
Efficient Model Configuration for Transformers: Improving Translation
Quality with Reduced Parameters and Comparable Inference Speed

Anonymous EACL submission

Abstract

In recent developments, Transformers have001
emerged as the leading performers in a range002
of natural language processing tasks, including003
the challenging domain of machine translation.004
Nonetheless, traditional Transformers have en-005
countered a significant obstacle in the form of006
high inference costs. This paper addresses this007
issue by investigating the influence of various008
model hyperparameters on the architecture of009
Transformers, focusing on their impact on both010
translation quality and inference speed. Our re-011
search findings lead us to propose an optimized012
model configuration, which surpasses standard013
efficient vanilla Transformers by achieving a014
1-point increase in BLEU score, while utiliz-015
ing fewer parameters and maintaining identical016
inference speed when running on a CPU.017

1 Introduction018

Transformers (Vaswani et al., 2017) have been019

widely used in Natural Language Processing (NLP).020

The architecture was first introduced for Machine021

Translation (MT) and has been adopted for other022

sequence-to-sequence, classification, and gener-023

ation tasks. Compared to the previous state-of-024

the-art, i.e., LSTM (Hochreiter and Schmidhuber,025

1997), Transformers are faster to train as they are026

parallelizable in training time, but their main draw-027

back is their increased inference time. Unlike Re-028

current Neural Networks (RNN), decoding in trans-029

formers has time complexity of O(n2). This prob-030

lem has led many researchers to find efficient trans-031

former alternatives. Tay et al. (2020) provides a032

comprehensive survey on different approaches for033

increasing the efficiency of Transformer architec-034

ture.035

The most focused part of research on Trans-036

former efficiency has been on alternative types of037

self-attention in order to reduce its time-complexity,038

which has shown great speed-up in longer texts039

(Beltagy et al., 2020; Wang et al., 2020b). There040

also have been proposed methods to reduce latency 041

and increase speed for tasks with shorter sequences. 042

For instance, Average Attention Network (Zhang 043

et al., 2018) is an alternative attention mechanism 044

that increases speed up to 1.30x without quality 045

loss, with the caveat of increased parameter count. 046

The aforementioned methods have a common 047

problem which is the lack of ecosystem support. 048

Vanilla Transformers have had many optimizations 049

over the years since it was introduced (Gschwind 050

et al., 2022). There are also efficient tools for their 051

efficient inference which do not support alternative 052

architectures (Klein et al., 2020; Junczys-Dowmunt 053

et al., 2018). This creates an incentive to explore 054

various network parameters to find better vanilla 055

Transformer configurations. 056

Neural Architecture Search (NAS), initially pop- 057

ularized within the context of Convolutional Neural 058

Networks (CNNs), has been extended to Trans- 059

formers and gained popularity for the exploration 060

of optimal architecture configurations. Literature 061

on Transformer NAS has shown promising results 062

for finding smaller models with comparable quality. 063

This paper primarily focuses on finding the effect 064

of hyperparameters on model latency and its qual- 065

ity for MT. Diverging from earlier investigations, 066

this study adopts an analytical approach, opting to 067

train models from the ground up rather than em- 068

ploying a super-network as a proxy method, which 069

has been the primary mode of exploration in prior 070

work (Pham et al., 2018). While earlier architec- 071

ture search efforts have tended to prioritize larger 072

models, this research uniquely emphasizes the sig- 073

nificance of smaller models that can be effectively 074

deployed on edge computing devices. 075

In this work, first, we discuss the related work in 076

section 2, then, we show that in order to compare 077

the effect of different hyperparameters, it is not 078

needed to train until convergence, as the first epoch 079

can be a good proxy for relative performance. Next, 080

we train a number of models which we believe are 081

1



good representatives of the entire search space. Sec-082

tion 3 discusses the search space and experiment083

setup in-depth. Section 4 shows our findings and084

the effect of parameter size and hyperparameter085

selection on model latency and quality. We train086

a model on WMT’14 En-De dataset to verify our087

results. Finally, Section 5 and Section 6, concludes088

the paper and presents future work, respectively.089

To the best of our knowledge, no analytical work090

has been done on the effect of hyperparameters for091

NMT. Our contributions are as follows:092

• Analyzed the effect of hyperparameters on093

quality, latency, and throughput.094

• Analyzed the effect of hyperparameters on095

quantization degradation.096

• Presented design insight for creating fast and097

deployable models.098

• Presented a Pareto frontier for different hard-099

ware and needs (CPU/GPU).100

• Presented models trained on WMT’14 En-De101

dataset to verify our findings.102

2 Related Work103

Because Transformers (Vaswani et al., 2017) has104

gained state-of-the-art at many NLP tasks, re-105

searchers have tried to find smaller models while re-106

taining the same quality. The Evolved Transformer107

(So et al., 2019) was one of the first endeavors to108

find better architecture configurations for Trans-109

formers. The paper uses differentiable NAS with110

evolution search for finding the best model given111

certain constraints. The focus was to find models112

with the best performance rather than search or113

inference efficiency. They have found a range of114

models for WMT’14 En-De dataset from 7M to115

221M parameters with slightly better performance116

compared to vanilla Transformer models of the117

same size.118

Wang et al., 2020a has used an evolutionary algo-119

rithm with direct feedback from different hardware120

and found different hardware prioritize different121

models for increased latency. The paper uses a su-122

pernetwork in order to reduce training time, as one123

single supernetwork is created to include all search124

space and different configurations are created by125

weight sharing. The homogeneity convention of126

different layers has been left out, and models can127

have different feed-forward network sizes and the128

number of heads in every layer. The search space 129

for this paper was [512, 640] for embedding dim, 130

[1024, 2048, 3072] for hidden dim, [4, 8] for the 131

head number in all attention modules, and [1, 2, 132

3, 4, 5, 6] for the number of decoder layers. They 133

found GPUs prefer wide and shallow networks over 134

deep ones, while CPUs have lower latency on nar- 135

row and rather deep networks. 136

Kasai et al., 2020, in the context of comparing 137

Auto-Regressive (AR) and Non-Auto-Regressive 138

(NAR) Architectures, has shown decreasing the 139

number of decoder layers has minimal impact on 140

translation quality while this degradation can be 141

remedied by increasing the size of encoder layers. 142

Bérard et al., 2021 have shown this phenomenon 143

also happens in the multilingual setting, implying 144

that decoders are the speed bottleneck of trans- 145

former inference. 146

Javaheripi et al., 2022 applies NAS on generative 147

transformers. It uses parameter size as a proxy for 148

model quality, and training many models verified a 149

good correlation between the proxy and the ground 150

truth. The paper uses evolutionary search to find 151

more efficient models. It also presents a Pareto 152

frontier for different hardware, finding model con- 153

figurations that are faster while having better per- 154

formance than the baseline. 155

Chitty-Venkata et al., 2022 is a comprehensive 156

survey on NAS for transformers, interested readers 157

can refer to this paper for an in-depth survey of 158

NAS for different tasks. 159

WMT’s translation efficiency shared task 160

(Heafield et al., 2020; Heafield et al., 2021) had 161

submissions that used decreasing the number of 162

decoder layers as the main component of increas- 163

ing speed while retaining the same quality, al- 164

though other methods of optimization are widely 165

used in these submissions. Klein et al., 2020 uses 166

vanilla Transformers showing that using a larger 167

feed-forward network (FFN) can have an impact 168

on translation quality while having little effect on 169

speed. 170

Our work is mainly focused on gaining insight 171

into the model design rather than finding optimized 172

model(s) while analyzing the effect of beam search 173

size and quantization on different architectures and 174

finding different models for different needs (e.g., 175

servers have different priorities than edge devices). 176

To our knowledge, this kind of analysis has not 177

been done on combinations of these parameters. 178

2



3 Experiment Setup179

This section discusses the experiment setup and180

the reason behind it. To begin, we demonstrate181

the viability of training a neural machine transla-182

tion (NMT) model for a single epoch as a reliable183

indicator of its quality when fully trained. Next,184

we delve into the details of the explored search185

space for the models under investigation. Finally,186

we provide an overview of the experimental setup,187

including the environment and tools employed for188

conducting the experiments.189

3.1 Dataset and Proxy190

We randomly selected 10 million samples out of a191

total of 87 million parallel data from the WMT’22192

dataset for En-De translation efficiency shared193

task1 as our training dataset with the provided Sen-194

tencePiece (Kudo and Richardson, 2018) model as195

our tokenizer. We opt for a partial training dataset196

to efficiently use computational resources and di-197

rect them towards space exploration and to mitigate198

potential overfitting concerns. Furthermore, we do199

not pursue training to convergence based on pre-200

liminary experiments, which indicated that such201

a strategy is unnecessary for model comparison.202

Figure 1 shows the training trend for 18 different203

Transformer configuration representing our com-204

plete search space. The results demonstrated that205

the ranking of models in terms of BLEU score206

remains stable as training progresses, with fluctua-207

tions below 0.5 BLEU deemed statistically insignif-208

icant. Employing t-statistics, we have 97.5% CI209

[3.12, 3.49] the BLEU score increase, suggesting210

that it is improbable that we would get any sig-211

nificant difference change (> 0.5 BLEU) between212

models after training for four more epochs. Conse-213

quently, we conduct remaining experiments with214

only one epoch according to these findings.215

3.2 Search Space216

The search space is [128, 192, 256, 384, 512]217

for embedding dimensions, and [512, 1024, 2048,218

3072, 4096] for hidden dimensions. Number of219

heads is relative to the embedding dimension and220

is kept at h = embedding/64. We also use [1,221

3, 6] for the number of decoder layers. Literature222

shows that time spent during the decoding phase223

is 20–30 times that of the encoding phase (Zhang224

et al., 2018; Wang et al., 2020a; Bérard et al., 2021).225

1https://data.statmt.org/wmt22/
efficiency-task/data/clean/

Figure 1: BLEU score on combined En-De validation
datasets taken from WMT’14 to WMT’18 for 18 Trans-
former configurations. configurations.

Hence, following Wang et al., 2020a, we focus on 226

the decoder configuration and consider 6 layers for 227

encoder layers for all our experiments. 228

3.3 Training and Inference 229

Fairseq (Ott et al., 2019) is used to train our mod- 230

els. Training parameters are kept the same for 231

all models. We use a batch size of 4096 tokens, 232

the optimizer is Adam (β1 = 0.9 and β2 = 0.98) 233

with a learning rate, dropout, and weight decay of 234

5e−4, 0.1, and 1e−4, respectively. We use CTrans- 235

late22 (Klein et al., 2020) to perform NMT infer- 236

ence. CTranslate2 is an open-source Transformer 237

inference engine, which supports various hardware 238

platforms while using appropriate instructions to 239

maximize the speed. Our initial experiments show 240

that Fairseq does not fully utilize the CPU during 241

the inference time. During inference time, we use 242

batch and beam sizes of [1, 16, 32, 64] and [1, 2, 3, 243

4, 5], respectively, while the length penalty is set to 244

0.6. Moreover, NVIDIA GTX 1080 and Intel Xeon 245

E5-2620 (limited to a single core) are employed 246

as our GPU and CPU for inference testing. The 247

CPU in use supports AVX2 instruction set which, 248

unlike AVX512, is more consistently supported and 249

is available in all of newer Intel CPUs. For CPU 250

inference, we also test the effect of post-training 251

quantization on speed and quality. More concretely, 252

[int8, int16, fp32] are considered as quantization 253

precision. 254

2https://github.com/OpenNMT/CTranslate2

3

https://data.statmt.org/wmt22/efficiency-task/data/clean/
https://data.statmt.org/wmt22/efficiency-task/data/clean/
https://github.com/OpenNMT/CTranslate2


Figure 2: Relation of the number of parameters in the decoder (including embedding layer) on inference time of
translation. WMT’22 test set (1k sentences) is employed.

4 Findings255

This section includes our findings on the experi-256

ments, discussing the effect of different parameters257

on inference time, quality, and model size.258

4.1 Parameters and Inference Speed259

CPUs and GPUs have different behaviors regarding260

the effect of the number of parameters on inference261

time. Figure 2 shows inference time vs. the number262

of parameters in the decoder in the latency setting263

(i.e., batch size of 1). It is seen that inference time264

on the CPU scales linearly with the number of pa-265

rameters, while on the GPU, the number of layers266

is a more important feature. On The GPU, the267

number of parameters has a less pronounced ef-268

fect on inference time compared to the CPU. This269

phenomenon is caused by the parallelization of the270

entire layer in GPUs, while CPUs have limited271

parallelization. Regardless of the configuration,272

the number of parameters determines the inference273

speed on the CPU.274

Figure 3 shows the effect of the number of pa-275

rameters in the decoder relative to the BLEU score.276

As can be seen, the Pareto frontier is dominated277

mostly by models with 3 decoder layers.278

Klein et al., 2020 demonstrated that the size279

of FFN does not affect latency in GPU inference.280

However, this observation holds true exclusively281

for GPU inference, as in the case of CPU infer-282

ence, FFN size exhibits a direct correlation with283

the number of parameters, which in turn influences284

latency. In line with the conclusions of another285

study by Kasai et al., 2020, which suggests that286

shallow decoders are optimal for fast inference,287

this assertion predominantly holds for GPU infer-288

ence, while CPU-based inference stands to gain289

Figure 3: Number of parameters vs. BLEU score.

advantages from deeper decoder architectures. 290

4.2 Quantization and Batch Size 291

Running all models with different quantization 292

methods shows that int8 quantization increases the 293

speed 95% CI (1.97, 2.12) times. while having an 294

average BLEU difference of 95% CI (-0.2, -0.1). 295

These numbers are lower for 16-bit integer quan- 296

tization, being 95% CI (1.19, 1.26) and 95% CI 297

(-0.03, 0.00), respectively. The experiments also 298

show that the embedding size has a negative rela- 299

tion with the quality degradation effect of quantiza- 300

tion. int8 quantization also has a more pronounced 301

effect when the decoder is shallow, with an aver- 302

age speedup of 95% CI (2.07, 2.39) for decoders 303

with 1 layer vs. 95% CI (1.80, 1.96) for decoders 304

with 6 layers. Based on the above discussion, the 305

Pareto frontier is dominated by models with int8 306

quantization. 307

Batching on the CPU can have up to 8x speedup 308

on a single core, with a mean of 7x, but this speedup 309

4



Model Name Encoder Decoder FFN Size Emb. Size Heads # of Parameters
A 6 1 2048 512 8 58.4M
B 6 3 2048 384 6 46.6M
C 6 6 3072 256 4 42.9M

Table 1: Models trained on WMT’14 En-De task.

Figure 4: Speedup of using a batch size of 64 compared
to 1 on the CPU. Bars are 95% CI.

is bottlenecked by feed-forward network (FFN)310

size. As Figure 4 shows, increasing the size of the311

FFN has a decreasing impact on speed gain from312

batching, it can be seen that fewer decoder layers313

lead to a steeper decrease in speedup.314

The relationship between quantization and batch-315

ing speed on CPU performance is not independent.316

Remarkably, it is noteworthy that when the batch317

size is configured to 64, both int8 and int16 quan-318

tization precision yield identical speeds to the de-319

fault fp32 precision. For visualization of this phe-320

nomenon, refer to Figure 8 in Appendix A. This321

intriguing finding suggests that the advantages of322

int8 quantization may be most pronounced when323

the batch size is restricted to just one.324

The utilization of batching can further enhance325

the speedup achieved by GPUs, with a maximum326

improvement of up to 32x and an average improve-327

ment of 19.35x. The number of decoder layers sig-328

nificantly influences the speedup gains. For models329

employing a 6-layer decoder, the average speedup330

reaches 23.0x. In contrast, models with fewer de-331

coder layers exhibit lower speedup gains, with an332

average speedup of 14.5x observed for models uti-333

lizing a single decoder layer.334

4.3 Beam Search 335

Our experiments show that there is no significant 336

impact on the BLEU score by quantization. 337

However, it has been observed that int8 quan- 338

tization mitigates the abrupt decrease in speed en- 339

countered when increasing the beam size from 1 to 340

2. It is worth mentioning that models utilizing int8 341

quantization experience a continued slowdown as 342

the beam size increases, whereas this phenomenon 343

is not observed with fp32. As illustrated in Figure 344

5, the utilization of int8 quantization also counter- 345

acts the impact of embedding size on the slowdown 346

effect. 347

4.4 Verification 348

We use WMT’14 En-De dataset (4.5 million paral- 349

lel sentences) provided by Hugging Face3 to verify 350

our findings and explore cross-dataset applications 351

of our best models. 352

We take three models with similar number of 353

parameters in the decoder (i.e., 21 million) and 354

train them for 50 epochs (i.e., 30k steps). Model 355

configurations can be seen in Table 1. These mod- 356

els use SentencePiece (32k vocab size) without 357

prior tokenization. We evaluate the performance 358

of three models on the WMT’14 test set, consid- 359

ering both int8 quantization and non-quantized 360

scenarios. Beam sizes of 1 and 5 are utilized, with 361

a length penalty of 0.6 maintained across all exper- 362

iments. Results are presented in Table 2. Notably, 363

Model A demonstrates the highest speed on the 364

GPU, while all models exhibit similar performance 365

on the CPU. Model B also exhibits a slightly lower 366

total parameter count. These findings align with 367

our earlier observations, which position models 368

with 3 decoder layers at the Pareto frontier. Surpris- 369

ingly, Model C, with even fewer total parameters 370

than that of Model B, outperforms Model A. 371

It is important to mention that knowledge distil- 372

lation, a technique shown to enhance quality and 373

eliminate the need for beam search (Kim and Rush, 374

2016), was not applied to these models. All exper- 375

iments were conducted under the same inference 376

3https://huggingface.co/datasets/wmt14

5

https://huggingface.co/datasets/wmt14


Figure 5: Effect of beam size on speed, relative to greedy search in the latency setting. The area around the lines
indicate 95% CI.

conditions as described in Section 3.377

Model Time: CPU GPU BLEU
A + fp32 652.51 45.84 23.72

+ int8 315.27 - 23.65
+ beam 1197.16 63.52 25.13
+ both 520.19 - 25.17

B + fp32 616.35 60.24 24.84
+ int8 309.37 - 24.69
+ beam 1087.58 91.52 26.00
+ both 541.59 - 25.80

C + fp32 640.65 89.64 24.76
+ int8 328.92 - 24.62
+ beam 1060.34 130.42 25.77
+ both 585.85 - 25.48

Table 2: Inference results for WMT’14 En-De test set,
time is in seconds for 3k test sentences in latency mode.
BLEU scores are computed with sacrebleu. Beam
search size used is 5.

5 Conclusion378

In this paper, we analyzed the effect of different379

architectural parameters on model quality and in-380

ference speed on both CPU and GPU. We also381

examined the effect of quantization on latency and382

batched settings. In the end, we trained three mod-383

els to verify our results and showed that with the384

same inference speed and slightly fewer parame-385

ters, it is possible to reach better translation qual-386

ity using a better architecture configuration than387

widely used ones.388

6 Future Work389

This paper is mostly focused on the effect of de-390

coder configuration on speed and quality. Increas-391

ing the number of layers in the encoder has been 392

shown to increase model quality with minimal im- 393

pact on inference speed. Finding the effect of this 394

technique on models with different decoder config- 395

urations can be an extension of this research. Ex- 396

ploring the effect of knowledge distillation on these 397

architectures is also another avenue to explore. 398

Limitations 399

Experiments in this paper were done on a single 400

English-to-German translation direction. Findings 401

of this paper may not be attributed to other lan- 402

guage pairs, which are not from the same fam- 403

ily or are distant pairs. More concretely, we ex- 404

pect English-to-German to have similar behavior 405

to other close language pairs such as English-to- 406

French, but these findings may not be extended 407

to language pairs like English-Arabic or English- 408

Hindi. The aim of this research was to compare 409

different architectures, for this reason, techniques 410

which have an orthogonal effect on quality (e.g., 411

using Moses tokenizer before SentencePiece) were 412

not explored. 413

Ethics Statement 414

All experiments in this work were conducted using 415

public datasets. In the course of our experiments, 416

CO2 emissions were a part of our concerns and we 417

tried our best to keep it as low as possible. Chat- 418

GPT was used to post-edit part of the paper. 419

References 420

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. 421
Longformer: The long-document transformer. ArXiv, 422
abs/2004.05150. 423

6

https://api.semanticscholar.org/CorpusID:215737171


Alexandre Bérard, Dain Lee, Stéphane Clinchant,424
Kweonwoo Jung, and Vassilina Nikoulina. 2021.425
Efficient inference for multilingual neural machine426
translation. In Proceedings of the 2021 Conference427
on Empirical Methods in Natural Language Process-428
ing, pages 8563–8583.429

Krishna Teja Chitty-Venkata, Murali Emani, Venkatram430
Vishwanath, and Arun K. Somani. 2022. Neural431
architecture search for transformers: A survey. IEEE432
Access, 10:108374–108412.433

Michael Gschwind, Eric Han, Scott Wolchok, Rui Zhu,434
and Christian Puhrsch. 2022. A BetterTransformer435
for Fast Transformer Inference.436

Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, Ioan-437
nis Konstas, Andrew M. Finch, Graham Neubig, Xian438
Li, and Alexandra Birch. 2020. Findings of the fourth439
workshop on neural generation and translation. In440
Workshop on Neural Generation and Translation.441

Kenneth Heafield, Qianqian Zhu, and Roman Grund-442
kiewicz. 2021. Findings of the wmt 2021 shared task443
on efficient translation. In Proceedings of the Sixth444
Conference on Machine Translation, pages 639–651.445

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long446
short-term memory. Neural computation, 9(8):1735–447
1780.448

Mojan Javaheripi, Gustavo H. de Rosa, Subhabrata449
Mukherjee, Shital Shah, Tomasz L. Religa, Caio450
C. T. Mendes, Sebastien Bubeck, Farinaz Koushanfar,451
and Debadeepta Dey. 2022. Litetransformersearch:452
Training-free neural architecture search for efficient453
language models.454

Marcin Junczys-Dowmunt, Roman Grundkiewicz,455
Tomasz Dwojak, Hieu Hoang Kenneth Heafield,456
Tom Neckermann, Frank Seide, Ulrich Germann, Al-457
ham Fikri Aji, Nikolay Bogoychev, André FT Mar-458
tins, et al. 2018. Marian: Fast neural machine trans-459
lation in c+. ACL 2018, page 116.460

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,461
and Noah A. Smith. 2020. Deep encoder, shallow462
decoder: Reevaluating the speed-quality tradeoff in463
machine translation. CoRR, abs/2006.10369.464

Yoon Kim and Alexander M Rush. 2016. Sequence-465
level knowledge distillation. In Proceedings of the466
2016 Conference on Empirical Methods in Natural467
Language Processing, pages 1317–1327.468

Guillaume Klein, Dakun Zhang, Clément Chouteau,469
Josep Maria Crego, and Jean Senellart. 2020. Ef-470
ficient and high-quality neural machine translation471
with opennmt. In Workshop on Neural Generation472
and Translation.473

Taku Kudo and John Richardson. 2018. Sentencepiece:474
A simple and language independent subword tok-475
enizer and detokenizer for neural text processing.476
CoRR, abs/1808.06226.477

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, 478
Sam Gross, Nathan Ng, David Grangier, and Michael 479
Auli. 2019. fairseq: A fast, extensible toolkit for 480
sequence modeling. CoRR, abs/1904.01038. 481

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and 482
Jeff Dean. 2018. Efficient neural architecture search 483
via parameters sharing. In International conference 484
on machine learning, pages 4095–4104. PMLR. 485

David So, Quoc Le, and Chen Liang. 2019. The evolved 486
transformer. In International conference on machine 487
learning, pages 5877–5886. PMLR. 488

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met- 489
zler. 2020. Efficient transformers: A survey. ACM 490
Computing Surveys, 55:1 – 28. 491

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 492
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 493
Kaiser, and Illia Polosukhin. 2017. Attention is all 494
you need. Advances in neural information processing 495
systems, 30. 496

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, 497
Ligeng Zhu, Chuang Gan, and Song Han. 2020a. 498
HAT: Hardware-aware transformers for efficient nat- 499
ural language processing. In Proceedings of the 58th 500
Annual Meeting of the Association for Computational 501
Linguistics, pages 7675–7688, Online. Association 502
for Computational Linguistics. 503

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, 504
and Hao Ma. 2020b. Linformer: Self-attention with 505
linear complexity. ArXiv, abs/2006.04768. 506

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel- 507
erating neural transformer via an average attention 508
network. In Proceedings of the 56th Annual Meet- 509
ing of the Association for Computational Linguistics 510
(Volume 1: Long Papers), pages 1789–1798. 511

7

https://doi.org/10.1109/ACCESS.2022.3212767
https://doi.org/10.1109/ACCESS.2022.3212767
https://doi.org/10.1109/ACCESS.2022.3212767
https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/
https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/
https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/
https://api.semanticscholar.org/CorpusID:220445934
https://api.semanticscholar.org/CorpusID:220445934
https://api.semanticscholar.org/CorpusID:220445934
http://arxiv.org/abs/2203.02094
http://arxiv.org/abs/2203.02094
http://arxiv.org/abs/2203.02094
http://arxiv.org/abs/2203.02094
http://arxiv.org/abs/2203.02094
http://arxiv.org/abs/2006.10369
http://arxiv.org/abs/2006.10369
http://arxiv.org/abs/2006.10369
http://arxiv.org/abs/2006.10369
http://arxiv.org/abs/2006.10369
https://api.semanticscholar.org/CorpusID:220445881
https://api.semanticscholar.org/CorpusID:220445881
https://api.semanticscholar.org/CorpusID:220445881
https://api.semanticscholar.org/CorpusID:220445881
https://api.semanticscholar.org/CorpusID:220445881
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1904.01038
http://arxiv.org/abs/1904.01038
http://arxiv.org/abs/1904.01038
https://api.semanticscholar.org/CorpusID:221702858
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/2020.acl-main.686
https://api.semanticscholar.org/CorpusID:219530577
https://api.semanticscholar.org/CorpusID:219530577
https://api.semanticscholar.org/CorpusID:219530577


A Appendix: Charts and Figures512

Figure 6 Shows the relation between the embed-513

ding size of models and BLEU score difference514

from int8 quantization, lower embedding sizes are515

affected more negatively than models with higher516

embedding size.517

Figure 6: Effect of quantization on quality loss for dif-
ferent embedding sizes.

Figure 7 shows that in very small models, int8518

quantization has a more pronounced effect on519

speed.520

Figure 7: Relation of number of parameters in the de-
coder (including embedding layer) on speedup gained
from int8 quantization.

Figure 8 Shows that the effect of speedup gained521

from quantization diminishes with an increase in522

batch size.523

Figure 9 Shows the relation between the num-524

ber of parameters in the decoder and its effect on525

speedup gained from batching. Although a lower526

number of parameters leads to higher speedup gain,527

the number of decoder layers is another factor af-528

fecting speedup gain.529

Figure 8: Speedup gained from int8 quantization for
each batch size compared to fp32 inference.

Figure 9: Speedup gained from batch size of 64 com-
pared to 1 on GPU.

Figure 10 shows the effect of using batch size 530

on speed for both the CPU and the GPU, the CPU 531

having more variance for models with the same 532

number of decoder layers, while the GPU has a 533

smaller variance in models with 1-layer decoder, 534

and more variance between different layer configu- 535

rations. 536

Figure 11 Shows the difference between effect 537

of parameter size on inference speed, both for the 538

CPU and the GPU. The CPU inference is mostly 539

affected by the number of parameters, while on the 540

GPU number of layers plays an important role in 541

determining inference speed. 542

8



Figure 10: Speedup gained from usning batch size of
64 compared to 1 on GPU (top) and CPU (bottom) for
different number of decoder layers.

Figure 11: Time vs. BLEU score on GPU (top) and
CPU (bottom).

9


