
Revisiting Frank-Wolfe for
Structured Nonconvex Optimization

Hoomaan Maskan∗ Yikun Hou∗ Suvrit Sra† Alp Yurtsever∗

∗Umeå University, Sweden
†Technical University of Munich, Germany

Abstract
We introduce a new projection-free (Frank-Wolfe) method for optimizing structured
nonconvex functions that are expressed as a difference of two convex functions.
This problem class subsumes smooth nonconvex minimization, positioning our
method as a promising alternative to the classical Frank-Wolfe algorithm. DC
decompositions are not unique; by carefully selecting a decomposition, we can
better exploit the problem structure, improve computational efficiency, and adapt
to the underlying problem geometry to find better local solutions. We prove that
the proposed method achieves a first-order stationary point in O(1/ϵ2) iterations,
matching the complexity of the standard Frank-Wolfe algorithm for smooth non-
convex minimization in general. Specific decompositions can, for instance, yield a
gradient-efficient variant that requires only O(1/ϵ) calls to the gradient oracle by
reusing computed gradients over multiple iterations. Finally, we present numerical
experiments demonstrating the effectiveness of the proposed method compared to
other projection-free algorithms.

1 Introduction
We study projection-free (Frank-Wolfe) algorithms for nonconvex optimization problems of the form:

min
x∈D

ϕ(x) := f(x)− g(x), (1)

where D ⊆ Rd is a convex, compact set, and the objective function ϕ : D → R is the difference of
two convex functions f : D → R and g : D → R. We assume that f is Lf -smooth on D (i.e., its
gradient is Lf -Lipschitz continuous) while g may be nonsmooth.

At first glance, the difference-of-convex (DC) structure may seem like a restriction for nonconvex
Frank-Wolfe (FW) methods; but the opposite is true. FW is primarily designed for smooth objectives
(Frank & Wolfe, 1956; Jaggi, 2013). Since any smooth function can be expressed as a DC decom-
position, our problem template encompasses the minimization of nonconvex smooth functions and
extends beyond.

The significance of problem (1) lies in its generality. DC functions form a vector space and constitute
a rich subclass of locally Lipschitz nonconvex functions, a class that has received significant atten-
tion (Zhang et al., 2020; Kong & Lewis, 2023; Davis et al., 2022). As a result, this problem class
has broad applications, including nonconvex quadratic problems (An & Tao, 1997, 1998), convex-
concave programming (Yuille & Rangarajan, 2003; Shen et al., 2016), kernel selection (Argyriou
et al., 2006), bilevel programming (Hoai An et al., 2009), linear contextual optimization (Bennouna
et al., 2024), discrepancy estimation in domain adaptation (Awasthi et al., 2024a), determinantal point
processes (Mariet & Sra, 2015), and robustness of neural networks (Awasthi et al., 2024b). We refer
to (Le Thi & Pham Dinh, 2018) for a recent survey on the history, development, and applications of
DC programming.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Our goal in this paper is to develop a flexible projection-free algorithmic framework that preserves
the scalability advantages of FW while leveraging the DC structure of the problem. Since DC
decompositions are not unique, carefully selecting a decomposition allows us to derive algorithms
tailored to address practical limitations in specific problem settings, ultimately leading to improved
computational efficiency and better local solutions.

1.1 Summary of Contributions
With this background, let us summarize the key contributions of this paper.

1. We design and investigate the convergence behavior of a general projection-free algorithmic
framework, which we call Frank-Wolfe for Difference of Convex problems (DC-FW). This
framework builds on the general template of DC Algorithm (DCA) (Tao & Souad, 1986) and
employs FW to solve its subproblems. We show that DC-FW finds an ϵ-suboptimal first-order
stationary point in O(ϵ−2) FW steps, matching the complexity of standard FW for smooth
nonconvex minimization (Lacoste-Julien, 2016).

2. DC decomposition for any given function ϕ is not unique, and applying DC-FW to different
decompositions of the same objective function yields different algorithms. We focus on the general
template of L-smooth nonconvex minimization over a convex and compact set and examine two
natural DC decompositions. The first setting leads to a new nonconvex variant of the conditional
gradient sliding algorithm (Lan & Zhou, 2016), which reduces gradient computations by reusing
the same gradient over multiple FW steps. As a result, the gradient complexity improves from
O(ϵ−2) to O(ϵ−1), making it effective for problems where gradient computation is expensive.
Moreover, when the problem domain is strongly convex, the linear minimization oracle complexity
also improves, from O(ϵ−2) to O(ϵ−3/2). The second setting yields an algorithm that follows an
inexact proximal point method.

3. Finally, we evaluate the empirical performance of the proposed framework through numerical
experiments, comparing it with other FW algorithms on quadratic assignment problems and the
alignment of partially observed embeddings.

2 Related Work
This section presents related work and background on DC programming and projection-free methods.

2.1 DC Algorithm
Many problems in nonconvex optimization can be formulated as a DC program. A widely used
approach for solving these problems is the DC Algorithm (DCA), a general framework originally
introduced by (Tao & Souad, 1986). DCA has been broadly acknowledged over the past three decades
for its wide range of applications. For a comprehensive survey on its variants and applications, we
refer to (Le Thi & Pham Dinh, 2018).

The asymptotic convergence theory of DCA was introduced in (Tao, 1997), with a simplified analysis
under certain differentiability assumptions later provided in (Lanckriet & Sriperumbudur, 2009). More
recently, a non-asymptotic convergence rate of O(1/k) was established by (Khamaru & Wainwright,
2019; Yurtsever & Sra, 2022; Abbaszadehpeivasti et al., 2023).

2.2 Projection-free Methods
In many applications, optimization problems are subject to constraints that impose limits on solutions
or act as a form of regularization. When the constraint set D admits an efficient projection operator,
projected gradient methods can be used to solve these problems. However, the projection step can be
computationally expensive in many applications. In such settings, projection-free methods, such as
the FW algorithm, can offer significant computational advantages.

2.2.1 Frank-Wolfe Algorithm
FW was originally proposed by (Frank & Wolfe, 1956) for solving smooth convex minimization
problems with polyhedral domain constraints. Its analysis was later extended to arbitrary convex
compact sets (Levitin & Polyak, 1966). The algorithm gained recognition for its simple structure and
computational efficiency in data science and classical machine learning problems (Jaggi, 2013). The
analysis of FW for nonconvex functions was first introduced in (Lacoste-Julien, 2016). Extensions of
FW, such as stochastic and block-coordinate versions, as well as variants incorporating away steps,

2

pairwise steps, and in-face steps for faster convergence, have been extensively studied in the literature.
For a comprehensive overview of these developments, we refer to (Kerdreux, 2020).

Khamaru & Wainwright (2019) studied an adaptation of the standard FW algorithm for DC problems,
by replacing the gradient in FW with the difference ∇f(x) − u, for some subgradient u ∈ ∂g(x).
They showed that this method finds an ϵ-suboptimal critical point within O(1/ϵ2) iterations. More
recently, Millán et al. (2023) studied the same algorithm with a backtracking line-search strategy. For
general DC problems, the method with this line-search strategy retains the same complexity guarantee
of O(1/ϵ2). However, it achieves a faster rate of O(1/ϵ) for a specific class of DC problems where
the objective function ϕ is weakly-star convex, which means that for every point x ∈ D, there exists
a global optimal point x⋆ such that ϕ is convex on the line segment between x and x⋆.

2.2.2 Conditional Gradient Sliding
Lan & Zhou (2016) proposed Conditional Gradient Sliding (CGS) for the constrained minimization
of a convex and smooth function. Rather than solving the problem directly with the FW algorithm,
CGS formulates an inexact accelerated projected gradient method and employs FW to solve the
projection subproblems. While this approach maintains a total of O(1/ϵ) FW steps, which matches
the complexity of FW for convex minimization, CGS improves the gradient oracle complexity to
O(1/

√
ϵ), as the gradient remains unchanged within each projection subproblem. Qu et al. (2018)

analyzed the convergence of CGS in the nonconvex setting and proved that it requires O(1/ϵ2) FW
step and O(1/ϵ) gradient evaluations to reach an ϵ-suboptimal stationary point with respect to the
squared norm of the gradient mapping.

3 Frank-Wolfe for DC Functions
We are now ready to outline the design of our method, which is based on a general class of algorithms
for DC problems called the DC Algorithm (DCA). Starting from a feasible initial point x0 ∈ D, DCA
iteratively updates its estimation by solving the following subproblem:

xt+1 = argmin
x∈D

ϕ̂t(x) := f(x)− g(xt)− ⟨ut, x− xt⟩, (2)

where ut ∈ ∂g(xt) is an arbitrary subgradient of g at xt Namely, at each iteration, DCA considers a
convex surrogate function ϕ̂t(x) obtained by linearizing the concave component around xt.

Definition 1. We measure convergence in terms of the following gap definition:

gapDC(xt) := max
x∈D

min
u∈∂g(xt)

{
f(xt)− f(x)− ⟨u, xt − x⟩

}
.

When g is differentiable, the subdifferential becomes a singleton, ∂g(xt) = {∇g(xt)}, and the gap
measure simplifies to gapDC(xt) = maxx∈D{f(xt)− f(x)− ⟨∇g(xt), xt − x⟩}.

Lemma 1. The measure gapDC(xt) is nonnegative for any xt ∈ D, and it is equal to zero if and only
if xt is a critical point satisfying

(∇f(xt) +ND(xt)) ∩ ∂g(xt) ̸= ∅, (3)

where ND(xt) is the normal cone of D at xt.

Moreover, if g is differentiable (but not necessarily smooth, i.e., its gradients may not be Lipschitz
continuous), then the condition (3) reduces to the characterization of a first-order stationary point.
In other words, under the assumption that g is differentiable, gapDC(xt) = 0 if and only if xt is a
first-order stationary point of problem (1).

The following theorem provides convergence guarantees for DCA. Since DCA subproblems may
not generally admit a closed-form solution, it is desirable to allow inexact solutions to the DCA
subproblem. The theorem ensures that, even when the subproblems are solved inexactly, the method
converges to a stationary point (or to a critical point when g is non-differentiable).

Theorem 2. Suppose that the sequence xt is generated by an inexact-DCA algorithm designed to solve
the subproblems described in (2) approximately, satisfying the inequality ϕ̂t(xt+1)−min

x∈D
ϕ̂t(x) ≤ ϵ/2

for some ϵ > 0. Then, the following bound holds:

min
0≤τ≤t

gapDC(xτ) ≤
ϕ(x0)− ϕ(x⋆)

t+ 1
+

ϵ

2
. (4)

3

Algorithm 1 DC-FW

1: Input: initial point x1 ∈ D, target accuracy ϵ > 0
2: for t = 1, 2, . . . do
3: Initialize Xt,1 = xt

4: for k = 1, 2, . . . do
5: St,k = argminx∈D ⟨∇f(Xt,k)−∇g(xt), x⟩
6: Dt,k = St,k −Xt,k

7: if −⟨∇f(Xt,k)−∇g(xt), Dt,k⟩ ≤ ϵ/2 then
8: set xt+1 = Xt,k and break
9: end if

10: Xt,k+1 = Xt,k + ηt,k Dt,k // use ηt,k = 2/(k + 1), or the strategies in (5) or (6)
11: end for
12: end for

Note that the subproblem (2) involves smooth convex minimization over a convex compact set,
making it suitable for the FW algorithm:

sk = argmin
x∈D

⟨∇ϕ̂(xk), x⟩

xk+1 = xk + ηk(sk − xk),
(FW)

where ηk ∈ [0, 1] is the step-size. There are various step-size strategies in the literature, common
choices are ηk = 2/(k + 1), the exact line-search

ηk = argmin
η∈[0,1]

ϕ̂
(
xk + η(sk − xk)

)
, (5)

and the Dem’yanov & Rubinov (1970) step-size

ηk = min
{ ⟨∇ϕ̂(xk), xk − sk⟩

L∥xk − sk∥2
, 1
}
. (6)

The following result from (Jaggi, 2013) formulates the convergence result for solving these subprob-
lems using the FW algorithm.

Lemma 3 (Theorem 1 in (Jaggi, 2013)). Suppose ϕ̂ is a proper, convex, and L-smooth function.
Consider the problem of minimizing ϕ̂ over a convex and compact set D of diameter D. Then, the
sequence {xk} generated by the FW algorithm satisfies

ϕ̂(xk)− ϕ̂(x) ≤ 2LD2

k + 1
, ∀x ∈ D.

This result holds for ηk = 2/(k + 1), the line-search, and the Demyanov-Rubinov step-size.

We are now ready to incorporate DCA and FW algorithms, resulting in a projection-free approach
for solving DC problems. The proposed algorithm, DC-FW, applies the inexact-DCA method and
employs the FW algorithm to solve the subproblems in (2), as detailed in Algorithm 1.

Corollary 4. DC-FW generates a sequence of solutions that satisfies min0≤τ≤t gapDC(xτ) ≤ ϵ
within O(1/ϵ) iterations, requiring at most O(1/ϵ2) calls to the linear minimization oracle.

Improvements for Strongly Convex Sets
Given a DC function ϕ(x) = f(x) − g(x), we can always express ϕ as a difference of strongly
convex functions by adding the same quadratic term to both f and g. In this case, subproblem (2)
becomes strongly convex, raising a natural question of whether this strong convexity can be exploited.
Unfortunately, the FW algorithm generally does not benefit from strong convexity, as worst-case
complexity examples also involve strongly convex objective functions (see Lemma 3 in (Jaggi, 2013)).
However, if the constraint set D is also strongly convex, FW achieves a faster convergence rate of
O(1/k2), as shown by Garber & Hazan (2015).

4

Definition 2. A set D ⊆ Rd is said to be α-strongly convex with respect to a norm ∥ · ∥ if, for all
x, y ∈ D, all η ∈ [0, 1], and all z ∈ Rd with ∥z∥ ≤ 1, the following inclusion holds:

x+ η(y − x) + η(1− η)
α

2
∥x− y∥2z ∈ D.

In other words, D is α-strongly convex if, for all x, y ∈ D and η ∈ [0, 1], it contains a ball of radius
η(1−η)α2 ∥x−y∥2 centered at x+η(y−x). Examples of strongly convex sets include the epigraphs
of strongly convex functions, as well as ℓp-norm balls and Schatten p-norm balls for 1 < p ≤ 2; see
(Garber & Hazan, 2015) for details.

Lemma 5 (Theorem 2 in (Garber & Hazan, 2015)). Suppose ϕ̂ is a proper, lower semi-continuous,
µ-strongly convex and L-smooth function. Consider the problem of minimizing ϕ̂ over an α-strongly
convex and compact set D of diameter D. Then, the sequence {xk} generated by the FW algorithm
satisfies

ϕ̂(xk)− ϕ̂(x) ≤ 1

(k + 1)2
max

{9LD2

2
,
482L2

α2µ

}
, ∀x ∈ D.

This result holds with the line-search or the Demyanov-Rubinov step-size.

Corollary 6. Consider the DC problem in (1), and assume that f is a strongly convex function and
D is a strongly convex set. Then, the DC-FW algorithm generates a sequence of solutions satisfying
min0≤τ≤t gapDC(xτ) ≤ ϵ within O(1/ϵ) iterations, requiring at most O(1/ϵ3/2) calls to the linear
minimization oracle.

Remark 7 (Comparison with (Khamaru & Wainwright, 2019; Millán et al., 2023)). In contrast to
our work, these methods do not fully exploit the DC structure of the underlying problem, but rather
focus on the classical FW algorithm. While they achieve similar iteration complexity guarantees
for the gradient oracle (∇f) and the linear minimization oracle of order O(1/ϵ2), DC-FW benefits
from an improved subgradient oracle (u ∈ ∂g) complexity of O(1/ϵ). Moreover, if D is a strongly
convex set, our complexity guarantees for both the gradient and linear minimization oracles improve
to O(1/ϵ3/2). Notably, while the linear minimization is typically the primary computational cost in
many FW applications within the convex setting, the subgradient computation can also present a
significant challenge in DC problems. Additionally, the method proposed by Millán et al. (2023)
adopts an iterative line-search strategy that requires function evaluations of ϕ, incurring an additional
computational cost. We evaluate the empirical performance of DC-FW against these methods on a
partially observed embedding alignment problem in Section 6.2, demonstrating its effectiveness.

4 Special Cases for Smooth Optimization
A particular problem setting for the standard FW algorithm is the minimization of a smooth nonconvex
objective function over compact convex set (Lacoste-Julien, 2016):

min
x∈D

ϕ(x) (7)

where D ⊆ Rd is a convex and compact set and ϕ : D → R is a nonconvex L-smooth function.
Due to smoothness, both ϕ(x) + L

2 ∥x∥
2 and ϕ(x)− L

2 ∥x∥
2 are convex, providing two natural DC

decompositions of the objective function, leading to two different algorithms.

4.1 Conditional Gradient Sliding
One possible DC decomposition of Problem (7) is:

f(x) =
L

2
∥x∥2, g(x) =

L

2
∥x∥2 − ϕ(x). (8)

When DCA is applied to this formulation with exact solutions to the subproblems, it recovers the
projected gradient method. Specifically, subproblem (2) becomes:

min
x∈D

L

2
∥x∥2 − ⟨Lxt −∇ϕ(xt), x⟩. (9)

In other words, DC-FW applied to this formulation simplifies to an inexact projected gradient method,
where FW is used to approximately solve the subproblems. This naturally leads to a nonconvex
variant of the conditional gradient sliding algorithm.

5

Remark 8. In this setting, the line-search rule (5) is equal to the Demyanov-Rubinov step-size (6).

Theorem 9. Consider the problem of minimizing an L-smooth (possibly nonconvex) objective
function ϕ over a convex and compact set D. Suppose we apply DC-FW using the DC decomposition
in (8). Then, the sequence {xt} generated by the algorithm satisfies

min
0≤τ≤t

gapDC(xτ) ≤
ϕ(x0)− ϕ(x⋆)

t+ 1
+

ϵ

2
, (10)

and the inner loop terminates after at most K ≤ 4LD2/ϵ iterations. As a consequence, the method
provably finds an ϵ-suboptimal stationary point after O(1/ϵ) gradient evaluations and O(1/ϵ2)
linear minimization oracle calls. Moreover, if D is a strongly convex set, the linear minimization
oracle complexity improves to O(1/ϵ3/2), provided that the Demyanov-Rubinov step-size is used.

Lemma 10. When applied to the decomposition in (8), gapDC provides an upper bound on the widely
used projected gradient mapping (PGM) measure:

gapDC(xt) ≥ gapLPGM(xt) :=
L

2

∥∥xt − projD
(
xt − 1

L∇ϕ(xt)
)∥∥2.

Remark 11 (Comparison with (Qu et al., 2018)). Our gradient and linear minimization oracle
complexities match those established by Qu et al. (2018) for the standard conditional gradient sliding
algorithm in the nonconvex setting. However, when adapting the method from the original work of
Lan & Zhou (2016), they also inherited the momentum steps. These steps appear redundant in the
nonconvex setting in terms of complexity guarantees and complicate the analysis. Our framework
simplifies both the method and the analysis while strengthening the guarantees by reducing the
constant from 24(ϕ(x0) − ϕ(x⋆)) to (ϕ(x0) − ϕ(x⋆)), and deriving guarantees in terms of the
stronger notion of gapDC instead of gapPGM. Notably, while Qu et al. (2018) derived guarantees
based on the gradient mapping norm instead of the standard Frank-Wolfe gap, they explicitly noted
that understanding the precise relationship between these convergence criteria was an important
direction for future research. We established a clear connection between these convergence criteria.

4.2 Proximal Point Frank-Wolfe
Alternatively, we consider the decomposition:

f(x) = ϕ(x) +
L

2
∥x∥2, g(x) =

L

2
∥x∥2. (11)

In this setting, subproblem (2) simplifies to

min
x∈D

ϕ(x) +
L

2
∥x∥2 − ⟨Lxt, x⟩.

As a result, this decomposition leads to an inexact proximal point algorithm where FW is used to
approximately solve the subproblems.

Theorem 12. Consider the problem of minimizing an L-smooth (possibly nonconvex) objective
function ϕ over a convex and compact set D. Suppose we apply DC-FW using the DC decomposition
in (11). Then, the sequence {xt} generated by the algorithm satisfies the bound in (10). In particular,
the method finds an ϵ-suboptimal stationary point after O(1/ϵ) iterations. This leads to O(1/ϵ2)
gradient evaluations and linear minimization oracle calls.

Lemma 13. When applied to the decomposition in (11), gapDC provides an upper bound on the
widely used proximal point mapping (PPM) measure:

gapDC(xt) ≥ gapLPPM(xt) :=
L

2

∥∥xt − prox 1
Lϕ(xt)

∥∥2.
On the role of the decomposition. It is important to note that gapDC is decomposition-dependent.
The choice of DC decomposition determines the notion of stationarity captured by the gap function.
Consequently, it allows one to trade off computational efficiency against the strength of the stationarity
notion achieved. Recall from Definition 1 that gapDC retains the convex component f while linearizing
the concave part −g, effectively discarding higher-order information in g. To illustrate this effect,
consider the smooth nonconvex function ϕ(x) = sin(πx1) cos(πx2) over the domain [−1, 1]2 with

6

Level curves of sin(:x1)cos(:x2)

-1 -0.5 0 0.5 1

x1

-1

-0.5

0

0.5

1

x
2

-1

-0.5

0

0.5

gapL
PGM (x1; x2)

-1 -0.5 0 0.5 1

x1

-1

-0.5

0

0.5

1

x
2

0

0.1

0.2

0.3

0.4

0.5
gapL

PPM (x1; x2)

-1 -0.5 0 0.5 1

x1

-1

-0.5

0

0.5

1

x
2

0

0.1

0.2

0.3

0.4

0.5

Figure 1: Comparison of the DC gap function for different decompositions of ϕ(x1, x2) =
sin(πx1) cos(πx2) on the domain [−1, 1]2. [Left] Level curves of ϕ. [Middle] gapLPGM, corre-
sponding to the decomposition in Section 4.1, which linearizes ϕ and therefore does not distinguish
between local minima, saddle points, and local maxima. [Right] gapLPPM, corresponding to the
decomposition in Section 4.2, which retains curvature information in ϕ; it is flatter around local
minima and sharper around saddle points and local maxima.

L = π2. We evaluate both gapLPGM and gapLPPM over a fine grid on the domain. The results, shown in
Figure 1, reveal that while gapLPGM behaves similarly across all stationary points (whether they are
local minima, saddle points, and local maxima), gapLPPM distinguishes between them: it is flatter near
the local minimum but sharper near the saddle and local maximum. This difference arises because
gapLPPM retains the curvature of ϕ within f , whereas gapLPGM linearizes it away.

5 Special Cases for Nonsmooth Optimization
We now extend the discussion to a class of nonsmooth problems that fit into the proposed framework.

5.1 Conditional Subgradient Sliding
Consider an objective function ϕ : D → R, which may be nonsmooth and nonconvex, but whose neg-
ative is ω-weakly convex; that is, −ϕ(x) + ω

2 ∥x∥
2 is convex. Then the following DC decomposition

is valid:
f(x) =

ω

2
∥x∥2, g(x) =

ω

2
∥x∥2 − ϕ(x).

Unlike in Section 4.1, ϕ is not required to be smooth (or even continuously differentiable), it suffices
that a subgradient of g (equivalently, of −ϕ) can be computed. Under this formulation, DC-FW
naturally extends the conditional gradient sliding method to the nonsmooth setting. The result in
Theorem 9 continues to hold in this setting after replacing the smoothness constant L with the weak
convexity constant ω, and gradient evaluations with subgradient evaluations.

A notable subclass arises when ϕ admits the composite form

ϕ(x) = p(x)− q(x), (12)

where p is ω-smooth (possibly nonconvex) and q is convex (possibly nonsmooth). In this case, −ϕ
is ω-weakly convex and g admits a well-defined subgradient. Applying DC-FW to this formulation
economizes on both gradient evaluations of p and subgradient computations of q. As an example, the
alignment problem of partially observed embeddings presented in Section 6.2 belongs to this class,
characterized by a convex smooth loss term and concave nonsmooth regularizers.

5.2 Proximal Subgradient Frank-Wolfe
Consider the composite objective in (12), but using the following DC decomposition:

f(x) = p(x) +
ω

2
∥x∥2, g(x) =

ω

2
∥x∥2 + q(x).

This is a valid decomposition for DC-FW, since both f and g are convex, and f is 2ω-smooth.
The resulting algorithm can be interpreted as an inexact proximal subgradient method with FW for
solving each subproblem approximately. Similar to the result in Theorem 12, the method attains an
ϵ-suboptimal stationary point after O(1/ϵ) iterations. However, this requires O(1/ϵ) subgradient
evaluations of q, and O(1/ϵ2) gradient evaluations of p and linear minimization oracle calls.

7

6 Numerical Experiments
In this section, we numerically evaluate DC-FW on solving the quadratic assignment problem (QAP)
and alignment of partially observed embeddings. Simulations were run on a single core of an Intel
Xeon Gold 6132 processor using MATLAB 2021a.

6.1 Quadratic Assignment Problem
The goal in QAP is to find a permutation that optimally aligns two matrices A and B ∈ Rn×n. This
amounts to minimizing a nonconvex quadratic objective function over the set of permutation matrices,
an NP-Hard combinatorial optimization problem. A promising approach to approximate QAP is to
use the following convex-hull relaxation (Vogelstein et al., 2015):

min
X∈Rn×n

⟨A⊤X,XB⟩ subj.to X ∈ [0, 1]n×n, X1n = X⊤1n = 1n, (13)

where 1n denotes the n-dimensional vector of ones. The feasible set in this problem, known as the
Birkhoff polytope, is the convex hull of permutation matrices. In general, this relaxation is still
nonconvex due the quadratic objective function. The relax-and-round strategy of Vogelstein et al.
(2015) involves two main steps: Finding a local optimal solution of (13) and rounding it to the closest
permutation matrix.

Projecting a matrix onto the Birkhoff polytope is computationally expensive. Therefore, Vogelstein
et al. (2015) employs the FW algorithm for solving (13). The linear minimization oracle for this
problem corresponds to solving linear assignment problem (LAP), which can be solved O(n3)
arithmetic operations by using the Hungarian method or the Jonker-Volgenant algorithm (Kuhn, 1955;
Munkres, 1957; Jonker & Volgenant, 1987). After finding a solution to the relaxed problem (13), we
can round it to the closest permutation matrix (in Frobenius norm) also by solving a LAP.

DC-FW for solving QAP. We consider the decomposition ϕ(X) = f(X) − g(X) with the
components

f(X) =
1

4
∥A⊤X +XB∥2F , g(X) =

1

4
∥A⊤X −XB∥2F . (14)

While other decompositions, such as those in (8) and (11) are also possible, here we show the
results for (14) which performed the best. The numerical results for other decompositions and the
non-convex CGS method (Qu et al., 2018) are given in Appendix B.

Evaluation metric. To compare the solutions of DC-FW and FW (as used in (Vogelstein et al.,
2015)), we evaluate the assignment error from rounded permutation matrices:

assignment error =
ϕ(X̂τ)− ϕ(X̂best)

max{ϕ(X̂best), 1}
, (AE)

where X̂best denotes the best known solution to QAP, which is available for the QAPLIB benchmark
datasets (Burkard et al., 1997).

Implementation details. All methods start from the same initial point, obtained by projecting the
sum of a normalized matrix of ones and an i.i.d. standard Gaussian random matrix onto the Birkhoff
polytope. This projection is performed using 103 iterations of the alternating projections method. We
compute the gap at the initial point, denoted as ϵ0, and terminate the algorithms once the gap reaches
0.001× ϵ0. Additionally, we impose a maximum iteration limit of 108. For both DC-FW and FW, we
used the exact line-search method for step-size selection, see Appendix B for more details. The inner
loop for DC-FW terminates with respect to a specific tolerance level ϵ. We employed an adaptive
strategy where the tolerance ϵt is updated dynamically. We fixed a multiplication parameter β = 0.8,
and initially we set ϵ1 = β × ϵ0. Then, at each iteration t, we update the tolerance as follows: if the
gap falls below ϵt, we decrease the tolerance by setting ϵt+1 = βϵt. Otherwise, we keep it unchanged,
ϵt+1 = ϵt. Further details and discussion on this strategy are provided in Appendix D.

Results. Figure 2 demonstrate the superior performance of DC-FW over the FW method on 73
out of 134 datasets in terms of the assignment error. In 18 cases, both methods produced equal
errors, while FW achieved a lower error on 43 datasets. Moreover, DC-FW achieved a lower average
assignment error (0.0085) compared to FW (0.0112).

8

Figure 2: Assignment error of FW and DC-FW for solving QAP using relax-and-round strategy. Zero
shows an exact solution. The instances are ordered from best to worst performance of FW. In total,
134 datasets from QAPLIB were used: DC-FW outperformed FW in 73 cases, FW performed better
in 43 cases, and both methods achieved the same assignment error in 18 cases.

6.2 Alignment of Partially Observed Embeddings
We consider a cross-lingual word embedding alignment problem, where the goal is to align the
source embedding matrix (E1 ∈ Rd×n) with the target embedding matrix (E2 ∈ Rd×n) using an
orthogonal transformation matrix X ∈ Rd×d. When the embedding matrices are fully available, this
problem can be efficiently solved using the Procrustes algorithm (Xing et al., 2015; Conneau et al.,
2017). Here, we consider a more challenging setting where the target embedding is partially observed.
In this scenario, we are given a measurement mask P ∈ {0, 1}d×n and the partial observations
Y = P ⊙ E2 ∈ Rd×n, where ⊙ denotes the Hadamard product. Our goal is to find an orthogonal
transformation that minimizes the mean squared loss. We consider the following objective with a
nonconvex regularizer that promotes orthogonality:

min
X∈Rd×d

1

2n
∥P ⊙ (XE1)− Y ∥2F − λ∥X∥∗ subj.to ∥X∥ ≤ 1. (15)

Here, the spectral norm constraint ensures that the singular values of X are bounded by 1, and the
negative nuclear norm regularization encourages them to approach this limit, promoting orthogonality.

We compare the performance of DC-FW with other FW variants for DC problems as described in
(Khamaru & Wainwright, 2019) and (Millán et al., 2023), which we denote by FW-K and FW-M
respectively. A subgradient of nuclear norm can be found as UV ⊤, where U and V are the left
and right singular vector matrices. Similarly, a linear minimization oracle over the spectral norm
can be obtained as −UV ⊤. Additionally, FW-M requires evaluating the objective function during
its line-search, which involves calculating the nuclear norm, which has a similar cost (i.e., SVD
computation). While we implemented the oracles using full SVD computations in this experiment, the
approximation UV ⊤ can be obtained using a few iterations of the Newton-Schulz method (Bernstein
& Newhouse, 2024) in large-scale implementations. However, it is worth noting that implementing
FW-M with inexact oracles can be challenging, as the backtracking line-search procedure may enter
an infinite loop when the objective evaluations are inaccurate.

9

Figure 3: FW gap evolution as a function of the iteration counter (left), the number of SVD computa-
tions (middle), and the wall clock time (right) for the alignment of partially observed embeddings.
In 104 iterations, FW-K and FW-M called the subgradient and linear minimization oracles 104

times each; FW-M performed an additional 19, 990 function evaluations during the backtracking
line-search; DC-FW called the linear minimization 104 times and the subgradient 88 times.

We use the 300-dimensional English and French word embeddings from the FastText library (Bo-
janowski et al., 2017) as the source and target embeddings, selecting the 10,000 most common
words from each dictionary. We model partial observations by assuming that each entry in the target
embedding is independently observed with a probability of 0.1. We choose regularization parameter
λ = 10−4. All algorithms are initialized at the origin. Figure 3 presents the results of this experiment.
Both FW-M and DC-FW outperform FW-K. While the iteration convergence rates of FW-M and
DC-FW appear similar, the iterations of FW-M are more expensive because they require computing
the subgradient at every iteration and evaluating the objective function within the backtracking
line-search procedure. FW-M also appears to oscillate more.

To evaluate the quality of the obtained solution, we use the baseline alignment quality computed
by assuming that E2 is fully available and solving the problem via the Procrustes algorithm. After
rounding our solutions to the closest orthogonal matrix, we compare the achieved alignment quality
with the baseline. Our formulation and method achieves 93.11% of the original alignment quality
despite observing only 10% of the target embedding, demonstrating that the formulation is effective
even under partial observations.

7 Conclusions
We studied the DC-FW framework, which integrates DCA with the FW algorithm. We established
that DC-FW retains the same oracle complexity for linear minimization steps as standard FW in
nonconvex optimization. However, by carefully selecting the DC decomposition, DC-FW can adapt
to the underlying problem geometry in different ways, offering a flexible approach for a variety
of problem settings. We examined two natural DC decompositions within the standard smooth
minimization template. One decomposition, in particular, led to an algorithm that reduces gradient
computations, improving the gradient complexity from O(ϵ−2) to O(ϵ−1). Additionally, when the
problem domain is strongly convex, this approach improves the linear minimization oracle complexity
to O(ϵ−3/2). Through numerical experiments on quadratic assignment problem and alignment of
partially observed embeddings, we demonstrated the effectiveness of DC-FW in comparison to
the standard FW approach. After the initial submission of this paper, Pokutta (2025) presented an
extensive computational study that builds upon our framework, combining our approach with some
advanced FW variants (for example, with blended pairwise steps (Tsuji et al., 2022)). Their results
provide complementary evidence for the scalability and efficiency of the proposed approach.

Our findings provide a concrete example where a simple but deliberate manipulation of the DC
decomposition enables a better algorithm, and calls for a wider future study. The simplicity of
our analysis in achieving these results shows the potential of problem reformulations within the
DC framework. Rather than relying on intricate analytical techniques, we overcome technical
challenges through carefully chosen problem reformulations. Our work also suggests noteworthy
future directions. Extending the analysis of DC-FW to stochastic settings and making it more
compatible with modern machine learning practices, remains a crucial next step. Another potential
avenue is to develop adaptive DC decompositions that dynamically adjust to the problem’s geometry.

10

Acknowledgments and Disclosure of Funding
Hoomaan Maskan, Yikun Hou, and Alp Yurtsever were supported by the Wallenberg AI, Autonomous
Systems, and Software Program (WASP), funded by the Knut and Alice Wallenberg Foundation.
Suvrit Sra acknowledges generous support from the Alexander von Humboldt Foundation. Part of
the computations was conducted using resources from the High Performance Computing Center
North (HPC2N) and were enabled by the National Academic Infrastructure for Supercomputing in
Sweden (NAISS), partially funded by the Swedish Research Council under grant no. 2022-06725.
The remaining computations were performed on the Berzelius resource, provided by the Knut and
Alice Wallenberg Foundation at the National Supercomputer Centre. We thank Ahmet Alacaoglu and
Yura Malitsky for insightful discussions on the relationships between different gap functions.

References
Abbaszadehpeivasti, H., de Klerk, E., and Zamani, M. On the rate of convergence of the difference-of-convex

algorithm (DCA). Journal of Optimization Theory and Applications, pp. 1–22, 2023.

Alfaro, C. A., Perez, S. L., Valencia, C. E., and Vargas, M. C. The assignment problem revisited. Optimization
Letters, 16(5):1531–1548, 2022.

An, L. T. H. and Tao, P. D. Solving a class of linearly constrained indefinite quadratic problems by DC algorithms.
Journal of global optimization, 11:253–285, 1997.

An, L. T. H. and Tao, P. D. A branch and bound method via DC optimization algorithms and ellipsoidal technique
for box constrained nonconvex quadratic problems. Journal of Global Optimization, 13(2):171–206, 1998.

Argyriou, A., Hauser, R., Micchelli, C. A., and Pontil, M. A DC-programming algorithm for kernel selection. In
Proceedings of the 23rd international conference on Machine learning, pp. 41–48, 2006.

Awasthi, P., Cortes, C., and Mohri, M. Best-effort adaptation. Annals of Mathematics and Artificial Intelligence,
pp. 1–46, 2024a.

Awasthi, P., Mao, A., Mohri, M., and Zhong, Y. DC-programming for neural network optimizations. Journal of
Global Optimization, pp. 1–17, 2024b.

Bennouna, O., Zhang, J., Amin, S., and Ozdaglar, A. Addressing misspecification in contextual optimization.
arXiv preprint arXiv:2409.10479, 2024.

Bernstein, J. and Newhouse, L. Old optimizer, new norm: An anthology. arXiv preprint arXiv:2409.20325,
2024.

Bertsekas, D. P. Auction algorithms for network flow problems: A tutorial introduction. Computational
optimization and applications, 1:7–66, 1992.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics, 5:135–146, 2017. ISSN 2307-387X.

Burkard, R. E., Karisch, S. E., and Rendl, F. QAPLIB–a quadratic assignment problem library. Journal of
Global optimization, 10:391–403, 1997.

Combettes, C. W. and Pokutta, S. Complexity of linear minimization and projection on some sets. Operations
Research Letters, 49(4):565–571, 2021.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and Jégou, H. Word translation without parallel data. arXiv
preprint arXiv:1710.04087, 2017.

Davis, D., Drusvyatskiy, D., Lee, Y. T., Padmanabhan, S., and Ye, G. A gradient sampling method with
complexity guarantees for Lipschitz functions in high and low dimensions. Advances in neural information
processing systems, 35:6692–6703, 2022.

Dem’yanov, V. F. and Rubinov, A. M. Approximate methods in optimization problems. American Elsevier
Publishing Company, 1970.

Frank, M. and Wolfe, P. An algorithm for quadratic programming. Naval research logistics quarterly, 3(1-2):
95–110, 1956.

Garber, D. and Hazan, E. Faster rates for the Frank-Wolfe method over strongly-convex sets. In International
Conference on Machine Learning, pp. 541–549. PMLR, 2015.

Hoai An, L. T., Tao, P. D., Nguyen Canh, N., and Van Thoai, N. DC programming techniques for solving a class
of nonlinear bilevel programs. Journal of Global Optimization, 44:313–337, 2009.

Jaggi, M. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In International conference on
machine learning, pp. 427–435. PMLR, 2013.

11

Jonker, R. and Volgenant, A. A shortest augmenting path algorithm for dense and sparse linear assignment
problems. Computing, 38(4):325–340, 1987.

Kerdreux, T. Accelerating conditional gradient methods. PhD thesis, Université Paris sciences et lettres, 2020.

Khamaru, K. and Wainwright, M. J. Convergence guarantees for a class of non-convex and non-smooth
optimization problems. Journal of Machine Learning Research, 20(154):1–52, 2019.

Kong, S. and Lewis, A. The cost of nonconvexity in deterministic nonsmooth optimization. Mathematics of
Operations Research, 2023.

Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. 2009.

Kuhn, H. W. The Hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-2):
83–97, 1955.

Lacoste-Julien, S. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv preprint arXiv:1607.00345,
2016.

Lan, G. and Zhou, Y. Conditional gradient sliding for convex optimization. SIAM Journal on Optimization, 26
(2):1379–1409, 2016.

Lanckriet, G. and Sriperumbudur, B. K. On the convergence of the concave-convex procedure. Advances in
Neural Information Processing Systems, 22, 2009.

Le Thi, H. A. and Pham Dinh, T. DC programming and DCA: Thirty years of developments. Mathematical
Programming, 169(1):5–68, 2018.

Levitin, E. S. and Polyak, B. T. Constrained minimization methods. USSR Computational mathematics and
mathematical physics, 6(5):1–50, 1966.

Mariet, Z. and Sra, S. Fixed-point algorithms for learning determinantal point processes. In International
Conference on Machine Learning, pp. 2389–2397. PMLR, 2015.

Millán, R. D., Ferreira, O., and Ugon, J. Frank-Wolfe algorithm for DC optimization problem. arXiv preprint
arXiv:2308.16444, 2023.

Munkres, J. Algorithms for the assignment and transportation problems. Journal of the society for industrial
and applied mathematics, 5(1):32–38, 1957.

Pokutta, S. Scalable dc optimization via adaptive Frank-Wolfe algorithms. arXiv preprint arXiv:2507.17545,
2025.

Pokutta, S., Spiegel, C., and Zimmer, M. Deep neural network training with Frank-Wolfe. arXiv preprint
arXiv:2010.07243, 2020.

Qu, C., Li, Y., and Xu, H. Non-convex conditional gradient sliding. In international conference on machine
learning, pp. 4208–4217. PMLR, 2018.

Shen, X., Diamond, S., Gu, Y., and Boyd, S. Disciplined convex-concave programming. In 2016 IEEE 55th
conference on decision and control (CDC), pp. 1009–1014. IEEE, 2016.

Tan, M. and Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR, 2019.

Tao, P. D. Convex analysis approach to DC programming: theory, algorithms and applications. Acta mathematica
vietnamica, 22(1):289–355, 1997.

Tao, P. D. and Souad, E. B. Algorithms for solving a class of nonconvex optimization problems. Methods of
subgradients. In North-Holland Mathematics Studies, volume 129, pp. 249–271. Elsevier, 1986.

Tsuji, K. K., Tanaka, K., and Pokutta, S. Pairwise conditional gradients without swap steps and sparser kernel
herding. In International Conference on Machine Learning, pp. 21864–21883. PMLR, 2022.

Vogelstein, J. T., Conroy, J. M., Lyzinski, V., Podrazik, L. J., Kratzer, S. G., Harley, E. T., Fishkind, D. E.,
Vogelstein, R. J., and Priebe, C. E. Fast approximate quadratic programming for graph matching. PLOS one,
10(4):e0121002, 2015.

Xing, C., Wang, D., Liu, C., and Lin, Y. Normalized word embedding and orthogonal transform for bilingual
word translation. In Proceedings of the 2015 conference of the North American chapter of the association for
computational linguistics: human language technologies, pp. 1006–1011, 2015.

Yuille, A. L. and Rangarajan, A. The concave-convex procedure. Neural computation, 15(4):915–936, 2003.

Yurtsever, A. and Sra, S. CCCP is Frank-Wolfe in disguise. Advances in Neural Information Processing Systems,
35:35352–35364, 2022.

Zhang, J., Lin, H., Jegelka, S., Sra, S., and Jadbabaie, A. Complexity of finding stationary points of nonconvex
nonsmooth functions. In International Conference on Machine Learning, pp. 11173–11182. PMLR, 2020.

12

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Sections 3 and 4 propose the new algorithm and shows its convergence rate
in addition to the comparisons and simulation results which clearly reflect the paper’s
contribution and claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have mentioned some limitations in the numerical section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

13

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the theories in Sections 3 and 4 are comprehensively proved and all the
assumptions are given. We also checked the proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have clearly mentioned all the requirements to reproduce the experiments
and the claims of the paper. In addition, more detail to numerical results is given in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

14

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will disclose all the code used in our experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have mentioned all the detail of our experiments in addition to more
experiments and comparisons done in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Since the algorithm is deterministic and data is real, it is not relevant to include
the statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included all the detail about our computational resources in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

16

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: yes, we followed exactly the code of ethics provided by NeurIPS and remained
anonymous.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is theoretical and proposes a new algorithm and has no societical
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Since our paper is theoretical, it is not relevant to put any safeguard on the
theoretical results.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We made sure to include all the citations to the used datasets and resources in
the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code is original and we are the owners of the code which disclosed and
well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

18

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research is not related to crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

19

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Proofs and Technical Details
A.1 Proof of Lemma 1

Proof. The first statement is straightforward, since xt ∈ D, and choosing x = xt within the
maximization gives zero.

Suppose we have gapDC(xt) = 0. Then, there exists a subgradient u⋆
t ∈ ∂g(xt) such that

f(x)− f(xt)− ⟨u⋆
t , x− xt⟩ ≥ 0, ∀x ∈ D.

Consider x = xt + αd for an arbitrary feasible direction d and step-size α > 0. Then,

f(xt + αd)− f(xt)− ⟨u⋆
t , αd⟩ ≥ 0 ∀αd : xt + αd ∈ D.

Dividing by α and taking limit as α → 0+, we obtain

⟨∇f(xt), d⟩ − ⟨u⋆
t , d⟩ ≥ 0 ∀d : lim

α→0+
xt + αd ∈ D.

Since D is closed and convex, limα→0+ xt + αd ∈ D for any d = x − xt such that x ∈ D.
Consequently,

⟨∇f(xt)− u⋆
t , xt − x⟩ ≤ 0 ∀x ∈ D,

or, equivalently, u⋆
t −∇f(xt) ∈ ND(xt). Therefore, we have condition (3) satisfied.

Next, suppose condition (3) is satisfied. Then, there exists a subgradient u∗
t ∈ ∂g(xt) such that

u∗
t −∇f(xt) ∈ ND(xt), which means

⟨∇f(xt)− u∗
t , xt − x⟩ ≤ 0 ∀x ∈ D.

Since f is convex, it follows that

f(xt)− f(x)− ⟨u∗
t , xt − x⟩ ≤ 0 ∀x ∈ D.

Since this inequality holds for all x ∈ D, we can maximize the left-hand side over x ∈ D. Moreover,
since it holds for at least one subgradient u∗

t ∈ ∂g(xt), we can minimize over the subdifferential set:

min
u∈∂g(xt)

max
x∈D

{
f(xt)− f(x)− ⟨u, xt − x⟩

}
≤ 0.

By Von Neumann’s minimax theorem, we can exchange the order of min and max since (i) ∂g(xt)
and D are convex and compact sets; and (ii) the expression inside the braces is concave with respect
to x for any fixed u ∈ ∂g(xt), and convex (in fact, linear) with respect to u for any fixed x ∈ D.
After this change, we obtain gapDC(xt) ≤ 0. Since the gap measure is nonnegative by definition, we
conclude that gapDC(xt) = 0.

A.2 Proof of Theorem 2

Proof. By convexity of g, we have

f(xt+1)− g(xt+1) ≤ f(xt+1)− g(xt)− ⟨ut, xt+1 − xt⟩,
where ut ∈ ∂g(xt) is the subgradient used at iteration t of the algorithm. Then, by the update rule
(2), the following bound holds ∀x ∈ D:

f(xt+1)− g(xt+1) ≤ f(x)− g(xt)− ⟨ut, x− xt⟩+
ϵ

2
.

Then, we add f(xt) to both sides and rearrange as follows:

f(xt)− f(x)− ⟨ut, xt − x⟩ ≤
(
f(xt)− g(xt)

)
−
(
f(xt+1)− g(xt+1)

)
+

ϵ

2
.

Since this inequality holds for all x ∈ D, we can maximize the left-hand side over x ∈ D. Moreover,
since it holds for at least one subgradient u∗

t ∈ ∂g(xt), we can minimize over the subdifferential set:

min
u∈∂g(xt)

max
x∈D

{
f(xt)− f(x)− ⟨ut, xt − x⟩

}
≤

(
f(xt)− g(xt)

)
−
(
f(xt+1)− g(xt+1)

)
+

ϵ

2
.

By Von Neumann’s minimax theorem, we can exchange the order of min and max, and get

gapDC(xt) ≤
(
f(xt)− g(xt)

)
−

(
f(xt+1)− g(xt+1)

)
+

ϵ

2
.

Finally, we obtain (4) by taking the average of this inequality over t and noting that the minimum is
less than or equal to the average.

21

A.3 Proof of Corollary 4

Proof. The first results is an immediate consequence of Theorem 2. Moreover, by Lemma 3, the
condition for FW is achieved at most after K ≤ 4LD2/ϵ iterations. Therefore, the total number of
calls to the linear minimization oracle is bounded by tK ≤ O(1/ϵ2).

A.4 Proof of Corollary 6

Proof. The first results is an immediate consequence of Theorem 2. Moreover, by Lemma 5, the
condition for FW is achieved at most after K ≤ max{3

√
LD, 48

√
2L

α
√
µ }/

√
ϵ iterations. Therefore, the

total number of calls to the linear minimization oracle is bounded by tK ≤ O(1/ϵ3/2).

A.5 Proof of Theorem 9

Proof. The first results immediately follows from Theorem 2. By Lemma 3, the ϵ/2-accuracy for
FW is achieved at most after K ≤ 4LD2/ϵ iterations. Therefore, the total number of calls to the
linear minimization oracle is bounded by tK ≤ O(1/ϵ2).

When D is an strongly convex set, since (9) is a strongly convex problem with a strongly convex
compact constraint set, by Lemma 5, the ϵ/2-accuracy for FW is achieved at most after K ≤
max{3

√
LD, 48

√
2L

α
√
µ }/

√
ϵ iterations provided that Demyanov-Rubinov step-size is used. Therefore,

the total number of calls to the linear minimization oracle is bounded by tK ≤ O(1/ϵ3/2).

A.6 Proof of Lemma 10

Proof. If we substitute the terms in (8) into the definition of gapDC, we get

max
x∈D

{L

2
∥xt∥2 −

L

2
∥x∥2 − ⟨Lxt −∇ϕ(xt), xt − x⟩

}
= max

x∈D

{
⟨∇ϕ(xt), xt − x⟩ − L

2
∥x− xt∥2

}
= ⟨∇ϕ(xt), xt − x⋆

t ⟩ −
L

2
∥x⋆

t − xt∥2

where x⋆
t = projD(xt − 1

L∇ϕ(xt)). By the variational inequality characterization of projection, we
have

⟨xt −
1

L
∇ϕ(xt)− x⋆

t , x− x⋆
t ⟩ ≤ 0, ∀x ∈ D.

In particular, using this with x = xt, we get

L

2
∥xt − x⋆

t ∥2 ≤ ⟨∇ϕ(xt), xt − x⋆
t ⟩ −

L

2
∥x⋆

t − xt∥2 = gapDC(xt).

A.7 Proof of Theorem 12

Proof. The first results immediately follows from Theorem 2. Since the subproblems are convex, by
Lemma 3, the ϵ/2 accuracy for FW is achieved at most after K ≤ 4LD2/ϵ iterations. Therefore, the
total number of calls to the linear minimization oracle is bounded by tK ≤ O(1/ϵ2).

A.8 Proof of Lemma 13

Proof. Plugging the terms from (11) into the definition of gapDC gives

max
x∈D

{
ϕ(xt) +

L

2
∥xt∥2 − ϕ(x)− L

2
∥x∥2 − ⟨Lxt, xt − x⟩

}
= max

x∈D

{
ϕ(xt)− ϕ(x)− L

2
∥x− xt∥2

}
= ϕ(xt)− ϕ(x⋆

t)−
L

2
∥xt − x⋆

t ∥2

22

where x⋆
t = prox 1

Lϕ(xt). The variational inequality characterization of the proximal operator gives

⟨xt − x⋆
t , x− x⋆

t ⟩ ≤
1

L
ϕ(x)− 1

L
ϕ(x⋆

t), ∀x ∈ D.

In particular, applying this at x = xt, we obtain
L

2
∥xt − x⋆

t ∥2 ≤ ϕ(xt)− ϕ(x⋆
t)−

L

2
∥xt − x⋆

t ∥2 = gapDC(xt).

B Additional Details on the QAP Experiments
B.1 Exact Line-Search
Here, we derive the exact line-search step. We consider the decomposition ϕ(X) = f(X)− g(X)
with three different variants of components

f(X) =
1

4
∥A⊤X +XB∥2F g(X) =

1

4
∥A⊤X −XB∥2F . (variant 1)

f(x) =
L

2
∥X∥2F g(x) =

L

2
∥X∥2F − ⟨A⊤X,XB⟩. (variant 2)

f(x) = ⟨A⊤X,XB⟩+ L

2
∥X∥2F g(x) =

L

2
∥X∥2F (variant 3)

Variant 1
We can compute the gradients for f and g by

∇f(X) =
1

2

(
A(A⊤X +XB) + (A⊤X +XB)B⊤)

∇g(X) =
1

2

(
A(A⊤X −XB)− (A⊤X −XB)B⊤) .

For the line-search in (5), we get
d

dη
ϕ̂t(Xtk + ηDtk) =

d

dη
f(Xtk + ηDtk)−

d

dη
⟨∇g(Xt), Xtk + ηDtk −Xtk⟩

=
1

4

d

dη
∥(A⊤Xtk +XtkB) + η(A⊤Dtk +DtkB)∥2F − ⟨∇g(Xt), Dtk⟩

=
1

2
⟨A⊤Dtk +DtkB, (A⊤Xtk +XtkB) + η(A⊤Dtk +DtkB)⟩ − ⟨∇g(Xt), Dtk⟩

=
1

2
η∥A⊤Dtk +DtkB∥2F +

1

2
⟨A⊤Dtk +DtkB,A⊤Xtk +XtkB⟩ − ⟨∇g(Xt), Dtk⟩

Equating this to 0, we get

η =
2⟨∇g(Xt), Dtk⟩ − ⟨A⊤Dtk +DtkB,A⊤Xtk +XtkB⟩

∥A⊤Dtk +DtkB∥2F
.

Variant 2
We can solve (13) using DC-FW for

f(x) =
L

2
∥X∥2F , g(x) =

L

2
∥X∥2F − ⟨A⊤X,XB⟩, (16)

Now, the gradients for f and g become
∇f(X) = LX

∇g(X) = LX −A⊤XB⊤ −AXB.

Utilizing the gradients in line-search (5) we get
d

dη
ϕ̂t(Xtk + ηDtk) =

d

dη
f(Xtk + ηDtk)−

d

dη
⟨∇g(Xt), Xtk + ηDtk −Xtk⟩

= ⟨Dtk, L(Xtk + ηDtk))⟩ − ⟨∇g(Xt), Dtk⟩
Equating this to 0 gives

η =
⟨∇g(Xt), Dtk⟩ − L⟨Dtk, Xtk⟩

L∥Dtk∥2F
.

23

Variant 3
We can solve (13) using DC-FW for

f(x) = ⟨A⊤X,XB⟩+ L

2
∥X∥2F , g(x) =

L

2
∥X∥2F . (17)

Now, the gradients for f and g become

∇f(X) = A⊤XB⊤ +AXB + LX

∇g(X) = LX.

Utilizing the gradients in line-search (5) we get

d

dη
ϕ̂t(Xtk + ηDtk) =

d

dη
f(Xtk + ηDtk)−

d

dη
⟨∇g(Xt), Xtk + ηDtk −Xtk⟩

= ⟨Dtk, (A
⊤(Xtk + ηDtk))B

⊤ +A(Xtk + ηDtk))B + L(Xtk + ηDtk))⟩ − ⟨∇g(Xt), Dtk⟩
= ⟨Dtk, A

⊤XtkB
⊤ +AXtkB + LXtk + η(A⊤DtkB

⊤ +ADtkB + LDtk)⟩ − ⟨∇g(Xt), Dtk⟩

Equating this to 0 gives

η =
⟨∇g(Xt), Dtk⟩ − ⟨Dtk, A

⊤XtkB
⊤ +AXtkB + LXtk⟩

2⟨A⊤Dtk, DtkB⟩+ L∥Dtk∥2F

B.1.1 Numerical Results
We have conducted additional experiments to emphasize the superiority of DC-FW in finding better
stationary solutions. We denote DC-FW (var 2) as in (16) and DC-FW (var 2) as in (17).

Further, we implemented the Non-convex CGS as explained in the (Qu et al., 2018). According to
the original work, if the CGS is called T times, then the inner loop requires an accuracy of O(1/T)
for the subproblems. This, however, takes a very long time. Therefore, we used a similar technique to
the DC-FW implementation to both improve the accuracy and the speed of Non-convex CGS.

For all the methods similar stopping criteria (as explained in Section 6) was used and line search
method determined the step-sizes. Additionally, a stop-time of 10 hours was considered for all the
implementations. We repeated 10 Monte-Carlo instances per method per dataset. The results are
summarized in Figure 4.

The heatmap shows the average number of datasets with lower assignment error for each method
in the y-axis against each method on the x-axis. 90% confidence intervals were used to show the
statistical significance of the experiments. For example, DCFW (var 1) performs better than the CGS
method in 68.70 cases on average with 90% confidence interval [66.17, 71.23]. On the other hand,
CGS did better than DCFW (var 1) in 46.40 cases on average with 90% confidence interval [43.76,
49.04]. The table shows the superiority of DC-FW type methods (all variations) against CGS and the
FW methods.

B.2 Projection vs Linear Minimization for the Birkhoff Polytope
Consider for instance the set of (n×n) doubly stochastic matrices (i.e., the convex hull of permutation
matrices, also known as the Birkhoff polytope). This constraint frequently appears in allocation
problems like optimal transport or quadratic assignment problems. To our knowledge, no polynomial-
time exact solution method is known for this projection. An ϵ-precise approximation can be computed
via iterative methods, such as operator splitting methods like Douglas-Rachford splitting, incurring
an arithmetic cost of O(n3/ϵ2) (Combettes & Pokutta, 2021; Bertsekas, 1992). In contrast, an exact
solution to the linear minimization oracle of FW can be found by using the Hungarian method or the
Jonker-Volgenant algorithm at O(n3) arithmetic operations (Kuhn, 1955; Munkres, 1957; Jonker &
Volgenant, 1987). Alternatively, an ϵ-precise approximation can be achieved in O(n2/ϵ) operations
with the auction algorithm (Alfaro et al., 2022; Bertsekas, 1992).

C Additional Numerical Experiments on Neural Network Training
Classification on Neural Networks We used a heuristic stochastic variant of the proposed DC-FW
algorithm and the stochastic Frank-Wolfe (FW) algorithm (Pokutta et al., 2020) to train neural
networks with constrained parameters on two classification datasets: CIFAR-10 and CIFAR-100

24

– 44.5
[41.82, 47.18]

52.4
[48.61, 56.19]

50.2
[47.54, 52.86]

59.8
[56.12, 63.48]

73.4
[70.80, 76.00]

– 62.1
[59.10, 65.10]

58.4
[56.23, 60.57]

68.7
[66.17, 71.23]

66.9
[63.20, 70.60]

51.5
[48.25, 54.75]

– 48.4
[46.05, 50.75]

69.4
[67.76, 71.04]

69.1
[65.94, 72.26]

54.5
[52.64, 56.36]

56.2
[54.48, 57.92]

– 70.5
[67.88, 73.12]

59.2
[55.08, 63.32]

46.4
[43.76, 49.04]

38.0
[36.61, 39.39]

37.8
[34.96, 40.64]

–

FW

DC–FW
(va

r 1)

DC–FW
(va

r 2)

DC–FW
(va

r 3)
CGS

FW

DC–FW
(va

r 1)

DC–FW
(va

r 2)

DC–FW
(va

r 3)

CGS
40

45

50

55

60

65

70

Sc
or

e

Figure 4: Comparison between FW, DC–FW variants, and CGS with 90% confidence intervals.

0 20 40 60 80 100

0.3

0.5

1

2
3
4
5

Epoch

L
os

s
(c

ro
ss

en
tr

op
y)

Transfer learning (CIFAR10)

0 20 40 60 80 100

1

2

4

6
8

10

Epoch

Transfer Learning (CIFAR100)

0 20 40 60 80 100

10−4

10−1

102

Epoch

CNN (CIFAR10)

0 20 40 60 80 100

10−4

10−1

102

Epoch

CNN (CIFAR100)

0 20 40 60 80 100

0.5

0.6

0.7

0.8

Epoch

A
cc

ur
ac

y

0 20 40 60 80 100

0.2

0.4

0.6

Epoch

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Epoch

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Epoch

DC-FW
FW

Figure 5: Comparing FW and DC-FW to train classification task using CE loss using transfer learning
on EfficientNetB0 and a customized CNN. The training datasets were CIFAR-10 and CIFAR-100. In
all the Figures, dashed and solid lines refer to the validation and the training data, respectively.

(Krizhevsky & Hinton, 2009). The stochastic version of DC-FW involves random selection of the
input data in every iteration of the outer loop. This essentially means that an unbiased estimator of
the gradients are used at every iteration.

25

DC decomposition (9) was used in DC-FW with ϕ(x) being the empirical loss function using Cross
Entropy (CE) for the classification tasks. Note that this decomposition relates to the CGS version of
the DC-FW algorithm. All experiments were conducted using Python (3.9.5) and PyTorch (2.0.1) on
an NVIDIA A100 GPU.

We first trained two customized convolutional neural networks (CNN) for CIFAR-10 and CIFAR-100.
Subsequently, EfficientNet-B0 (Tan & Le, 2019) with frozen feature layers was applied to both
datasets. All models were initialized using the same seed and trained for 100 epochs with a batch
size of 256.

Structure of the customized convolutional neural networks. The customized convolutional
neural network consists of two convolutional layer blocks followed by a single dense layer block
for CIFAR-10, and three convolutional layer blocks followed by a single dense layer block for
CIFAR-100. Each convolutional layer block consists of two consecutive convolutional layers with
a 3× 3 kernel size, followed by ReLU activations and Batch Normalization. This is followed by a
2× 2 max pooling layer and a dropout layer with a 0.01 probability. This dense layer block starts
with flattening the input, followed by two dense linear layers. Each of them uses ReLU activation,
Batch Normalization, and Dropout (0.01 probability). The final layer of this block is the classification
output layer (dense layer), mapping the extracted high-level features to the desired number of output
classes. For CIFAR-10, the network outputs 10 classes, whereas for CIFAR-100, it outputs 100
classes.

Transfer learning with EfficientNet-B0. EfficientNet-B0 is the smallest model in the EfficientNet
family and serves as a baseline for scaling up to larger variants like EfficientNet-B1 to B7 (Tan &
Le, 2019). The detailed structure of EfficientNet-B0 can be found in (Tan & Le, 2019). We applied
transfer learning to EfficientNet-B0 by freezing all its feature layers, meaning that the pretrained
weights from the model trained on the ImageNet dataset are kept fixed and are not updated during
training. Only the classifier layers are trainable, consisting of a dropout layer (with a rate of 0.2)
for regularization and a linear layer for classification. This configuration reduces the number of
parameters to be trained, thereby saving computational resources while maintaining competitive
performance. However, due to the difference between the original domain (features in the ImageNet
dataset) and the transferred domain (features in the CIFAR-10/CIFAR-100 dataset), the full potential
of EfficientNet-B0 was not fully exploited without trainable feature layers.

Training setup. Training was performed with parameters constrained by an ℓ∞-norm ball of radius
c, following (Pokutta et al., 2020). For the proposed DC-FW algorithm, in addition to the breaking
condition based on gapDC (see Appendix D for more details), an upper bound was applied to the inner
loop. This bound was set to 10000 for CNN and 2000 for transfer learning. We further considered
the line search for updating ηt,k to improve convergence.

The CE loss and the top-1 accuracy were the main metrics used for comparison. For the proposed
DC-FW algorithm and FW algorithm, various choices of L and c were tested. Figure 5 illustrates
a performance comparison among different algorithms. The example is based on the hyperparam-
eters L = 10, c = 10 for DC-FW and FW. Furthermore, DC-FW with hyper-parameter L = 10,
demonstrates superior performance compared to the FW method and in both training and validation.

Effects of c in neural networks. The constant scalar c is used to bound the parameters of the
network while training. This was shown to be effective in generalization by Pokutta et al. (2020).
The value of c, however, is dependent on the model and the target dataset and in turn, affects the
generalization capabilities of the trained model.

In our numerical simulations, we observed that if c increases, the FW method converges slower.
However, DC-FW was able to maintain its original performance almost regardless of the value of
c. Figure 6 depicts an instance of the accuracy of each method in our results. Similar setting as in
Section 6 was used and all simulations are for L = 10. As shown in the Figure, when c increases, for
both datasets and both models, FW becomes slower while DC-FW maintains it behavior.

D Adaptive Inner-Loop Tolerance Strategy for DC-FW

According to Theorem 2, we require O(1/ϵ) calls to the subproblem solver (in this case, the FW
algorithm) reach an ϵ/2 accuracy. In many practical tasks, this equals a high computational load.

26

To improve the efficiency of DC-FW we used an adaptive tolerance strategy. Suppose we require an
accuracy of ϵ0 for the final solution’s gap and each subproblem is solved for an ϵt accuracy. Then,
from the proof of Theorem 2, we have

f(xt)− f(x)− ⟨∇g(xt), xt − x⟩ ≤
(
f(xt)− g(xt)

)
−

(
f(xt+1)− g(xt+1)

)
+

ϵt
2
.

If we only update ϵt when the problem’s gap value at its current iterate is below ϵt, then we can write

f(xt)− f(x)− ⟨∇g(xt), xt − x⟩

≤
(
f(xt)− g(xt)

)
−
(
f(xt+1)− g(xt+1)

)
+

maxx∈D f(xt)− f(x)− ⟨∇g(xt), xt − x⟩
2

.

0 20 40 60 80 100

0.5

0.6

0.7

0.8

Epoch

Tr
an

sf
er

L
ea

rn
in

g
(C

ifa
r1

0)

c = 1

0 20 40 60 80 100

0.5

0.6

0.7

0.8

Epoch

c = 10

0 20 40 60 80 100

0.5

0.6

0.7

0.8

Epoch

c = 100

0 20 40 60 80 100

0.6

0.8

1

Epoch

C
N

N
(C

ifa
r1

0)

0 20 40 60 80 100

0.6

0.8

1

Epoch

0 20 40 60 80 100

0.6

0.8

1

Epoch

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Epoch

Tr
an

sf
er

L
ea

rn
in

g
(C

ifa
r1

00
)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Epoch

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Epoch

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Epoch

C
N

N
(C

ifa
r1

00
)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Epoch

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Epoch

DC-FW
FW

Figure 6: Comparing FW and DC-FW to train classification task using CE loss using transfer learning
on EfficientNetB0 and a customized CNN for constraint bounds c = 1, 10, 100. The training datasets
were CIFAR-10 and CIFAR-100. In all the Figures, dashed and solid lines refer to the test and
training data, respectively.

27

Maximizing the left hand side for x ∈ D gives

max
x∈D

f(xt)− f(x)− ⟨∇g(xt), xt − x⟩ ≤ 2
[(

f(xt)− g(xt)
)
−

(
f(xt+1)− g(xt+1)

)]
.

Now, averaging over t gives the desired inequality below:

min
0≤τ≤t

max
x∈D

f(xτ)− f(x)− ⟨∇g(xτ), xτ − x⟩ ≤ 2


(
ϕ(x0)− ϕ(x∗)

)
t

 . (18)

Consequently, we update ϵt whenever the gap value falls below it. Here, we assumed a constant
multiplier 0 < β < 1 to update ϵt+1 = βϵt. Note however, if this gap falls below ϵ0, then we
terminate the algorithm as the desired accuracy is reached.

With this strategy, ϵt which is also used to terminate the inner loop, can initially take larger values
and gradually becomes smaller. In this way, the number of calls to the LMO after T iterations is

T∑
t=1

1

ϵt
≤ T (

1

min0≤τ≤t ϵτ
).

Also, due to (18), T will be of O(1/ϵ0). Eventually, this implies O(1
ϵ0 min0≤τ≤t ϵτ

) calls to the LMO.

28

	Introduction
	Summary of Contributions

	Related Work
	DC Algorithm
	Projection-free Methods
	Frank-Wolfe Algorithm
	Conditional Gradient Sliding

	Frank-Wolfe for DC Functions
	Special Cases for Smooth Optimization
	Conditional Gradient Sliding
	Proximal Point Frank-Wolfe

	Special Cases for Nonsmooth Optimization
	Conditional Subgradient Sliding
	Proximal Subgradient Frank-Wolfe

	Numerical Experiments
	Quadratic Assignment Problem
	Alignment of Partially Observed Embeddings

	Conclusions
	Proofs and Technical Details
	Proof of *lem:gap-critical-point
	Proof of *thm:inexact-ccp
	Proof of *corr:DC-FW
	Proof of *corr:dcfw-strcnvx
	Proof of *thm:cgs
	Proof of *lem:gapPGM-vs-gapDC
	Proof of *thm:ppfw
	Proof of *lem:gapPPM-vs-gapDC

	Additional Details on the QAP Experiments
	Exact Line-Search
	Numerical Results

	Projection vs Linear Minimization for the Birkhoff Polytope

	Additional Numerical Experiments on Neural Network Training
	Adaptive Inner-Loop Tolerance Strategy for Dc-Fw

