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Abstract

In recent developments, Transformers have
emerged as the leading performers in a range
of natural language processing tasks, including
the challenging domain of machine translation.
Nonetheless, traditional Transformers have en-
countered a significant obstacle in the form of
high inference costs. This paper addresses this
issue by investigating the influence of various
model hyperparameters on the architecture of
Transformers, focusing on their impact on both
translation quality and inference speed. Our re-
search findings lead us to propose an optimized
model configuration, which surpasses standard
efficient vanilla Transformers by achieving a
1-point increase in BLEU score, while utiliz-
ing fewer parameters and maintaining identical
inference speed when running on a CPU.

1 Introduction

Transformers (Vaswani et al., 2017) have been
widely used in Natural Language Processing (NLP).
The architecture was first introduced for Machine
Translation (MT) and has been adopted for other
sequence-to-sequence, classification, and gener-
ation tasks. Compared to the previous state-of-
the-art, i.e., LSTM (Hochreiter and Schmidhuber,
1997), Transformers are faster to train as they are
parallelizable in training time, but their main draw-
back is their increased inference time. Unlike Re-
current Neural Networks (RNN), decoding in trans-
formers has time complexity of O(n?). This prob-
lem has led many researchers to find efficient trans-
former alternatives. Tay et al. (2020) provides a
comprehensive survey on different approaches for
increasing the efficiency of Transformer architec-
ture.

The most focused part of research on Trans-
former efficiency has been on alternative types of
self-attention in order to reduce its time-complexity,
which has shown great speed-up in longer texts
(Beltagy et al., 2020; Wang et al., 2020b). There

also have been proposed methods to reduce latency
and increase speed for tasks with shorter sequences.
For instance, Average Attention Network (Zhang
et al., 2018) is an alternative attention mechanism
that increases speed up to 1.30x without quality
loss, with the caveat of increased parameter count.

The aforementioned methods have a common
problem which is the lack of ecosystem support.
Vanilla Transformers have had many optimizations
over the years since it was introduced (Gschwind
et al., 2022). There are also efficient tools for their
efficient inference which do not support alternative
architectures (Klein et al., 2020; Junczys-Dowmunt
et al., 2018). This creates an incentive to explore
various network parameters to find better vanilla
Transformer configurations.

Neural Architecture Search (NAS), initially pop-
ularized within the context of Convolutional Neural
Networks (CNNs), has been extended to Trans-
formers and gained popularity for the exploration
of optimal architecture configurations. Literature
on Transformer NAS has shown promising results
for finding smaller models with comparable quality.
This paper primarily focuses on finding the effect
of hyperparameters on model latency and its qual-
ity for MT. Diverging from earlier investigations,
this study adopts an analytical approach, opting to
train models from the ground up rather than em-
ploying a super-network as a proxy method, which
has been the primary mode of exploration in prior
work (Pham et al., 2018). While earlier architec-
ture search efforts have tended to prioritize larger
models, this research uniquely emphasizes the sig-
nificance of smaller models that can be effectively
deployed on edge computing devices.

In this work, first, we discuss the related work in
section 2, then, we show that in order to compare
the effect of different hyperparameters, it is not
needed to train until convergence, as the first epoch
can be a good proxy for relative performance. Next,
we train a number of models which we believe are



good representatives of the entire search space. Sec-
tion 3 discusses the search space and experiment
setup in-depth. Section 4 shows our findings and
the effect of parameter size and hyperparameter
selection on model latency and quality. We train
a model on WMT’ 14 En-De dataset to verify our
results. Finally, Section 5 and Section 6, concludes
the paper and presents future work, respectively.

To the best of our knowledge, no analytical work
has been done on the effect of hyperparameters for
NMT. Our contributions are as follows:

* Analyzed the effect of hyperparameters on
quality, latency, and throughput.

* Analyzed the effect of hyperparameters on
quantization degradation.

* Presented design insight for creating fast and
deployable models.

¢ Presented a Pareto frontier for different hard-
ware and needs (CPU/GPU).

* Presented models trained on WMT’ 14 En-De
dataset to verify our findings.

2 Related Work

Because Transformers (Vaswani et al., 2017) has
gained state-of-the-art at many NLP tasks, re-
searchers have tried to find smaller models while re-
taining the same quality. The Evolved Transformer
(So et al., 2019) was one of the first endeavors to
find better architecture configurations for Trans-
formers. The paper uses differentiable NAS with
evolution search for finding the best model given
certain constraints. The focus was to find models
with the best performance rather than search or
inference efficiency. They have found a range of
models for WMT’ 14 En-De dataset from 7M to
221M parameters with slightly better performance
compared to vanilla Transformer models of the
same size.

Wang et al., 2020a has used an evolutionary algo-
rithm with direct feedback from different hardware
and found different hardware prioritize different
models for increased latency. The paper uses a su-
pernetwork in order to reduce training time, as one
single supernetwork is created to include all search
space and different configurations are created by
weight sharing. The homogeneity convention of
different layers has been left out, and models can
have different feed-forward network sizes and the

number of heads in every layer. The search space
for this paper was [512, 640] for embedding dim,
[1024, 2048, 3072] for hidden dim, [4, 8] for the
head number in all attention modules, and [1, 2,
3,4, 5, 6] for the number of decoder layers. They
found GPUs prefer wide and shallow networks over
deep ones, while CPUs have lower latency on nar-
row and rather deep networks.

Kasai et al., 2020, in the context of comparing
Auto-Regressive (AR) and Non-Auto-Regressive
(NAR) Architectures, has shown decreasing the
number of decoder layers has minimal impact on
translation quality while this degradation can be
remedied by increasing the size of encoder layers.
Bérard et al., 2021 have shown this phenomenon
also happens in the multilingual setting, implying
that decoders are the speed bottleneck of trans-
former inference.

Javaheripi et al., 2022 applies NAS on generative
transformers. It uses parameter size as a proxy for
model quality, and training many models verified a
good correlation between the proxy and the ground
truth. The paper uses evolutionary search to find
more efficient models. It also presents a Pareto
frontier for different hardware, finding model con-
figurations that are faster while having better per-
formance than the baseline.

Chitty-Venkata et al., 2022 is a comprehensive
survey on NAS for transformers, interested readers
can refer to this paper for an in-depth survey of
NAS for different tasks.

WMT’s translation efficiency shared task
(Heafield et al., 2020; Heafield et al., 2021) had
submissions that used decreasing the number of
decoder layers as the main component of increas-
ing speed while retaining the same quality, al-
though other methods of optimization are widely
used in these submissions. Klein et al., 2020 uses
vanilla Transformers showing that using a larger
feed-forward network (FFN) can have an impact
on translation quality while having little effect on
speed.

Our work is mainly focused on gaining insight
into the model design rather than finding optimized
model(s) while analyzing the effect of beam search
size and quantization on different architectures and
finding different models for different needs (e.g.,
servers have different priorities than edge devices).
To our knowledge, this kind of analysis has not
been done on combinations of these parameters.



3 Experiment Setup

This section discusses the experiment setup and
the reason behind it. To begin, we demonstrate
the viability of training a neural machine transla-
tion (NMT) model for a single epoch as a reliable
indicator of its quality when fully trained. Next,
we delve into the details of the explored search
space for the models under investigation. Finally,
we provide an overview of the experimental setup,
including the environment and tools employed for
conducting the experiments.

3.1 Dataset and Proxy

We randomly selected 10 million samples out of a
total of 87 million parallel data from the WMT’22
dataset for En-De translation efficiency shared
task! as our training dataset with the provided Sen-
tencePiece (Kudo and Richardson, 2018) model as
our tokenizer. We opt for a partial training dataset
to efficiently use computational resources and di-
rect them towards space exploration and to mitigate
potential overfitting concerns. Furthermore, we do
not pursue training to convergence based on pre-
liminary experiments, which indicated that such
a strategy is unnecessary for model comparison.
Figure 1 shows the training trend for 18 different
Transformer configuration representing our com-
plete search space. The results demonstrated that
the ranking of models in terms of BLEU score
remains stable as training progresses, with fluctua-
tions below 0.5 BLEU deemed statistically insignif-
icant. Employing t-statistics, we have 97.5% CI
[3.12, 3.49] the BLEU score increase, suggesting
that it is improbable that we would get any sig-
nificant difference change (> 0.5 BLEU) between
models after training for four more epochs. Conse-
quently, we conduct remaining experiments with
only one epoch according to these findings.

3.2 Search Space

The search space is [128, 192, 256, 384, 512]
for embedding dimensions, and [512, 1024, 2048,
3072, 4096] for hidden dimensions. Number of
heads is relative to the embedding dimension and
is kept at h = embedding/64. We also use [1,
3, 6] for the number of decoder layers. Literature
shows that time spent during the decoding phase
is 20-30 times that of the encoding phase (Zhang
etal., 2018; Wang et al., 2020a; Bérard et al., 2021).

"https://data.statmt.org/wmt22/
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Figure 1: BLEU score on combined En-De validation
datasets taken from WMT’ 14 to WMT’18 for 18 Trans-
former configurations. configurations.

Hence, following Wang et al., 2020a, we focus on
the decoder configuration and consider 6 layers for
encoder layers for all our experiments.

3.3 Training and Inference

Fairseq (Ott et al., 2019) is used to train our mod-
els. Training parameters are kept the same for
all models. We use a batch size of 4096 tokens,
the optimizer is Adam (57 = 0.9 and By = 0.98)
with a learning rate, dropout, and weight decay of
5e—4, 0.1, and le—4, respectively. We use CTrans-
late2? (Klein et al., 2020) to perform NMT infer-
ence. CTranslate2 is an open-source Transformer
inference engine, which supports various hardware
platforms while using appropriate instructions to
maximize the speed. Our initial experiments show
that Fairseq does not fully utilize the CPU during
the inference time. During inference time, we use
batch and beam sizes of [1, 16, 32, 64] and [1, 2, 3,
4, 5], respectively, while the length penalty is set to
0.6. Moreover, NVIDIA GTX 1080 and Intel Xeon
E5-2620 (limited to a single core) are employed
as our GPU and CPU for inference testing. The
CPU in use supports AVX2 instruction set which,
unlike AVX512, is more consistently supported and
is available in all of newer Intel CPUs. For CPU
inference, we also test the effect of post-training
quantization on speed and quality. More concretely,
[int8, int16, fp32] are considered as quantization
precision.

2https: //github.com/OpenNMT/CTranslate2
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Figure 2: Relation of the number of parameters in the decoder (including embedding layer) on inference time of

translation. WMT’ 22 test set (1k sentences) is employed.

4 Findings

This section includes our findings on the experi-
ments, discussing the effect of different parameters
on inference time, quality, and model size.

4.1 Parameters and Inference Speed

CPUs and GPUs have different behaviors regarding
the effect of the number of parameters on inference
time. Figure 2 shows inference time vs. the number
of parameters in the decoder in the latency setting
(i.e., batch size of 1). It is seen that inference time
on the CPU scales linearly with the number of pa-
rameters, while on the GPU, the number of layers
is a more important feature. On The GPU, the
number of parameters has a less pronounced ef-
fect on inference time compared to the CPU. This
phenomenon is caused by the parallelization of the
entire layer in GPUs, while CPUs have limited
parallelization. Regardless of the configuration,
the number of parameters determines the inference
speed on the CPU.

Figure 3 shows the effect of the number of pa-
rameters in the decoder relative to the BLEU score.
As can be seen, the Pareto frontier is dominated
mostly by models with 3 decoder layers.

Klein et al., 2020 demonstrated that the size
of FEN does not affect latency in GPU inference.
However, this observation holds true exclusively
for GPU inference, as in the case of CPU infer-
ence, FFN size exhibits a direct correlation with
the number of parameters, which in turn influences
latency. In line with the conclusions of another
study by Kasai et al., 2020, which suggests that
shallow decoders are optimal for fast inference,
this assertion predominantly holds for GPU infer-
ence, while CPU-based inference stands to gain
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Figure 3: Number of parameters vs. BLEU score.

advantages from deeper decoder architectures.

4.2 Quantization and Batch Size

Running all models with different quantization
methods shows that int8 quantization increases the
speed 95% CI (1.97, 2.12) times. while having an
average BLEU difference of 95% CI (-0.2, -0.1).
These numbers are lower for 16-bit integer quan-
tization, being 95% CI (1.19, 1.26) and 95% CI
(-0.03, 0.00), respectively. The experiments also
show that the embedding size has a negative rela-
tion with the quality degradation effect of quantiza-
tion. int8 quantization also has a more pronounced
effect when the decoder is shallow, with an aver-
age speedup of 95% CI (2.07, 2.39) for decoders
with 1 layer vs. 95% CI (1.80, 1.96) for decoders
with 6 layers. Based on the above discussion, the
Pareto frontier is dominated by models with int8
quantization.

Batching on the CPU can have up to 8x speedup
on a single core, with a mean of 7x, but this speedup



Model Name Encoder Decoder FFN Size Emb. Size Heads # of Parameters
A 6 1 2048 512 8 58.4M
B 6 3 2048 384 6 46.6M
C 6 6 3072 256 4 42.9M

Table 1: Models trained on WMT’ 14 En-De task.
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Figure 4: Speedup of using a batch size of 64 compared
to 1 on the CPU. Bars are 95% CI.

is bottlenecked by feed-forward network (FFN)
size. As Figure 4 shows, increasing the size of the
FFN has a decreasing impact on speed gain from
batching, it can be seen that fewer decoder layers
lead to a steeper decrease in speedup.

The relationship between quantization and batch-
ing speed on CPU performance is not independent.

Remarkably, it is noteworthy that when the batch
size is configured to 64, both int8 and int16 quan-
tization precision yield identical speeds to the de-
fault fp32 precision. For visualization of this phe-
nomenon, refer to Figure 8 in Appendix A. This
intriguing finding suggests that the advantages of
int8 quantization may be most pronounced when
the batch size is restricted to just one.

The utilization of batching can further enhance
the speedup achieved by GPUs, with a maximum
improvement of up to 32x and an average improve-
ment of 19.35x. The number of decoder layers sig-
nificantly influences the speedup gains. For models
employing a 6-layer decoder, the average speedup
reaches 23.0x. In contrast, models with fewer de-
coder layers exhibit lower speedup gains, with an
average speedup of 14.5x observed for models uti-
lizing a single decoder layer.

4.3 Beam Search

Our experiments show that there is no significant
impact on the BLEU score by quantization.

However, it has been observed that int8 quan-
tization mitigates the abrupt decrease in speed en-
countered when increasing the beam size from 1 to
2. It is worth mentioning that models utilizing int8
quantization experience a continued slowdown as
the beam size increases, whereas this phenomenon
is not observed with fp32. As illustrated in Figure
5, the utilization of int8 quantization also counter-
acts the impact of embedding size on the slowdown
effect.

4.4 Verification

We use WMT’ 14 En-De dataset (4.5 million paral-
lel sentences) provided by Hugging Face? to verify
our findings and explore cross-dataset applications
of our best models.

We take three models with similar number of
parameters in the decoder (i.e., 21 million) and
train them for 50 epochs (i.e., 30k steps). Model
configurations can be seen in Table 1. These mod-
els use SentencePiece (32k vocab size) without
prior tokenization. We evaluate the performance
of three models on the WMT”’ 14 test set, consid-
ering both int8 quantization and non-quantized
scenarios. Beam sizes of 1 and 5 are utilized, with
a length penalty of 0.6 maintained across all exper-
iments. Results are presented in Table 2. Notably,
Model A demonstrates the highest speed on the
GPU, while all models exhibit similar performance
on the CPU. Model B also exhibits a slightly lower
total parameter count. These findings align with
our earlier observations, which position models
with 3 decoder layers at the Pareto frontier. Surpris-
ingly, Model C, with even fewer total parameters
than that of Model B, outperforms Model A.

It is important to mention that knowledge distil-
lation, a technique shown to enhance quality and
eliminate the need for beam search (Kim and Rush,
2016), was not applied to these models. All exper-
iments were conducted under the same inference

3https: //huggingface.co/datasets/wmt14
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conditions as described in Section 3.

Model Time: CPU GPU BLEU
A + fp32 652.51 45.84 23.72

+1int8 315.27 - 23.65
+ beam 1197.16 63.52  25.13
+ both 520.19 - 25.17
B + fp32 616.35 60.24  24.84
+1int8 309.37 - 24.69
+ beam 1087.58 91.52  26.00
+ both 541.59 - 25.80

C+ fp32 640.65 89.64  24.76
+1int8 328.92 - 24.62
+ beam 1060.34 130.42  25.77
+ both 585.85 - 25.48

Table 2: Inference results for WMT’ 14 En-De test set,
time is in seconds for 3k test sentences in latency mode.
BLEU scores are computed with sacrebleu. Beam
search size used is 5.

5 Conclusion

In this paper, we analyzed the effect of different
architectural parameters on model quality and in-
ference speed on both CPU and GPU. We also
examined the effect of quantization on latency and
batched settings. In the end, we trained three mod-
els to verify our results and showed that with the
same inference speed and slightly fewer parame-
ters, it is possible to reach better translation qual-
ity using a better architecture configuration than
widely used ones.

6 Future Work

This paper is mostly focused on the effect of de-
coder configuration on speed and quality. Increas-

ing the number of layers in the encoder has been
shown to increase model quality with minimal im-
pact on inference speed. Finding the effect of this
technique on models with different decoder config-
urations can be an extension of this research. Ex-
ploring the effect of knowledge distillation on these
architectures is also another avenue to explore.

Limitations

Experiments in this paper were done on a single
English-to-German translation direction. Findings
of this paper may not be attributed to other lan-
guage pairs, which are not from the same fam-
ily or are distant pairs. More concretely, we ex-
pect English-to-German to have similar behavior
to other close language pairs such as English-to-
French, but these findings may not be extended
to language pairs like English-Arabic or English-
Hindi. The aim of this research was to compare
different architectures, for this reason, techniques
which have an orthogonal effect on quality (e.g.,
using Moses tokenizer before SentencePiece) were
not explored.

Ethics Statement

All experiments in this work were conducted using
public datasets. In the course of our experiments,
CO4 emissions were a part of our concerns and we
tried our best to keep it as low as possible. Chat-
GPT was used to post-edit part of the paper.
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A Appendix: Charts and Figures

Figure 6 Shows the relation between the embed-
ding size of models and BLEU score difference
from int8 quantization, lower embedding sizes are
affected more negatively than models with higher
embedding size.
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Figure 6: Effect of quantization on quality loss for dif-
ferent embedding sizes.

Figure 7 shows that in very small models, int8
quantization has a more pronounced effect on
speed.
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Figure 7: Relation of number of parameters in the de-
coder (including embedding layer) on speedup gained
from int8 quantization.

Figure 8 Shows that the effect of speedup gained
from quantization diminishes with an increase in
batch size.

Figure 9 Shows the relation between the num-
ber of parameters in the decoder and its effect on
speedup gained from batching. Although a lower
number of parameters leads to higher speedup gain,
the number of decoder layers is another factor af-
fecting speedup gain.
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Figure 8: Speedup gained from int8 quantization for
each batch size compared to fp32 inference.
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Figure 9: Speedup gained from batch size of 64 com-
pared to 1 on GPU.

Figure 10 shows the effect of using batch size
on speed for both the CPU and the GPU, the CPU
having more variance for models with the same
number of decoder layers, while the GPU has a
smaller variance in models with 1-layer decoder,
and more variance between different layer configu-
rations.

Figure 11 Shows the difference between effect
of parameter size on inference speed, both for the
CPU and the GPU. The CPU inference is mostly
affected by the number of parameters, while on the
GPU number of layers plays an important role in
determining inference speed.
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Figure 10: Speedup gained from usning batch size of
64 compared to 1 on GPU (top) and CPU (bottom) for
different number of decoder layers.
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Figure 11: Time
CPU (bottom).
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