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ABSTRACT

We introduce MaMe, a training-free, differentiable token merging method that
relies entirely on matrix operations to accelerate vision transformers. When ap-
plied to pre-trained models, MaMe doubles ViT-B @224 throughput with a mere
2% drop in accuracy. For training from scratch, a ViT-T model with MaMe
achieves 1.94x throughput with a 1.3% accuracy drop. As a downsampling layer in
Swin architectures, MaMe reduces FLOPs by 2.4x for Swin-S backbones, achiev-
ing 35.8% mloU on ADE20K semantic segmentation. In SigL.IP2-B@512 zero-
shot classification, MaMe provides 1.3x acceleration with negligible performance
degradation (78.02 vs. 78.37). For multimodal reasoning, MaMe accelerates
LLaVA-v1.5-7B inference by 36% on MME with minimal degradation (31.40 vs.
32.76). In video tasks, MaMe accelerates VideoMAE-L by 48.5% on Kinetics-
400 with a 0.84% accuracy loss. Collectively, these results demonstrate MaMe’s
effectiveness in accelerating transformer-based vision and multimodal models.

1 INTRODUCTION

Vision Transformers (ViTs)(Dosovitskiy et al., 2021) have revolutionized computer vision by adopt-
ing the transformer architecture from natural language models(Vaswani et al., 2017). However, the
complexity of self-attention is quadratic O(N?), where N represents the number of tokens. For
applications requiring dense token representations, such as high-resolution images, this quadratic
complexity presents a significant challenge, limiting the deployment of large-scale ViT models on
resource-limited devices or in real-time applications.

To address the O(N?) computational challenge, a straightforward yet effective approach is to re-
duce the number of tokens IV involved in the process. The strategies that have emerged include
token pruning, token merging, and hybrid methods that integrate both. Pioneering works like
DynamicViT(Rao et all |2021) introduced a dynamic token sparsification framework that uses a
lightweight, learnable prediction module to hierarchically prune tokens at various stages of the net-
work. EViT(Liang et al. 2022) uses the class token to evaluate token importance, keeping the
most attentive tokens while merging the others. Pruning’s main drawback is irreversible information
loss. Token merging combines similar tokens instead of discarding them. ToMe(Bolya et al., [2022)
introduced a training-free method, using a fast bipartite soft matching algorithm to progressively
merge similar tokens. Token Pooling(Marin et al.l 2021)) uses cluster analysis to aggregate informa-
tion from neighboring tokens. DiffRate(Chen et al.,|2023) makes compression rate differentiable to
learn layer-wise rates, while Token Transforming(Zeng et al., 2025) generalizes both pruning and
merging as specific cases of a broader matrix transformation, enabling more flexible, many-to-many
mappings that can better preserve information.

Despite recent advancements, existing token reduction methods face several challenges. A primary
issue is the non-differentiable nature of the token selection process when using the Top-K operation,
which often requires complex workarounds for end-to-end training. Some methods are slow due
to their reliance on clustering techniques like k-means, which are computationally intensive in
practice. Additionally, many methods introduce extra learnable parameters for token selection or
merging modules, leading to increased model complexity and training overhead. Lastly, an issue is
the dependency on specific architectures; for example, EViT’s reliance on a class token restricting
its use in models where a class token might not be available.

To simultaneously address these limitations, inspired by ToMe, we introduce a training-free token
merging approach that overcomes the mentioned challenges through several ways:
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Differentiable Design: Our method employs only differentiable operations throughout the token
merging process, enabling seamless end-to-end training. By avoiding discrete operations, we main-
tain gradient flow and allow the model to be trained from scratch.

Efficient Matrix Operations: Instead of relying on operations such as clustering algorithms, sort-
ing or explicit maximum selection,we utilize efficient, GPU-friendly full-matrix operations. This
approach offers both theoretical efficiency and practical speedup.

Parameter-Free Architecture: Our approach introduces no additional learnable parameters, main-
taining the original model’s parameter, simplifying deployment, and reducing the complexity of
model management.

Plug-and-Play Integration: Our approach can be directly applied to pre-trained models without
any extra training, or seamlessly integrated during training from scratch. This flexibility significantly
lowers the barrier to adoption.

2 RELATED WORK

2.0.1 TOKEN PRUNING

Pruning methods discard non-informative tokens based on importance metrics. DynamicViT(Rao
et al.| 2021) pioneered this by using lightweight prediction heads to score token relevance, enabling
end-to-end training. EViT(Liang et al., 2022) enhanced this by fusing pruned tokens into the class
token while reducing sequence length. AdaViT(Meng et al. 2022) extends pruning to attention
heads and transformer blocks, creating instance-adaptive computation graphs for complex inputs.
However, these methods face limitations: 1) Early pruning risks information loss, 2) Discrete selec-
tion creates optimization challenges, and 3) Task-specific tuning is needed for threshold calibration.

2.0.2 TOKEN MERGING

Merging techniques combine similar tokens rather than discarding them, preserving information
while reducing computational load. ToMe(Bolya et al.| [2022) revolutionized this area with training-
free bipartite soft matching to merge the most similar token pairs at each layer. However, ToMe’s
fixed merge ratio per layer limits adaptability to varying input complexities. DiffRate(Chen et al.,
2023) addresses the challenge of selecting an optimal merge ratio by rendering the rate itself dif-
ferentiable. It utilizes a learnable budget controller to optimize this rate for each input, facil-
itating instance-adaptive efficiency through standard gradient descent but increasing complexity.
ToFu(Song et al., [2024) diverges from ToMe’s training-free methodology by proposing a learnable
fusion module that is co-trained with the models to generate new, more expressive tokens. Hybrid
approaches such as Pumer(Fu et al |2024) and LTPM(Li et al., 2024)) integrate token pruning and
merging within a unified framework. Pumer introduces a learnable router to dynamically determine
the number of tokens to prune and merge on a per-instance basis, whereas LTPM employs learnable
parameters to decide whether a token should be pruned or which tokens should be merged.

2.0.3 CLUSTERING-BASED REDUCTION

Clustering approaches use offline algorithms to group similar tokens. TCFormer(Zeng et al., [2024)
employs KNN-enhanced Density Peaks Clustering to group tokens and merge redundant ones
through averaging for human activity tasks like pose estimation. ClusTR(Xie et al., [2022) uses
hierarchical token merging with cosine similarity across Transformer layers for vision tasks, but its
fixed ratios limit flexibility and may hinder small object detection. While these methods preserve
global context, they face three drawbacks: 1) Iterative clustering algorithms with O(nk) complex-
ity offset computational gains, 2) Discrete cluster assignments prevent gradient flow, and 3) Fixed
cluster counts lack input adaptability.

2.0.4 LEARNABLE TOKEN REDUCTION

End-to-end trainable methods optimize reduction policies through differentiable architectures.
ATS(Fayyaz et al.| 2022)) implements token merging via weighted averaging with gating mecha-
nisms. Dynamic Token Morphing(Wang et al., |2023) uses cross-attention between original and
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learnable proxy tokens for information absorption. Gumbel Token Selector(Kim et al., [2023)) em-
ploys Gumbel-Softmax to sample token subsets through residual connections. These approaches
show promise but increase model complexity (15-30% more parameters) and risk overfitting on
small datasets.

3 METHODOLOGY

Token Partitioning Let the input sequence from a given layer be represented by the matrix X &€
REXd where L is the number of tokens and d is the feature dimension. We first partition this
sequence into two disjoint sets: a set of M destination tokens, denoted by Xy € RM*? and a set
of N source tokens, X € RV*? where L = M + N.

Xt = {xi 11 € Ly}
Xire = {Xj 1J € Isrc} (1

where Z;s; and Zg,.. represent the index sets for destination and source tokens, respectively, such
that Zys; N Zgre = O and Zys; U L. = I covers all token indices, excluding any special tokens
(e.g., class tokens). The specific strategy for partitioning into Zyy and Zg can vary (e.g., alternating
or random selection).

Similarity Matrix. We begin by computing the cosine similarity between each destination token
and every source token. This yields a similarity matrix S € RM >N where each element Si; is
defined as:

xdst . xSre
S.. = LA 2
9 T @

To isolate the most significant relationships, we apply a rectified linear unit (ReLU) activation with
a shifting threshold 7. This step filters out weak connections, producing a sparse similarity matrix
S € RMxN.

Si]‘ = ReLU(Sij — 7') (3)

Adaptive Weight Pruning. From the sparse similarity matrix S, we first compute an initial weight
matrix W € RM*N by normalizing its columns. This ensures the initial influence of each source
token is properly distributed among its similar destination tokens.

Sij
Zi:l Sij +e€
where € is a small constant for numerical stability.

To further refine these weights, we introduce a dynamic, column-specific thresholding mechanism.
For each source token j, we define a threshold (; as the average of its non-zero weights in :

¢ = >t Wi
/ Cj +e

where C} is the count of non-zero entries along the destination dimension and can be computed as

(&)

M
_ Wi
Ci= ; Wij+e ©

For differentiability, we don’t apply boolean operations C; = Zf\il Wi > 0.
The threshold ¢ is to prune connections that are weak relative to a source token’s other connections.
We apply this threshold to obtain a pruned weight matrix W:

Wij = ReLU(Wj; — () )
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Finally, the pruned matrix W is re-normalized column-wise to produce the final fusion weights
WF c R]V[ XN .

Wi
L — ®)
dima Wi+ e
Token Aggregation and Preservation The destination tokens are updated by aggregating the
features from source tokens, guided by the final fusion weights. The fused destination tokens,
Xl € RM>d are computed as:

X(/lsl = Xgst + WFXsrc

!
X .
" dst,?
dst,z N F
T+ Wy

A key component of our methodology is the preservation of unique source tokens Xes. A source

token x5 is preserved if it exhibits no similarity to any destination token, which means the sum

of its similarities to all M destination tokens is zero: m; = H(Zij\il WS = 0), where I(-) is the
indicator function. So Xpes = {x57 | m; = 1}.

The final, reduced sequence is formed by concatenating any special tokens X, the merged desti-
nation tokens X[, and the set of preserved source tokens Xpyes.

Xﬁnal = Concat(XspeCa X(ljlsu Xpres) (10)

Batch Processing Implementation. For efficient implementation on batched data, the preservation
decision must be consistent across all samples in a batch. Given the fusion matrix for a batch be
W € REXMXN A per-sample preservation mask m®) € {0,1}" is computed for each sample

b, where mgb) = ]I(Zf.\il Wk ; = 0). To ensure batch consistency, a source token j is preserved if it

is marked for preservation in any sample, yielding a final batch-wide mask m?-“al = \/bB:1 m§-b). So

the preserved source tokens Xpres = {X;" | m?“al = 1}. Subsequently, to prevent preserved tokens

from fusing, the corrected fusion matrix W is obtained by W', . = W[, .- (1 — m/"™!), zeroing

out columns corresponding to preserved tokens and keeping others unchanged.

Computational Efficiency Given that M and N are fractions of the original sequence length L
(.., M ~ aL, N ~ (1 — «)L), this overhead scales approximately as O(a(1 — ) L?d), similar
to self-attention. When merging is applied, the subsequent attention computation is reduced to
O(L?d). Assuming L' ~ BL with a < 8 < 1, this becomes O(3?L?d). Therefore, the total
costis O ((a(1 — ) + #2) L2d). For more efficient than standard self-attention, it requires c(1 —
a) + % < 1, which simplifies to the condition 3 < v/a2 — a + 1. To assess the strictness of this
condition, we consider the case where « and 3 are uniformly distributed over (0, 1) with « < 3. The
probability that 8 < v/a? — « + 1 is given by: The area of the region A = (o, 8) |0 < a <5 <1
is 1; the area of the region B = (a,8) € A| B < Va2 —a+1is fol (Va2 —a+1-a)da =
21n3. Therefore, the probability is P = B/A = 2In3 ~ 0.824,, indicating that the condition
holds in approximately 82.4% of cases. This means that for most parameter choices, it achieves
computational efficiency. Moreover, even if the condition is not strictly met in the current block, the
reduced sequence length L’ propagates to subsequent blocks, ensuring that all following attention
computations benefit from the shorter sequence, leading to overall computational savings across the
network.

3.1 INTEGRATION WITH TRANSFORMER BLOCKS

x; = MSA(LN(x;_1)) + 211
z] = MaMe(z))
1 = MLP(LN(2/)) + 2 (1)

Where z;_1 be the token sequence output by block [ — 1, and MSA, MLP, and LN denote Multi-head
Self-Attention, Multi-Layer Perceptron, and Layer Normalization, respectively.
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Figure 1: The visualization illustrates the progression of token count reduction in the first 8 blocks
of the AugReg ViT-B/16 with MaMe. Each color represents a distinct type of token. See the Ap-
pendix El for more results.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

Training-Free We evaluate MaMe on DeiT (Touvron et al., 2021) and MAE us-
ing pre-trained weights, applying compression to the first 8 layers with a similarity threshold of
0.8. All other things remain identical to [2023). Table [T] compares token compression
methods on ViT models. Table T|evaluates several token compression methods on ViT models. For
ViT-S (DeiT), MaMe achieves 9015 img/s, 79% higher than baseline while maintaining 78.61%
accuracy (1.2 points below original), surpassing EViT (8950 img/s, 73.83% accuracy) and ToMe
(8874 img/s, 77.99% accuracy). For ViT-B (DeiT), MaMe delivers 4117 img/s (93% faster) with
79.80% accuracy. EViT shows higher throughput (4230 img/s) but lower accuracy (74.61%), while

DiffRate(Chen et al.l [2023) has similar speed but 78.98% accuracy.

Notably, comparing ViT-B (DeiT) and ViT-B (MAE), which share identical architecture, reveals
significant differences in MaMe’s performance. On ViT-B (DeiT), MaMe achieves 4117 imgs/s
with 79.80% accuracy, while on MAE, throughput increases to 5418 imgs/s, representing a 31.6%
throughput improvement, while maintaining 79.83% accuracy. This highlights MaMe’s ability to
leverage MAE’s self-supervised robust representations effectively for token merging. EViT and
ToMe show no throughput change between ViT-B models. MaMe’s advantage grows with model
size: for ViT-L (MAE), it achieves 2764 imgs/s (EViT’s 1.63x) while maintaining the highest ac-
curacy (84.81%). On ViT-H (MAE), MaMe delivers 908 imgs/s (almost EViT’s 2x), with only a
marginal accuracy decrease compared to DiffRate.

Training-From-Scratch We integrate MaMe into standard ViT and hierarchical architectures (e.g.,
Swin(Liu et al.| 2021), Iwin 2025)) following established training recipes(Liu et al,
[2021). For ViT, we apply 2:1 token merging at layers 3, 6, and 9 (similarity threshold: 0.5). For
hierarchical models, MaMe replaces downsampling layers, reducing tokens to 25% of the original
and eliminating the need for embedding dimension doubling, thus cutting parameters and FLOPs
significantly. In order to maintain a regular shape for window partition, we had to discard the
“preserved source tokens”. Table [3] shows ImageNet-1k results. MaMe boosts throughput across
all models with minimal accuracy loss. For example, ViT-TT achieves 4462 img/s (vs. 2291 img/s
baseline) with only a 1.3% accuracy drop (70.9% vs. 72.2%). ViT-BT runs 92% faster (813 img/s)
at a 5.8% accuracy cost (76.0% vs. 81.8%).

This exploratory work applies MaMe as downsampling in hierarchical pyramid networks, sacrificing
some performance due to architectural constraints that require discarding “’preserved source tokens.”
Despite this, MaMe significantly reduces parameters and computation by eliminating embedding
dimension doubling, enabling deployment on edge devices. There is room for improvement, which
will be left for future work.
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FLOPs Throughput Top-1 Acc Model Param FLOPs Thr_oughput Top-1 Acc
Model Method G) (img/s) %) odel Mm@ (img/s) (%)
Training Free on ImageNet-1K (224 x224) Training From Scratch on ImageNet-1K (224 x224)
Baseline 4.6 5039 79.82 VILT 572 13 2291 722
EVIT 23 8950 73.83 VIiL-T! 572 06 4462 70.9
ViT-S (DeiT) ToMe 2.3 8874 77.99 Swin-T 29.0 4.5 950 81.3
DiffRate 2.3 8875 78.75 Swin-TT 1.45 1.5 1236 60.3
MaMe - 9015 78.61 Iwin-T 302 4.7 874 82.0
oot
Baseline 17.6 2130 81.83 Iwin-T? 146 1.5 1522 65.1
EViT 8.7 4230 74.61 VIT-S 220 4.6 1157 79.8
ViT-B (DeiT) ToMe 8.8 4023 77.84 ViT-sT 220 2.1 2057 77.0
DiffRate 8.7 4124 78.98 Swin-S 50.0 8.7 548 83.0
MaMe - 4117 79.80 Swin-ST 2.80 1.8 1043 65.8
Baselie 17.6 2130 83.72 Iwin8 516 9.0 >12 834
EViT 87 1230 7515 Iwin-ST 2.82 1.8 1254 71.0
ViT-B (MAE) ToMe 8.8 4023 78.86 VIT-B 864 17.6 422 81.8
DiffRate 8.7 4150 79.96 ViT-B! 864 84 813 76.0
MaMe - 5418 79.83
Baseline  61.6 758 85.95 Table 3: Comparative evaluation with MaMe
) EViT—29.7 1672 81.52 compression (7). Throughput measured on an
VIT-L (MAE) ToMe 31.0 1550 84.24
DiffRate 31.0 1580 84.65 A100 GPU (bs=64, fp32).
MaMe - 2764 84.81
Baseline 167.4 299 86.88 Backbone | UperNet 160k
‘ EVIT  99.1 512 85.54 | Param(M) FLOPs(G) mIoU(%) mAcc(%)
VIFIHMAE) Tole 929 200 S0l Swin-T | 599 945 445 556
iffRate  93.2 504 86.40 g
MaMe B 908 86.16 Swin-T 28.4 432 33.1 44.1
’ Iwin-T 61.9 946 44.7 56.6
Table 1- Tok . -the-shelf Iwin-T* 28.5 432 26.1 35.0
a del : T(1)1 en iompressmn (ZIH off-t e_/il?)o Swin-S | 813 1038 476 588
models. roughput measured on an Swin-S' 298 435 358 470
GPU (bs=1024, fp16). Iwin-S 83.2 1038 47.5 59.3
Iwin-St 29.8 435 31.6 41.6

Input Size Throughput Top-1 Acc

Model Method R .
®0  (mgh) (%) Table 4: Results for ADE20K semantic seg-
Zero-Shot Classification on ImageNet-1K mentation. FLOPs measured with input size
Baseline 224 51.22 7034 512x2048.
ToMe(r=8) 224 51.33 68.98
CLIP (ViT-L/14)  ToMe(r=12) 224 52.86 66.00
MaMe(r = 0.7) 224 69.09  67.60 Model Method fnput Throughput Top-1 Ace
(FxHW) (videos/s) (%)
MaMe(T = 0.8) 224 64.01 69.95
Baseline 512 46.28 75.61 Action Recognition on Kinetics-400
ToMe(r=32) 512 55.10 7433 Baseline 16x224  13.24 76.81
SigLIP (ViT-B/16)  ToMe(r=64) 512 71.94 70.66 ToMe(r=96)  16x224  13.76 75.54
MaMe(r = 0.8) 512 79.25 71.17 VideoMAE-B  ToMe(r=128) 16x224 14.06 73.34
MaMe(r = 0.9) 512 58.10 74.50 MaMe(r = 0.85) 16x224  13.81 74.23
Baseline o 2390 837 MaMe(r = 0.9) 16x224  13.33 76.03
ToMe(r=32) 512 50.89 76.46 Baseline 16x224 6.25 82.31
SigLIP2 (VIT-B/16)  ToMe(r=64) 512 68.07 71.60 VideoMAE-L  ToMe(r=32)  16x224 6.97 82.05
MaMe(r = 0.9) 512 76.15 75.09 MaMe(T = 0.8) 16x224  9.28 81.47
MaMe(r = 0.95) 512 56.15 78.02

Table 5: Results of VideoMAE on action recog-
Table 2: Zero-shot results. Inference throughput nition benchmarks. Inference throughput is
measured on a 3090 GPU (bs=1, fp16). measured on a 3090 GPU (bs=1, fp16).

4.2 SEMANTIC SEGMENTATION

To assess our compressed models to downstream dense prediction tasks, we evaluate the Swin and
Iwin backbones on the ADE20K (Zhou et al., 2019) using UperNet (Xiao et al.l 2018) in MM-
Segmentation (Contributors, [2020). Following (Liu et al.| [2021) settings, results in Table [Z_f] show
MaMe marked as (1) reduces model complexity, with Swin-TT decreasing parameters by 52% and
FLOPs by 54% versus baseline, though with reduced segmentation performance. While compressed
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Iwin" models achieve strong classification accuracy (Iwin-St at 71.0%), their semantic segmentation
performance drops more than compressed Swin models, with Iwin-ST declining 15.9 points versus
Swin-Sf’s 11.8 points.

4.3 MULTIMODAL LARGE LANGUAGE MODELS

Zero-shot Image Classification We conducted zero-shot image classification on ImageNet-1K vali-
dation set to evaluate token merging strategies across CLIP(Radford et al.,|2021)), SigLIP(Zhai et al.,
2023)), and SigLIP2(Tschannen et al., 2025). For CLIP, MaMe (7 = 0.8) increased throughput by
25% (64.01 img/s) with 0.39% accuracy drop, while ToMe (r=12) gave 3% throughput gain with
4.34% accuracy loss. For SigLIP, MaMe (7 = 0.9) improved throughput by 25% (58.10 img/s) with
1.11% accuracy reduction, while ToMe (r=32) achieved 19% speedup with 1.28% accuracy loss.
For SigL.IP2, MaMe (T = 0.95) increased throughput by 28% (56.15 img/s) with 0.35% accuracy
drop, while ToMe (r=32) gave 16% throughput gain with 1.91% accuracy loss. SigL.IP2’s ability
to merge tokens at 7 = 0.95 indicates its confident semantic representations. MaMe demonstrates
better balance between throughput and accuracy versus baseline and ToMe.

Text-Image to Text We evaluated the impact of token merging on the LLaVA-1.5-7B model (Liu
et al., 2023a)) using the VLMEvalKit framework (Duan et al., 2024)) across various multimodal
benchmarks (Fu et al.| 2023} [Yue et al.l 2023} [Lu et al.l 2022 |Li et al., 2023; [Lin et al., 2024}
Liu et al} 2024; 2023b)), Merging was applied to the visual encoder to reduce the number of visual
tokens fed to the language model. We compare the baseline against ToMe with a fixed reduction
ratio of r=8 per layer and MaMe with a similarity threshold of 7 = 0.8. As shown in Table[6] both
methods significantly reduce evaluation time. MaMe achieves greater acceleration while delivering
metric scores that are competitive with or slightly better than ToMe on most of benchmarks. This
demonstrates that token merging, particularly MaMe, is a highly effective strategy for accelerating
large multimodal models with minimal impact on performance.

Method | MME | MMMU | ScienceQA | SEED-Image | MMStar | CRPE | MMBench

| Metric  Time(s) | Metric Time(s) | Metric Time(s) | Metric ~Time(s) | Metric Time(s) | Metric ~Time(s) | Metric  Time(s)
LLaVA-1.5-7B (Baseline) 3276 597 3222 481 65.43 625 60.17 3513 32.53 565 50.69 2076 62.80 1191
+ ToMe (r=8) 31.40 509 30.11 440 63.42 554 58.19 3135 31.13 545 46.78 1794 61.00 1086
+MaMe (7=0.8) 31.40 447 30.56 422 64.47 478 57.20 2840 30.27 531 45.62 1659 60.48 1020

Table 6: Benchmark results for LLaVA-1.5-7B with different token merging methods. For each
benchmark, we report the primary Metric (e.g., accuracy) and the total evaluation Time in seconds.

4.4 VIDEO CLASSIFICATION

We apply token merging to VideoMAE (Tong et al.l 2022) models’ vision encoder and compare
MaMe with ToMe on Kinetics-400 validation set (Kay et al.|[2017). We sample 16 frames at 224 X
224 resolution per video clip. We report Top-1 accuracy and inference throughput in videos/s on a
3090 GPU with fp16 precision. Results in Table [5]show token merging effectively accelerates video
transformer inference. For VideoMAE-B, MaMe with threshold 7 = 0.9 increases throughput from
13.24 to 13.33 videos/s with only 0.78% drop in Top-1 accuracy, outperforming ToMe(r=128) which
shows 3.47% accuracy degradation for similar speedup.

4.5 ABLATION STUDY
4.5.1 ALGORITHMIC DESIGN CHOICES

Our ablation studies the core algorithmic components of MaMe, with results summarized in Table[2]

Feature Choice: The raw token matrix x achieves optimal accuracy (83.35%) with competitive
throughput. Features k and k-mean show lower accuracy (71.63% and 69.01%), confirming x
preserves the most discriminative information for merging decisions.

Similarity Function: Cosine similarity achieves the best balance (83.35% accuracy, 73.06 im/s
throughput). Dot product improves throughput (81.14 im/s) but sacrifices accuracy (80.43%), while
Euclidean and softmax-based methods underperform in either metric.
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Partition Style: Sequential ordering maximizes accuracy (84.14%) but reduces throughput (71.81
im/s). Alternating order offers the best trade-off (83.35% accuracy, 73.06 im/s), outperforming
random ordering, which slightly boosts throughput at the cost of accuracy.

Adaptive Weight Pruning: AugReg models require pruning to achieve best 83.35% accuracy.
MAE models show moderate gains but remain less dependent on pruning.

feature acc  im/s function acc im/s  order acc im/s Src  pruningacc  im/s
X 83.35 73.06  eucl 81.58 73.60 sequential 84.14 71.81 mae 77.51 85.59
k 71.63 72.45 cosine  83.35 73.06 alternating 83.35 73.06 mae v 80.02 78.96
k-mean69.01 75.06 dot 80.43 81.14 random 83.24 73.74 augreg 72.47 78.59
softmax 61.90 80.33 augreg v 83.35 73.06

(a) Feature Choice. The (b) Similarity Function. (c) Partition Style. Alter- (d) Adaptive Weight
x matrix has the most in- Cosine similarity is the nating is more reliable and Pruning. AugReg models
formation within tokens.  best choice for speed and faster. need pruning.

accuracy.

Figure 2: Ablation experiments using AugReg ViT-B/16. Our default settings are marked in Gray.
We report Top-1 accuracy (acc) with FP32 precision and model inference throughput (im/s) on a
3090 GPU. The visualization results of different methods are shown in Figure@

original default softmax sequential random
iy |

settings. Each color square represents a distinct type of token. Default is our default method.

4.5.2 WHERE AND WHAT

To investigate where MaMe should be applied within models and what similarity threshold yields
optimal performance, we examine the joint impact of similarity threshold (7) and the number of
blocks applying token merging (num_block) on both accuracy and throughput on ViT models as
shown in Figure ]

Accuracy The relationship between similarity threshold and accuracy shows a non-linear, saturat-
ing pattern across ViT architectures, influenced by MaMe applied block depth. As the threshold
increases from 0.6 to 0.8, accuracy improves rapidly before plateauing, indicating diminishing re-
turns from stricter token retention and suggesting that exceeding a critical threshold sufficiently
distinguishes features.

Throughput Throughput monotonically decreases with similarity threshold, dropping sharply at
low thresholds due to rising computational costs. Threshold sensitivity inversely correlates with
model size: ViT-S experiences the steepest decline, followed by ViT-B and ViT-L, indicating larger
models better mitigate merging overhead.

Model-Scale Sensitivity Model sensitivity to token merging varies by size: ViT-L maintains >85%
accuracy across thresholds (0.6-0.8) with throughput gains, ViT-B shows moderate sensitivity, and
ViT-S is most vulnerable (accuracy drops from 79% to 60% with aggressive merging). Larger mod-
els exhibit greater representational redundancy, allowing coarser merging with minimal performance
loss.

Random Partition The comparison between deterministic default configurations (dashed lines) and
stochastic trials (scatter points) indicates that the default settings define a Pareto frontier: stochastic
partitions yield higher accuracy (points above the dashed line) but lower throughput (points below
the dashed line). This trade-off suggests that while stochasticity enhances accuracy, it undermines
computational efficiency. The deterministic, alternating partition thus serves as a robust baseline,
balancing performance and efficiency.



Under review as a conference paper at ICLR 2026

T, Se e IIf Tt Si W& dar ) Model / Numblock
85 . ‘_,_‘v.: :: AR i oy
T aee AT et o 2000 { -== vits
—_ £ ” i — —e— ViTs
X807 4 & ¥ Ey @ num_block=7
~ A A = num_block=8 \!
> L E 15001 o numblock=s
© 751 = ® num_block=16
g |« 2
& 70 | Model / Numblock 5 1000 l:.:&‘
- “de VITL S Lt SN
f - ViTB o ¥
Q = iy
O 65 { —* VTS < "~
= ®  num_block=7 F 500
num_block=8
®  num_block=9 f 3 I
601 o n:mimocksle g BT Ty
0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775 0.800
Similarity Threshold Similarity Threshold

(a) Accuracy vs. Sim. Threshold with Alternat- (b) Throughput vs. Sim. Threshold with Alter-

ing partition nating partition
85.0 e 1100 4 =~ Ratio / Model
82.5 4 ¢ v - I §_=--" = - VT8
Ple v V¥ g 9 P e — 1000 | AN ® 10%
= _a @ LI 30%
S 80.0 4 M a = - [ )
= ' (/ =) . o 50%
o A\ £ 900 *——n 70%
3775 t B AR bt > .
© S = I ~ 90%
5 ] S0 5 8001 ¢ @ -
3 75.0 ’ ! \ Ratio / Model e 0 ~~a
3 [} // 80.25 —=- ViTB S 7007 5609 AN
= 72.5 1 5 80.0 ® 10% 2 600 | e saw0f)y $ AN
53 F 0,740 & 30% = s dgas T
= 700 / : o 0% T 500 8
: / 70% L4 "
67.51 o 50% W00l® © o ¥ o e ¥ o © @
0.70 0.72 0.74 0.76 0.78 0.80 0.70 0.72 0.74 0.76 0.78 0.80
Similarity Threshold Similarity Threshold

(c) Accuracy vs. Sim. Threshold with Random (d) Throughput vs. Sim. Threshold with Random
partition partition

Figure 4: The accuracy and throughput change with the similarity threshold under both alternating
and random partitions. Five different random seeds are employed to conduct five experiments under
different ratios of tokens as source tokens as shown in the box in the Figures (c) and (d), illustrating
that the default, determined alternating partition curves represent a Pareto frontier.

5 DISCUSSION

Pros and Cons One of the primary advantages of MaMe is its non-intrusive nature with respect to
standard attention mechanisms. Unlike ToMe, which requires attention modifications, MaMe pre-
serves the standard attention calculation and easily integrates with optimized implementations like
Flash Attention(Daol 2024]). Its full-matrix operations are GPU-friendly, avoiding hard-to-optimize
sorting operations. However, the optimal similarity threshold (7) and layer selection require man-
val determination. Future work will automate them through adaptive strategies or reinforcement
learning.

Migrating to LLMs Token merging approaches like ToMe break causality in autoregressive LLMs
by allowing tokens to merge with future tokens. MaMe enables causal token merging by partition-
ing tokens into odd (destination) and even (source) sets, then applying a causality mask M (M; ; = 1
if 7 < ¢, else 0) to zero upper triangular part of fusion weights WE by WE © M;;. This restricts
each destination token (e.g., token 5) to merge only with preceding source tokens (e.g., tokens 0, 2,
4), preserving causality and allowing reduce KV cache length in LLMs.

6 CONCLUSION

In this work, we introduced MaMe, a differentiable, training-free token merging method based
on full-matrix operations. Through extensive experimentation, including accelerating off-the-shelf
and from-scratch trained ViT models, as well as video classification models, we demonstrated that
MaMe, like ToMe, achieves significant inference speedups, typically with a trade-off in performance
metrics. Lastly, we discussed MaMe’s potential for application in large language models to com-
press KV cache while preserving causality.
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A APPENDIX
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Figure 5: The visualization illustrates the progression of token count reduction in the first 8 blocks
of AugReg ViT-B/16 with MaMe. Each color represents a distinct type of token.
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Figure 6: The visualization in the 8th block of the AugReg ViT-B/16 using MaMe with different
settings. Each color square represents a distinct type of token. Default is our default method.
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Figure 7: Visualization of semantical segmentation results. From left to right, input image, Ground
Truth, Swin, Swin-TT, Iwin, and Twin-TT.
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LARGE LANGUAGE MODEL USAGE DECLARATION

In the preparation of this work, the authors utilized several large language models (LLMs) for spe-
cific tasks as detailed below. The authors are solely responsible for the content of the publication.

Literature Review Assistance: Gemini 2.5 Pro was employed to assist in gathering and
synthesizing relevant research literature. This assistance was primarily used in the prepa-
ration of the Introduction and Related Work sections to identify key developments and
contextualize our contribution within the existing body of research.

Language Polishing: Gemini 2.5 Pro, Gemini 2.5 Flash, and DeepSeek-R1 were used to
refine English expression throughout the manuscript. This included improving grammatical
accuracy, enhancing clarity of technical descriptions, and ensuring consistent academic
tone.

Experimental Analysis Support: Gemini 2.5 Pro was utilized as an analytical tool to
assist in the interpretation of selected experimental results, particularly in identifying pat-
terns and generating preliminary insights that were subsequently rigorously verified and
expanded upon by the authors.

Declaration: Deepseek-R1 was used to assist in writing the declaration.

All content generated with LLM assistance was carefully reviewed, critically evaluated, and substan-
tially modified by the authors to ensure accuracy, originality, and adherence to scientific standards.
The final manuscript represents the authors’ own intellectual contribution and perspective.
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