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ABSTRACT

We introduce MaMe, a training-free, differentiable token merging method that
relies entirely on matrix operations to accelerate vision transformers. When ap-
plied to pre-trained models, MaMe doubles ViT-B@224 throughput with a mere
2% drop in accuracy. For training from scratch, a ViT-T model with MaMe
achieves 1.94x throughput with a 1.3% accuracy drop. As a downsampling layer in
Swin architectures, MaMe reduces FLOPs by 2.4x for Swin-S backbones, achiev-
ing 47.0% mIoU on ADE20K semantic segmentation. In SigLIP2-B@512 zero-
shot classification, MaMe provides 1.3× acceleration with negligible performance
degradation (78.02 vs. 78.37). For multimodal reasoning, MaMe accelerates
LLaVA-v1.5-7B inference by 36% on MME with minimal degradation (31.40 vs.
32.76). In video tasks, MaMe accelerates VideoMAE-L by 48.5% on Kinetics-
400 with a 0.84% accuracy loss. Collectively, these results demonstrate MaMe’s
effectiveness in accelerating transformer-based vision and multimodal models.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have revolutionized computer vision by adopt-
ing the transformer architecture from natural language models (Vaswani et al., 2017). ViT’s self-
attention mechanism effectively captures long-range dependencies between image patches (i.e., ”to-
kens”). However, the complexity of self-attention is quadratic O(N2), where N represents the
number of tokens. For applications requiring dense token representations, such as high-resolution
images, this quadratic complexity presents a significant challenge, limiting the deployment of large-
scale ViT models on resource-limited devices or in real-time applications.

To address the O(N2) computational challenge, a straightforward yet effective strategy is to reduce
the number of tokens N involved in the process. The primary strategies that have emerged include
token pruning, token merging, and hybrid methods that integrate both. Groundbreaking works like
DynamicViT (Rao et al., 2021) introduced a dynamic token sparsification framework that employs
a lightweight, learnable prediction module to hierarchically prune tokens at various stages of the
network. EViT (Liang et al., 2022) utilizes the class token to assess token importance, retaining the
most attentive tokens while merging the others. The main drawback of pruning is the irreversible
loss of information. Token merging, on the other hand, combines similar tokens instead of discard-
ing them. ToMe (Bolya et al., 2022) introduced a training-free method that uses a fast bipartite soft
matching algorithm to progressively merge similar tokens. Some approaches, like ATM (Fayyaz
et al., 2022) and DTEM (Duman & Kalkan, 2024), have been developed to overcome the limita-
tions of static merging policies that rely on intermediate features not specifically designed for the
merging task. Recognizing that pruning and merging address different types of redundancy, the
hybrid method combines these strategies for a more adaptable and potentially optimal reduction.
DiffRate (Chen et al., 2023) makes the compression rate differentiable to learn layer-wise rates,
while Token Transforming (Zeng et al., 2025) generalizes both pruning and merging as specific
cases of a broader matrix transformation, enabling more flexible, many-to-many mappings that can
better preserve information in a training-free manner.

Despite recent advancements, existing token reduction methods face several challenges. A primary
issue is the non-differentiable nature of the token selection process when using the Top-K operation,
which often requires complex workarounds for end-to-end training. Some methods are slow due to
their reliance on clustering techniques like k-means, which are computationally intensive. Addition-
ally, many methods introduce extra learnable parameters for token selection or merging modules,
leading to increased model complexity and training overhead.
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To address these limitations, inspired by ToMe, we introduce a novel training-free token merging
approach that overcomes the mentioned challenges through several key innovations:

Fully Differentiable Design: Our method employs only differentiable operations throughout the
token merging process, enabling seamless end-to-end training and optimization. By avoiding dis-
crete operations, we maintain gradient flow and allow the model to be trained from scratch to learn
optimal merging strategies.

Efficient Matrix Operations: Instead of relying on computationally expensive clustering algo-
rithms, we utilize efficient matrix operations based on normalized cosine similarity. This approach
offers both theoretical efficiency and practical speedup.

Parameter-Free Architecture: Our approach introduces no additional learnable parameters, main-
taining the original model’s parameter, simplifying deployment, and reducing the complexity of
model management.

Plug-and-Play Integration: Our approach can be directly applied to pre-trained models without
requiring retraining, or seamlessly integrated during training from scratch. This flexibility signifi-
cantly lowers the barrier to adoption.

2 RELATED WORK

To address the quadratic computational complexity introduced by the self-attention mechanism in
the Vision Transformer models, researchers have proposed a variety of acceleration and optimization
methods. These methods aim to improve ViT inference and training efficiency without significantly
sacrificing model performance.

Token Pruning Pruning methods hierarchically discard tokens deemed non-informative based on
learned importance metrics. DynamicViT (Rao et al., 2021) pioneered this approach by attaching
lightweight prediction heads at intermediate layers to score token relevance, using differentiable at-
tention masking to enable end-to-end training. EViT (Liang et al., 2022) enhanced this framework
by fusing pruned tokens into the class token, preserving partial information while reducing sequence
length. Recent advancements include AdaViT (Meng et al., 2022), which extends pruning beyond to-
kens to attention heads and transformer blocks, implementing instance-adaptive computation graphs
that allocate more resources to complex inputs. However, these methods face fundamental limita-
tions: 1) Early pruning decisions risk irreversible information loss, 2) Discrete selection operations
create optimization challenges, and 3) Task-specific tuning is required for optimal threshold calibra-
tion.

Token Merging Merging techniques combine similar tokens rather than discarding them, preserving
information while reducing computational load. ToMe (Bolya et al., 2022) revolutionized this space
with training-free bipartite soft matching, using attention weights to merge the most similar token
pairs at each layer. Its efficiency stems from matching tokens within local neighborhoods rather
than globally, achieving real-time performance. However, ToMe’s fixed merge ratio per layer limits
adaptability to varying input complexities. Since ToMe, several similar works were proposed. For
example, ToFu(Song et al., 2024) diverges from ToMe’s training-free methodology by proposing
a learnable fusion module that is co-trained with the Vision Transformer to generate new, more
expressive tokens. Hybrid approaches such as Pumer (Fu et al., 2024) and LTPM (Li et al., 2024)
integrate token pruning and merging within a unified framework. Pumer introduces a learnable
router to dynamically determine the number of tokens to prune and merge on a per-instance basis,
whereas LTPM employs learnable parameters to decide whether a token should be pruned or which
tokens should be merged, thereby establishing a flexible, end-to-end reduction policy. DiffRate
(Chen et al., 2023) addresses the challenge of selecting an optimal compression ratio by rendering
the rate itself differentiable. It utilizes a learnable budget controller to optimize this rate for each
input, facilitating instance-adaptive efficiency through standard gradient descent.

Clustering-Based Reduction Clustering approaches utilize offline algorithms to group tokens based
on similarity. TCFormer (Zeng et al., 2024) employs KNN-enhanced Density Peaks Clustering to
adaptively group tokens, identifying cluster centers and merging redundant tokens through aver-
aging for tasks centered on human activities, such as pose estimation. ClusTR (Xie et al., 2022)
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implements hierarchical token merging with cosine similarity measures across Transformer layers,
striking a balance between computation and feature preservation for vision tasks. However, its pre-
defined merging ratios limit flexibility, and early token reduction may hinder small object detection.
While these methods excel in preserving global context, they face three significant drawbacks: 1)
Iterative clustering algorithms with O(nk) complexity often negate computational savings, 2) Dis-
crete cluster assignments prevent gradient flow, and 3) Fixed cluster counts lack adaptability to input
variations.

Learnable Token Reduction End-to-end trainable methods optimize reduction policies through dif-
ferentiable architectures. ATS (Fayyaz et al., 2022) implements token merging via softmax-weighted
averaging with gating mechanisms, enabling gradient-based optimization of merge decisions. Dy-
namic Token Morphing (Wang et al., 2023) employs cross-attention between original tokens and a
small set of learnable proxy tokens that adaptively absorb information. Gumbel Token Selector(Kim
et al., 2023) uses the Gumbel-Softmax trick to differentiably sample token subsets, maintaining in-
formation flow to discarded tokens through residual connections. These approaches show promise
for task-specific optimization but increase model complexity (15-30% more parameters) and risk
overfitting on small datasets.

Challenges and Limitations Across these methods, several common challenges persist. The non-
differentiable nature of discrete token selection has been a recurring obstacle, necessitating sophis-
ticated solutions like the Gumbel-Softmax trick, attention masking (Rao et al., 2021), or continuous
relaxation (Duman & Kalkan, 2024) for end-to-end optimization. Furthermore, many approaches
introduce additional learnable parameters via decision networks or selection modules (e.g., Dy-
namicViT, AdaViT), which increases model complexity. In contrast, parameter-free methods like
ToMe offer plug-and-play efficiency without requiring additional training but need to manually spec-
ify the compression ratio. Finally, some methods exhibit architecture-specific dependencies; for
example, EViT’s reliance on a token for importance scoring limits its direct applicability to dense
prediction tasks like segmentation, where such a token may not be present.

3 METHODOLOGY

3.1 TOKEN PARTITIONING

Let the input sequence from a given layer be represented by the matrix X ∈ RL×d, where L is the
number of tokens and d is the feature dimension. We first partition this sequence into two disjoint
sets: a set of M destination tokens, denoted by Xdst ∈ RM×d, and a set of N source tokens,
Xsrc ∈ RN×d, where L = M +N .

Xdst = {xi : i ∈ Idst}
Xsrc = {xj : j ∈ Isrc} (1)

where Idst and Isrc represent the index sets for destination and source tokens, respectively, such
that Idst∩Isrc = ∅ and Idst∪Isrc = I covers all token indices, excluding any special tokens (e.g.,
class tokens). The specific strategy for partitioning into Idst and Isrc can vary (e.g., fixed interleaved
patterns or random selection).

3.2 SIMILARITY-BASED FUSION MATRIX

Similarity Matrix. We begin by computing the cosine similarity between each destination token
and every source token. This yields a similarity matrix S ∈ RM×N , where each element Sij is
defined as:

Sij =
xdst
i · xsrc

j

∥xdst
i ∥ · ∥xsrc

j ∥
(2)

To isolate the most significant relationships, we apply a rectified linear unit (ReLU) activation with
a shifting threshold τ . This step filters out weak connections, producing a sparse similarity matrix
S̃ ∈ RM×N :

S̃ij = ReLU(Sij − τ) (3)
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Adaptive Weight Pruning. From the sparse similarity matrix S̃, we first compute an initial weight
matrix W ∈ RM×N by normalizing its columns. This ensures the initial influence of each source
token is properly distributed among its similar destination tokens.

Wij =
S̃ij∑M

i=1 S̃ij + ϵ
(4)

where ϵ is a small constant for numerical stability.

To further refine these weights, we introduce a dynamic, column-specific thresholding mechanism.
For each source token j, we define a threshold ζj as the average of its non-zero weights in W :

ζj =

∑M
i=1 Wij

Cj + ϵ
(5)

where Cj is the count of non-zero entries along the destination dimension and can be computed as

Cj =

M∑
i=1

Wij

Wij + ϵ
(6)

The threshold ζj is to prune connections that are weak relative to a source token’s other connections.
We apply this threshold to obtain a pruned weight matrix W̃ :

W̃ij = ReLU(Wij − ζj) (7)

Finally, the pruned matrix W̃ is re-normalized column-wise to produce the final fusion weights
W F ∈ RM×N :

W F
ij =

W̃ij∑M
i=1 W̃ij + ϵ

(8)

3.3 TOKEN AGGREGATION AND PRESERVATION

The destination tokens are updated by aggregating the features from source tokens, guided by the
final fusion weights. The fused destination tokens, X ′

dst ∈ RM×d, are computed as:

X′
dst = Xdst +WFXsrc

x′′
dst,i =

x′
dst,i

1 +
∑N

j=1 W
F
ij

(9)

A key component of our methodology is the preservation of unique source tokens. A source to-
ken xsrc

j is preserved if it exhibits no significant similarity to any destination token after the initial
filtering, which means the sum of its similarities to all destination tokens is zero::

∑M
i=1 S̃ij = 0.

The final, reduced sequence is formed by concatenating any special tokens Xspec, the merged desti-
nation tokens X′′

dst, and the set of preserved source tokens Xpres.

Xfinal = concat(Xspec,X
′′
dst,Xpres) (10)

If r source tokens satisfy the preservation condition and there are lspec special tokens, the resulting
sequence will have a reduced length of lspec +M + r. The algorithm is illustrated in Figure 1.

3.4 INTEGRATION WITH TRANSFORMER BLOCKS

x′
l = MSA(LN(xl−1)) + xl−1

x′′
l = Merge(x′

l)

xl = MLP(LN(x′′
l )) + x′′

l (11)

Where xl−1 be the token sequence output by block l−1, and MSA, MLP, and LN denote Multi-head
Self-Attention, Multi-Layer Perceptron, and Layer Normalization, respectively.
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Figure 1: Illustration of MaMe Algorithm. The similarity threshold is 0.7 in this illustration.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

Training-Free The evaluation employs two representative Vision Transformer architectures:
DeiT (Touvron et al., 2021) and MAE (He et al., 2022), utilizing their pre-trained weights with-
out any fine-tuning. For these off-the-shelf experiments, we apply MaMe to the first 8 layers of each
model, where we empirically set the similarity threshold to 0.8.

The results in Table 1 show that MaMe achieves 9015 img/s, 79% higher than baseline (5039 img/s)
with 78.61% accuracy - 1.2 points below 79.82%. This outperforms EViT (8950 img/s, 73.83%
accuracy) and ToMe (8874 img/s, 77.99% accuracy). For ViT-B (DeiT), MaMe delivers 4117 img/s
(93% faster than baseline) with 2.03% accuracy drop (79.80% vs 81.83%). EViT shows higher
throughput (4230 img/s) but lower accuracy (74.61%), while DiffRate has similar throughput but
78.98% accuracy. Comparing ViT-B (DeiT) and ViT-B (MAE) reveals key differences: MaMe
achieves 4117 imgs/s with 79.80% accuracy on DeiT, but reaches 5418 imgs/s with 79.83% accu-
racy on MAE - a 31.6% improvement. MAE’s self-supervised pre-training creates robust features,
enabling aggressive token pruning. Static methods like EViT and ToMe show no throughput change
between models. For ViT-L (MAE), MaMe achieves 2764 imgs/s with 84.81% accuracy. On ViT-
H (MAE), it delivers 908 imgs/s, almost double EViT’s speed, with minimal accuracy loss versus
DiffRate.

Visualization Figure 2 illustrates our token visualization across successive transformer blocks in
MaMe-enhanced ViT models. For slender elements like wooden slats or spider legs, MaMe effec-
tively maintains distinct token assignments despite their thin morphology. Similarly, small objects in
complex scenes retain dedicated token representation. For images with multiple targets, MaMe can
also lock them correctly. The visualization also highlights MaMe’s robust handling of geometrically
challenging objects—cylindrical forms and irregular shapes maintain coherent token boundaries that
faithfully follow their contours. This demonstrates consistent performance across different object
scales and morphologies.

Training-From-Scratch For end-to-end training, we follow Swin Transformer (Liu et al., 2021)
recipes while incorporating our compression strategy. In ViT architectures, we apply MAMe at lay-
ers 3, 6, and 9, with a 2:1 token reduction ratio at each compression point. The similarity threshold
is 0.5. For hierarchical structures like Swin (Liu et al., 2021) and Iwin Transformer (Huo & Li,
2025), we replace downsampling modules with MaMe-based compression (reducing tokens to 1

4 of
original), eliminating embedding dimension doubling.
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Figure 2: The visualization illustrates the progression of token count reduction in the first 8 blocks
of the AugReg ViT-B/16 with MaMe. Each color represents a distinct type of token. See the Ap-
pendix 5 for more results.

The Table 3 shows metrics for ViT, Swin, and Iwin on ImageNet-1k (Russakovsky et al., 2015), with
and without MaMe (marked with †). MaMe enhances throughput while maintaining competitive ac-
curacy. ViT-T† achieves 4462 img/s, doubling its baseline of 2291 img/s, with 1.3% accuracy drop.
ViT-B† shows 813 img/s (92% faster) at 5.8% accuracy cost, though its accuracy(76.0%) is lower
than ViT-S†(77.0%). While Iwin-T (874 img/s) was slower than Swin-T (950 img/s), Iwin-T† (1522
img/s) outperforms both alternatives. Similarly, Iwin-S† achieves 1254 img/s versus Swin-S†’s 1043
img/s, while maintaining better accuracy (71.0% vs 65.8%). Accuracy-throughput tradeoffs vary
across architectures. ViT shows minimal accuracy degradation (1-6 points), while Swin exhibits
larger drops (15-20 points). Iwin achieves better balance - Iwin-S† maintains 71.0% accuracy ver-
sus Swin-S†’s 65.8%. Iwin-T† achieves higher accuracy (65.1%) than Swin-T† (60.3%) with faster
throughput.

4.2 SEMANTIC SEGMENTATION

To assess our compressed models to downstream dense prediction tasks, we evaluate the Swin and
Iwin backbones on the ADE20K (Zhou et al., 2019) using UperNet (Xiao et al., 2018) in MM-
Segmentation (Contributors, 2020). Following (Liu et al., 2021) settings, results in Table 4 show
MaMe marked as (†) reduces model complexity, with Swin-T† decreasing parameters by 52% and
FLOPs by 54% versus baseline, though with reduced segmentation performance. While compressed
Iwin† models achieve strong classification accuracy (Iwin-S† at 71.0%), their semantic segmentation
performance drops more than compressed Swin models, with Iwin-S† declining 15.9 points versus
Swin-S†’s 11.8 points.

6
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Model Method FLOPs Throughput Top-1 Acc
(G) (img/s) (%)

Training Free on ImageNet-1K (224×224)

ViT-S (DeiT)

Baseline 4.6 5039 79.82
EViT 2.3 8950 73.83
ToMe 2.3 8874 77.99

DiffRate 2.3 8875 78.75
MaMe - 9015 78.61

ViT-B (DeiT)

Baseline 17.6 2130 81.83
EViT 8.7 4230 74.61
ToMe 8.8 4023 77.84

DiffRate 8.7 4124 78.98
MaMe - 4117 79.80

ViT-B (MAE)

Baseline 17.6 2130 83.72
EViT 8.7 4230 75.15
ToMe 8.8 4023 78.86

DiffRate 8.7 4150 79.96
MaMe - 5418 79.83

ViT-L (MAE)

Baseline 61.6 758 85.95
EViT 29.7 1672 81.52
ToMe 31.0 1550 84.24

DiffRate 31.0 1580 84.65
MaMe - 2764 84.81

ViT-H (MAE)

Baseline 167.4 299 86.88
EViT 99.1 512 85.54
ToMe 92.9 500 86.01

DiffRate 93.2 504 86.40
MaMe - 908 86.16

Table 1: Token compression on off-the-shelf
models. Throughput measured on an A100
GPU (bs=1024, fp16).

Model Method
Input Size Throughput Top-1 Acc

(px) (img/s) (%)

Zero-Shot Classification on ImageNet-1K

CLIP (ViT-L/14)

Baseline 224 51.22 70.34
ToMe(r=8) 224 51.33 68.98
ToMe(r=12) 224 52.86 66.00

MaMe(τ = 0.7) 224 69.09 67.60
MaMe(τ = 0.8) 224 64.01 69.95

SigLIP (ViT-B/16)

Baseline 512 46.28 75.61
ToMe(r=32) 512 55.10 74.33
ToMe(r=64) 512 71.94 70.66

MaMe(τ = 0.8) 512 79.25 71.17
MaMe(τ = 0.9) 512 58.10 74.50

SigLIP2 (ViT-B/16)

Baseline 512 43.90 78.37
ToMe(r=32) 512 50.89 76.46
ToMe(r=64) 512 68.07 71.60

MaMe(τ = 0.9) 512 76.15 75.09
MaMe(τ = 0.95) 512 56.15 78.02

Table 2: Zero-shot results. Inference throughput
measured on a 3090 GPU with bfp16.

Model Param FLOPs Throughput Top-1 Acc
(M) (G) (img/s) (%)

Training From Scratch on ImageNet-1K (224×224)
ViT-T 5.72 1.3 2291 72.2
ViT-T† 5.72 0.6 4462 70.9
Swin-T 29.0 4.5 950 81.3
Swin-T† 1.45 1.5 1236 60.3
Iwin-T 30.2 4.7 874 82.0
Iwin-T† 1.46 1.5 1522 65.1

ViT-S 22.0 4.6 1157 79.8
ViT-S† 22.0 2.1 2257 77.0
Swin-S 50.0 8.7 548 83.0
Swin-S† 2.80 1.8 1043 65.8
Iwin-S 51.6 9.0 512 83.4
Iwin-S† 2.82 1.8 1254 71.0

ViT-B 86.4 17.6 422 81.8
ViT-B† 86.4 8.4 813 76.0

Table 3: Comparative evaluation with MaMe
compression (†). Throughput measured on an
A100 GPU (bs=64, fp32).

Backbone UperNet 160k
Param(M) FLOPs(G) mIoU(%) mAcc(%)

Swin-T 59.9 945 44.5 55.6
Swin-T† 28.4 432 33.1 44.1
Iwin-T 61.9 946 44.7 56.6
Iwin-T† 28.5 432 26.1 35.0

Swin-S 81.3 1038 47.6 58.8
Swin-S† 29.8 435 35.8 47.0
Iwin-S 83.2 1038 47.5 59.3
Iwin-S† 29.8 435 31.6 41.6

Table 4: Results for ADE20K semantic seg-
mentation. FLOPs measured with input size
512×2048.

Model Method
Input Throughput Top-1 Acc

(FxHW) (videos/s) (%)

Action Recognition on Kinetics-400

VideoMAE-B

Baseline 16x224 13.24 76.81
ToMe(r=96) 16x224 13.76 75.54
ToMe(r=128) 16x224 14.06 73.34

MaMe(τ = 0.85) 16x224 13.81 74.23
MaMe(τ = 0.9) 16x224 13.33 76.03

VideoMAE-L
Baseline 16x224 6.25 82.31

ToMe(r=32) 16x224 6.97 82.05
MaMe(τ = 0.8) 16x224 9.28 81.47

Table 5: Results of VideoMAE on action recog-
nition benchmarks. Inference throughput is
measured on a 3090 GPU with fp16.

4.3 MULTIMODAL LARGE LANGUAGE MODELS

Zero-shot Image Classification We conducted zero-shot image classification on the ImageNet-1K
validation set to evaluate token merging strategies across CLIP, SigLIP, and SigLIP2, focusing on
inference throughput and accuracy. As shown in the Table 2, for CLIP, MaMe (τ = 0.8) increased
throughput by 25% (64.01 img/s) with a 0.39% decrease in Top-1 accuracy, while ToMe (r=12)
offered a 3% throughput gain but resulted in a 4.34% accuracy drop. In the case of SigLIP, MaMe
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Method MME MMMU ScienceQA SEED-Image MMStar CRPE MMBench

Metric Time(s) Metric Time(s) Metric Time(s) Metric Time(s) Metric Time(s) Metric Time(s) Metric Time(s)

LLaVA-1.5-7B (Baseline) 32.76 597 32.22 481 65.43 625 60.17 3513 32.53 565 50.69 2076 62.80 1191
+ ToMe (r=8) 31.40 509 30.11 440 63.42 554 58.19 3135 31.13 545 46.78 1794 61.00 1086
+ MaMe (τ=0.8) 31.40 447 30.56 422 64.47 478 57.20 2840 30.27 531 45.62 1659 60.48 1020

Table 6: Benchmark results for LLaVA-1.5-7B with different token merging methods. For each
benchmark, we report the primary Metric (e.g., accuracy) and the total evaluation Time in seconds.

(τ = 0.9) boosted throughput by 25% (58.10 img/s) with an accuracy of 74.50% (a 1.11% reduc-
tion), whereas ToMe (r=32) achieved a 19% speedup with a 1.28% accuracy loss. For SigLIP2,
MaMe (τ = 0.95) improved throughput by 28% (56.15 img/s) with a 0.35% accuracy drop, while
ToMe (r=32) increased throughput by 16% with a 1.91% accuracy loss. Notably, compared to
SigLIP, SigLIP2 can still merge enough tokens at a stricter threshold τ = 0.95 to achieve a 28%
throughput gain, indicating that SigLIP2 lelarned highly confident and semantically clustered repre-
sentations. The results demonstrate that MaMe offers a better balance between inference throughput
and accuracy compared to the baseline and ToMe.

Text-Image to Text We evaluated the impact of token merging on the LLaVA-1.5-7B model (Liu
et al., 2023a) using the VLMEvalKit framework (Duan et al., 2024) across various multimodal
benchmarks (Fu et al., 2023; Yue et al., 2023; Lu et al., 2022; Li et al., 2023; Lin et al., 2024;
Liu et al., 2024; 2023b), Merging was applied to the visual encoder to reduce the number of visual
tokens fed to the language model. We compare the baseline against ToMe with a fixed reduction
ratio of r=8 per layer and MaMe with a similarity threshold of τ = 0.8. As shown in Table 6, both
methods significantly reduce evaluation time. MaMe achieves greater acceleration while delivering
metric scores that are competitive with or slightly better than ToMe on most of benchmarks. This
demonstrates that token merging, particularly MaMe, is a highly effective strategy for accelerating
large multimodal models with minimal impact on performance.

4.4 VIDEO CLASSIFICATION

We apply token merging to VideoMAE (Tong et al., 2022) models’ vision encoder and compare
MaMe with ToMe on Kinetics-400 validation set (Kay et al., 2017). We sample 16 frames at 224×
224 resolution per video clip. We report Top-1 accuracy and inference throughput in videos/s on a
3090 GPU with fp16 precision. Results in Table 5 show token merging effectively accelerates video
transformer inference. For VideoMAE-B, MaMe with threshold τ = 0.9 increases throughput from
13.24 to 13.33 videos/s with only 0.78% drop in Top-1 accuracy, outperforming ToMe(r=128) which
shows 3.47% accuracy degradation for similar speedup.

4.5 ABLATION STUDY

Figure 3: The visualization of the final token count in the 8th block of the AugReg ViT-B/16 using
MaMe with different settings. Each color represents a distinct type of token.
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Figure 4: The accuracy and throughput curves vary with the similarity threshold under the alternating
and random partition. Where num block denotes the number of initial blocks (from block 0 onward)
to which token merging is applied. The same configuration uses 5 different random seeds to perform
5 different random experiments. There is a non-linear, saturating relationship between similarity
threshold and both accuracy and throughput across ViT architectures. Larger models like ViT-L are
more robust to token merging, maintaining higher accuracy even at lower thresholds. (c) and (d)
shows that the default curves represent a Pareto frontier.

feature acc im/s
x 83.35 73.06
k 71.63 72.45

k-mean 69.01 75.06

(a) Feature Choice. The x
matrix has the most information
within tokens.

function acc im/s
eucl 81.58 73.60
cosine 83.35 73.06
dot 80.43 81.14
softmax 61.90 80.33

(b) Similarity Function. Cosine
similarity is the best choice for
speed and accuracy.

order acc im/s
sequential 84.14 71.81
alternating 83.35 73.06
random 83.24 73.74

(c) Partition Style. Alternating
is more reliable and faster.

Table 7: Ablation experiments using AugReg ViT-B/16. Our default settings are marked in green.
We report Top-1 accuracy (acc) and fp32 model inference throughput (im/s) on a 3090 GPU. The
visualization results of different methods are shown in Figure 3

5 CONCLUSION

In this work, we introduced MaMe, a token merging method composed entirely of efficient matrix
operations to accelerate the inference of Vision Transformers. MaMe serves as a ”plug-and-play”
module that can be effortlessly incorporated into a wide array of existing architectures. We have
demonstrated its effectiveness across various scenarios, including off-the-shelf models, end-to-end
training, zero-shot classification with vision-language models, complex multimodal benchmarks,
and video action recognition. Compared with ToMe, MaMe does not require intrusive modifications
to the standard self-attention calculation module and can enjoy efficient attention computation. The
primary limitation of MaMe is the need to manually set the similarity threshold. Future work will
focus on developing an adaptive or learnable mechanism to automate the selection of this threshold,
further enhancing the MaMe’s autonomy and practical utility.
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A APPENDIX

Figure 5: The visualization illustrates the progression of token count reduction in the first 8 blocks
of AugReg ViT-B/16 with MaMe. Each color represents a distinct type of token.
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LARGE LANGUAGE MODEL USAGE DECLARATION

In the preparation of this work, the authors utilized several large language models (LLMs) for spe-
cific tasks as detailed below. The authors are solely responsible for the content of the publication.

• Literature Review Assistance: Gemini 2.5 Pro was employed to assist in gathering and
synthesizing relevant research literature. This assistance was primarily used in the prepa-
ration of the Introduction and Related Work sections to identify key developments and
contextualize our contribution within the existing body of research.

• Language Polishing: Gemini 2.5 Pro, Gemini 2.5 Flash, and DeepSeek-R1 were used to
refine English expression throughout the manuscript. This included improving grammatical
accuracy, enhancing clarity of technical descriptions, and ensuring consistent academic
tone.

• Experimental Analysis Support: Gemini 2.5 Pro was utilized as an analytical tool to
assist in the interpretation of selected experimental results, particularly in identifying pat-
terns and generating preliminary insights that were subsequently rigorously verified and
expanded upon by the authors.

• Declaration: Deepseek-R1 was used to assist in writing the declaration.

All content generated with LLM assistance was carefully reviewed, critically evaluated, and substan-
tially modified by the authors to ensure accuracy, originality, and adherence to scientific standards.
The final manuscript represents the authors’ own intellectual contribution and perspective.
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