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FOUNDATION MODEL FOR BIOACOUSTICS
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ABSTRACT

Large language models (LLMs) prompted with text and audio have achieved state-
of-the-art performance across various auditory tasks, including speech, music, and
general audio, showing emergent abilities on unseen tasks. However, their poten-
tial has yet to be fully demonstrated in bioacoustics tasks, such as detecting animal
vocalizations in large recordings, classifying rare and endangered species, and la-
beling context and behavior—tasks that are crucial for conservation, biodiversity
monitoring, and animal behavior studies. In this work, we present NatureLM-
audio, the first audio-language foundation model specifically designed for bioa-
coustics. Our training dataset consists of carefully curated text-audio pairs span-
ning bioacoustics, speech, and music, designed to address the field’s limited avail-
ability of annotated data. We demonstrate successful transfer of learned represen-
tations from music and speech to bioacoustics, and our model shows promising
generalization to unseen taxa and tasks. We evaluate NatureLM-audio on a novel
benchmark (BEANS-Zero) and it sets a new state of the art on several bioacoustics
tasks, including zero-shot classification of unseen species. To advance bioacous-
tics research, we release our model weights, benchmark data, and open-source the
code for training and benchmark data generation and model training. [H
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Figure 1: Overview of NatureLM-audio.

1 INTRODUCTION

Bioacoustics, the study of sound production and reception in animals, aims to understand animal
behavior (Fischer et al.l 2013)), monitor biodiversity (Stowell, 2022)), and model the mechanisms
underlying animal communication (Bradbury & Vehrencampl [1998)). It plays a vital role in conser-
vation and ecological research, as animal vocalizations provide key insights into ecosystem health,
species interactions, and population dynamics. By enabling the detection of endangered species and
the tracking of migration patterns, bioacoustic research directly contributes to biodiversity monitor-

ing and conservation efforts (Rutz et al., 2023} |Stevens et al., [2024).

*Corresponding author. david@earthspecies.org

Insects

Species classification
Detection
Call type classification
Life-stage prediction
Individudal counting
Captioning

'Project page: https://earthspecies.github.io/naturelm-audio-demo/


david@earthspecies.org
https://earthspecies.github.io/naturelm-audio-demo/

Published as a conference paper at ICLR 2025

In recent years, machine learning has taken on an increasingly pivotal role in bioacoustic research.
Beyond its role in large-scale ecological monitoring, it has opened up new frontiers in the study of
animal communication, enabling discoveries such as the use of specialized vocalizations to label
conspecifics in marmosets (Oren et al., [2024), dolphins (King & Janik, |2013), and elephants (Pardo
et al., 2024). However, due to inherent challenges in data collection and annotation, many of these
studies rely on strongly labeled small datasets (Stowell, 2022)) and require careful statistical analysis
to ensure significance and mitigate over-fitting. Meanwhile, vast amounts of unannotated bioa-
coustics data are recorded daily, particularly through passive acoustic monitoring (PAM, Dufourq
et al.[(2021)) and citizen science platforms such as Xeno-canto (Vellinga & Planqué, [2015). This
growing data availability underscores the need for machine learning models capable of large-scale
detection, classification, and annotation. The recent successes of large scale Al models in various
domains—including natural language processing, computer vision, and game-playing—suggests the
possibility of leveraging these large, raw datasets to learn robust and generalizable representations
for bioacoustics (Ghani et al., [2023; [Boudiaf et al., [2023)).

Existing bioacoustics machine learning models are typically designed for specific species or
tasks (Dufourq et al.| 2021} |Kahl et al., 2021} (Cauzinille et al.| 2024), limiting their generalizabil-
ity. Many traditional approaches rely on small datasets focusing on a few species and individuals,
validating results through statistical measures despite the risks of over-fitting. More recent models,
such as BirdNET (Kahl et al,, [2021)) and Perch (Ghani et al., [2023), achieve strong performance
in bird classification but require training dedicated classifiers for each target taxon. In contrast,
we propose a single foundation model that generalizes across taxa. While recent self-supervised
and audio-language contrastive models such as AVES (Hagiwara, 2023) and BioLingual (Robinson
et al., 2024) have shown promising results on bioacoustics benchmarks, their discriminative and
contrastive training paradigms constrain the range of tasks they can effectively address.

In recent years, foundation models—trained on large, diverse datasets, often via self-supervision—
have shown promising performance across multiple domains (Bommasani et al., 2021). While
transformer-based large language models (LLMs) are currently the most prominent examples, other
architectures, such as diffusion models (Kingma et al., 2021, are also emerging as foundation mod-
els in some domains. Their ability to handle unseen tasks, perform in-context learning, and respond
flexibly to prompts makes them as an appealing alternative to traditional machine learning meth-
ods, which typically depend on manually annotated datasets, extensive computational resources,
and domain-specific expertise.

While multimodal LLMs, particularly vision-language models (VLMs), have been explored in bio-
diversity and conservation research (Miao et al.| |2024)), large audio-language models (LALMs) re-
main underexplored for bioacoustics. LALMs have demonstrated strong performance in human
speech (Rubenstein et al., 2023; Wang et all [2024; [Wu et al. 2023a}; Zhang et al.| [2024), mu-
sic (Gardner et al.| 2024} |Agostinelli et al., |2023)), and general audio (Tang et al., [2024} |Chu et al.,
2024;|Gong et al.,[2024)), and they hold significant potential for advancing bioacoustics as well.

In this paper, we introduce NatureLM-audio, the first audio-language foundation model specifi-
cally designed for bioacoustic tasks, including classification, detection, and captioning. Inspired
by cross-taxa transfer observed in previous research, such as between human and gibbon or mar-
mosets (Cauzinille et al. 2024; Sarkar & Magimai.-Doss, [2023)) and birds and whales (Ghani
et al.| 2023), we incorporate speech and music tasks into training. We show that representations
learned from these domains successfully transfer to animal vocalizations, demonstrating generaliza-
tion across species. Additionally, we expand the BEANS bioacoustics benchmark (Hagiwara et al.}
2023)) with new tasks, including call-type prediction, lifestage classification, captioning, and indi-
vidual counting. This new benchmark, BEANS-Zero, enables us to evaluate cross-domain learning
and zero-shot transfer to unseen taxa and tasks. Unlike existing bioacoustics benchmarks such as
Perch (Ghani et al.|(2023) for bird detection) and BirdSet (Rauch et al.|(2025)) for bird classification),
we do not focus solely on birds and we go beyond species classification. Additionally, our dataset
presents prompts and audio descriptions in natural language, fostering further research in LALMs.

Our contributions are as follows: (i) Model: We introduce NatureLM-audio, the first audio-language
foundation model for bioacoustics, trained on a carefully curated dataset spanning animal vocaliza-
tions, general audio, human speech, and music. (ii) Domain transfer: We show that our model
generalizes beyond the species seen during training and exhibits zero-shot capabilities on unseen
taxa and species. (iii) Task transfer: We evaluate our model on BEANS-Zero, which extends be-
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yond species classification and includes unseen tasks such as individual counting. For the first time,
we show positive transfer from speech and music data to bioacoustics tasks.

2 RELATED WORK

Most prior work on audio-language models has focused on human speech processing. Models such
as SpeechGPT (Zhang et al., |2023)), Speech-LLaMA (Wu et al.l 2023a), AudioLM (Borsos et al.,
2023)), AudioPalLM (Rubenstein et al.,|2023)), AudioGPT (Huang et al.}|[2024b), SpiRit-LM (Nguyen
et al.| [2025), and SpeechLLM (Zhang et al., 2024) mostly focus on building language models that
can perceive and produce human speech. While such models could, in principle, be fine-tuned for
bioacoustic tasks, doing so would require significant computational resources and domain expertise.
Instead, our model shows promising generalization to unseen species and tasks without requiring
additional fine-tuning.

Recently, more general language models with audio perception capabilities have emerged.
Pengi (Deshmukh et al., |2023) uses an audio encoder and a text encoder mapped onto an LLM
to perform audio-to-text tasks. SALMONN (Tang et al.| [2024) uses dual audio encoders and in-
tegrates Q-Former (L1 et al., 2023) to improve the handling of speech and general audio inputs.
Qwen-audio (Chu et al.| [2023) adopts a multi-task learning approach with the introduction of the
Speech Recognition with Timestamp (SRWT) task. LTU (Gong et al.| [2024) builds an open-ended
question-answer dataset and applies curriculum learning strategies to improve generalization. Sim-
ilar multimodal models have been proposed for music, such as MU-LLaMA (Liu et al., 2024) and
LLark (Gardner et al) [2024). While recent foundation models such as AVES (Hagiwara, [2023)
and BioLingual (Robinson et al., |2024) have demonstrated promising results in bioacoustics, their
training paradigms and architectures constrain the range of tasks they can address.

Although animal sounds and vocalizations are often part of generic audio datasets such as Au-
dioSet (Gemmeke et al.,[2017) and audio caption datasets (Kim et al., 2019; Mei et al.,|2024)), these
datasets are often too broad and lack the fine-grained annotations required for bioacoustic tasks such
as species classification, behavior analysis, or ecological monitoring. As a result, LALMsS trained on
these datasets tend to produce only generic labels (e.g., ‘bird’ rather than a specific species name).
We address this limitation by introducing a diverse, multi-task training dataset and NatureLM-audio,
an LALM designed to produce robust representations for bioacoustics.

While specific bioacoustics benchmarks such as BIRB (Hamer et al.l |2023) for bird vocalization
retrieval and BEANS (Hagiwara et al.,[2023)) for classification and detection exist, the field still lacks
comprehensive benchmarks comparable to those in human speech and music, such as Dynamic-
SUPERB (Huang et al.,[2024a) or AIR-Bench (Yang et al.,[2024). This gap limits the evaluation of
bioacoustic models, particularly in areas such as zero-shot learning and task generalization.

In this work, we aim to bridge these gaps by introducing NatureLM-audio, the first audio-language
foundation model specifically designed for bioacoustics, and BEANS-Zero, an expanded benchmark
that evaluates cross-species and cross-task generalization.

3 TRAINING DATASET CREATION

Task Audio Input Text Instruction Text Output
Classifcation ) sl [ e oo Bt e |

petection ) it [ i v |

aptioning ) st [__usrovecommstmerstmamorsenes | (7 il e S e ]

Figure 2: Examples of training instances.
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Task® Dataset # Hours  # Samples
CAP WavCaps (Mei et al., 2024) 7568 402k
CAP AudioCaps (Kim et al., 2019) 145 52k
CLS NSynth (Engel et al.;[2017) 442 300k
CLS LibriTTS (Zen et al.}[2019) 689 337k
VCTK (Yamagishi et al.||2019)
CAP Clotho (Drossos et al.,[2020) 25 4k
CLS, DET, CAP  Xeno-canto (Vellinga & Planqué, [2015) 10416 607k
CLS, DET, CAP iNaturalist (iNaturalist) 1539 320k
CLS, DET, CAP Watkins (Sayigh et al.l2016) 27 15k
CLS, DET ASA (Museum fiir Naturkunde Berlin) 78 16k
DET Sapsucker Woods (Kahl et al.,[2022) 285 342k
CLS, DET Barkley Canyon (Kanes}|2021) 876 309k
CLS Urbansound (Salamon & Jacoby,2014) 10 2k

Table 1: Training tasks and datasets. ¢ CLS: classification, DET: detection, CAP: captioning.

To train an audio-text model for bioacoustics, we compile a diverse dataset of text-audio pairs (Ta-
ble[I). The data is collected through a combination of prompting on existing audio datasets, gen-
erating new LLM-generated text labels, and mixing new, procedurally augmented audio data. The
dataset is comprised of bioacoustic recordings, general audio, speech, and music datasets. Figure 2]
shows examples of training instances used for NatureLM-audio. We plot the distribution of the
training samples in Figure [3|in the Appendix.

3.1 BIOACOUSTIC DATA

Species Classification: We standardize large-scale bioacoustic archives into a common format, pro-
cessing datasets such as Xeno-canto (Xeno-canto), iNaturalist (iNaturalist), Animal Sound Archive
(Museum fiir Naturkunde Berlin), and Watkins (all-cuts, [Sayigh et al.|(2016)). Differences in species
naming conventions across datasets are reconciled using the GBIF taxonomy backbone (GBIF Sec-
retariat, 2023). We prompt the model to predict the scientific name, common name, or “taxonomic
name” of the focal species or all species present in a recording. Taxonomic names are written
as “phylum class order family genus species” and are inspired by BioCLIP (Stevens et al.| |2024),
which found that flattening the hierarchy into a text name improved generalization to unseen species
in computer vision. In many real-world applications, an animal vocalization is known to belong to a
subset of species—for example, based on geographic location. To model this, we generate prompts
that present the model with a set of candidate species as possible answers. For 30% of prompts, we
sample “random” negatives by selecting from all common names or scientific names in our dataset.
In the remaining prompts, we introduce “hard” negatives by selecting species that share a common
ancestor at the family, order, or phylum level. The number of negative samples is randomly selected,
up to a maximum of 35.

Unlike traditional bioacoustic models that predict based on audio alone, the text-audio formulation
enables classification conditioned on additional context. We train the model to classify species while
conditioned on recording metadata and field notes. We follow the same setup as above, but inject the
time of the recording, the location, and the free-text notes of the recordist into the prompt. This data
is added wherever available for Xeno-canto, with time, location, or field note components randomly
dropped a percentage of the time.

To avoid data leakage, we exclude a set of held-out species and the cbi data used in BEANS-Zero.

Species Detection: Using the same datasets as in species classification, we prompt the model to
determine whether a given species is present in a recording. The model selects from a provided
set of candidate species or chooses “None” when no correct option is given. Candidate sets are
constructed with a mix of random and hard negatives, similar to the classification task. In 50% of
prompts, the correct species is omitted from the set, making “None” the correct answer.

Because Xeno-canto comprises mostly focal recordings, we account for the covariate shifts in
soundscapes by adding noise—audio that does not contain animal vocalizations, speech, or mu-
sic. We source noise samples from datasets including: ShipsEar (Santos-Dominguez et al.l |2016),
Deepship (Irfan et al., [2021)) and Orcalab (Poupard et al., |2020) for boat engine sounds, as well as



Published as a conference paper at ICLR 2025

FSD50K (Fonseca et al.l 2021) and Urbansound (Salamon & Jacoby, |2014) for non-animal, non-
music sound classes, and all the classes from TUT2016 (Mesaros et al.,[2016), IDMT (Abeller et al.,
2021), Demand (Thiemann et al., 2013), and Wham noise (Wichern et al., 2019). The noise is
added programmatically, using random files at a random signal-to-noise ratio (SNR) sampled from
a uniform distribution between —10dB and 20dB.

In addition, we used soundscape recording datasets for detection from Sapsucker Woods (SSW |[Kahl
et al.[(2022))) for birds and from Barkley Canyon (Kanes| 2021} [Society, |2013; 2014ajb) for marine
mammals. Following the BEANS detection dataset methodology, we segment audio into 10-second
windows with a 5-second overlap, and treated it as a multi-label classification problem. Species
with more than 100 occurrences were used as target labels, while those with fewer occurrences were
grouped into an “other” class.

Captioning: For bioacoustic captioning, we use the AnimalSpeak dataset (Robinson et al.| [2024),
which aggregates bioacoustic datasets into a language-model-captioned dataset. We add separate
prompts for captioning with scientific vs. common names, for “rich” captions over eight words, and
for templated captions from Xeno-canto which follow a strict structure.

Call-type and Lifestage: We include multiple new bioacoustic tasks which can be expressed based
on the Xeno-canto metadata. Specifically, predicting the life stage of birds, predicting call-types,
and differentiating between calls and songs. The model is prompted using either audio alone or
audio with the species name. Additionally, we include marine mammal call-type classification using
Barkley Canyon recordings. These tasks go beyond species classification, providing finer-grained
insights into ecological monitoring and animal behavior studies.

3.2 NON-BIOACOUSTIC DATA

General Audio We include WavCaps (Mei et al., [2024), AudioCaps (Kim et al.l 2019), and
Clotho (Drossos et al., 2020) for general audio captioning. We observe that, during WavCaps cre-
ation, some recordings originally contained metadata relevant to bioacoustics and specific species.
However, this metadata was lost during general-domain captioning, resulting in overly generic de-
scriptions. We identify such cases by analyzing the original metadata, and re-process the metadata
prompting Gemini-1.0-pro to produce bioacoustic captions. These enhanced captions are included
alongside the original ones.

Music Pitch, timbre, and the number of animals in a recording are key acoustic features used
by biologists to infer context and behavior. We use NSynth 2.3.3 (Engel et al., 2017) to create
a set of tasks that may help bioacoustics downstream tasks. We generate text prompts for pitch
detection in Hz, instrument name, and velocity, ranging 0 to 1. Additionally, we use the timbre
‘qualities’ labels to create text descriptions for each audio. For instance, if the sound is ‘distorted,’
we generate descriptions such as “This sound has a distinctive crunchy sound and presence of many
harmonics.” or “This sound is distorted”. Moreover, we create synthetic mixtures by layering one to
three different instruments. In this case we generate two tasks: predicting the number of instruments
and identifying the instrument names.

Speech We use LibriTTS (Zen et al., 2019) and VCTK (Yamagishi et al., [2019) to generate syn-
thetic mixtures of up to four speakers, a task that may transfer to individual counting in bioacoustics.
To better match the frequency variability in animal vocalizations, we time-scale the speech mixtures
with factors sampled from an uniform distribution between 0.25 to 4 (i.e., from 4x slower to 4x
faster). Since animal vocalizations tend to be sparse, we insert random segments of silence at local
minima computed on the RMS of the speech signals. To enhance realism, we further convolve the
generated mixtures with impulse responses sampled from the DNS Challenge (Dubey et al.||2024b).

4 EVALUATION DATA: THE BEANS-ZERO BENCHMARK

One of the key contributions of this work is BEANS-Zero, a new benchmark for bioacoustics (Ta-
ble[2). BEANS-Zero extends beyond traditional species classification by introducing new tasks such
as call-type prediction, lifestage classification, captioning, and individual counting, which is not
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Task®  Dataset Description #Size®  # Labels (type)
CLS esc50 generic sound 400 50 (sound type)
CLS watkins marine mammals 339 31 (species)
CLS cbi birds 3620 264 (species)
CLS humbugdb mosquito 1859 14 (species)
DET dcase birds & mammals 13688 20 (species)
DET enabirds birds 4543 34 (species)
DET hiceas cetaceans 1485 1 (species)
DET rfcx birds & frogs 10406 24 (species)
DET gibbons gibbons 18560 3 (call type)
CLS unseen-species  birds etc. 1255 200 (species)
CLS unseen—-genus birds etc. 951 101 (species)
CLS unseen—-family birds etc. 451 36 (species)
CLS lifestage birds 466 3 (stage)

CLS call-type birds 1000 2 (call/song)
CAP captioning birds etc. 29002  (open-ended)
CLS zf-indv zebra finches 1160 2 (# of indv.)

Table 2: Evaluation tasks and datasets of BEANS-Zero.

CAP: captioning.

@ CLS: classification, DET: detection,
b The numbers of samples for classification and captioning, and the number of

5-second “chunks” for detection (see Section [3|for more details.)

seen during training. To construct BEANS-Zero, begin with the test portion of BEANS (Hagiwara
et al.,[2023)) evaluates models on standard bioacoustic tasks and datasets, including:

¢ esc50 (Piczakl 2015): Generic environmental sound classification with 50 labels.
* watkins (Sayigh et al.}[2016): Marine mammal species classification with 31 species.

* cbi (Howard et al. 2020): Bird species classification with 264 labels from the Cornell
Bird Identification competition hosted on Kaggle.

* humdubdb (Kiskin et al.,|2021): Mosquito wingbeat sound classification into 14 species.

e dcase (Morfi et al., 2021): Mammal and bird detection from DCASE 2021 Task 5: Few-
shot Bioacoustic Event Detection (20 species).

* enabirds (Chronister et al.,[2021): Bird dawn chorus detection (34 species).

¢ hiceas (Center, [2022): Minke whale detection from the Hawaiian Islands Cetacean and
Ecosystem Assessment Survey (HICEAS) (1 label).

* rfcx (LeBien et al| [2020): Bird and frog detection from the Rainforest Connection
(RFCx) data with 24 species.

* gibbons (Dufourq et al.,|2021): Hainan gibbon detection with 3 call type labels.

We also include novel bioacoustics datasets including:

* unseen-species: 200 species held out from AnimalSpeak (Robinson et al., 2024).
For a controlled measure of generalization, we hold out species whose genus is well-
represented (at least 150 training examples)

* unseen—genus: We hold out entire genus whose family is well-represented (at least 250
training examples) totaling 101 unique species.

* unseen—-family: We hold out entire families whose class is well-represented (at least
training 250 examples) totaling 36 unique species and representing the hardest generaliza-
tion setting.

» lifestage: Predicting the lifestage of birds across multiple species. Newly curated from
Xeno-canto (Xeno-canto)).

* call-type: Classifying song vs. call across multiple bird species. Newly curated from
Xeno-canto (Xeno-canto)).

* captioning: Captioning bioacoustic audio on AnimalSpeak (Robinson et al.,|[2024).

* zf-indv (Elie & Theunissen, 2016): Determining whether a recording contains multiple
zebra finches, using programmatically generated mixtures (1-4 individuals).
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Some of these tasks, particularly bioacoustic captioning, have not been extensively studied before.
Captioning allows for automatic generation of descriptive annotations of animal sounds, enhancing
our understanding of species behaviors and communication patterns. Improvements in other new
tasks, such as cross-species lifestage and call-type prediction, would allow finer-grained ecological
monitoring and animal communication studies at scale.

For evaluation, we use accuracy for classification, macro-averaged F1 for detection, and SPIDEr (Liu
et al., |2017) for captioning. Unlike mean average precision (mAP), which is originally used in
BEANS and assumes a smooth ranking of candidates, F1 is more appropriate for evaluating gener-
ative tasks. This ensures a fairer assessment of models that generate predictions instead of ranking
pre-defined classes.

5 NATURELM-AUDIO ARCHITECTURE

Our model follows a generic audio-to-text architecture similar to prior LALMs such as
SALMONN (Tang et al., 2024), Qwen2-audio (Chu et al., 2024), and LTU (Gong et al., [2024).
These models are trained on paired audio-text data for tasks including speech, music, and general
audio event understanding. Figure[I] provides an overview of the NatureLM-audio architecture.

NatureLM-audio first encodes the input audio using BEATs (Chen et al., |2023), a state-of-the-art
audio encoder on multiple audio tasks. To connect the BEATs embeddings with the LLM, we use
a Q-Former (L1 et al.| |2023) applied at the window level as proposed in SALMONN (Tang et al.,
2024). Similarly to the existing LALMs, we use an LLM to produce text, in this case Llama 3.1-
8b (Dubey et al.,2024a), which is fine-tuned with LoRA (Hu et al., [2022)). During training, only the
adapter layers of the LLM are updated, while the base LLM parameters remain frozen. In contrast,
the audio encoder and Q-Former remain trainable. The model takes an audio input a along with an
instruction « and produces a text output y. The model is trained under the loss function:

h = fw(Encoder(a)) M
L = =) logpg™(yile, z,y<) )

where Encoder is the pretrained BEATs (Chen et al., [2023) audio encoder, fyy is a function that
converts consecutive W audio frames into a window, pg is the Q-Former model with trainable
parameters  that converts a window into a sequence of text representations z using query g, and
pi™ is the pretrained LLM with trainable parameters 6.

6 TRAINING METHOD

Our training method follows a curriculum learning approach (Soviany et al., 202 1)), where the model
is first trained on simpler tasks before progressively tackling more complex ones, as done in other
audio foundation models (Tang et al., 2024} |Gong et al.,|2024). We train in the two stages:

 Stage 1 (Perception Pretraining): We pretrain the model exclusively on focal species classi-
fication, classifying vocalizations from thousands of animal species. Species classification
is a highly deterministic task, allowing opportunity to learn a robust connection between
language and audio. We also choose to train on this task individually as it is foundational
to other tasks in bioacoustics.

 Stage 2 (Generalization Fine-tuning): In the second stage, we introduce a variety of bioa-
coustic and other tasks, building on the robust classification abilities developedin Stage
1. This includes detection, captioning, lifestage prediction, and call-type prediction. We
also include speech and music data in this second stage, aimed at improving transfer to
bioacoustic tasks.

We train NatureL.M-audio from scratch, initializing the Q-Former and LoRA layers randomly rather
than fine-tuning existing LALM checkpoints such as SALMONN. This allows for more flexibility
in terms of choosing the latest LLM with the extensive knowledge of animal species, and the most
relevant architectural components (e.g., excluding memory-intensive parts of current LALMs such
as the Whisper speech encoder (Radford et al., 2023)).
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Model esc50  watkins cbi  humbugdb dcase enabirds hiceas rfcx  gibbons
LLM w/o audio  0.020 0.041  0.005 0.073  0.000 0.001  0.210 0.000 0.013
SALMONN 0.320 0.041  0.004 0.090  0.005 0.004  0.097 0.002 0.005
Qwen2-audio 0.307 0.041  0.004 0.070  0.005 0.004  0.097 0.002 0.005
BioLingual 0.600 0.257  0.705 0.085 0.036 0.109  0.429 0.004 0.018
NatureLM-audio  0.820 0.788 0.778 0.114 0.058 0314 0336 0.025 0.005

Table 3: Main zero-shot results on BEANS-Zero. We used accuracy for classification, and F1 for
detection tasks. The best and the second best metrics are highlighted and underlined per each dataset.

7 EXPERIMENTS

7.1 TRAINING AND EVALUATION DETAILS

We train our model on the full curated training set (Section[3). To evaluate generalization, we create
hold-out splits for Xeno-canto, iNaturalist, Animal Sound Archive, and Watkins datasets, used solely
for benchmarking.

We initialize the audio encoder weights wusing an existing BEATs checkpoint
(BEATs_iter3_plus_AS2M finetuned_on AS2M cpt2.pt) and fully fine-tune it, which
we found to be critical in an ablation (Table[9). We initialize the LLM from Llama-3.1-8B-Instruct
and apply LoRA to all attention layers (rank: 32, alpha: 32, dropout: 0.1).

We follow the proposed two-stage training strategy. In both stages, we use a linear warmup followed
by a cosine learning rate schedule, with a peak learning rate of 9.0 x 10~5 and an end learning rate
of 2.0 x 10~°. We use a batch size of 128 and run the first stage for 5.0 x 10° steps and the second
stage for 1.6 x 105 steps. For inference, we use beam search with two beams, a repetition penalty
of 1.0, and a length penalty of 1.0.

We consider several inference methods depending on the task type. Species-classification tasks
involve single-label prediction: we prompt the model to output the species name from the recording.
Since the LLM may generate text that does not exactly match predefined labels, we use Levenshtein
distance to map predictions to the closest species name. We choose the Levenshtein distance for its
simplicity and because species names, in particular Latin names, have high character-overlap with
related names. However, we note that it may not be optimal for general audio classification.

For multilabel detection tasks, the number of target species varies by dataset. For tasks with 10 or
fewer species, we include the species options in the prompt. Otherwise we prompt the model to list
all species in the audio, if any. In both cases, the model outputs all detected species, or ‘None’. We
discard predictions with low character overlap with the valid labels.

Our baselines include CLAP-like models (Wu et al.l [2023b), which cannot naively perform multil-
abel detection. To address this, we create a negative “template” for each detection task, as proposed
by Miao et al.| (2023). We consider each label a detection positive for CLAP if the audio is more
similar to the label than to the negative template in the CLAP model’s embedding space.

7.2  SPECIES CLASSIFICATION AND DETECTION

Table [3] shows the main results measured on the BEANS-Zero species classification and detection
datasets. Our baselines include an LLM (the original Llama-3.1-8B-Instruct model without
fine-tuning, |Dubey et al.| (2024a))) without audio input, SALMONN (Tang et al) [2024), BioLin-
gual (Robinson et al.l [2024), and Qwen2-audio (Chu et al., 2024). All baselines are evaluated
in the same way as NatureLM-audio. As shown in the table, the outputs from the LLM without
audio input, SALMONN, and Qwen2-audio are largely random on bioacoustic datasets, failing to
properly interpret the input audio or follow the instructions. In contrast, NatureLM-audio achieved
state-of-the-art zero-shot performance on 7 out of 9 datasets, and delivered competitive results on
the remaining tasks from the BEANS-Zero benchmark. We note that performance of baselines
on the general audio dataset ESC50 (Piczakl 2015)) may be reduced by the use of the Levenshtein
distance, as our pipeline is optimized for bioacoustic tasks.
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cbi  dcase-bird enabirds

BirdNET 0.609 0.035 0.490
Perch 0.744 0.035 0.164
NatureLM-audio  0.778 0.083 0.314

Table 4: Comparison with bird vocalization models.

unseen-species® unseen—genusb unseen-family®

Supervised SotA 0.687 0.688 0.545
random chance 0.005 0.010 0.028
baseline (CLAP) 0.014 0.026 0.082
NatureLM-audio (cmn) 0.181 0.116 0.035
NatureLM-audio (sci) 0.238 0.041 0.035
NatureLM-audio (tax) 0.343 0.148 0.308

Table 5: Generalization to unseen taxa in terms of classification accuracy. All tasks predict species
names, on test sets held-out at the ¢ species ® genus and ¢ family level. Targets were not held
out from “Supervised SotA” reference (BioLingual). Cmn, sci, and tax denote predictions using
common, scientific, and taxonomic names respectively. Since the number of labels varies across
datasets, results should not be directly compared across columns.

We also compared NatureLM-audio with bird-specific classification models, namely BirdNET (Kahl
et al.,2021) and Perch (Ghani et al., 2023), to evaluate the zero-shot capabilities of our model. We
compare on the bird-related datasets of BEANS-Zero, plus the portion of DCASE with bird species.
Results are presented in Table Since both BirdNET and Perch were trained in a supervised
manner on datasets that significantly overlap with our bird evaluation datasets, this is not a fully
fair comparison, and their performance should be considered as topline results. Nevertheless, our
model demonstrated strong zero-shot bird vocalization classification capabilities. In particular, we
achieve a new SotA for the cbi dataset, classifying vocalizations of hundreds of birds, and achieve
competitive results with the bird-specific models on both detection tasks. We additionally compare
against various models on datasets from the BirdSet benchmark (Rauch et al.| (2025)), where our
model achieves the highest average top-1 accuracy (Appendix in Table [A.4).

7.3 GENERALIZING TO UNSEEN SPECIES

We further evaluate the model’s ability to generalize to completely unseen taxa using the newly
added datasets in BEANS-Zero, held out at three levels: unseen species, unseen genus, and unseen
families. As a topline, we compare against BioLingual, which has seen these taxa in training and
only indicates fully supervised performance. As baselines, we consider a theoretical random base-
line (1 / number of classes) and CLAP-LAION (Elizalde et al.,[2023)), a general-domain audio model
which, similar to our model, is unlikely to have seen these species during training. We compare the
performance when predicting common, scientific, or taxonomic names.

Table[5]presents the results. Across all three unseen taxa settings, NatureLM-audio significantly out-
performs the random baseline, demonstrating its ability to generalize to unseen taxa and taxonomic
branches. For example, on the unseen species test set, our model achieves an accuracy of 34.3%, far
surpassing the random baseline of 0.5%, indicating that the model has learned features that extend
beyond the species it was trained on. The model also outperforms CLAP-LAION, further emphasiz-
ing its ability to generalize. We observe that predicting with taxonomic names consistently improves
performance across all settings, and is particularly critical for generalizing to unseen genus and fam-
ilies where scientific (Latin) names alone fail to capture hierarchical relationships. We further note
that scientific names perform relatively well when generalizing to unseen species, but perform worse
than common names for generalizing to unseen genus, This suggests that common names may en-
code broader hierarchical information or be more familiar to the language model.

7.4 NOVEL BIOACOUSTIC TASKS

Beyond species classification, we evaluate NatureLM-audio on novel bioacoustic tasks introduced
in BEANS-Zero, which, to the best of our knowledge, have not been previously studied at a cross-
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lifestage  call-type captioning  zf-indv

SotA 0.502 0.658 0.009 0.604
NatureLM-audio 0.794 0.871 0.532 0.655

Table 6: Results on BEANS-Zero novel bioacoustics tasks. We report accuracy for classification,
and SPIDEr (Sharif et al.,|2018) for captioning. SotA is SALMONN for captioning and BioLingual
for the remaining tasks.

species level. We additionally include z f-indv, a completely unseen task that determines whether
a recording contains multiple zebra finch individuals or just one (Elie & Theunissen, |2016)). We
compare against BioLingual (Robinson et al.|[2024) for discriminative tasks and SALMONN (Tang
et al.| [2024) for captioning. As shown in Table@ NatureLM-audio sets a new state-of-the-art across
all tasks. We evaluate call-type classification more extensively (Table[S), and find the model is able
to transfer this task to unseen taxa. We further find the model can improve audio classification
performance by incorporating additional context as text, which we discuss in the Appendix in[A.3]

7.5 ABLATION ON SPEECH AND MUSIC

To investigate the impact of speech and music on downstream task performance, we run an abla-
tion during stage-2 training. Specifically, we train two versions of the model for 150k steps—one
with speech and music data and one without—and evaluate their ability to perform an unseen task:
counting zebra finches. The model trained with speech achieves 67.7%, similar to our full model.
The model trained without speech scored 50.0%, exactly random, and qualitatively predicted ‘more
than one’ for all examples. These results suggest the ability to count vocalizing birds transfers from
human speech and music, as our training data includes tasks such as counting human speakers in a
recording. We include the ablation performance on all tasks in the Appendix (Tables[I0]and [T T).

8 CONCLUSION

We presented NatureLM-audio, the first audio-language foundation model specifically designed for
bioacoustics, demonstrating its potential to address critical tasks such as classifying and detecting
animal vocalizations, and decoding context, call types, and individuals across species. By lever-
aging a carefully curated dataset spanning bioacoustics, speech, and music data, NatureLM-audio
sets the new state-of-the-art on multiple tasks, including zero-shot classification of unseen species.
Moreover, our model demonstrates positive transfer across both domains and tasks, performing well
on a novel benchmark (BEANS-Zero), which includes new bioacoustic tasks such as captioning and
individual counting. To further accelerate research and the development of more robust models in
the field, we have open-sourced the code for generating both training and benchmarking data.

We plan to extend this work by incorporating more diverse tasks and datasets, improving the text-
based LLM backbone with bioacoustic-specific texts, and enhancing the model’s multilingual ca-
pabilities. Another direction is the introduction of new modalities, such as motion and image data,
leading to multimodal models like NatureLM-motion and NatureLM-image. We also aim to ex-
plore the model’s generative abilities, particularly in producing audio tokens for applications such
as animal sound synthesis and audio denoising.

While NatureLM-audio offers significant potential for advancing biodiversity monitoring and con-
servation, several ethical concerns must be addressed. First, there is a potential bias towards bird
vocalizations due to the overrepresentation of bird datasets, which could limit the model’s effec-
tiveness in other taxa. Second, the model’s ability to detect and classify endangered species could
be misused for illegal activities such as poaching, posing a threat to wildlife. Finally, unintended
consequences on animal behavior and ecology must be considered, particularly when deploying
LLMs, known for their issues including hallucinations and biases (Kuan et al., |2024)). These sys-
tems may interfere with the behavior of the species being studied, and the long-term ecological
impact of widespread passive monitoring is still unknown. Careful deployment and responsible use
are essential to mitigate these risks.

Acknowledgement: We thank Benno Weck, Sara Keen, Milad Alizadeh, Gagan Narula, and Matthieu
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A APPENDIX

A.1 HELD-OUT FAMILIES

1. Elachuridae 5. Alytidae 9. Prophalangopsidae
2. Calyptophilidae 6. Castoridae 10. Octodontidae
3. Pelecanoididae 7. Dicroglossidae
4. Phocoenidae 8. Suidae

A.2 HELD-oUT GENUS
1. Aglaeactis 18. Hymenops 35. Leucocarbo
2. Drepanorhynchus 19. Doliornis 36. Gymnophaps
3. Lesbia 20. Eugerygone 37. Goldmania
4. Nemobius 21. Cryptosylvicola 38. Oreomystis
5. Meconema 22. Taeniopygia 39. Rhodostethia
6. Pseudochorthippus 23. Catharopeza 40. Falcipennis
7. Caliechthrus 24. Eurostopodus 41. Pachycoceyx
8. Pachycare 25. Tylas £. Cryptotympana
9. Rhodothraupis 26. Vini 43, Tympanistalna
10. Astrapia 27. Ptychoramphus R
11. Probosciger 28. Speculanas 4. Cyrtoxipha
12. Amazonetta 29. Aphelocephala 43, Afrixalus
13. Ocyalus 30. Stipiturus 46. Uperoleia
14. Nandayus 31. Procarduelis 47. Urocitellus
15. Rhinocrypta 32. Rhopophilus 48. Chalcorana
16. Heterocercus 33. Neopsephotus 49.  Aiolopus
17.  Jacamaralcyon 34. Enodes 50. Speothos
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A3

HELD-OUT SPECIES

Aethopyga shelleyi
Arachnothera dilutior
Sitta castanea
Carpodacus rodopeplus
Aecthopyga ignicauda
Pachycephala soror
Herpsilochmus roraimae

Amazona dufresniana

R A o

Metallura aeneocauda

10. Thlypopsis fulviceps

11. Monarcha frater

12. Kleinothraupis reyi

13.  Aplonis magna

14.  Phylloscopus misoriensis
15.  Agapornis pullarius

16.  Amazona versicolor

17. Saltator cinctus

18. Xiphocolaptes falcirostris
19. Passer insularis

20. Chalcomitra balfouri

21. Arremonops tocuyensis
22. Atlapetes meridae

23. Colluricincla obscura

24. Saltator maxillosus

25. Philemon meyeri

26. Thamnophilus insignis
27.  Aulacorhynchus whitelianus
28. Sirystes subcanescens
29. Sporophila nigrorufa

30. Zoothera mollissima

31. Thlypopsis inornata

32. Picumnus spilogaster

33. Columba arquatrix

34. Petrochelidon rufocollaris
35. Pyrrhura griseipectus

36. Myiothlypis chrysogaster
37. Thripophaga amacurensis
38. Herpsilochmus motacilloides
39. Progne dominicensis

40. Heliodoxa branickii

41. Asthenes arequipae

42. Gerygone fusca

43. Otus thilohoffmanni

44. Inezia subflava

45. Charadrius montanus

46. Petroica polymorpha

47. Symposiachrus vidua

48. Dicrurus lophorinus

49. Pycnonotus penicillatus
50. Melanerpes herminieri
51. Zosterops mysorensis
52. Oenanthe xanthoprymna
53.  Artamus monachus

54. Caprimulgus pulchellus
55. Psarocolius cassini

56. Symposiachrus infelix
57. Zosterops cinereus

58. Circus cinereus

59. Geotrygon chrysia

60. Microspingus trifasciatus
61. Pternistis harwoodi

62. Ceblepyris caesius

63. Ficedula disposita

64. Treron affinis

65. Geokichla wardii

66. Campethera bennettii

67. Alcedo semitorquata

68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111,
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.

Buteo japonicus

Apus bradfieldi
Pterocles personatus
Melaniparus fringillinus
Poecile hypermelaenus
Circus buffoni
Pycnonotus blanfordi
Machlolophus aplonotus
Estrilda ochrogaster
Touit batavicus

Mirafra gilletti

Pternistis icterorhynchus
Accipiter collaris
Knipolegus lophotes
Nothoprocta taczanowskii
Pachycephala modesta
Vanellus tricolor
Caprimulgus andamanicus
Ardenna grisea
Mixornis kelleyi
Cinnyris johannae
Recurvirostra novaehollandiae
Sitta leucopsis

Petroica pusilla
Amazilia luciae
Melaniparus fasciiventer
Egretta picata

Columba pollenii

Rallus madagascariensis
Heliodoxa gularis
Carpodacus roseus
Zosterops chloronothos
Pachycephala lorentzi
Saucerottia cyanura
Cinclosoma marginatum
Bucco noanamae
Certhia nipalensis
Pachycephala lanioides
Carpodacus trifasciatus
Chorthippus acroleucus
Chlidonias albostriatus
Hirundo domicola

Falco concolor
Dryocopus schulzii
Rhyticeros undulatus
Quiscalus nicaraguensis
Cisticola brunnescens
Knipolegus cyanirostris
Ardenna carneipes
Lybius rubrifacies
Climacteris melanurus
Puffinus opisthomelas
Manorina melanotis
Celebesica abbotti

Otus mayottensis
Trachyphonus margaritatus
Oenanthe dubia
Chloropsis flavipennis
Ploceus alienus
Phalacrocorax varius
Ploceus pelzelni
Merops mentalis

Passer gongonensis
Myzomela cineracea
Pachycephala feminina
Brachypteryx sinensis

Lonchura flaviprymna
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135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.

Ninox natalis
Myrmelastes caurensis
Buteo trizonatus

Apalis chariessa
Ficedula nigrorufa

Pica mauritanica
Anthreptes reichenowi
Sholicola major

Vireo osburni

Anas capensis

Ducula luctuosa

Lanius newtoni
Odontophorus dialeucos
Bostrychia olivacea
Cinnyris tsavoensis
Ploceus heuglini
Myzomela nigrita

Falco cherrug
Ixobrychus sturmii
Rhipidura semirubra
Haematopus chathamensis
Anthus brachyurus
Oenanthe lugens
Columba rupestris
Rhyticeros subruficollis
Zosterops vellalavella
Anthus sokokensis
Phaethornis idaliae
Picus dedemi
Muscicapa segregata
Cyanomitra bannermani
Polioptila facilis
Platysteira albifrons
Dicaeum pygmaeum
Puffinus assimilis
Rhipidura kubaryi
Ploceus katangae

Canis lupaster

Hyla andersonii
Ranoidea nudidigita
Ranoidea aurea

Litoria tyleri
Dendropsophus joannae
Okanagana occidentalis
Litoria latopalmata
Magicicada tredecassini
Orchelimum silvaticum
Oecanthus celerinictus
Empidonomus aurantioatrocristatus
Bufotes boulengeri
Oecanthus nigricornis
Myrmothera fulviventris
Psaltoda adonis

Rana dalmatina
Dendropsophus sanborni
Hyperolius stictus
Hyperolius pictus

Hyla eximia
Leptodactylus natalensis
Oecanthus californicus
Hyperolius parallelus
Gryllus cohni

Physeter macrocephalus
Eleutherodactylus unicolor
Gryllus bermudensis

Anas penelope
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A.4 EVALUATION ON BIRDSET

We evaluate Top-1 accuracy on the datasets from the BirdSet benchmark. To match other models
evaluated on BirdSet, which are constrained to predict one of the allowed labels, we use loss-based
classification across all datasets and make predictions using scientific names. Our model achieves
the highest average Top-1 accuracy, slightly surpassing Perch, demonstrating strong generalization
from primarily focal recordings to soundscape recordings, and state-of-the-art performance for re-
trieval and classification on real-world bird datasets.

POW PER NES UHH HSN NBP SNE AVG

EffNet 080 038 049 042 059 063 067 057
ConvNext 075 036 045 044 052 064 065 054
AST 079 040 048 039 048 061 057 053
EAT 069 032 046 040 047 061 058 050
W2v2 072 034 047 051 050 065 051 053
Perch 0.85 048 0.66 057 058 069 069 0.65

NatureLM-audio 095 0.62 047 0.60 0.58 0.66 0.76 0.66

Table 7: Top-1 Accuracy results for each method on the datasets of BirdSet. Refer to the original
paper (Rauch et al.| 2025) for the details of compared baseline models.

A.5 SPECIES CLASSIFICATION WITH ADDITIONAL CONTEXT

We evaluate whether NatureLM-audio can improve species classification performance by incorpo-
rating additional context as text. The CBI dataset (Howard et al., [2020), derived from Xeno-canto,
often contains metadata such as location and free-text notes written by recordists. We evaluate the
model under three conditions: using audio alone, adding metadata (latitude, longitude, altitude when
available, and geographic region), and further incorporating free-text notes. The model achieves an
accuracy of 0.776 with audio alone, 0.792 with additional metadata, and 0.798 with both meta-
data and free-text notes, demonstrating that providing additional textual context can improve audio
classification performance.

A.6 CALL TYPES AND TRANSFER

Configuration call-song  multi call-song-unseen  multi-unseen
NatureLM-audio 0.871 0.667 0.769 0.678
BioLingual 0.658 0.303 0.665 0.419

Table 8: Accuracy of call vs. song classification (call-song), multi-call classification (multi), and the
generalization of these tasks to unseen taxa (call-song-unseen, multi-unseen.)

We further evaluate the classification of bird call types and the transfer of this task across species.
We test the model on call vs. song prediction as well as call-type prediction for multiple classes
(call, song, flight call, alarm call, begging call, and drumming). We then test if these tasks can
be transferred to unseen taxa. The call-song-unseen and multi-unseen datasets evaluate the same
tasks described above, but evaluated on the held-out taxa used to test unseen species, unseen genus,
and unseen family. In addition to achieving state-of-the-art results on these tasks, the results trans-
fer strongly to unseen taxa, outperforming BioLingual—even when these taxa were held out from
NatureLM-audio but not from BioLingual.
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A.7 ABLATION ON UNFREEZING BEATS

Configuration watkins cbi unseen-species unseen-genus unseen-family
BEATs-unfrozen 0.723  0.680 0.320 0.124 0.306
BEATSs-frozen 0.490 0.401 0.184 0.073 0.186

Table 9: Zero-shot classification results with BEATs unfrozen vs. frozen. Both models are trained
on stage-1 tasks for 150k steps. We report accuracy on species classification tasks, with unseen taxa
tasks predicted using taxonomic names.

A.8 SPEECH+MUSIC ABLATION: FULL RESULTS

Model esc50  watkins cbi  humbugdb dcase enabirds hiceas rfcx  gibbons
base 0.570 0.788 0.748 0.093  0.107 0.299 0415 0.038 0.011
base w/o speech or music ~ 0.605 0.773  0.750 0.152  0.040 0293 0417 0.038 0.012

Table 10: Zero-shot classification and detection results on BEANS-Zero. Base model was trained
on all stage-2 training tasks, while “base w/o speech or music” is an ablation removing both speech
and music tasks from training data. Both models were trained for 150k steps. We used accuracy for
classification, and F1 for detection tasks.

Model unseen-species  unseen-genus unseen-family lifestage call-type captioning zf-indv
base 0.322 0.139 0.239 0.702 0.863 0.501 0.677
base w/o speech or music 0.354 0.137 0.330 0.690 0.852 0.503 0.500

Table 11: Zero-shot results on new tasks introduced in BEANS-Zero. Base model was trained on
all stage-2 training tasks, while base w/o speech or music is an ablation removing both speech and
music tasks from training data. Both models were trained for 150k steps. We report accuracy for
classification, and SPIDEr (Sharif et al., 2018)) for captioning.
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A.9 TRAINING DATA

Data Hierarchy Distribution (Log-Scaled)
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Figure 3: Data composition across training samples including the distribution for the main data
types and phylum, class, and order for non-human animals. The counts represent prompts rather
than audio files i.e. various prompts may be derived from the a single audio file.
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