Define
Ψ : u ∈ HK0

⊗ V 7→ (x 7→ ιG (K0(·, x)⋆ ⊗ idV)u) ,

6For brevity, we refer to this property as simply “(ιH, ιG)-factorizability” in the remainder of the paper.
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and let F = Ψ(HK0 ⊗ V). We show that F = HK as a Hilbert space when F is equipped with an
appropriate norm.

First, the map Ψ is well-defined, takes values in the space of functions from X to G, and is linear.
Indeed, for any x ∈ X , K0(·, x)⋆ is a well-defined bounded operator from HK0

to G̃, and thus
K0(·, x)⋆ ⊗ idV ∈ Lb(HK0

⊗ V, G̃ ⊗ V). This shows that Ψ is well-defined and function-valued
as claimed, and linearity is clear. Second, Ψ is also injective. To see this, take u ∈ ker(Ψ). It
holds that (K0(·, x)⋆ ⊗ idV)u = 0G̃⊗V for all x ∈ X , since ιG is injective. Let now (hn)n∈IK0

and (vm)m∈IV be orthonormal bases (ONBs) of HK0
and of V , respectively. It is known that

(hn ⊗ vm)(n,m)∈IK0
×IV is an ONB of HK0

⊗ V . Therefore, let us introduce (αn,m)(n,m)∈IK0
×IV

such that u =
∑

n,m αn,mhn ⊗ vm. By definition of K0(·, x)⋆ ⊗ idV ,

(K0(·, x)⋆ ⊗ idV)u =
∑
n,m

αn,m(K0(·, x)⋆hn)⊗ vm =
∑
n,m

αn,mhn(x)⊗ vm.

As a result, for any g ∈ G̃ and p ∈ IV ,

0 = ⟨(K0(·, x)⋆ ⊗ idV)u, g ⊗ vp⟩G̃⊗V =

〈 ∑
n∈IK0

αn,p · hn(x), g

〉
G̃

,

showing that
∑

n∈IK0
αn,p · hn(x) = 0 for all x ∈ X . Therefore, the function h(p) =(

x 7→
∑

n∈IK0
αn,p · hn(x)

)
satisfies h(p) = 0. It immediately follows that h(p) ∈ HK0

; we

show that h(p) =
∑

n∈IK0
αn,p ·hn where the convergence is in ∥·∥K0

. It follows from the definition

of h(p) that this results from the convergence in ∥·∥K0
of the series

∑
n∈IK0

αn,p · hn, which in turn
holds since∥∥∥∥∥∥

∑
n∈IK0

αn,p · hn

∥∥∥∥∥∥
K0

=
∑
n,n′

αn,pαn′,p⟨hn, hn′⟩K0 =
∑
n

α2
n,p ≤

∑
n,m

α2
n,m = ∥u∥HK0

⊗V <∞.

Therefore, since (hn)n∈IK0
is an ONB ofHK0 , we deduce that αn,p = 0 for all n ∈ IK0 . Since this

holds for all p ∈ IV , this shows that u = 0 and that Ψ is injective. It follows that Ψ is a bijection
betweenHK0 ⊗ V and F , since F is defined as its range.

We now show that the evaluation operator in x ∈ X , denoted as Sx ∈ L(F ,G), satisfies
Sx = ιG (K0(·, x)⋆ ⊗ idV)Ψ

−1. (25)
Indeed, for any f ∈ F , letting u = Ψ−1f ,

Sxf = SxΨu = (Ψu)(x) = ιG (K0(·, x)⋆ ⊗ idV)u = ιG (K0(·, x)⋆ ⊗ idV)Ψ
−1f,

showing the claim. Finally, we equip F with the norm ∥·∥F defined for all f ∈ F as
∥f∥F = ∥Ψ−1f∥HK0

⊗V .

It is immediate to verify that ∥·∥F is indeed a norm, by bijectivity of Ψ. Furthermore, Ψ is an
isometry, since for all u ∈ HK0 ⊗ V , ∥u∥HK0

⊗V = ∥Ψ−1Ψu∥HK0
⊗V = ∥Ψu∥F . This suffices to

show that (F , ∥·∥F ) is a Hilbert space. It follows immediately from (25) that Sx is bounded for all
x ∈ X , showing that F is an RKHS. Furthermore, its kernel KF is defined for all (x, x′) ∈ X 2 as

KF (x, x
′) = SxS

⋆
x′

= ιG (K0(·, x)⋆ ⊗ idV)Ψ
−1
[
ιG (K0(·, x)⋆ ⊗ idV)Ψ

−1
]⋆

= ιG [(K0(·, x)⋆K0(·, x′))⊗ idV ] ι
−1
G

= ιGK0(x, x
′)ι−1

G

= K(x, x′).

It follows from uniqueness of the RKHS associated to a kernel that F = HK as Hilbert spaces.

We are now ready to conclude. Taking ιK = Ψ, we have shown thatHK = ιK(HK0 ⊗ V), with ιK
an isometry. Furthermore, for all x ∈ X , it follows from (25) that

K(·, x)⋆ = ιG (K0(·, x)⋆ ⊗ idV) ι
−1
K ,

showing that the family (K(·, x)⋆)x∈X is co-(ιK , ιG)-factorizable and consists of the claimed coeffi-
cients transformations.
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E.3.3 Self-normalized concentration of vector-valued martingales with
coefficients-transforming measurements

The main result of this section is the following theorem, which is the generalized version of Theo-
rem E.6. We name the relevant assumptions for future reference.

Assumption E.13. Under the notations of Section E.1,H and G admit the factorizations with joint
base spaceH ∼=ιH H̃ ⊗ V and G ∼=ιG G̃ ⊗ V , (Ln)n∈N>0

is co-(ιH, ιG)-factorizable and consists of
coefficient transformations, a.s., and (L̃n, idV) is an (ιH, ιG)-factorization of Ln with L̃nL̃

⋆
n of trace

class, a.s. and for all n ∈ N>0.

Theorem E.14. Under the notations of Section E.1, assume Assumptions E.5 and E.13 hold. Assume
that η is 1-subgaussian conditionally on F . Let Q ∈ Lb(V) be self-adjoint, positive semi-definite,
and trace-class, and Ṽ ∈ L(H̃) be self-adjoint, positive definite, diagonal, and with bounded inverse.
Then, M̃N Ṽ −1M̃⋆

N is a.s. of trace class for all N ∈ N>0 and, for all δ ∈ (0, 1), it holds with
probability at least 1− δ that

∀N ∈ N>0, ∥ι−1
H SN∥(Ṽ+ṼN )−1⊗Q ≤

√
2Tr(Q) ln

(
1

δ

[
det(idG̃N + M̃N Ṽ −1M̃⋆

N )
]1/2)

, (26)

where we introduced

M̃N : h̃ ∈ H̃ 7→ (L̃⋆
nh̃)n∈[N ] ∈ G̃N , and ṼN = M̃⋆

NM̃N ∈ Lb(H̃). (27)

We prove this theorem first under the assumption that Ṽ −1 is of trace class rather than L̃nL̃
⋆
n is, as it

enables detailing all of the arguments in a technically simpler setup. We then generalize the proof to
handle the setup of Theorem E.14.

Lemma E.15. Under the same setup and assumptions as Theorem E.14, do not assume that L̃nL̃
⋆
n is

of trace class for all n ∈ N>0, but rather that Ṽ −1 is of trace class. Then, for all δ ∈ (0, 1), (26)
holds.

To show this, we follow the method announced in Section E.3.1.

Lemma E.16. Under the setup and assumptions as Lemma E.15, define for all N ∈ N>0

GN : H̃ ⊗ V → R≥0

h 7→ exp

[
⟨ιHh, SN ⟩H −

1

2
∥ιHh∥2VN

]
.

(28)

Then, for all v ∈ V ,∫
H̃
GN [h̃⊗ v]dN (h̃ | 0, Ṽ −1)

=
[
det
(
idG̃N + ∥v∥2M̃N Ṽ −1M̃N

)]−1/2

exp

[
1

2
∥S̃N (v)∥2

(Ṽ+∥v∥2ṼN )−1

]
,

(29)

where

S̃N (v) =

N∑
n=1

Cont(v)(L̃⋆
n ⊗ idV)ι

⋆
Gηn,

where Cont(v) ∈ Lb(H̃ ⊗ V, H̃) is the tensor contraction of v, that is, the unique bounded operator
that satisfies Cont(v)(u⊗ w) = ⟨v, w⟩ · u for all u⊗ w ∈ H̃ ⊗ V .
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Proof. For v = 0, the claim is trivial, so assume that v ̸= 0. We have

⟨ιH(h̃⊗ v), SN ⟩H =

N∑
n=1

⟨ιH(h̃⊗ v), L⋆
nηn⟩H

=

N∑
n=1

⟨LnιH(h̃⊗ v), ηn⟩G

=

N∑
n=1

⟨ιG(L̃n ⊗ idV)ι
−1
H ιH(h̃⊗ v), ηn⟩G

=

N∑
n=1

⟨(L̃n ⊗ idV)(h̃⊗ v), ι⋆Gηn⟩G̃⊗V

=

N∑
n=1

⟨h̃⊗ v, (L̃⋆
n ⊗ idV)ι

⋆
Gηn⟩H̃⊗V

=

N∑
n=1

⟨h̃,Cont(v)(L̃⋆
n ⊗ idV)ι

⋆
Gηn⟩H̃

= ⟨h̃, S̃N (v)⟩H̃.

Furthermore,

∥ιH(h̃⊗ v)∥2VN
=

N∑
n=1

∥LnιH(h̃⊗ v)∥2G

=

N∑
n=1

∥ιG(L̃n ⊗ idV)(h̃⊗ v)∥2G

=

N∑
n=1

∥(L̃n ⊗ idV)(h̃⊗ v)∥2G̃⊗V

=

N∑
n=1

∥L̃nh̃∥2G̃∥v∥
2
V

= ∥h̃∥ṼN
∥v∥2V .

Now, since v ̸= 0,∫
H̃
GN (h̃⊗ v)dN (h̃ | 0, Ṽ −1) =

∫
H̃
exp

[
⟨h̃, S̃N (v)⟩H̃ −

1

2
∥v∥2V∥h̃∥2ṼN

]
dN (h̃ | 0, Ṽ −1)

=

∫
H̃
exp

[
⟨u, S̃N (v̄)⟩H̃ −

1

2
∥u∥2

ṼN

]
dN (u | 0, ∥v∥V Ṽ −1),

by performing the change of variables u = ∥v∥V h̃ and introducing v̄ = ∥v∥−1
V v. Since

(∥v∥2V Ṽ −1)1/2(−ṼN )(∥v∥2V Ṽ −1)1/2 = −∥v∥2V Ṽ −1/2ṼN Ṽ −1/2 ≺ idH̃,

the resulting integral can be evaluated using Proposition 1.2.8 in Da Prato and Zabczyk [44], showing
that it is equal to[

det
(
idH̃ + ∥v∥2V Ṽ −1/2ṼN Ṽ −1/2

)]−1/2

× exp

[
1

2

∥∥∥∥(idH̃ + ∥v∥2V Ṽ −1/2ṼN Ṽ −1/2
)−1/2

∥v∥V Ṽ −1/2S̃N (v̄)

∥∥∥∥2
H̃

]
.

We handle the determinant by leveraging the Weinstein-Aronszajn identity for Fredholm determinants,
which states that det(id+AB) = det(id+BA), where A and B are operators which can be composed
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in both directions with AB and BA both of trace class and the identity is taken on the appropriate
space. In this case, by noting that ṼN = M̃⋆

NM̃N , we take A = B⋆ = ∥v∥V Ṽ −1/2M̃⋆
N and obtain

det
(
idH̃ + ∥v∥2V Ṽ −1/2ṼN Ṽ −1/2

)
= det

(
idG̃N + ∥v∥2VM̃N Ṽ −1M̃⋆

N

)
.

We now rewrite the squared norm in the argument of the exponential as∥∥∥∥(idH̃ + ∥v∥2V Ṽ −1/2ṼN Ṽ −1/2
)−1/2

∥v∥V Ṽ −1/2S̃N (v̄)

∥∥∥∥2
H̃

=

〈
Ṽ −1/2

(
idH̃ + ∥v∥2V Ṽ −1/2ṼN Ṽ −1/2

)−1

Ṽ −1/2S̃N (v), S̃N (v)

〉
H̃

=

〈(
Ṽ + ∥v∥2V ṼN

)−1

S̃N (v), S̃N (v)

〉
H̃

= ∥S̃N (v)∥(Ṽ+∥v∥2
V ṼN )−1 ,

(30)

where we used ∥v∥V S̃N (v̄) = S̃N (v) in the first equality. Altogether, we found (29).

We now introduce a second mixture on the resulting integral (29) to handle the remaining dependency
in v ∈ V . We choose for the measure of the mixture the one given in the following lemma.
Lemma E.17. Let Q ∈ Lb(G) be self-adjoint, positive semi-definite, and trace-class, with Q ̸= 0.
Then, there exists a Borel probability measure µQ on G such that supp(µ) ⊂ S1G , the unit sphere in G,
and ∫

G
g ⊗ gdµ(g) =

1

Tr(Q)
Q.

Proof. Under the assumptions of the lemma, the operator Q is also compact. The spectral theorem
for compact, self-adjoint operators then ensures the existence of a complete orthonormal family
(ej)j∈J and a summable sequence (ξj)j∈J such that Q =

∑
j∈J ξjej ⊗ ej . Define now

νQ =
∑
j∈J

ξjδ{ej}.

It is immediate to verify that νQ is a nonnegative measure with support included in
{
ej | j ∈ J

}
⊂ S1G ,

where nonnegativity comes from the fact that ξj ≥ 0 for all j ∈ J since Q is positive semi-definite.
Furthermore, for any u, v ∈ G, we get using standard calculation rules for Bochner- and Lebesgue
integrals, 〈

u,

∫
G
g ⊗ gdνQ(g)v

〉
G
=

∫
G
⟨u, (g ⊗ g)v⟩Gd

∑
j∈J

ξjδ{ej}

 (g)

=
∑
j∈J

ξj

∫
G
⟨u, (g ⊗ g)v⟩Gd

(
δ{ej}

)
(g)

=
∑
j∈J

ξj⟨u, (ej ⊗ ej)v⟩G

=

〈
u,

∑
j∈J

ξj(ej ⊗ ej)

 v

〉
G

= ⟨u,Qv⟩G ,

showing that
∫
G g ⊗ gdνQ(g) = Q. Finally,

νQ(G) =
∑
j∈J

ξjδ{ej}(G) =
∑
j∈J

ξj = Tr(Q) ∈ R>0,

and thus taking µQ = 1
Tr(Q)νQ satisfies all of the requirements.
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Lemma E.18. Under the setup and assumptions of Lemma E.15, let GN be defined for all N ∈ N>0

as in (28). Assume that Q ̸= 0, and let µQ be a probability measure on V as given in Lemma E.17.
Then, ∫

V

∫
H̃
GN (h̃⊗ v)dN (h̃ | 0, Ṽ −1)dµQ(v)

≥
[
det
(
idG̃N + M̃N Ṽ −1M̃⋆

N

)]−1/2

exp

[
1

2Tr(Q)
∥ι−1

H SN∥2(Ṽ+ṼN )−1⊗Q

]
.

Proof. It follows from Lemma E.16 and the fact that µQ has support in S1V that∫
V

∫
H̃
GN (h̃⊗ v)dN (h̃ | 0, Ṽ −1)dµQ(v)

=

∫
S1V

[
det
(
idG̃N + ∥v∥2VM̃N Ṽ −1M̃N

)]−1/2

exp

[
1

2
∥S̃N (v)∥2

(Ṽ+∥v∥2
V ṼN )−1

]
dµQ(v)

=
[
det
(
idG̃N + M̃N Ṽ −1M̃N

)]−1/2
∫
S1V

exp

[
1

2
∥S̃N (v)∥2

(Ṽ+ṼN )−1

]
dµQ(v).

Now, by Jensen’s inequality,∫
S1V

exp

[
1

2
∥S̃N (v)∥2

(Ṽ+ṼN )−1

]
dµQ(v) ≥ exp

[
1

2

∫
S1V
∥S̃N (v)∥2

(Ṽ+ṼN )−1dµQ(v)

]
.

Let us now introduce families (e(n)i )i∈J ⊂ G̃ and (f
(n)
i )i∈J ⊂ V such that ι⋆Gηn =

∑
i∈J e

(n)
i ⊗f

(n)
i ,

for all n ∈ N>0. We have∫
S1V
∥S̃N (v)∥2

(Ṽ+ṼN )−1dµQ(v)

=

∫
S1V

N∑
n,m=1

∑
i,j∈J

⟨(Ṽ + ṼN )−1Cont(v)(L̃⋆
n ⊗ idV)(e

(n)
i ⊗ f

(n)
i ),

Cont(v)(L̃⋆
m ⊗ idV)(e

(m)
j ⊗ f

(m)
j )⟩H̃dµQ(v)

=

∫
S1V

N∑
n,m=1

∑
i,j∈J

⟨v, f (n)
i ⟩V⟨v, f

(m)
j ⟩V⟨(Ṽ + ṼN )−1L̃⋆

ne
(n)
i , L̃⋆

me
(m)
j ⟩H̃dµQ(v)

=

N∑
n,m=1

∑
i,j∈J

⟨(Ṽ + ṼN )−1L̃⋆
ne

(n)
i , L̃⋆

me
(m)
j ⟩H̃

∫
S1V
⟨v, f (n)

i ⟩V⟨v, f
(m)
j ⟩VdµQ(v)

=
1

Tr(Q)

N∑
n,m=1

∑
i,j∈J

⟨(Ṽ + ṼN )−1L̃⋆
ne

(n)
i , L̃⋆

me
(m)
j ⟩H̃⟨Qf

(n)
i , f

(m)
j ⟩V

=
1

Tr(Q)

N∑
n,m=1

∑
i,j∈J

〈[
(Ṽ + ṼN )−1 ⊗Q

]
(L̃⋆

n ⊗ idV)(e
(n)
i ⊗ f

(n)
i ) ,

(L̃⋆
m ⊗ idV)(e

(m)
j ⊗ f

(m)
j )

〉
H̃⊗V

=
1

Tr(Q)

N∑
n,m=1

〈[
(Ṽ + ṼN )−1 ⊗Q

]
(L̃⋆

n ⊗ idV)ι
⋆
Gηn, (L̃

⋆
m ⊗ idV)ι

⋆
Gηm

〉
H̃⊗V

,

where we used the fact that Cont(v)(u⊗ w) = ⟨v, w⟩Vu for the second equality and the definition
of µQ for the third one. We now leverage the fact that

SN =

N∑
n=1

L⋆
nηn =

N∑
n=1

(ι−1
H )⋆(L̃⋆

n ⊗ idV)ι
⋆
Gηn =

N∑
n=1

ιH(L̃⋆
n ⊗ idV)ι

⋆
Gηn,
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showing that∫
S1V
∥S̃N (v)∥2

(Ṽ+ṼN )−1dµQ(v) =
1

Tr(Q)

〈[
(Ṽ + ṼN )−1 ⊗Q

]
ι−1
H SN , ι−1

H SN

〉
H̃⊗V

=
1

Tr(Q)
∥ι−1

H SN∥(Ṽ+ṼN )−1⊗Q,

and concluding the proof.

Lemma E.19. Under the setup and assumption of Lemma E.15, define GN as in (28). Then, for all
h ∈ H̃ ⊗ V , (GN (h))N is an F-supermartingale and E[GN (h)] ≤ 1 for all N ∈ N>0.

Proof. Let h ∈ H̃ ⊗ V , and define G0(h) = 1 a.s. We have

E[GN (h) | FN−1]

= E

[
exp

(
N∑

n=1

⟨ιHh, L⋆
nηn⟩H −

1

2
∥ιHh∥L⋆

nLn

)∣∣∣∣∣FN−1

]

= E
[
exp

(
−1

2
⟨ιHh, L⋆

NLN ιHh⟩H
)
exp(⟨LN ιHh, ηN ⟩G)GN−1(h)

∣∣∣∣ FN−1

]
= exp

(
−1

2
∥LN ιHh∥2G

)
E [exp(⟨LN ιHh, ηN ⟩G) | FN−1] ·GN−1(h)

≤ exp

(
−1

2
∥LN ιHh∥2G

)
exp

(
1

2
∥LN ιHh∥2G

)
·GN−1(h)

= GN−1(h),

where we used the fact that LN and GN−1(h) are FN−1-measurable and 1-subgaussianity of ηN
conditionally on FN−1. This shows that (GN (h))N is a supermartingale, and it follows immediately
that E[GN (h)] ≤ E[G0(h)] = 1, concluding the proof.

Proof of Lemma E.15. First, the claim is trivial if Q = 0. Assume that Q ̸= 0. Under the assumptions
of the lemma, we apply Lemma E.19 and obtain that E[GN (h)] ≤ 1 for all N ∈ N>0 and h ∈ H̃⊗V .
In particular, this is the case for any h of the form h = h̃⊗ v, where h̃ ∈ H̃ and v ∈ V . Therefore,
by Fubini’s theorem, the process (GN )N defined for all N ∈ N>0 as

GN =

∫
V

∫
H̃
GN (h̃⊗ v)dN (h̃ | 0, Ṽ −1)dµQ(v),

is again a supermartingale with E[GN ] ≤ 1. As a result, we can apply Ville’s inequality and obtain
that for any δ ∈ (0, 1)

P
[
∀N ∈ N>0, GN ≤

1

δ

]
≥ 1− δ.

Lemma E.18 now shows that it holds with probability at least 1− δ that

∀N ∈ N>0,
(
det
(
idG̃N + M̃N Ṽ −1MN

))−1/2

exp

(
1

2Tr(Q)
∥ι−1

H SN∥2(Ṽ+ṼN )−1⊗Q

)
≤ 1

δ
.

The result follows by rearranging.

We are now ready to prove Theorem E.14. It does not directly follow from Lemma E.15, but rather
its proof is an adaptation of that of this lemma.

Proof of Theorem E.14. Take D = dim(H̃) ∈ N>0 ∪ {∞}, (bm)m∈[D] an ONB of H̃, and a family
(λm)m∈[D] ⊂ R≥0 such that Ṽ =

∑D
m=1 λmbm ⊗ bm, which all exist since Ṽ is diagonal. The

inverse of Ṽ exists and is given by

Ṽ −1 =

D∑
m=1

λ−1
m bm ⊗ bm.
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Note that Ṽ −1 is not necessarily of trace class, but it is bounded by assumption. Define for M ∈ [D]

WM =

M∑
m=1

λ−1
m bm ⊗ bm,

and observe that WM is of rank M and hence trivially of trace class, and it is self-adjoint and positive
semidefinite. Although Lemma E.16 does not directly apply by setting Ṽ −1 to WM since WM may
not be invertible, we see from the proof that the only point where this invertibility is used is in (30).
Therefore, the proof carries over until this point, showing that for all v ∈ V∫

H̃
GN (h̃⊗ v)dN (h̃ | 0,WM )

=
[
det
(
idG̃N + ∥v∥2VM̃NWMM̃⋆

N

)]−1/2

× exp

[
1

2

∥∥∥∥(idH̃ + ∥v∥2VW
1/2
M ṼNW

1/2
M

)−1/2

W
1/2
M S̃N (v)

∥∥∥∥2
H̃

]
.

Furthermore, WM → Ṽ −1 in the weak operator topology, since for u, u′ ∈ H̃ we have

|⟨u,WMu′⟩H̃ − ⟨u, Ṽ
−1u′⟩H̃| =

∣∣∣∣∣
〈
u,

M∑
m=1

λ−1
m ⟨u′, bm⟩H̃bm

〉
−

〈
u,

D∑
m=1

λ−1
m ⟨u′, bm⟩H̃bm

〉∣∣∣∣∣
≤ ∥u∥H̃

∥∥∥∥∥
D∑

m=M+1

λ−1
m ⟨u′, bm⟩H̃bm

∥∥∥∥∥
H̃

→ 0,

for M → D. It follows by continuity of the operations taken on WM w.r.t. the weak operator topology
that ∥∥∥∥(idH̃ +W

1/2
M ṼNW

1/2
M

)−1/2

W
1/2
M S̃N (v)

∥∥∥∥2
k

→
∥∥∥∥(idH̃ + Ṽ −1/2ṼN Ṽ −1/2

)−1/2

Ṽ −1/2S̃N (v)

∥∥∥∥2
k

,

as M → D. The same computations as in (30) show that this limit is equal to ∥S̃N (v)∥2
(Ṽ+ṼN )−1 .

Next, we claim that the convergence M̃NWMM̃⋆
N → M̃NV −1M̃⋆

N holds in the trace norm topology,
and not only in the weak operator topology. Indeed, denoting the trace norm (also called the Frobenius
norm) by ∥·∥1,

∥M̃NWMM̃⋆
N − M̃N Ṽ −1M̃⋆

N∥1 =

∥∥∥∥∥
D∑

m=M+1

λ−1
m (M̃Nbm)⊗ (M̃Nbm)

∥∥∥∥∥
1

≤
D∑

m=M+1

λ−1
m ∥(M̃Nbm)⊗ (M̃Nbm)∥1

≤ sup
m∈[D]

(λ−1
m ) ·

D∑
m=M+1

∥(M̃Nbm)⊗ (M̃Nbm)∥1.

Now, since (M̃Nbm)⊗ (M̃Nbm) is of rank 1, it is clear that ∥(M̃Nbm)⊗ (M̃Nbm)∥1 = ∥M̃Nbm∥2.
Furthermore, since M̃NM̃⋆

N is a.s. of trace class, the series
∑D

m=1∥M̃Nun∥2GN converges for any
ONB (um)m∈N>0

ofH a.s. (and is equal to Tr(M̃NM̃⋆
N )). This is in particular the case for (bm)m.

Finally, supm∈[D] λ
−1
m ≤ ∥Ṽ −1∥Lb(H), which is finite since Ṽ −1 is bounded. As a result,

∥M̃NWMM̃⋆
N − M̃N Ṽ −1M̃⋆

N∥1 → 0,

as M → D, and thus M̃NWMM̃⋆
N → M̃N Ṽ −1M̃⋆

N in the trace norm. Crucially, the Fredholm
determinant is continuous in the trace norm topology, and thus

lim
M→D

det(idG̃N + ∥v∥2VM̃NWMM̃⋆
N ) = det(idG̃N + ∥v∥2VM̃N Ṽ −1M̃⋆

N ).
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Taken together, this shows that for all N ∈ N>0 and v ∈ V

ḠN (v) := lim
M→∞

∫
H̃
GN (h̃⊗ v)dN (h̃ | 0,WM )

exists and

ḠN (v) = det
(
idG̃N + ∥v∥2VM̃N Ṽ −1M̃⋆

N

)− 1
2

exp

(
1

2
∥S̃N (v)∥2

(Ṽ+∥v∥2
VM̃⋆

NM̃N)
−1

)
.

By the exact same computations as in the proof of Lemma E.18 (which do not rely on whether or not
Ṽ −1 is trace-class), it follows that

ḠN :=

∫
V
ḠN (v)dµQ(v)

≥
[
det
(
idG̃N + M̃N Ṽ −1M̃⋆

N

)]−1/2

exp

[
1

2Tr(Q)
∥ι−1

H SN∥2(Ṽ+ṼN )−1⊗Q

]
.

Furthermore, by construction ḠN is nonnegative. Finally, we have a.s. from Lemma E.19 that

E[ḠN | FN−1] = E
[∫

V
lim

M→∞

∫
H̃
GN (h̃⊗ v)dN (̃|0,WM )dµQ(v) | FN−1

]
=

∫
V

lim
M→∞

∫
H̃
E
[
GN (h̃⊗ v) | FN−1

]
dN (λ | 0,WM )dµQ(v)

≤
∫
V

lim
M→∞

∫
H̃
GN−1(h̃⊗ v)dN (λ | 0,WM )dµQ(v)

= ḠN−1.

This ensures that (ḠN )N is still a supermartingale. Since Ḡ0 = 1, we also have E[ḠN ] ≤ 1 for
all N ∈ N>0. We can thus leverage Ville’s inequality, and conclude similarly as in the proof of
Lemma E.15.

Before concluding this section, we provide an important corollary of Theorem E.14, which provides
an upper bound on ∥SN∥(Ṽ+ṼN )−1⊗idV

rather than on ∥SN∥(Ṽ+ṼN )−1⊗Q at the price of slightly
stronger assumptions on the noise.

E.3.4 Corollary: bound for the noise term of vector-valued least-squares

We now specialize our results to the situation that appears in vector-valued least-squares. The
following bound allows to derive a time-uniform high-probability bound for vector-valued least-
squares when combined with Lemma E.2, cf. Theorem E.23 below.
Corollary E.20. Under the setup of Section E.1, assume that Assumptions E.5 and E.13 hold. Let
V ∈ L(G) be self-adjoint, positive-definite, diagonal, and with bounded inverse. Assume that there
exists ρ ∈ R>0 and RV ∈ Lb(V) self-adjoint, positive semi-definite, and trace-class, such that η is
R-subgaussian conditionally on F , where R := ρ2ιG(idG̃ ⊗RV)ι

−1
G . Then, for all δ ∈ (0, 1),

P

[
∀N ∈ N>0, ∥SN∥(V+VN )−1 ≤ ρ

√
2Tr(RV) ln

(
1

δ

[
det(idG̃N + M̃N Ṽ −1M̃⋆

N )
]1/2)]

≥ 1−δ,

where V = ιH(Ṽ ⊗ idV)ι
−1
H .

Before proving this result, let us briefly comment on the subgaussianity assumption used.
Remark E.21. The subgaussianity assumption of Corollary E.20 is in general a strengthening of
the assumption that η is ρ̄-subgaussian for ρ̄ ∈ R>0, but also a weakening of the one that η is
R̄-subgaussian for R̄ ∈ Lb(G) self-adjoint, positive semi-definite, and of trace class. Indeed, the
operator R given in the corollary is not trace-class when G̃ is infinite-dimensional. Furthermore,
for any such operator R̄, there exist ρ ∈ R>0 and Q ∈ Lb(V) self-adjoint, positive semi-definite,
and of trace class such that R̄ ⪯ R := ρ2ιG(idG̃ ⊗ Q)ι−1

G . Indeed, define the trace-class operator
R̄′ = ι−1

G R̄ιG ∈ Lb(H̃ ⊗ V), and take ρ = (∥TrV(R̄′)∥Lb(H̃))
1/2, and Q = TrH̃(R̄′), where

TrW (A) is the partial trace over W of a trace-class operator A defined on a tensor-product space
involving W . We forego proving this construction for brevity.
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The proof of Corollary E.20 relies on the following lemma.
Lemma E.22. Let R ∈ Lb(G) be self-adjoint, positive semi-definite. Let η be a G-valued, zero-mean
random variable, and assume that η is R-subgaussian. Then, η takes values in cl(ran(R)) a.s.

Proof. Let e ∈ ran(R)⊥. The variable X := ⟨e, η⟩G is a real-valued, Re := ∥e∥R-subgaussian
random variable, as E[X] = ⟨e,E[η]⟩ = 0 and

E[exp(cX)] = E[⟨ce, η⟩] ≤ exp

[
1

2
⟨R(ce), ce⟩G

]
= exp

[
1

2
c2R2

e

]
, ∀c ∈ R.

Classical results on scalar subgaussian variables then guarantee that Var[X] ≤ R2
e . Yet, e ∈

ran(R)⊥ = ker(R⋆) = ker(R), since R is self-adjoint, and thus Re = 0. As a result, Re =
∥e∥R = (⟨Re, e⟩)1/2 = 0, and thus Var[X] = 0 and X is constant a.s., and this constant is
0 since X is 0-mean. We deduce by separability of G and continuity of the scalar product that
P[∃e ∈ ran(R)⊥, ⟨η, e⟩ ≠ 0] = 0, which shows that it holds with full probability that η ∈
(ran(R)⊥)⊥ = cl(ran(R)), concluding the proof.

Proof of Corollary E.20. Under the current assumptions, the scaled noise η̄n = (R♯)1/2ηn is 1-
subgaussian conditionally on F , where R♯ is the Moore-Penrose pseudo-inverse of R. Indeed, it is
(conditionally) 0-mean and for any g ∈ G,

E[exp[⟨g, (R♯)1/2ηn⟩] | Fn−1] = E[exp[⟨(R♯)1/2g, ηn⟩]Fn−1]

≤ exp

[
1

2
⟨(R♯)1/2g,R(R♯)1/2g⟩

]
= exp

[
1

2
∥g∥2RR♯

]
≤ exp

[
1

2
∥g∥2G

]
.

The second equality comes from the fact that R1/2 and R♯ commute; the proof is a technical
exercise that follows from the spectral theorem applied to RV and the spectral definition of R♯.
We also leveraged in the last inequality the fact that RR♯ is an orthogonal projection, and thus
∥g∥RR♯ ≤ ∥g∥G ; see for instance Proposition 2.3 in Engl et al. [45]. Theorem E.14 applied with
Q = RV then guarantees that for all δ ∈ (0, 1), it holds with probability at least 1− δ that, for all
N ∈ N>0,

∥ι−1
H M⋆

N (R♯
N )1/2η:N∥(Ṽ+ṼN )−1⊗RV

≤

√
2Tr(RV) ln

(
1

δ

[
det(idG̃N + M̃⋆

N Ṽ −1M̃N )
]1/2)

.

where we introduced R♯
N : (gn)n∈[N ] ∈ GN 7→ (R♯gn)n∈[N ] ∈ GN . We conclude by showing that

∥ι−1
H M⋆

N (R♯
N )1/2η:N∥(Ṽ+ṼN )−1⊗RV

= ρ−1∥M⋆
Nη:N∥(V+VN )−1 , a.s.

Indeed,

M⋆
N (R♯

N )1/2η:N =

N∑
n=1

L⋆
n(R

♯)1/2ηn

= ρ−1
N∑

n=1

L⋆
nιG

(
idG̃ ⊗ (R♯

V)
1/2
)
ι−1
G ηn

= ρ−1
N∑

n=1

ιH

(
L̃n ⊗ idG̃

)
ι−1
G ιG

(
idG̃ ⊗ (R♯

V)
1/2
)
ι−1
G ηn

= ρ−1ιH

N∑
n=1

(
L̃n ⊗ (R♯

V)
1/2
)
ι−1
G ηn,
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and thus

∥ι−1
H M⋆

N (R♯
N )1/2η:N∥2(Ṽ+ṼN )−1⊗R

= ρ−2
N∑

n,m=1

〈([
(Ṽ + ṼN )−1L̃⋆

n

]
⊗
[
RV(R

♯
V)

1/2
])

ι−1
G ηn,

(
L̃⋆
m ⊗ (R♯

V)
1/2
)
ι−1
G ηm

〉
H̃⊗V

= ρ−2
N∑

n,m=1

〈([
(Ṽ + ṼN )−1L̃⋆

n

]
⊗
[
(R♯

V)
1/2RV(R

♯
V)

1/2
])

ι−1
G ηn, (L̃

⋆
m ⊗ idV)ι

−1
G ηm

〉
H̃⊗V

= ρ−2
N∑

n,m=1

〈[
(Ṽ + ṼN )−1 ⊗ idV

] [
L̃⋆
n ⊗ idV

] [
idG̃ ⊗RV

] [
idG̃ ⊗RV

]♯
ι−1
G ηn,

(L̃⋆
m ⊗ idV)ι

−1
G ηm

〉
H̃⊗V

= ρ−2
N∑

n,m=1

〈
ι−1
H (V + VN )−1L⋆

nRR♯ηn, ι
−1
H L⋆

mηm
〉
H̃⊗V

= ρ−2
N∑

n,m=1

〈
(V + VN )−1L⋆

nRR♯ηn, L
⋆
mηm

〉
H ,

where we leveraged in the third equality the fact that (R♯
V)

1/2 and RV commute, and that (Ṽ +

ṼN )−1 ⊗ idV = ι−1
H (V + VN )−1ιH in the fourth one. Next, RR♯ is the orthogonal projection on

cl(ran(R)); see for instance Proposition 2.3 in [45]. Yet, ηn is a.s. in cl(ran(R)) by Lemma E.22. It
follows that RR♯ηn = ηn, a.s., for all n ∈ N>0. As a result, it holds a.s. that

∥M⋆
N (R♯)1/2η:N∥2(Ṽ+ṼN )−1⊗RV

= ρ−2
N∑

n,m=1

⟨(V + VN )−1L⋆
nηn, L

⋆
mηm⟩H

= ρ−2∥M⋆
Nη:N∥2(V+VN )−1 .

The result follows.

E.4 Main result

We now combine all that precedes to obtain the announced concentration bound in vector-valued
least-squares.
Theorem E.23. Under the notations of Section E.1, let R ∈ Lb(G) be self-adjoint, positive semi-
definite, and S ∈ R>0. Assume that ∥h⋆∥H ≤ S, and assume one of the following and define βλ and
N accordingly:

1. Assumptions E.5 and E.13 hold, R = ρ2ιG(idG̃ ⊗ RV)ι
−1
G for some ρ ∈ R>0 and

RV ∈ Lb(V) self-adjoint, positive semi-definite, and trace-class, and η is R-subgaussian
conditionally on F . Then, define N = N>0 and, for all (n, δ) ∈ N>0 × (0, 1),

βλ(N, δ) = S +
ρ√
λ

√√√√2Tr(RV) ln

[
1

δ

{
det

(
idG̃N +

1

λ
M̃NM̃⋆

N

)}1/2
]
,

where M̃N is introduced in (27).

2. Assumption E.3 holds, R is of trace class, and η is R-subgaussian. Then, define N = {N0}
for some N0 ∈ N>0 and, for all (n, δ) ∈ N>0 × (0, 1),

βλ(N, δ) = S +
1√
λ

√√√√Tr(TN,λ) + 2

√
ln

(
1

δ

)
∥TN,λ∥2 + 2 ln

(
1

δ

)
∥TN,λ∥Lb(H),

where we introduced TN,λ = (VN + λidH)−1/2M⋆
N (R⊗ idRN )MN (VN + λidH)−1/2.
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In both cases, for all δ ∈ (0, 1),

P
[
∀N ∈ N ,∀L̄ ∈ Lb(G, Ḡ), ∥L̄hN,λ − L̄h⋆∥Ḡ ≤ βλ(N, δ) · σN,λ(L̄)

]
≥ 1− δ. (31)

Proof. Let δ ∈ (0, 1). In case 2, it follows from Lemma E.4 that it holds with probability at least
1− δ that

∥SN0
∥(V+VN )−1 = ∥(V + VN0

)−1/2M⋆
N0

η:N0
∥

≤

√√√√Tr(TN0,λ) + 2

√
ln

(
1

δ

)
∥TN0,λ∥2 + 2 ln

(
1

δ

)
∥TN0,λ∥Lb(H)

=: γN0,λ(δ),

where we applied the lemma with A = (idH + VN0
)−1/2M⋆

N0
, yielding T = TN0,λ = A · (R ⊗

idRN0 )A
⋆ and. In case 1, it follows from Corollary E.20 that it holds with probability at least 1− δ

that, for all N ∈ N>0,

∥SN∥(V+VN )−1 ≤ ρ

√
2Tr(RV)

{
ln

[
1

δ
det

(
idG̃N +

1

λ
M̃NM̃⋆

N

)]}1/2

=: γN,λ(δ)

In both cases, it holds with probability at least 1− δ that

∀N ∈ N , ∥SN∥(V+VN )−1 ≤ γN,λ(δ).

The result then immediately follows from Lemma E.2, (20), and (22), noting that βλ(N, δ) =
S + 1√

λ
γN,λ(δ).

E.5 Proof of Theorem 4.3

Proof. The result follows immediately by applying Theorem E.23 withH = HK , Ln = K(·, Xn)
⋆,

and ηn = yn − E[p](Xn), for all n ∈ N>0. Indeed, for these choices, the optimization problem (15)
is equivalent to that in (4), since for all h ∈ HK , g ∈ G, and n ∈ N>0

⟨h(Xn), g⟩G = ⟨h,K(·, Xn)g⟩K = ⟨K(·, Xn)
⋆h, g⟩G ,

showing that the evaluation operator in Xn is K(·, Xn)
⋆. Furthermore, the process η satisfies the

appropriate assumption E.3 or E.5 depending on the considered case, since D is assumed to be a
process of transition pairs of p, or a process of independent transition pairs of p. In case 2, the
assumptions of case 2 in Theorem E.23 are satisfied, and the result follows. Similarly, In case 1, the
assumptions of case 1 in Theorem E.23 are satisfied by Proposition E.12, and the result follows as
well.
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F Proof of Theorem 4.2

Proof. For any p1, p2 ∈ Θ, we have

ηI(p1, p2,S,N1,N2)

= P[∃(n1, n2) ∈ N1 ×N2 : S ∩ EI(p1, p2, D
(1)
p1,:n1

, D(2)
p2,:n2

) ̸= ∅]
= P [∃(n1, n2, x) ∈ N1 ×N2 × S : E(p1)(x) = E(p2)(x)

∧
∥∥∥∥f (1)

D
(1)
:n1

(x)− f
(2)

D
(2)
:n2

(x)

∥∥∥∥ >

2∑
i=1

Bi

(
D(i)

:n , x
)]

≤ P

[
∃(n1, n2, x) ∈ N1 ×N2 × S :

2∑
i=1

∥∥∥∥f (i)

D
(i)
:ni

(x)− E(pi)(x)
∥∥∥∥ >

2∑
i=1

Bi

(
D(i)

:n , x
)]

≤ P

[
2⋃

i=1

{
∃(n, x) ∈ Ni × S

∥∥∥f (i)

D
(i)
:n

(x)− E(pi)(x)
∥∥∥ > Bi

(
D(i)

:n , x
)}]

≤
2∑

i=1

P
[
∃(n, x) ∈ Ni × S :

∥∥∥f (i)

D
(i)
:n

(x)− E(pi)(x)
∥∥∥ > Bi

(
D(i)

:n , x
)]

≤ δ1 + δ2

where we used the fact that E(p1)(x) = E(p2)(x) for any x ∈ EI(p1, p2, D1, D2) and (D1, D2) ∈
D2.
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G Experiment details

This section presents the detailed setups for each of our numerical experiments. Addition-
ally, the code to reproduce all experimental results is available at https://github.com/
Data-Science-in-Mechanical-Engineering/conditional-test.

Unless stated, all our experiments with bootstrapped test thresholds use the naive resampling scheme
outlined in Appendix B.

G.1 Illustrative example (Figure 1)

Figure 1 illustrates our test on a simple example with one-dimensional inputs and outputs. We use
a Gaussian kernel on X = [−1, 1] and the inhomogeneous linear kernel on Z = R. We pick two
mean functions f1, f2 ∈ Hk, from which we collect data sets Di = {(x(i)

j , fi(x
(i)
j ) + ϵ

(i)
j )}nj=1,

i ∈ {1, 2}. The covariates x(i)
j are sampled uniformly from X and ϵ

(i)
j ∼ N (· | 0, s2), such that the

Markov kernel corresponding to each data set is pi(·, x) = N (· | fi(x), s2), where N (· | µ, s2) is
the Gaussian measure on R with mean µ and variance s2. Consequently, H0(x, p1, p2) is equivalent
to f1(x) = f2(x).

We apply our test with analytical thresholds (Figure 1, left) and bootstrapped thresholds (Figure 1,
right). For the analytical thresholds, we use the ground truth RKHS function norm (that is, 1) and the
Gaussian noise standard deviation for the corresponding upper bounds on these quantities in Theorem
4.3.

Table 2 reports the hyperparameters for this experiment.

G.2 Empirical error rates

This section provides implementation and design details for experiments evaluating the empirical
type I and type II errors of our tests in controlled, well-specified settings. All experiments in this
section were conducted on an Intel Xeon 8468 Sapphire CPU, using 10 GB of RAM.

G.2.1 General setup

Data generation We evaluate our test by generating two data sets, D1 and D2, each containing
n ∈ N transition pairs of the form

Di = {(x(i)
j , fi(x

(i)
j ) + ϵ

(i)
j )}nj=1, i ∈ {1, 2}.

Here, the inputs x(i)
j are sampled (uniformly, unless stated otherwise) from X , ϵ(i)j are i.i.d. noise,

and fi is a random unit-norm element of Hk whose sampling is detailed below. In particular, we
choose fi directly from the RKHSHk of k. In all our experiments in this section, we use a Gaussian
kernel

k(x, y) = exp

(
−∥x− y∥2X

2γ2

)
(32)

on X ⊂ R2 with bandwidth γ2 = 0.25.
Remark G.1. In the case where κ is the linear kernel, the procedure above ensures that E[pi] ∈ HK

with K = k · idHκ
. This guarantee is lost when κ is a more complex kernel. While this means that

the simulations may use the test in contexts not covered by the theory, this is precisely the interest of
the bootstrapping schemes we propose: the test can still be applied, and its performance evaluated
empirically.

Sampling of mean functions Following Fiedler et al. [25], we sample mean functions fi ∈ Hk

randomly by first sampling m points x1, ..., xm uniformly at random from X and then sampling fi
uniformly from the spheref =

m∑
j=1

αjk(·, xj)
∣∣ α1, ..., αm ∈ R, ∥f∥Hk

= r

 ⊆ Hk, (33)

where the RKHS norm r depends on the concrete experiment setting. When reporting hyperparame-
ters, we refer to m as the “mean function dimension”.
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Empirical error rates We quantify both the type I and type II error rates through the test’s
empirical positive rate — the proportion of data set pairs on which at least one covariate triggers
rejection in the region of interest — under two data-generation regimes. Under the global null
(H0(x, p1, p2) holds for all x ∈ X ), this positive rate directly estimates the type I error. Under an
alternative (H0(x, p1, p2) fails for some x ∈ X ), the same quantity measures the test’s power, from
which we compute the type II error as one minus that power.

To compute the positive rate in practice, we draw T independent data set pairs {(D(j)
1 , D

(j)
2 )}Tj=1.

For each pair, we take the observed covariates

S(j) = {x ∈ X | ∃z ∈ Z, (x, z) ∈ D
(j)
1 ∪D

(j)
2 } (34)

as the region of interest and compute the covariate rejection region

χ̂(D
(j)
1 , D

(j)
2 ) := χ(D

(j)
1 , D

(j)
2 ) ∩ S(j)

= {x ∈ S | T (x,D1 ∪D2) = 1}.
(35)

We then take
1

T

T∑
j=1

{
0 if χ̂(D(j)

1 , D
(j)
2 ) = ∅

1 otherwise
(36)

as the empirical positive rate.

Repeating this under the null and alternative regimes while varying the significance level α and other
parameters, we obtain detailed error-rate curves that reveal how closely the observed type I error
matches its nominal level and how the test power depends on the various parameters. Enforcing
either regime requires appropriate choices of the mean functions f1 and f2, and noise distributions.
For instance, to enforce the global null, it is sufficient (but depending on the kernel κ, not strictly
necessary) to generate both data sets from identical mean functions f1 = f2 with identical noise
distribution. For the alternative, we can introduce a controlled discrepancy, such as choosing
f2 = f1 + h for some function h ∈ Hk, or alter the noise distribution in the case where we introduce
a kernel κ to test for other properties such as higher moments. Because the exact construction for
enforcing null and alternative hypotheses depends on the specific experiment setting, we defer those
specific design details to the individual experiment descriptions that follow.

Finally, we always compute positive rates from T = 100 independently sampled data sets and report
curves that are averaged over 100 independent experiment runs (i.e., samples of mean function pairs),
together with 2.5% and 97.5% quantiles taken over the experiment runs.

G.2.2 Global and local sensitivity (Figure 2)

Figure 2 presents the empirical positive rate of our test in three different scenarios: (1) when the
H0 is enforced enforced everywhere on X (Figure 2, left); (2) when H0 is violated at frequently
sampled covariates (Figure 2, middle); and (3) when H0 is violated at rarely sampled covariates
(Figure 2, right). In all three scenarios, we use the inhomogeneous linear kernel for κ and Gaussian
noise N (0, s2) such that H0(x) holds if and only if f1(x) = f2(x). In the following, we describe
how each scenario enforces its corresponding hypothesis.

Scenario 1: Global null We pick a unit-norm function f1 ∈ Hk and set f2 = f1. Consequently,
p1 = p2 such that every rejection is a false positive, and the empirical positive rate estimates our type
I error.

Scenario 2: Frequent violations We pick a unit-norm function f1 ∈ Hk, and independently pick a
perturbation h ∈ Hk with norm ξ. By setting f2 = f1+h, f1 and f2 differ almost everywhere almost
surely, thereby creating a global discrepancy between p1 and p2 whose magnitude is controlled by
ξ. In this setting, a rejection is taken to be a true positive, neglecting the edge case where h(x) = 0
incidentally causes f1(x) = f2(x). We then take the empirical positive rate as the true positive rate,
translating directly to our type II error.

Scenario 3: Rare violations We pick a unit-norm function f1 ∈ Hk and set f2 = f1 + k(·, 0).
Then, p1(·, x) and p2(·, x) are approximately equal for x ∈ Xsame := {x ∈ X | k(·, x) < 10−2}, but
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differ significantly for x ∈ Xdiff = X \ Xsame. The value 10−2 was chosen as an order of magnitude
at which it is unrealistic to expect detecting the difference from the considered data set sizes. To
control how often this anomalous region Xdiff is sampled, we now sample covariates from a mixture;
namely from Xdiff with probability θ, and from Xsame with probability 1− θ. Varying θ then controls
the difficulty of detecting a violation, and the empirical positive rate again translates to our type II
error under this more challenging alternative.

Baseline comparison We compare our test to the conditional two-sample procedure of Hu and Lei
[5], which casts hypothesis testing as a weighted conformal-prediction problem and builds a rank-sum
statistic from estimated density ratios. In their framework, one classifier is trained on covariates
alone to learn their marginal density ratios, and a second on the joint covariate–response pairs to
learn the conditional density ratios. Because the baseline’s performance hinges on the accuracy
of the density ratio learning method, we provide it with oracle-style information in each scenario.
Firstly, we inform the method in all scenarios that the marginal densities are identical between the
two samples. Secondly, in Scenarios 1 and 2, we supply the true Gaussian noise distribution and
restrict the conditional density-ratio model to the Gaussian parametric family with known variance,
so the learner only estimates conditional means via KRR (as in our test). In Scenario 3, we go one
step further and provide the baseline with the ground truth conditional density ratios. This alignment
makes outcomes directly comparable and focuses the comparison on the heart of each test, namely,
global testing using one aggregated statistic versus our local, covariate-specific decisions.

Table 3 reports the hyperparameters for Scenarios 1 and 2, and Table 4 those for Scenario 3. The
experiments used 50 core hours.

G.2.3 Comparison of higher-order moments (Figure 4)

Figure 4 shows the positive rate of our test for different kernels κ on Z = R when the conditional
means coincide, but the conditional distributions still differ. We pick a unit-norm mean function
f and set f1 = f2 = f , such that both data sets D1 and D2 in each pair are generated from the
same mean function. However, D1 and D2 differ in the noise applied to the observations. The
observations in D1 are corrupted with Gaussian noise N (0, s2). In contrast, the observations in D2

are corrupted with noise sampled from an equally weighted mixture ofN (−µ, s2) andN (µ, s2). For
this data-generating process, the conditional means coincide while the conditional distributions differ.
We compute the empirical positive rates in this setting for (i) a linear kernel; and (ii) a Gaussian
kernel on Z .

Table 6 reports the hyperparameters for this experiment. The experiment used 20 core hours.

G.2.4 Influence of using an overly rich kernel (Figure 5)

Figure 5 shows the type I and II errors of our test for different Gaussian and polynomial kernels κ on
Z = R. For the type I error, we pick a single unit-norm mean function f = f1 = f2 and report the
empirical positive rate. For the type II error, we pick two mean functions f1 and f2 independently. In
either case, we apply the same Gaussian noise N (0, s2) to both data sets.

Table 7 reports the hyperparameters for this experiment. The experiment used 15 core hours.

G.2.5 Bootstrapping schemes (Figures 6 and 7)

Figure 6 shows the type I and II errors of our test for different bootstrapping schemes when varying
the data set size and regularization of the KRR. For the type I error, we pick a single unit-norm mean
function f = f1 = f2 and report the empirical positive rate. For the type II error, we pick two mean
functions f1 and f2 independently. We use a linear kernel κ on Z and apply the same Gaussian noise
N (0, s2) to both data sets. In Figure 6a, we fix the regularization λ = 0.5 and vary the data set size
n. In Figure 6b, we fix n = 50 and vary λ.

Figure 7 reports type I and II errors for analytical and bootstrapped test thresholds, using the same
setup as before but fixing both n = 100 and λ = 0.25.

Tables 8 and 9 report the hyperparameters for these experiments. The experiments used 30 core
hours.
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Table 2: Hyperparameters used in generating Figure 1.

Parameter Value
Input set X = [−1, 1]
Input kernel bandwidth γ2 = 0.25
Data set size n = 25
Noise variance s2 = 0.052

Regularization λ = 0.01
Bootstrap resamples M = 1000

Table 3: Hyperparameters used in generating Figure 2 (left and middle).

Parameter Value

Input set X = [−1, 1]2
Mean function dimension m = 12
Data set size n = 100
Noise variance s2 = 0.12

Regularization λ = 0.1
Bootstrap resamples M = 500

G.3 Process monitoring (Figure 3)

Figure 3 shows the ratio between the test statistic and threshold averaged over the sliding window
following the trajectory of a perturbed linear dynamical system (left), and the average value of
σD,λ(x) over the window when D is the reference data set. We detail this experiment here.

We set X = Rd, d ∈ N>0, and choose the linear operator-valued kernel K(x, x′) = ⟨x, x′⟩Rd · idRd ,
as we wish to compare linear functions mapping Rd to itself. We randomly sample a matrix A ∈ O(d),
the group of orthonormal matrices in dimension d, pick a fixed initial state X0 = 1√

d
[1 · · · 1]⊤ ∈ Rd,

and generate a single trajectory (Xn)n∈[N ] as Xn+1 = AXn + ϵn, where ϵn ∼ N (0, s2Id) is i.i.d.
Gaussian noise. We enforce that A is orthonormal so the trajectory neither shrinks nor explodes
exponentially. Then, the observations Y = (Yn)n∈N>0

are taken as Yn = Xn+1. It is immediate to
verify that ((Xn, Yn))n∈N>0

is a process of transition pairs of the Markov kernel p(·, x) = N (· |
Ax, s2Id), where N (· | µ, s2Id) is the Gaussian measure on Rd with mean µ ∈ Rd and covariance
matrix s2Id ∈ Rd×d.

Using this procedure for 5 independent system trajectories of length 400, we collect a data set of
nref = 2000 data points, which we call the reference data set D. We then follow the trajectory with a
sliding window of size nwin = 50 data points, and perform the test at every step on the points in the
sliding window. After 200 steps, we introduce a change in the matrix A, replacing it with the matrix
A′ = A exp( ξ

∥H∥1
H). Here H = 1

2 (B − B⊤) is antisymmetric and the entries of B are sampled
i.i.d. from N (0, 1), such that distO(d)(A,A′) = ξ, where distO(d)(A,A′) = ∥ log(A⊤A′)∥HS is
the usual geodesic distance on O(d). This construction ensures that A′ is orthonormal as well, and
controls the distance between A and A′ in a way consistent with the geometry of O(d).

Figure 3 (left) shows the result of this procedure, for varied values of d and of ξ (ξ is only varied
with d = 16), and averaged over 100 independent choices of the data sets and 50 independent
choices of the matrix A. We observe that the change is detected rapidly, even before the sliding
window is entirely filled with data from the new dynamics. Notably, higher dimensions require
higher disturbances to be successfully detected with a fixed amount of data. Figure 3 (right) suggests
a reason for this: the variance of the reference data set at the current state increases after change,
indicating that the dynamics with A′ bring the trajectory into regions unexplored when following the
dynamics with A. In other words, the lack of power in high dimensions seems to result from a lack of
local data, as it is “easier” to go in unsampled regions by changing the dynamics.

Table 5 presents the hyperparameters for this experiment. The experiment used 2000 core hours.
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Table 4: Hyperparameters used in generating Figure 2 (right).

Parameter Value

Input set X = [−3, 3]2
Mean function dimension m = 36
Data set size n = 500
Noise variance s2 = 0.0252

Regularization λ = 0.1
Bootstrap resamples M = 500

Table 5: Hyperparameters used in generating Figure 3.

Parameter Value
Regularization λ = 0.01
Noise variance s2 = 0.012

Significance level α = 0.05
Bootstrap resamples M = 100

Table 6: Hyperparameters used in generating Figure 4.

Parameter Value

Input set X = [−1, 1]2
Gaussian output kernel bandwidth γ2 = 0.05
Mean function dimension m = 12
Data set size n = 100
Noise variance s2 = 0.0252

Regularization λ = 0.5
Bootstrap resamples M = 500

Table 7: Hyperparameters used in generating Figure 5.

Parameter Value

Input set X = [−1, 1]2
Mean function dimension m = 12
Noise variance s2 = 0.22

Regularization λ = 0.5
Bootstrap resamples M = 500

Table 8: Hyperparameters used in generating Figure 6a and 6b.

Parameter Value

Input set X = [−1, 1]2
Mean function dimension m = 12
Noise variance s2 = 0.22

Bootstrap resamples M = 500

Table 9: Hyperparameters used in generating Figure 7.

Parameter Value

Input set X = [−1, 1]2
Mean function dimension m = 12
Data set size n = 100
Regularization λ = 0.25
Bootstrap resamples M = 500
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim in the abstract and introduction that we formalize guarantees on the
rejection region in conditional testing, provide a general recipe for conditional two-sample
tests, instantiate it for KRR thanks to a generalized bound, and provide bootstrapping
schemes and showcase how to use our tools in practice. We address all these points, either
by dedicated sections or formal mathematical results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We emphasize the necessity and limitations of our theoretical assumptions
(well-specified case) and acknowledge that our bootstrapping scheme is heuristic. We
also acknowledge that further empirical studies are necessary to establish the empirical
performance of the method and obtain a more thorough understanding of hyperparameters,
as the present work is only on laying foundations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All of our theorems come with their assumptions, and we have appendices
dedicated to their proofs as well as summaries of them when applicable (Section E.3.1).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide algorithms describing the pseudocode of our implementations, as
well as any hyperparameters relevant to the study. We also provide code coming with scripts
enabling a strict reproduction of the figures and numerical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide access to code with scripts to reproduce the results and do not
use external data sets. The code is available in an anonymized repository during the review
process, and will be published in a permanent repository upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We answer these questions in a dedicated appendix (Appendix G).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We report quantiles of distributions where appropriate and when this does not
hurt readability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report information on the compute resources we used in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The process in which this work was conducted abides by the Code of Ethics.
Our work seeks to advance the field of Machine Learning and has many potential societal
consequences, some harmful, but to an extent neither greater nor lesser than research in
Machine Learning in general.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is on foundational research and is not tied to particular applications,
and there is no direct path to harmful or negative applications that we believe should be
highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [NA]

Justification: The paper does not use such existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code (anonymized at submission) together with its documentation
and instructions for reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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