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The ability to generalize to unseen domains is crucial for machine learning systems
deployed in the real world, especiallywhenwe only have data from limited training
domains. In this paper, we propose a simple and effective regularization method
based on the nuclear norm of the learned features for domain generalization. In-
tuitively, the proposed regularizer mitigates the impacts of environmental features
and encourages learning domain-invariant features. Theoretically, we provide in-
sights intowhynuclear norm regularization ismore effective compared to ERMand
alternative regularizationmethods. Empirically, we conduct extensive experiments
on both synthetic and real datasets. We show nuclear norm regularization achieves
strong performance compared to baselines in a wide range of domain generaliza-
tion tasks. Moreover, our regularizer is broadly applicable with various methods
such as ERM and SWAD with consistently improved performance, e.g., 1.7% and
0.9% test accuracy improvements respectively on the DomainBed benchmark.

1. Introduction
Making machine learning models reliable under distributional shifts is crucial for real-world appli-
cations such as autonomous driving, health risk prediction, and medical imaging. This motivates
the area of domain generalization, which aims to obtain models that generalize to unseen domains,
e.g., different image backgrounds or different image styles, by learning from a limited set of training
domains. To improve model robustness under domain shifts, a plethora of algorithms have been
recently proposed [1–5]. In particular, methods that learn invariant feature representations (class-
relevant patterns) or invariant predictors [6] across domains demonstrate promising performance
both empirically and theoretically [7–10]. Despite this, it remains challenging to improve on empir-
ical risk minimization (ERM)when evaluating a broad range of real-world datasets [11, 12]. Notice
that ERM is a reasonable baseline method since it must use invariant features to achieve optimal in-
distribution performance. It has been empirically shown [13] that ERM already learns “invariant"
features sufficient for domain generalization, which means these features are only correlated with
the class label, not domains or environments.
Although competitive in domain generalization tasks, themain issue ERM faces is that the invariant
features it learns can be arbitrarily mixed: environmental features are hard to disentangle from in-
variant features. Various regularization techniques that control empirical risks across domains have
been proposed [6, 14, 15], but few directly regularize ERM,motivating this work. One desired prop-
erty to improve ERM is disentangling the invariant features from the mixtures. As low-dimensional
structures prevail in deep learning, a natural way to achieve this is to identify the subset of solutions
from ERMwith minimal information retrieved from training domains by controlling the rank. This
parsimonious method may avoid domain overfitting. We are interested in the following question:

Can ERM benefit from rank regularization of the extracted feature for better domain generalization?

To answer this question, we propose a simple yet effective algorithm, ERM-NU (Empirical Risk
Minimization with Nuclear Norm Regularization), for improving domain generalization without
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acquiring domain annotations. Ourmethod is inspired byworks in low-rankmatrix completion and
recovery with nuclear norm minimization [16–21]. Given feature representations from pre-trained
models via ERM, ERM-NUaims to extract class-relevant (domain-invariant) features and to rule out
spurious (environmental) features by fine-tuning the network with nuclear norm regularization.
Specifically, we propose to minimize the nuclear norm of the backbone features, which is a convex
envelope to the rank of the feature matrix [22].
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(a) Left: Causal graph inspired by [15]. Shaded vari-
ables are observed. Right: Training pipeline. We col-
lect input features from multiple domains.

(b) Left: ERM Solutions (green lines). Right: ERM
solution with the smallest nuclear norm of extracted
feature (zc only).

Figure 1: Causal graph of our data assumption (1a), and the effect of nuclear norm regularization in ERM(1b)
where we use a linear g for a simple illustration. In Figure 1a, ze has a spurious correlation to y, while zc only
depends on y. From Figure 1b, nuclear norm regularization can select a subset of ERM solutions that extract
the smallest possible information (in the sense of rank) from x for classification, which can reduce the effect of
environmental features for better generalization performancewhile still preserving high classification accuracy.

Our main contributions and findings are as follows:
• ERM-NU offers competitive empirical performance: We evaluate the performance of

ERM-NU on synthetic datasets and five benchmark real-world datasets. Despite its sim-
plicity, NU demonstrates strong performance and improves on existing methods on some
large-scale datasets such as TerraInc and DomainNet.

• We provide theoretical insights when applying ERM-NU to domain generalization tasks:
We show that even training with infinite data from in-domain (ID) tasks on a specific data
distribution, ERM with weight decay may perform worse than random guessing on out-
of-domain (OOD) tasks, while ERM with bounded rank (corresponding to ERM-NU) can
guarantee 100% test accuracy on the out-of-domain task.

• Nuclear norm regularization (NU) is simple, efficient, and broadly applicable: NU is
computationally efficient as it does not require annotations from training domains. As a
regularization, NU is also potentially orthogonal to other methods that are based on ERM:
we get a consistent improvement of NU on ERM, Mixup [23] and SWAD [24] as baselines.

2. Method

2.1. Preliminaries
We useX and Y to denote the input and label space, respectively. Following [5, 12, 15], we consider
data distributions consisting of environments (domains) E = {1, . . . , E}. For a given environment
e ∈ E and label y ∈ Y , the data generation process is the following: latent environmental/spurious
features (e.g., image style or background information) ze and invariant/class-relevant features (e.g.,
windows pattern for house images) zc are sampled where invariant features only depend on y,
while environmental features depend on e and y (i.e., environmental features and the labelmay have
spurious correlations), zc ⊥ ze. The input data is generated from the latent features x = g(zc, ze) by
some injective function g. See illustration in Figure 1a. We assume that the training data is drawn
from a mixture of Etr ⊂ E domains and test data is drawn from some unseen domain in Ets ⊂ E .
In the domain shift setup, training domains are disjoint from test domains: Etr ∩ Ets = ∅. In this
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work, as we do not require domain annotations for training data, we remove notation involving
E for simplicity and denote the training data distribution as Did and the unseen domain test data
distribution as Dood. We consider population risk. Our objective is to learn a feature extractor Φ :
X → Rd that maps input data to a d-dimensional feature embedding (usually fine-tuned from a
pre-trained backbone, e.g. ResNet [25] pre-trained on ImageNet) and a classifier f̂ to minimize the
risk on unseen environments, L(f̂ ,Φ) := E(x,y)∼Dood

[
ℓ(f̂(Φ(x)), y)

]
,where the function ℓ can be any

loss appropriate to classification, e.g., cross-entropy. The nuclear/trace norm [26] of a matrix is the
sum of the singular values of the matrix. Suppose a matrix M ∈ Rm×n, we have the nuclear norm

∥M∥∗ :=

min{m,n}∑
i

σi(M),

where σi(M) is the i-th largest singular value. From [22], we know the nuclear norm is the tightest
convex envelope of the rank function of amatrix within the unit ball, i.e., the nuclear norm is smaller
than the rank when the operator norm (spectral norm) ∥M∥2 = σ1(M) ≤ 1. As the matrix rank
function is highly non-convex, nuclear norm regularization is often used in optimization to achieve
a low-rank solution, as it has good convergence guarantees, while the rank function does not.

2.2. Method description
Intuition. Intuitively, to guarantee low risk on Dood, Φ needs to rely only on invariant features for
prediction. It must not use environmental features in order to avoid spurious correlations to ensure
domain generalization. As environmental features depend on the label y and the environment e
in Figure 1a, our main hypothesis is that environmental features have a lower correlation with the label
than the invariant features. If our hypothesis is true, we can eliminate environmental features by
constraining the rank of the learned representations from the training data while minimizing the
empirical risk, i.e., the invariant features will be preserved (due to empirical risk minimization) and
the environmental features will be removed (due to rank minimization).
Objectives. We consider fine-tuning the backbone (feature extractor) Φ with a linear prediction
head. Denote the linear head as a ∈ Rd×m, where m is the class number. The goal of ERM is to
minimize the expected risk L(a,Φ) := E(x,y)∼Din

[
ℓ(a⊤Φ(x), y)

]
.

Consider the latent vector Φ(x) ∈ Rd. This vector may contain both environment-related and class-
relevant features. In order to obtain just the class-relevant features, we would like for Φ to extract
as little information as possible while simultaneously optimizing the ERM loss. See illustration in
Figure 1b. Note that, we assume that the correlation between environmental features and labels
is lower than the correlation between invariant features and labels. Let X be a batch of training
data points (batch size > d). To minimize information and so rule out environmental features, we
minimize the rank of Φ(X). Our objective is

min
a,Φ

L(a,Φ) + λrank(Φ(X)). (1)

As the nuclear norm is a convex envelope to the rank of a matrix, our convex relaxation objective is
min
a,Φ

L(a,Φ) + λ∥Φ(X)∥∗, (2)

where λ is the regularization weight. Finally, we use Equation (2) as our main loss function.
Takeaways. We summarize the advantages of nuclear norm minimization as follows:

• Simple and efficient: Ourmethod can be easily implemented, e.g., NU only needs twomore
lines of code as shown below. Also, themodel inference speed doesn’t change after training.

• Broadly applicable: Without requiring domain labels, our method can be used in conjunc-
tion with a broad range of existing domain generalization algorithms.

• Empirically effective and theoretically sound: Our method demonstrates promising perfor-
mance on synthetic and real-world tasks (Section 3) with theoretical insights (Section 4).
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1 def forward(self , x, y):
2 f = self.featurizer(x) # get feature embedding
3 loss = F.cross_entropy(self.classifier(f), y) # get classification loss
4 _,s,_ = torch.svd(f) # singular value decomposition
5 loss += self.lambda * torch.sum(s) # add nuclear norm regularization
6 return loss

3. Experiments
In this section, we start by presenting a synthetic task in Section 3.1 to help visualize the effects of
nuclear norm regularization. Next, in Section 3.2, we demonstrate the effectiveness of our approach
with real-world datasets. We provide further discussions and ablation studies in Section 3.3.

3.1. Synthetic tasks
To visualize the effects of nuclear norm regularization, we start with a synthetic dataset with bi-
nary labels and two-dimensional inputs. Our expectation is that un-regularized ERM will perform
well for in-domain (ID) data but struggle for out-of-domain (OOD) data, whereas nuclear norm-
regularized ERM will excel in both settings. Assume inputs x = [x1,x2], where x1 is the invariant
feature and x2 is the environmental feature. Specifically, x1 is drawn from a uniform distribution
conditioned on y ∈ {−1, 1} for both ID (training) and OOD (test) datasets:

x1 | y = 1 ∼ U [0, 1], x1 | y = −1 ∼ U [−1, 0]
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Figure 2: ID and OOD classification results with ERM and ERM-NU on the synthetic dataset with two classes
(shown in yellow and navy blue). We visualize the decision boundary. While the model achieves nearly
perfect accuracy on ID training set, the performance drastically degrades on the OOD test set. Nuclear norm
regularization significantly reduces the OOD error rate.

The environmental feature x2 also follows a uniform distribution but is conditioned on both y and
a Bernoulli random variable b ∼ Ber(0.7). For ID data, x2 | y = 1 ∼ U [0, 1] with probability (w.p.)
0.7, while x2 | y = 1 ∼ U [−1, 0] w.p. 0.3. In contrast, for OOD data, x2 | y = 1 ∼ U [−1, 0] w.p. 0.7,
and x2 | y = 1 ∼ U [0, 1]w.p. 0.3. We provide a more general setting in Section 4.
We visualize the ID andOODdatasets in Figure 2, where samples from y = −1 and y = 1 are shown
in yellow and navy blue dots, respectively. We consider a simple linear feature extractor Φ(x) = Ax
with A ∈ R2×2. The models are trained with ERM and ERM-NU objectives using gradient descent
until convergence. To better illustrate the effects of nuclear norm minimization, we show the de-
cision boundary along with the accuracy on ID and OOD datasets. For ID dataset, training with
both objective yield nearly perfect accuracy. For OOD dataset, the model trained with ERM only
achieves an accuracy of 0.76, as a result of utilizing the environmental feature. In contrast, train-
ing with ERM-NU successfully mitigates the reliance on environmental features and significantly
improves the OOD accuracy to 0.94. In Section 4, we further provide theoretical analysis to better
understand the effects of nuclear norm regularization.

3.2. Real-world tasks
We demonstrate the effects of nuclear norm regularization across real-world datasets and compare
them with a broad range of algorithms.
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Algorithm VLCS PACS OfficeHome TerraInc DomainNet Average
MMD† (CVPR 18) [10] 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 58.8
Mixstyle‡ (ICLR 21) [27] 77.9 ± 0.5 85.2 ± 0.3 60.4 ± 0.3 44.0 ± 0.7 34.0 ± 0.1 60.3
GroupDRO† (ICLR 19) [28] 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.7
IRM† (ArXiv 20) [6] 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
ARM† (ArXiv 20) [29] 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx† (ICML 21) [14] 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9
CDANN† (ECCV 18) [8] 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0
AND-mask∗ (ICLR 20)[30] 78.1 ± 0.9 84.4 ± 0.9 65.6 ± 0.4 44.6 ± 0.3 37.2 ± 0.6 62.0
DANN† (JMLR 16) [7] 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
RSC† (ECCV 20) [31] 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
MTL† (JMLR 21) [32] 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9
Mixup† (ICLR 18) [1] 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG† (AAAI 18) [33] 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
Fish (ICLR 22) [34] 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 63.9
Fishr∗ (ICML 22) [35] 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 64.0
SagNet† (CVPR 21) [36] 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
SelfReg (ICCV 21) [37] 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 47.0 ± 0.3 41.5 ± 0.2 64.2
CORAL† (ECCV 16) [9] 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.5
SAM‡ (ICLR 21) [38] 79.4 ± 0.1 85.8 ± 0.2 69.6 ± 0.1 43.3 ± 0.7 44.3 ± 0.0 64.5
mDSDI (NeurIPS 21) [39] 79.0 ± 0.3 86.2 ± 0.2 69.2 ± 0.4 48.1 ± 1.4 42.8 ± 0.1 65.1
MIRO (ECCV 22) [40] 79.0 ± 0.0 85.4 ± 0.4 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9
ERM† [41] 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
ERM-NU (ours) 78.3 ± 0.3 85.6 ± 0.1 68.1 ± 0.1 49.6 ± 0.6 43.4 ± 0.1 65.0
SWAD‡ (NeurIPS 21) [24] 79.1 ± 0.1 88.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
SWAD-NU (ours) 79.8 ± 0.2 88.5 ± 0.2 71.3 ± 0.3 52.2 ± 0.3 47.1 ± 0.1 67.8

Table 1: OOD accuracy for five realistic domain generalization datasets. The results marked by †, ‡, ∗ are the
reported numbers from [11], [24], [35] respectively. We highlight our methods in bold. The results of Fish,
SelfReg, mDSDI and MIRO are the reported ones from each paper. Average accuracy and standard errors are
reported from three trials. Nuclear norm regularization is simple, effective, and broadly applicable. It signifi-
cantly improves the performance over ERM and a competitive baseline SWAD across all datasets considered.
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Figure 3: Nuclear norm regularization enhances com-
petitive baselines across a range of realistic datasets, as
demonstrated by the average difference in accuracy for
ERM, Mixup, and SWAD. Detailed results for individ-
ual datasets can be seen in Table 2.

Experimental setup. Nuclear norm regular-
ization is simple, flexible, and can be plugged
into ERM-like algorithms. To verify its effec-
tiveness, we consider adding the regularizer
over ERMand SWAD(dubbed as ERM-NUand
SWAD-NU, respectively). For a fair comparison
with baseline methods, we evaluate our algo-
rithm on the DomainBed testbed [11], an open-
source benchmark that aims to rigorously com-
pare different algorithms for domain general-
ization. The testbed consists of a wide range
of datasets for multi-domain image classifica-
tion tasks, including PACS [42] (4 domains, 7
classes, 9,991 images), VLCS [43] (4 domains,
5 classes, 10,729 images), Office-Home [44]
(4 domains, 65 classes, 15,500 images), Terra
Incognita [45] (4 domains, 10 classes, 24,788
images), and DomainNet [46] (6 domains, 345
classes, 586,575 images). Following the evaluation protocol in DomainBed, we report all perfor-
mance scores by “leave-one-out cross-validation”, where averaging over cases that use one domain
as the test (OOD) domain and all others as the training (ID) domains. For the model selection
criterion, we use the “training-domain validation set” strategy, which refers to choosing the model
maximizing the accuracy on the overall validation set, 20% of training domain data. For each dataset
and model, we report the test domain accuracy of the best-selected model (average over three in-
dependent runs with different random seeds). Following common practice, we use ResNet-50 [25]
as the feature backbone. We use the output features of the penultimate layer of ResNet-50 for nu-
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clear norm regularization and fine-tune the whole model. The default value of weight scale λ is set
as 0.01 and distributions for random search as 10Uniform (−2.5,−1.5). The default batch size is 32 and
the distribution for random search is 2Uniform (5,6). During training, we perform batch-wise nuclear
norm regularization, similar to [6] which uses batch-wise statistics for invariant risk minimization.

Algorithm C L S V Average
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
ERM-NU 97.9 ± 0.4 65.1 ± 0.3 73.2 ± 0.9 76.9 ± 0.5 78.3
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
Mixup-NU 97.9 ± 0.2 64.1 ± 1.4 73.1 ± 0.9 74.8 ± 0.5 77.5
SWAD 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1
SWAD-NU 99.1 ± 0.4 63.6 ± 0.4 75.9 ± 0.4 80.5 ± 1.0 79.8

(a) VLCS
Algorithm A C P S Average
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
ERM-NU 87.4 ± 0.5 79.6 ± 0.9 96.3 ± 0.7 79.0 ± 0.5 85.6
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
Mixup-NU 86.7 ± 0.3 78.0 ± 1.3 97.3 ± 0.3 77.3 ± 2.0 84.8
SWAD 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
SWAD-NU 89.8 ± 1.1 82.8 ± 1.0 97.7 ± 0.3 83.7 ± 1.1 88.5

(b) PACS
Algorithm A C P R Average
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
ERM-NU 63.3 ± 0.2 54.2 ± 0.3 76.7 ± 0.2 78.2 ± 0.3 68.1
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
Mixup-NU 64.3 ± 0.5 55.9 ± 0.6 76.9 ± 0.4 78.0 ± 0.6 68.8
SWAD 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6
SWAD-NU 67.5 ± 0.3 58.4 ± 0.6 78.6 ± 0.9 80.7 ± 0.1 71.3

(c) OfficeHome
Algorithm L100 L38 L43 L46 Average
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
ERM-NU 52.5 ± 1.2 45.0 ± 0.5 60.2 ± 0.2 40.7 ± 1.0 49.6
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
Mixup-NU 55.1 ± 3.1 45.8 ± 0.7 56.4 ± 1.2 41.1 ± 0.6 49.6
SWAD 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0
SWAD-NU 58.1 ± 3.3 47.7 ± 1.6 60.5 ± 0.8 42.3 ± 0.9 52.2

(d) Terra Incognita
Algorithm clip info paint quick real sketch Average
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
ERM-NU 60.9 ± 0.0 21.1 ± 0.2 49.9 ± 0.3 13.7 ± 0.2 62.5 ± 0.2 52.5 ± 0.4 43.4
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
Mixup-NU 59.5 ± 0.3 20.5 ± 0.1 49.3 ± 0.4 13.3 ± 0.5 59.6 ± 0.3 51.5 ± 0.2 42.3
SWAD 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5
SWAD-NU 66.6 ± 0.2 23.2 ± 0.2 54.3 ± 0.2 16.2 ± 0.2 66.1 ± 0.6 56.2 ± 0.2 47.1

(e) DomainNet
Table 2: Nuclear norm regularization improves the
domain generalization performance over various base-
lines such as ERM, Mixup, and SWAD.

Nuclear norm regularization achieves strong
performance across a wide range of datasets.
We present an overview of the OOD accuracy
for DomainBed datasets across various algo-
rithms in Table 1. We observe that: (1) incorpo-
rating nuclear norm regularization consistently
improves the performance of ERM and SWAD
across all datasets considered. In particular,
compared to ERM, ERM-NU yields an aver-
age accuracy improvement of 1.7%. (2) SWAD-
NU demonstrates highly competitive perfor-
mance relative to other baselines, including
prior invariance-learning approaches such as
IRM, VREx, and DANN. Notably, the approach
does not require domain labels, which further
underscores the versatility of nuclear norm reg-
ularization for real-world datasets.

Nuclear norm regularization significantly im-
proves baselines. Across a range of realistic
datasets, nuclear norm regularization enhances
competitive baselines. To examine whether NU
is effective with baselines other than SWAD, in
Figure 3, we plot the average difference in ac-
curacy with andwithout nuclear norm regular-
ization for ERM, Mixup, and SWAD. Detailed
results for individual datasets are in Table 2.
Encouragingly, adding nuclear norm regular-
ization improves the performance over all three
baselines across the five datasets. In particular,
the average accuracy is improved by 3.5 with
ERM-NU over ERM on Terra Incognita, and 3.1
with Mixup-NU over Mixup on DomainNet.
This further suggests the effectiveness of nu-
clear norm regularization in learning invariant
features. See full results in Appendix E.

3.3. Ablations and discussions

Analyzing the regularization strengthwith stable rank. We aim to better understand the strength
of nuclear norm regularization (used in fine-tuning only) on OOD accuracy. Due to the precision
of floating point numbers and numerical perturbation, it is common to use stable rank (numerical
rank) to approximate the matrix rank in numerical analysis. Suppose a matrix M ∈ Rm×n, the sta-
ble rank is defined as: StableRank(M) :=

∥M∥2
F

∥M∥2
2
, where ∥∥2 is the operator norm (spectral norm)

and ∥∥F is the Frobenius norm. The stable rank is analogous to the classical rank of amatrix but con-
siderably more well-behaved. For example, the stable rank is a continuous and Lipschitz function
while the rank function is discrete. In Figure 4, we calculate the stable rank of the OOD data feature
representation of the ERM-NU model trained with different nuclear norm regularization weight λ
and we plot the OOD accuracy simultaneously. We have three observations. (1) The stable rank is
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Figure 4: Stable rank and OOD accuracy of ERM-NU
with varying nuclear norm regularization weight λ (x-
axis) on different datasets.

decreasing when we have a stronger nuclear
norm regularizer, which is consistent with our
method intuition. (2) As the nuclear norm reg-
ularizationweight increases, the OOD accuracy
will increase first and then decrease. In the first
stage, as we increase nuclear norm regulariza-
tion weight, the environmental features start to
be ruled out and the OOD accuracy improves.
In the second stage, when nuclear norm regu-
larization strength is large enough, some invari-
ant features will be ruled out, which will hurt
the generalization. (3) Although the ResNet-50
is a 2048-dim feature extractor, the stable rank
of theOODdata feature representation is pretty
low, e.g, on average the stable rank is smaller
than 100. On the other hand, when the dataset
becomes more “complicated”, the stable rank
will increase, e.g., when λ = 0.0, the stable rank
of DomainNet features (6 domains, 345 classes)
is over 100, while the stable rank of VLCS (4 do-
mains, 5 classes) features is only around 50.
Exploring alternative regularizers. We use
SWAD [24] as a baseline, which aims to find flat
minima that suffers less from overfitting by a
dense and overfit-aware stochastic weight sam-
pling strategy. We consider different regulariz-
ers with SWAD: CORAL [9] tries to minimize
domain shift by aligning the second-order statistics of input data from training and test domains.
MIRO [40], one of the SOTA regularization methods in domain generalization, uses mutual in-
formation to reduce the distance between the pre-training model and the fine-tuned model. The
performance comparison is shown in Table 3, where we observe that nuclear norm regularization
consistently achieves competitive performance compared to alternative regularizers.

4. Theoretical Analysis

Algorithm VLCS PACS DomainNet Average
SWAD [24] 79.1 ± 0.1 88.1 ± 0.1 46.5 ± 0.1 71.2
SWAD-CORAL [9] 78.9 ± 0.1 88.3 ± 0.1 46.8 ± 0.0 71.3
SWAD-MIRO [40] 79.6 ± 0.2 88.4 ± 0.1 47.0 ± 0.0 71.7
SWAD-NU (ours) 79.8 ± 0.2 88.5 ± 0.2 47.1 ± 0.1 71.8

Table 3: Alternative regularizers with SWAD on the
DomainBed benchmark. Full Table is in Appendix E.

Next, we present a simple but insightful theo-
retical result showing that, for a more general
setting defined in Section 3.1, the ERM-rank so-
lution to the Equation (1) is much more robust
than the ERM solution on OOD tasks.
Data distributions. We consider the binary
classification setting for simplification [6, 15].
Let X be the input space, and Y = {±1} be the label space. Let z̃ : X → Rd be a feature pattern
encoder of the input data x, i.e., z̃(x) ∈ Rd. For any j ∈ [d], we see z̃j is a specific feature pattern
encoder, i.e, z̃j(x) being the j-th dimension of z̃(x). Suppose x are drawn from some distribution
condition on the label y, then we have z̃(x) drawn from some distribution condition on the label
y. For simplicity, we denote z = z̃(x)y. We assume, for any j, j′ ∈ [d], zj and zj′ are independent
condition on y when j ̸= j′. LetR ⊆ [d] be a subset of size r corresponding to the invariant features,
and let U = [d]\R be a subset of size d−r corresponding to the spurious features. With slight abuse
of notation, if z̃ = g−1, yzR and yzU correspond to zc and ze in Figure 1a respectively.
Next, we define ID tasks and OOD tasks. We inject all the randomness into z. For invariant features
in both ID and OOD tasks, we assume that for any j ∈ R, zj ∼ [0, 1] uniformly, so E[zj ] = 1

2 .
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Then, we define Dγ . A random variable z ∼ Dγ means, z ∼ [0, 1] uniformly with probability 1
2 + γ

and z ∼ [−1, 0] uniformly with probability 1
2 − γ, so E[z] = γ. In ID tasks, for any environmental

features j ∈ U , we assume that zj ∼ Dγ , where γ ∈
(

3√
r
, 1
2

)
. In OOD tasks, for any j ∈ U , we

assume that zj ∼ D−γ . We denote the corresponding distributions as Did and Dood respectively.
We note that the difference between Did and Dood is that the environmental features have different
spurious correlations with label y, i.e., different e in Figure 1a.
Explanation and intuition for our data distributions. There is an upper bound for γ because the
environmental features have a smaller correlation with the label than the invariant features, e.g.,
when γ = 1

2 we cannot distinguish invariant features and environmental features. We also have a
lower bound for γ to distinguish environmental features and noise. When γ = 0, the ID task and the
OOD task will be identical (no distribution shift). We can somehow use γ to measure the “distance"
between the ID task and the OOD task. The intuition about the definition of Did and Dood is that
the environmental features may have different spurious correlations with labels in different tasks,
while the invariant features keep the same correlations with labels through different tasks.
Objectives. For any j ∈ [d], we assume the feature embedder (defined in Section 2, see Figure 1a)
Φ(x)j = wj z̃j(x) where z̃j is a specific feature pattern encoder and wj is a scalar, i.e, the strength
of the corresponding feature pattern encoder. We simplify the fine-tuning process, setting a =
[1, 1, . . . , 1]⊤ and the trainable parameter to bew (varying the impact of each feature in fine-tuning).
Thus, the network output is fw(x) =

∑d
j=1 wj z̃j(x). We consider two objective functions. The first

is traditional ERM with weight decay (ℓ2 norm regularization). The ERM-ℓ2 objective function is
min
w

Lλ(w) := L(w) +
λ

2
∥w∥22, (3)

where L(x,y)(w) = ℓ(yfw(x)) is the loss on an example (x, y) and ℓ(z) is the logistic loss ℓ(z) =
ln(1 + exp(−z)). The second objective we consider is ERM with bounded rank. Note that for a
batch input data X with batch size > d, it is full rank with probability 1. Thus, we say the total
feature rank is ∥w∥0 ≤ d (∥w∥0 indicates the number of nonzero elements in w). Thus, equivalent
to Equation (1), with a upper bound Brank, the ERM-rank objective function is

min
w

L(w) subject to ∥w∥0 ≤ Brank. (4)
Note that our method, i.e., Equation (2), is a convex relaxation to the ERM-rank objective function.
Theoretical results. First, we analyze the property of the optimal solution of ERM-ℓ2 on the ID task.
Following the idea from Lemma B.1 of [47], we have the Lemma below.
Lemma 1. Consider the ID setting with the ERM-ℓ2 objective function. Then any optimal w∗ of ERM-
ℓ2 objective function follows conditions (1) for any j ∈ R, w∗

j =: α; (2) for any j ∈ U , w∗
j := β; (3)

0 < β < α < 1√
r
, α
β < 3

4γ .

In Lemma 1, we show that the ERM-ℓ2 objective will encode all features correlated with labels, even
when the correlation between spurious features and labels is weak (e.g. γ = O (1/

√
r)). However,

the optimal solution of the ERM-rank objective will only encode the features that have a strong
correlation with labels (invariant features), shown in Lemma 2.
Lemma 2. Assume 1 ≤ Brank ≤ r. Consider the ID setting with the ERM-rank objective function. For any
optimalw∗ of ERM-rank objective function, let Rrank = {j ∈ [d] : w∗

j ̸= 0}. Then, we have Rrank satisfying
the following property (1) |Rrank| = Brank and (2) Rrank ⊆ R.

Based on the property of two optimal solutions, we can show the performance gap between these
two optimal solutions on the OOD task, considering the spurious features may change their corre-
lation to the labels in different tasks.
Proposition 3. Assume 1 ≤ Brank ≤ r, λ > Ω

( √
r

exp
(√

r
5

)) , d > r
γ2 + r, r > C, where C is some constant

< 20. The optimal solution for the ERM-rank objective function on the ID tasks has 100%OOD test accuracy,
while the optimal solution for the ERM-ℓ2 objective function on the ID tasks has OOD test accuracy at most
exp

(
− r

10

)
× 100% (much worse than random guessing).
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Discussions. The assumption of λ and dmeans that the regularization strength cannot be too small
and the environmental features signal level should be compatible with invariant features signal
level. Then, Proposition 3 shows that even with infinite data, the optimal solution for ERM-ℓ2 on
the ID tasks cannot produce better performance than random guessing on the OOD task. However,
the optimal solution for ERM-rank on the ID tasks can still produce 100% test accuracy. The proof
idea is that, by using the gradient equal to zero and the properties of the logistic loss, the ERM-ℓ2
objectivewill encode all features correlatedwith labels, evenwhen the correlation between spurious
features and label is weak (e.g. γ = O (1/

√
r)). Moreover, there is a positive correlation between the

feature encoding strength and the corresponding feature-label correlation (Lemma 1 (3)). Then, we
can show that the value of β is compatible with the value of α in Lemma 1. Thus, when the OOD
tasks have a different spurious feature distribution, the optimal solution of ERM-ℓ2 objective may
thoroughly fail, i.e., muchworse than random guessing. However, the optimal solution of the ERM-
rank objective will only encode the features that have a strong correlation with labels (invariant
features). Thus, it can guarantee 100% test accuracy onOOD tasks. See the full proof inAppendixD.

5. Related Works
Nuclear norm minimization. Nuclear norm is commonly used to approximate the matrix
rank [22]. Nuclear norm minimization has been widely used in many areas where the solution
is expected to have a low-rank structure. It has been widely applied for low-rank matrix approxi-
mation, completion, and recovery [16–19] with applications such as graph clustering [20], commu-
nity detection [48], compressed sensing [49], recommendations system [50] and robust Principal
Component Analysis [51]. Nuclear norm regularization can also be used in multi-task learning to
learn shared representations across multiple tasks, which can lead to improved generalization and
reduce overfitting [52]. Nuclear norm has been used in computer vision as well to solve problems
such as image denoising [21] and image restoration [53]. In this work, we focus on utilizing nu-
clear norm-based regularization for domain generalization. We provide extensive experiments on
synthetic and realistic datasets and theoretical analysis to better understand their effectiveness.
Contextual bias, domain generalization, and group robustness. There has been rich literature
studying the classification performance in the presence of pre-defined contextual bias and spurious
correlations [2, 45, 54–56]. The reliance on contextual bias such as image backgrounds, texture, and
color for object detection has also been explored [28, 57–61]. In contrast, our study requires no prior
information on the type of contextual bias and is broadly applicable to different categories of bias.
The task of domain generalization aims to improve the classification performance of models on new
test domains. A plethora of algorithms have been proposed in recent years: learning domain in-
variant [7–10, 62] and domain-specific features [39], minimizing the weighted combination of risks
from training domains [28], mixing risk penalty terms to facilitate invariance prediction [6, 14],
prototype-based contrastive learning [63], meta-learning [64], and data-centric approaches such as
generation [65] and mixup [1, 3–5]. Recent works also demonstrate promising results with pre-
trained models [40, 66–71]. Beyond domain generalization, another closely related task is to im-
prove the group robustness in the presence of spurious correlations [28, 72, 73]. However, recent
works often assume access to group labels for a small dataset or require multiple stages of training.
In contrast, our approach is simple and efficient, requiring no access to domain labels or multi-stage
training, and can improve over ERM-like algorithms on a broad range of real-world datasets.

6. Conclusions
In this work, we propose nuclear norm minimization, a simple yet effective regularization method
for improving domain generalization without acquiring domain annotations. Key to our method
is minimizing the nuclear norm of feature embeddings as a convex proxy for rank minimization.
Empirically, our method is broadly applicable to many competitive algorithms for domain gener-
alization and achieves competitive performance across synthetic and a wide range of real-world
datasets. Theoretically, our method outperforms ERM with ℓ2 regularization in the linear setting.
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B. Broader Impact
Ourwork aims at improving the domain generalization performance ofmodels. Our paper is purely
theoretical and empirical in nature and thus we foresee no immediate negative ethical impact. We
provide a simple yet effective method that can be applied to different models, which may have
a positive impact on the machine learning community. We hope our work will inspire effective
algorithm design and promote a better understanding of domain generalization.

C. Limitation
Our theoretical analysis requires strong assumptions on data distribution, e.g., coordinate indepen-
dence and uniform distribution, although it is more general than the toy data model defined in
Section 3.1. Our analysis cannot fully explain or apply to the model train on real-world datasets
that contain non-linear data, e.g., DomainNet [46], but we are trying to provide some insights into
why nuclear norm regularization can bemore robust than the ERM solution by using a simple linear
data model. On the other hand, studying the general necessary and sufficient condition of domain
generalization is still an open challenging problem [74]. We believe it may be beyond the scope of
this paper and we leave it as future work.

D. Proof of Theoretical Analysis
D.1. Auxiliary lemmas
We first present some Lemmas we will use later.
Lemma 4. For the logistic loss ℓ(z) = ln(1+exp(−z)), we have the following statements (1) ℓ(z) is strictly
decreasing and convex function on R and ℓ(z) > 0; (2) ℓ′(z) = −1

1+exp(z) , ℓ
′(z) ∈ (−1, 0); (3) ℓ′(z) is

strictly concave on [0,+∞), (4) for any c > 0, ℓ′(z + c) ≤ exp(−c)ℓ′(z).

Proof of Lemma 4. These can be verified by direct calculation.
Lemma 5.

∂L(x,y)(w)

∂wj
= ℓ′(yfw(x))zj , (5)

∂L(w)

∂wj
= E(x,y) [ℓ

′(yfw(x))zj ] (6)

∂Lλ(w)

∂wj
= E(x,y) [ℓ

′(yfw(x))zj ] + λwj (7)

Proof of Lemma 5. These can be verified by direct calculation.
Lemma 6. For any j ∈ R, we have probability density function of zj with mean 1

2 and variance 1
12 following

the form

f{zj}(z) =

{
1, if 0 ≤ z ≤ 1

0, otherwise .
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For any j ∈ U , we have probability density function of zj with mean γ and variance 1
3 − γ2 following the

form

f{zj}(z) =


1
2 − γ, if − 1 ≤ z < 0
1
2 + γ, if 0 ≤ z ≤ 1

0, otherwise .

Proof of Lemma 6. Then these can be verified by direct calculation from the definition.

Lemma 7. We have P
[∑

j∈U zj ≤ 0
]
≤ exp

(
− (d−r)γ2

2

)
, P
[∑

j∈R zj ≤ r
4

]
≤ exp

(
− r

8

)
.

Proof of Lemma 7. By Hoeffding’s inequality,

P

∑
j∈U

zj ≤ 0

 =P

∑
j∈U

(zj − γ) ≤ −(d− r)γ

 (8)

≤ exp

(
− (d− r)γ2

2

)
. (9)

The others are proven in a similar way.

D.2. Optimal solution of ERM-ℓ2 on ID task
Lemma 8 (Restatement of Lemma 1 (1)(2)). Consider the ID setting with the ERM-ℓ2 objective function.
Then any optimal w∗ of ERM-ℓ2 objective function follows conditions (1) for any j ∈ R, w∗

j =: α and (2)
for any j ∈ U , w∗

j := β.

Proof of Lemma 8.

Lλ(w∗) =E(x,y)∼DidL(x,y)(w
∗) +

λ

2
∥w∗∥22

=E(x,y)∼Didℓ(yfw∗(x)) +
λ

2
∥w∗∥22

=E(x,y)∼Didℓ

 d∑
j=1

w∗
jzj

+
λ

2
∥w∗∥22

By Lemma 4, we have Lλ(w) a is convex function. By symmetry of zj , for any l, l′ ∈ R, l ̸= l′,

E

ℓ
 d∑

j=1

w∗
jzj

+
λ

2
∥w∗∥22 (10)

=
1

2

E

ℓ
 ∑

j∈[d],j ̸=l,j ̸=l′

w∗
jzj +w∗

l zl +w∗
l′zl′

+
λ

2
∥w∗∥22

 (11)

+
1

2

E

ℓ
 ∑

j∈[d],j ̸=l,j ̸=l′

w∗
jzj +w∗

l zl′ +w∗
l′zl

+
λ

2
∥w∗∥22

 (12)

≥E

ℓ
 ∑

j∈[d],j ̸=l,j ̸=l′

w∗
jzj +

w∗
l +w∗

l′

2
zl′ +

w∗
l +w∗

l′

2
zl

+
λ

2
∥w∗∥22, (13)

where the last inequality follows Jensen’s inequality. Note that the last equation is true only when
zl and zl′ share the same distribution. The minimum is achieved when w∗

l = w∗
l′ .

A similar argument as above proves statement (2).

16



Now, we will bound the α and β. Recall that for any j ∈ R, w∗
j =: α and for any j ∈ U , w∗

j := β.

Lemma 9 (Restatement of Lemma 1 (3)). Let α, β be values defined in the Lemma 8. Then, we have
0 < β < α < 1√

r
. Moreover, α

β < 3
4γ .

Proof of Lemma 9. By Lemma 8

Lλ(w∗) =E

ℓ
α

∑
j∈R

zj + β
∑
j∈U

zj

+
λ

2
(rα2 + (d− r)β2) (14)

=Lλ(α, β). (15)

By Lemma 5, we have for any j ∈ [d]

∂Lλ(w∗)

∂w∗
j

= E(x,y)∼Did [ℓ
′(yf∗

w(x))zj ] + λw∗
j = 0. (16)

We first prove β < α. For any j ∈ R, j′ ∈ U , we have

λα =λw∗
j (17)

=− E(x,y)∼Did [ℓ
′(yf∗

w(x))zj ] (18)
>− E(x,y)∼Did [ℓ

′(yf∗
w(x))zj′(x, y)] (19)

=λw∗
j′ = λβ. (20)

Then, we prove β ≥ 0 by contradiction. Suppose β < 0,

Lλ(α, β)− Lλ(α,−β) (21)

=E

ℓ
α

∑
j∈R

zj + β
∑
j∈U

zj

− E

ℓ
α

∑
j∈R

zj − β
∑
j∈U

zj

 . (22)

Note that for any j, j′ ∈ U, j ̸= j′, the norm of zj is independent with its sign and zj , zj′ are inde-
pendent. From γ > 0, we can get P[zj > 0] > 1

2 . Thus, by ℓ strictly decreasing we have

P

ℓ
α

∑
j∈R

zj + β
∑
j∈U

zj

 ≥ z

 > P

ℓ
α

∑
j∈R

zj − β
∑
j∈U

zj

 ≥ z

 , (23)

where β case is strictly stochastically dominate −β case. Thus, Lλ(α, β) − Lλ(α,−β) > 0. This is
contradicted by β being the optimal value. Thus, we have β ≥ 0.
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Now, we prove α < 1√
r
, for any k ∈ R,

λα =− E(x,y)∼Did

ℓ′
α

∑
j∈R

zj + β
∑
j∈U

zj

 zk

 (24)

≤− E(x,y)∼Did

ℓ′
α

∑
j∈R,j ̸=k

zj + β
∑
j∈U

zj

 zk

 (25)

=− E

ℓ′
α

∑
j∈R,j ̸=k

zj + β
∑
j∈U

zj

E[zk] (26)

=− 1

2
E

ℓ′
α

∑
j∈R,j ̸=k

zj + β
∑
j∈U

zj

∣∣∣∣∣∣
∑
j∈U

zj > 0

P

∑
j∈U

zj > 0

 (27)

− 1

2
E

ℓ′
α

∑
j∈R,j ̸=k

zj + β
∑
j∈U

zj

∣∣∣∣∣∣
∑
j∈U

zj ≤ 0

P

∑
j∈U

zj ≤ 0

 (28)

≤− 1

2
E

ℓ′
α

∑
j∈R,j ̸=k

zj

+
1

2
exp

(
− (d− r)γ2

2

)
, (29)

where the last inequality is from β ≥ 0 and ℓ′(z) ∈ (−1, 0). Using Lemma 7 one more time, we have

− E

ℓ′
α

∑
j∈R,j ̸=k

zj

 (30)

=− E

ℓ′
α

∑
j∈R,j ̸=k

zj

∣∣∣∣∣∣
∑

j∈R,j ̸=k

zj >
r − 1

4

P

 ∑
j∈R,j ̸=k

zj >
r − 1

4

 (31)

− E

ℓ′
α

∑
j∈R,j ̸=k

zj

∣∣∣∣∣∣
∑

j∈R,j ̸=k

zj ≤
r − 1

4

P

 ∑
j∈R,j ̸=k

zj ≤
r − 1

4

 (32)

≤− ℓ′
(
α(r − 1)

4

)
+

1

2
exp

(
−r − 1

8

)
(33)

=
1

1 + exp
(

α(r−1)
4

) +
1

2
exp

(
−r − 1

8

)
. (34)

Thus, we have

λα ≤ 1

2
(
1 + exp

(
α(r−1)

4

)) +
1

4
exp

(
−r − 1

8

)
+

1

2
exp

(
− (d− r)γ2

2

)
. (35)

Suppose α ≥ 1√
r
, we have contradiction,

RHS <O

(
exp

(
−
√
r

5

))
< LHS. (36)

Thus, we get α < 1√
r
.
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Now, we prove α
β ≤ 3

4γ , for any k ∈ R, l ∈ U , denote Z = α
∑

j∈R,j ̸=k zj + β
∑

j∈U,j ̸=l zj , by
Lemma 4, we have

α

β
=
−E

[
ℓ′
(
α
∑

j∈R zj + β
∑

j∈U zj

)
zk

]
−E

[
ℓ′
(
α
∑

j∈R zj + β
∑

j∈U zj

)
zl

] (37)

≤ −E [ℓ′ (Z) zk]

−E [ℓ′ (Z + 2α) zl|zl ≥ 0]P[zl ≥ 0]− E [ℓ′ (Z) zl|zl < 0]P[zl < 0]
(38)

=
−E [ℓ′ (Z)]

−E [ℓ′ (Z + 2α)]
(
1
2 + γ

)
+ E [ℓ′ (Z)]

(
1
2 − γ

) (39)

≤ −E [ℓ′ (Z)]

− exp(−2α)E [ℓ′ (Z)]
(
1
2 + γ

)
+ E [ℓ′ (Z)]

(
1
2 − γ

) (40)

=
1

exp(−2α)
(
1
2 + γ

)
−
(
1
2 − γ

) (41)

≤ 1

exp
(

−2√
r

) (
1
2 + γ

)
−
(
1
2 − γ

) (42)

≤ 1

2γ −
(
1− exp

(
−2√
r

)) (43)

≤ 1

2γ − 2√
r

(44)

<
3

4γ
, (45)

where the second inequality follows Lemma 4 and the second last inequality follows 1+ z ≤ exp(z)
for z ∈ R and γ > 3√

r
.

D.3. Optimal solution of ERM-rank on ID task

Lemma 10 (Restatement of Lemma 2). Assume 1 ≤ Brank ≤ r. Consider the ID setting with the ERM-
rank objective function. For any optimalw∗ of ERM-rank objective function, letRrank = {j ∈ [d] : w∗

j ̸= 0}.
Then, we have Rrank satisfying the following property (1) |Rrank| = Brank and (2) Rrank ⊆ R.

Proof of Lemma 10. For any j ∈ U , if w∗
j = θ ̸= 0, there exists k ∈ R s.t. w∗

k = 0 by objective function
condition. When we reassign w∗

j = 0,w∗
k = |θ|, the objective function becomes smaller. This is a

contradiction. Thus, we finish the proof.

D.4. OOD gap between two objective function

Proposition 11 (Restatement of Proposition 3). Assume 1 ≤ Brank ≤ r, λ > Ω

( √
r

exp
(√

r
5

)) , d >

r
γ2 + r, r > C, where C is some constant< 20. The optimal solution for the ERM-rank objective function on
the ID tasks has 100% OOD test accuracy, while the optimal solution for the ERM-ℓ2 objective function on
the ID tasks has OOD test accuracy at most exp

(
− r

10

)
× 100% (much worse than random guessing).
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Proof of Proposition 11. Wedenotew∗
rank as the optimal solution for the ERM-rank objective function.

By Lemma 10, the test accuracy for the ERM-rank objective function is

P(x,y)∼Dood [yfw∗
rank

(x) ≥ 0] =P(x,y)∼Dood

∑
j∈R

w∗
rank,jzj +

∑
j∈U

zjw
∗
rank,j ≥ 0

 (46)

=P(x,y)∼Dood

∑
j∈R

w∗
rank,jzj ≥ 0

 (47)

=1. (48)
We denote w∗

ℓ2
as the optimal solution for the ERM-rank objective function. We have α, β defined

in Lemma 9. By Lemma 9, the test accuracy for the ERM-ℓ2 objective function is

P(x,y)∼Dood [yfw∗
ℓ2
(x) ≥ 0] =P(x,y)∼Dood

α∑
j∈R

zj + β
∑
j∈U

zj ≥ 0

 (49)

≤P(x,y)∼Dood

 3

4γ

∑
j∈R

zj +
∑
j∈U

zj ≥ 0

 (50)

=P

 3

4γ

∑
j∈R

(
zj −

1

2

)
+
∑
j∈U

(zj + γ) ≥ − 3r

8γ
+ (d− r)γ

 (51)

By Hoeffding’s inequality and d > r
γ2 + r > 5r, we have

P

 3

4γ

∑
j∈R

(
zj −

1

2

)
+
∑
j∈U

(zj + γ) ≥ − 3r

8γ
+ (d− r)γ

 (52)

≤ exp

−
2
(
− 3r

8γ + (d− r)γ
)2

4d

 (53)

=exp

(
−

9r2

32γ2 + 2(d− r)2γ2 − 3r
2 (d− r)

4d

)
(54)

≤ exp

(
−
2(d− r)2γ2 − 3r

2 (d− r)

5(d− r)

)
(55)

=exp

(
−4(d− r)γ2 − 3r

10

)
(56)

≤ exp
(
− r

10

)
. (57)
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E. More Experiments Details and Results

Algorithm VLCS PACS OfficeHome TerraInc DomainNet Average
SWAD 79.1 ± 0.1 88.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
SWAD-CORAL 78.9 ± 0.1 88.3 ± 0.1 71.3 ± 0.1 51.0 ± 0.1 46.8 ± 0.0 67.3
SWAD-MIRO 79.6 ± 0.2 88.4 ± 0.1 72.4 ± 0.1 52.9 ± 0.2 47.0 ± 0.0 68.1
SWAD-NU (ours) 79.8 ± 0.2 88.5 ± 0.2 71.3 ± 0.3 52.2 ± 0.3 47.1 ± 0.1 67.8

Table 4: Methods combined with SWAD full results on DomainBed benchmark.

Algorithm C L S V Average
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
AND-mask 97.8 ± 0.4 64.3 ± 1.2 73.5 ± 0.7 76.8 ± 2.6 78.1
SelfReg 96.7 ± 0.4 65.2 ± 1.2 73.1 ± 1.3 76.2 ± 0.7 77.8
mDSDI 97.6 ± 0.1 66.4 ± 0.4 74.0 ± 0.6 77.8 ± 0.7 79.0
Fishr 98.9 ± 0.3 64.0 ± 0.5 71.5 ± 0.2 76.8 ± 0.7 77.8
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
ERM-NU (ours) 97.9 ± 0.4 65.1 ± 0.3 73.2 ± 0.9 76.9 ± 0.5 78.3
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
Mixup-NU (ours) 97.9 ± 0.2 64.1 ± 1.4 73.1 ± 0.9 74.8 ± 0.5 77.5
SWAD 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1
SWAD-NU (ours) 99.1 ± 0.4 63.6 ± 0.4 75.9 ± 0.4 80.5 ± 1.0 79.8

Table 5: Results on VLCS. For each column, bold indicates the best performance, and underline indicates the
second-best performance.
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Algorithm A C P S Average
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
AND-mask 85.3 ± 1.4 79.2 ± 2.0 96.9 ± 0.4 76.2 ± 1.4 84.4
SelfReg 87.9 ± 1.0 79.4 ± 1.4 96.8 ± 0.7 78.3 ± 1.2 85.6
mDSDI 87.7 ± 0.4 80.4 ± 0.7 98.1 ± 0.3 78.4 ± 1.2 86.2
Fishr 88.4 ± 0.2 78.7 ± 0.7 97.0 ± 0.1 77.8 ± 2.0 85.5
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
ERM-NU (ours) 87.4 ± 0.5 79.6 ± 0.9 96.3 ± 0.7 79.0 ± 0.5 85.6
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
Mixup-NU (ours) 86.7 ± 0.3 78.0 ± 1.3 97.3 ± 0.3 77.3 ± 2.0 84.8
SWAD 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
SWAD-NU (ours) 89.8 ± 1.1 82.8 ± 1.0 97.7 ± 0.3 83.7 ± 1.1 88.5

Table 6: Results on PACS.

Algorithm A C P R Average
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
AND-mask 59.5 ± 1.1 51.7 ± 0.2 73.9 ± 0.4 77.1 ± 0.2 65.6
SelfReg 63.6 ± 1.4 53.1 ± 1.0 76.9 ± 0.4 78.1 ± 0.4 67.9
mDSDI 62.4 ± 0.5 54.4 ± 0.4 76.2 ± 0.5 78.3 ± 0.1 67.8
Fishr 68.1 ± 0.3 52.1 ± 0.4 76.0 ± 0.2 80.4 ± 0.2 69.2
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
ERM-NU (ours) 63.3 ± 0.2 54.2 ± 0.3 76.7 ± 0.2 78.2 ± 0.3 68.1
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
Mixup-NU (ours) 64.3 ± 0.5 55.9 ± 0.6 76.9 ± 0.4 78.0 ± 0.6 68.8
SWAD 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6
SWAD-NU (ours) 67.5 ± 0.3 58.4 ± 0.6 78.6 ± 0.9 80.7 ± 0.1 71.3

Table 7: Results on OfficeHome.
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Algorithm L100 L38 L43 L46 Average
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
AND-mask 50.0 ± 2.9 40.2 ± 0.8 53.3 ± 0.7 34.8 ± 1.9 44.6
SelfReg 48.8 ± 0.9 41.3 ± 1.8 57.3 ± 0.7 40.6 ± 0.9 47.0
mDSDI 53.2 ± 3.0 43.3 ± 1.0 56.7 ± 0.5 39.2 ± 1.3 48.1
Fishr 50.2 ± 3.9 43.9 ± 0.8 55.7 ± 2.2 39.8 ± 1.0 47.4
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
ERM-NU (ours) 52.5 ± 1.2 45.0 ± 0.5 60.2 ± 0.2 40.7 ± 1.0 49.6
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
Mixup-NU (ours) 55.1 ± 3.1 45.8 ± 0.7 56.4 ± 1.2 41.1 ± 0.6 49.6
SWAD 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0
SWAD-NU (ours) 58.1 ± 3.3 47.7 ± 1.6 60.5 ± 0.8 42.3 ± 0.9 52.2

Table 8: Results on Terra Incognita.

Algorithm clip info paint quick real sketch Average
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
AND-mask 52.3 ± 0.8 16.6 ± 0.3 41.6 ± 1.1 11.3 ± 0.1 55.8 ± 0.4 45.4 ± 0.9 37.2
SelfReg 58.5 ± 0.1 20.7 ± 0.1 47.3 ± 0.3 13.1 ± 0.3 58.2 ± 0.2 51.1 ± 0.3 41.5
mDSDI 62.1 ± 0.3 19.1 ± 0.4 49.4 ± 0.4 12.8 ± 0.7 62.9 ± 0.3 50.4 ± 0.4 42.8
Fishr 58.2 ± 0.5 20.2 ± 0.2 47.7 ± 0.3 12.7 ± 0.2 60.3 ± 0.2 50.8 ± 0.1 41.7
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
ERM-NU (ours) 60.9 ± 0.0 21.1 ± 0.2 49.9 ± 0.3 13.7 ± 0.2 62.5 ± 0.2 52.5 ± 0.4 43.4
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
Mixup-NU (ours) 59.5 ± 0.3 20.5 ± 0.1 49.3 ± 0.4 13.3 ± 0.5 59.6 ± 0.3 51.5 ± 0.2 42.3
SWAD 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5
SWAD-NU (ours) 66.6 ± 0.2 23.2 ± 0.2 54.3 ± 0.2 16.2 ± 0.2 66.1 ± 0.6 56.2 ± 0.2 47.1

Table 9: Results on DomainNet.
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