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Abstract

Modern learning systems increasingly rely on
amortized learning — the idea of reusing com-
putation or inductive biases shared across tasks
to enable rapid generalization to novel problems.
This principle spans meta-learning, in-context
learning, prompt tuning, learned optimizers and
more. While motivated by similar goals, these
approaches differ in how they encode and lever-
age task-specific information. In this work, we
propose a unified framework describing how such
methods differ primarily in the aspects of learning
they amortize — initializations, learned updates,
or predictive mappings. We introduce a taxonomy
that categorizes amortized models into parametric,
implicit, and explicit regimes, based on whether
task adaptation is externalized, internalized, or
jointly modeled. Building on this view, we iden-
tify a key limitation in current approaches: most
methods struggle to scale to large datasets be-
cause their capacity to process task data at test
time (e.g., context size in ICL) is often limited.
We propose iterative amortized inference, a class
of models that refine solutions step-by-step over
mini-batches, drawing inspiration from stochastic
optimization and yielding performance improve-
ments across different amortization regimes.

1. Introduction
Consider the problem of modeling the motion of an object
on various planets, under different gravitational conditions.
While each planet has its own gravitational constant, the
underlying dynamics, governed by Newtonian physics, re-
main invariant. Here, training a new model from scratch for
each planet ignores substantial shared structure and is thus
inefficient compared to approaches that reuse knowledge
acquired from other planets and adapt only a small set of
task-specific parameters, such as the gravitational constant.
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respondence to: Sarthak Mittal <sarthmit@gmail.com>.

ES-Fomo Workshop at International Conference on Machine Learn-
ing, Vancouver, Canada. Copyright 2025 by the author(s).

This principle of sharing knowledge serves as the basis
for several modern methods which learn mechanisms
that capture shared information between tasks, enabling
rapid adaptation to new ones. For instance, gradient-based
meta-learners (Finn et al., 2017; Rusu et al., 2018) explicitly
leverage gradients to adapt model parameters, encoding
inductive biases through learned meta initialization.
In contrast, amortization is implicitly incentivized in
large language models (LLMs) by training on diverse
contexts, allowing them to solve new tasks at inference
by conditioning directly on prompts or observations (ICL;
Brown et al., 2020; Dong et al., 2022; Lester et al., 2021;
Liu et al., 2021). Learned optimizers (Andrychowicz et al.,
2016; Metz et al., 2022a;b; Knyazev et al., 2024) amortize
optimization itself, learning to predict parameter updates
of fixed models conditioned on gradients.

We introduce a unified framework that encapsulates a broad
spectrum of amortized learning methods − meta-learners,
learned optimizers, ICL − as particular instances within
a common structure, characterized by: (1) a shared mech-
anism to encode task-invariant inductive biases, and (2) a
task adaptation function that utilizes data from novel tasks
to model task-specific behavior. Our framework identifies
three distinct amortization regimes distinguished by the
inductive biases involved − (a) parametric amortization
where a learned function maps task-specific data into
corresponding parameters for a fixed model, e.g. learned
optimizers (Andrychowicz et al., 2016) and hypernetworks
(Ha et al., 2016), (b) implicit amortization where a single
model jointly internalizes task-invariant mechanisms and
task adaptation through forward-pass conditioning (Brown
et al., 2020; Müller et al., 2021), e.g. ICL, and (c) explicit
amortization which disentangles generalization and local
adaptation by learning both a dataset-level embedding and a
task-conditioned prediction function (Garnelo et al., 2018a;
Mittal et al., 2024) via architectural inductive biases.

Each of these paradigms reflects trade-offs in expressivity,
scalability, and efficiency − using gradients to provide di-
rect access to task-specific loss landscapes, or conditioning
on observations to allow richer task representations at the
expense of computation, as well as going through some task-
specific parameterization or bottleneck or letting the model
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Method gφ(Dtrain
T ) θT fγ(x,θT ) Amortization

Standard training SGD weights Fixed architecture (γ = ∅) −
MAML SGD, learned θ0 weights Fixed architecture (γ = ∅) θ0

Learned optimizers Learned updates weights Fixed architecture (γ = ∅) gφ

ICL Identity Map Tokens Transformer (weights γ) fγ

Parametric Learned updates weights Fixed architecture (γ = ∅) gφ

Implicit Subsampling Batch Btrain
T Transformer (weights γ) fγ

Explicit Learned updates latents Transformer (weights γ) gφ, fγ

Table 1. Functional decomposition of amortized learners. We express each method in terms of
gφ that maps task observations Dtrain

T to some representation θT − weights, prompts, dataset itself
− which is fed along with query to fγ(x,θT ) for prediction. Differences between methods arise
from the aspects of learning they amortize, and our proposed taxonomy offers a categorization.

implicitly handle everything. To analyze and extend this,
we propose an iterative amortization framework by taking
inspiration from stochastic optimization. We model amor-
tization as an iterative refinement process over stochastic
mini-batches of task data, leveraging either observations
directly or gradients. This mirrors the success of stochastic
gradient descent in scaling optimization to large datasets,
allowing us to generalize learned optimizers and hypernet-
works: instead of operating solely on gradients or generating
parameters one-shot, the adaptation function now incorpo-
rates streams of mini-batches, enabling greater flexibility
and scalability. Our contributions include −

• Unified Framework: A general formulation of amortized
learning that connects meta-learning, in-context learn-
ing, learned optimizers, etc. as special cases (Section 2).

• Amortization Taxonomy: A categorization of amortized
methods into parametric, implicit, and explicit regimes,
based on what is amortized and how (Section 2.1).

• Stochastic Iterative Amortization: A scalable approach
through iterative refinement over mini-batches, overcom-
ing limitations of scaling to large datasets (Section 3).

2. Unified Perspective
Given a task T and a corresponding data distribution pT ,
empirical risk minimization learns a model f(·, θ̂T ) with
parameters θ̂T which minimizes empirical risk. While effec-
tive for learning individual tasks, it fails to (a) adapt to new
problems, and (b) leverage cross-task information when they
share structure. Traditional meta-learning (Finn et al., 2017;
Nichol & Schulman, 2018; Nichol et al., 2018; Rajeswaran
et al., 2019) alleviates this problem by learning global initial-
ization parameters θ̂0 compressing the shareable knowledge
across tasks such that few steps of optimization leads to a
good estimator for new tasks.

θ̂0 = argmin
θ0

ET Ex,y,DT ∼pT [L (y, f(x,θT ))] , (1)

where θT = gθ0
(DT ). (2)

For e.g. Model-Agnostic Meta-Learning (MAML; Finn
et al., 2017) models gθ0 as an optimization routine

(SGD) with learnable initialization θ0. Alternatively,
hypernetworks (Li & Liang, 2021; Ha et al., 2016; Gaier &
Ha, 2019; Jia et al., 2016; Munkhdalai & Yu, 2017; Mittal
et al., 2025b;a) and learned optimizers (Andrychowicz
et al., 2016; Li et al., 2017; Metz et al., 2019; Wichrowska
et al., 2017; Metz et al., 2022b; Li & Malik, 2017) directly
model task-specific parameters as outputs of a learned
process, often without a notion of “good initialization”,
i.e. gθ0(DT ) → gφ(DT ) where gφ is a learned function,
e.g. learned optimizers model gφ as neural networks taking
only gradients as input. In-context learning or prior fitted
networks instead directly model the conditional predictive
distribution (Garg et al., 2022; Müller et al., 2021), i.e.

γ̂ = argmin
γ

ET Ex,y,DT

[
L
(
y, fγ(x,DT )

)]
, (3)

where the model does not expose explicit task parameters
θT anymore, and conditioning on the task is achieved either
through direct conditioning on observations DT − Prior Fit-
ted Networks (PFNs) or ICL (Brown et al., 2020; Dong et al.,
2022; Garg et al., 2022; Von Oswald et al., 2023; Hollmann
et al., 2022) or its compressed natural language description
when using LLMs (Mishra et al., 2021; Efrat & Levy, 2020;
Sanh et al., 2021; Wei et al., 2022b;a; Min et al., 2022).

The above problems can be unified as

min
γ,φ

ET Ex,y,DT [L (y, fγ (x, gφ (DT )))] (4)

where fγ(x, gφ(DT ))1 defines an inference to obtain
predictions for query x and corresponding set of training
observations DT . This general framework unifies super-
vised learning, meta-learning, in-context learning, and
learned optimizers under a common formalism by varying
how each component − fγ or gφ − is learned (??)2.

1gφ(T ) describes the general form, while we look at cases
where DT provides information about T .

2Decomposition’s non-uniqueness discussed in ??.
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FMNIST ImageNet

Steps Lin Reg FMNIST MNIST ImageNet CIFAR100

Grad
1 51.3±0.3 63.8±1.7 79.9±1.6 88.5±0.1 92.5±1.1

5 4.1±0.1 41.6±1.5 49.5±3.0 83.1±0.2 88.1±0.8

10 0.5±0.0 38.1±0.4 40.7±0.8 83.4±0.1 88.1±0.6

Data
1 16.3±0.2 35.9±1.7 38.8±1.4 90.8±0.2 93.9±1.1

5 0.5±0.0 30.8±0.3 31.3±0.5 95.2±0.1 96.3±0.6

10 0.3±0.0 29.8±0.3 29.1±0.4 93.2±0.1 95.0±0.8

Grad 1 25.1±0.3 37.7±1.9 41.9±1.3 96.7±0.1 97.2±0.8

+ 5 0.6±0.0 32.0±0.7 33.4±0.5 93.8±0.1 94.8±0.7

Data 10 0.4±0.0 30.5±0.2 30.3±0.3 92.5±0.1 94.1±0.4

Table 2. Our experiments on parametric amortization reveal ben-
efits of multiple steps of iterative refinement across ID and OoD
(gray columns) evaluation. Top row describes pre-training tasks
and the second row evaluation tasks, with error metric. Sole re-
liance on gradients is often insufficient and leveraging observations
directly can lead to improved performance with fewer iterations.

2.1. A Taxonomy of Amortization
We introduce a taxonomy categorizing amortized models
into three classes: parametric, explicit, and implicit. We
defer to Appendix C for details.

Parametric. We define amortized models with a fixed f and
learnable gφ as parametric amortization, which includes hy-
pernetworks, learned optimizers, and parametric inference
using ICL. Here, gφ serves as an inference or estimation pro-
cedure discovering optimal parameters (e.g., linear coeffi-
cients) from observed data. Given a fixed parametric form, it
enables us to leverage both task-specific observations DT as
well as gradient information to infer the optimal parameters.

Implicit. In contrast, implicit amortization refers to a
trainable fγ and fixed g, which subsumes in-context
learning and specific cases of prior fitted networks and
conditional neural processes (Nguyen & Grover, 2022;
Hollmann et al., 2022). Here, a trained model takes both
the query and the dataset as input and directly models
predictions − with g typically the identity mapping.

Explicit. We define explicit amortization with trainable
fγ shared across tasks as well as gφ, which provides a
low-dimensional task-specific latents, subsuming explicit
models in (Mittal et al., 2024; Elmoznino et al., 2024),
neural processes (Garnelo et al., 2018b), and certain
conditional neural processes (Garnelo et al., 2018a).

3. Iterative Amortized Inference
A fundamental limitation of existing approaches is their
inability to leverage large-scale dataset as conditioning −
they are either restricted by context length or rely solely on
pooling operations or gradients. Motivated by mini-batched
SGD, we extend existing approaches using an iterative re-
finement approach; instead of directly modeling predictions,
latents or parameters, we iteratively refine them greedily
using mini-batches as inputs to a trained sequence model.

FMNIST ImageNet

Steps Lin Reg FMNIST MNIST ImageNet CIFAR100

1 14.8±0.1 22.8±0.1 29.1±0.4 43.0±0.7 73.9±0.1

5 6.2±0.0 18.8±0.1 16.9±0.2 13.3±0.2 59.4±0.2

10 4.7±0.0 17.8±0.1 15.7±0.2 12.3±0.1 54.2±0.4

Table 3. For implicit amortization, we show consistent improve-
ments in performance with increasing number of steps across a
wide range of predictive tasks, with error as evaluation metric.

For parametric and explicit amortization, we achieve this
by considering gφ as an iterative application of a learned
sequence model hφ on different subsampled training
batches B(i)

train ⊂ Dtrain
T , starting from a learned initialization

θ(0). This model hφ takes the current state θ(i) and a
mini-batch B(i)

train as input and returns a refined state θ(i+1)

which, similar to meta-learning approaches, decreases
validation loss. While learned optimizers already utilize
a mini-batch approach, they only consider parametric cases
with fixed f and the information about observations is fed to
hφ solely through gradients and parameter updates. At best,
such methods can only recover gradient-based inference
routines and cannot model more general optimization
schemes (e.g. closed-form linear regression solution) as the
mapping from observations to gradient is non-invertible.

In contrast, the implicit formulation does not consider task-
specific parameters but instead models current prediction
for query x as its recurrent state, i.e. a learned model takes
a batch B(i)

train, query x, and its current prediction state ŷ(i)

as input and refines it to ŷ(i+1) for next prediction using
information from the batch − this procedure is defined
as rγ and fγ is an iterative application of rγ . Note that
while in one case θT forms the recurrent state (or memory)
independent of query, in the other the recurrent state or
memory is always tied to a test query x as well.

Motivated by SGD, we learn φ and γ through a greedy
strategy where training is done solely on single-step
improvements for all three paradigms. The respective
computational graphs are provided below, where we prevent
gradients to flow back from θ(i) or ŷ(i)

θ(i)
hφ(·,B)

−−−→ θ(i+1)−−−→L(y, fγ(x,θ(i+1))), (5)

ŷ(i)
rγ([x,·],B)

−−−→ ŷ(i+1)−−−→L(y, ŷ(i+1)) (6)

Here, an outer loop is used to obtain the states at the ith step
− θ(i) and ŷ(i) respectively. Note that in this setup, (x,y) ∈
Dvalid

T while B ⊆ Dtrain
T , i.e. we are amortizing a learner to

minimize validation loss. For evaluation, however, we use
training and evaluation splits from completely new tasks T
and thus test for generalization to new problems. All three
frameworks − parametric, explicit and implicit − leverage a
modification of causal masking to provide efficient and par-
allelizable computation of θ and ŷ with mini-batches having
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Ground Truth 1-Step 10-Step Ground Truth 1-Step 10-Step

Figure 1. Samples generated from the implicit generative model for GMM and Alphabets task.

MNIST FMNIST

Steps Lin Reg MNIST FMNIST FMNIST MNIST

Grad
1 55.5±0.5 90.4±0.7 90.8±0.4 88.2±0.3 89.3±0.3

5 9.4±0.1 86.9±0.1 84.4±0.5 70.8±0.5 76.4±0.4

10 2.9±0.0 81.4±0.5 78.9±0.9 56.4±0.7 65.7±0.4

Data
1 19.7±0.4 89.2±1.0 90.0±0.1 90.0±0.1 90.3±0.2

5 2.6±0.0 88.7±0.0 90.0±0.0 90.0±0.0 90.2±0.0

10 2.4±0.0 88.8±0.2 90.0±0.0 90.1±0.1 90.2±0.0

Grad 1 24.4±0.4 72.5±0.7 62.9±0.8 51.1±1.2 61.2±0.6

+ 5 2.6±0.0 67.1±0.2 58.3±0.3 47.5±0.3 57.7±0.2

Data 10 2.1±0.0 75.1±0.1 69.5±0.1 45.1±0.3 54.4±0.1

Table 4. On explicit amortization we consistently see improved
performance with increasing number of steps (OoD evaluation in
gray columns) with error as metric. Here, we see that reliance on
gradients is essential for more complex problems and in particular,
explicit models struggled to scale to ImageNet and could only
obtain random chance performance.

varied number of observations, detailed in Appendix H.

4. Experiments
We evaluate our proposed greedy iterative refinement
approach as well as the pros and cons of using observations
vs gradients through a suite of predictive and generative
tasks with in-distribution (ID) and out-of-distribution (OoD)
evaluation, as described in Appendix F. Learned gφ, fγ are
transformers with max sequence length of 100 observations,
detailed in Appendix H following (Kirsch et al., 2022).

Greedy Iterative Refinement. Across different forms
of amortization − parametric (Tables 2 and 6), implicit
(Tables 3, 5, 8 and 9 and Fig. 1) and explicit (Table 4) −
we consistently see that our greedy iterative refinement
framework leads to improvement in performance and allows
for better handling of large-scale datasets, where k denotes
the number of iterations − both for pre-training a learner
and at inference. Our evaluation highlights a consistent
trend of performance improvements in both generative and
predictive tasks, for both OoD and ID evaluation.

Beyond Gradient Signal. When gφ solely leverages gra-
dient information and f has no trainable parameters, we
recover the space of learned optimizers. For low dimen-
sional problems, we see that solely learning gradient-based
learners is suboptimal and the algorithm can leverage task
or observations specific optimization procedure leading to
substantial improvements (see Tables 2, 4 and 6). We see

Alphabets GMM

Steps ID OoD 2-dimensional 5-dimensional

1 0.28±0.00 0.78±0.01 1.12±0.01 3.27±0.01

5 0.31±0.00 0.72±0.01 0.90±0.01 2.50±0.02

10 0.29±0.00 0.67±0.01 0.81±0.02 2.37±0.02

Table 5. We see improved sample quality (under Wasserstein met-
rics) using implicit amortization with increasing number of steps
for generative modeling over OoD alphabets and new GMMs.

trend reversal in higher dimensions where the hypothesis
space is larger, making it harder to infer the right parameters,
and gradient provides am especially more reliable signai.

Comparing amortization methods. Our experiments indi-
cate that explicit parameterization fails to learn to generalize
well to new scenarios, giving chance performance on Ima-
geNet and CIFAR, while parametric works are constrained
in the prescribed hypothesis class, which limits expressivity.
Alternatively, we see that implicit methods do not suffer
from these issues and improve performance in the presence
of other inductive biases.

Ablations. Appendix I provides additional results and
comparisons to transformers without causal masking.

5. Conclusion
Amortized learning serves as a powerful paradigm for rapid
generalization through reuse of computations. By intro-
ducing a unified framework and taxonomy, we clarify how
different approaches internalize or externalize task adapta-
tion. This perspective not only highlights shared principles
but also exposes common bottlenecks: the limited scalabil-
ity of existing methods in handling large task datasets as
well as suboptimality when solely leveraging gradients with
fixed functional mappings. To overcome this, we propose
iterative amortization, a novel strategy that incrementally
refines solutions through mini-batch updates, effectively
merging the strengths of optimization-based and forward-
pass approaches consistently across parametric, explicit and
implicit frameworks for predictive and generative ID and
OoD tasks. This framework paves the way for scalably
exploring more sophisticated forms of persistent memory
across mini-batches for robust task adaptation in increas-
ingly complex, non-iid environments. Additionally, future
work involves incorporating richer learning frameworks to
optimize Eq. (4) beyond greedy refinement, such as evolu-
tionary algorithms or reinforcement learning.
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A. Uniqueness of Decomposition
Importantly, the functional form fγ(x, gφ(DT )) does not define a unique way to split the computation between fγ and gφ.
In principle, any computation performed by gφ, along with its parameters, can be folded into fγ , making the decomposition
arbitrary. However, this separation becomes meaningful from an algorithmic perspective with the following convention:
assign all computations independent of the query x to gφ, and leave the query-dependent computations to fγ . In this view,
fγ processes the query while accessing task-specific information DT only through the structure or constraints imposed
by gφ, for example, pooled representations, gradient information, or natural language.

B. Specific Cases of Amortization
Gives a set of tasks T along with their corresponding training Dtrain

T and validation Dvalid
T set, the empirical counterpart of

our proposed framework can be described as

min
γ,φ

ET

 ∑
(x,y)∈Dvalid

T

L (y, fγ (x,θT ))

 , where θT = gφ(Dtrain
T ) (7)

in which fγ(·, θT ) denotes a model with shared parameters γ and task-specific parameters θT (e.g. weights, soft prompts,
latent states, or context tokens). The function gφ, parameterized by φ, represents the inner optimization mechanism that
maps the support set Dtrain

T for task T to θT . The loss L is then computed on the query set Dvalid
T . By selecting different

forms for f , partitioning parameters between φ and γ, and varying the adaptation function gφ, this framework subsumes
a wide spectrum of learning paradigms, as outlined in Table 1 and Appendix D. In particular, we obtain −
Gradient-based supervised learning when f is fixed − e.g. a neural network architecture − and g an optimization
procedure, like stochastic gradient descent, solving ??. Alternatively, we obtain the same family when fγ is learned through
an optimization procedure with g as identity, thus reiterating that the decomposition is not unique but the former is preferred
as it pushes more operations to g.

MAML when f is fixed and gφ an optimization procedure with learnable initialization θ0 ∈ φ.

Learned Optimizers / Hypernetworks when f is fixed and gφ a deep learning model with parameters φ. We obtain
hypernetworks when gφ maps observations to parameters, and learned optimizers when gφ is an iterative procedure relying
solely on gradients, i.e. gφ := h

(k)
φ ◦ . . . ◦ h(1)

φ defines a k-step gφ with h
(i)
φ a sequence model taking θ(0), . . . ,θ(i−1) and

their gradients ∇(j) := ∇θ

∑
(x,y)∈B(j) L(y, f(x,θ))

∣∣
θ(j) as input, where θ(0) can be learned, θT = θ(k) and B(j) ⊆ DT .3

In-Context Learning when g samples a set of observations and fγ is modeled as a predictive sequence model with the
context as observations. If g describes T in natural language, then we recover the prompt-based ICL − an emergent
phenomena from pretraining of LLMs.

LEARNING THE LEARNER. So far, we only focused on the modeling assumptions − the form of fγ(x, gφ(DT )) −
behind different amortized learners did not address how the optimization problem in Eq. (7) is actually performed. The
main complexity comes from iterative natures of fγ and gφ and the presence of higher order gradients if gφ describes
a gradient-based procedure. Multiple approaches tackle this problem through first-order approximations (Finn et al., 2017;
Nichol & Schulman, 2018), back-propagation through time (Ha et al., 2016), reinforcement learning (Andrychowicz et al.,
2016) or evolutionary strategies (Metz et al., 2022b) depending on the form of gφ.

C. Taxonomy of Amortization
We introduce a taxonomy categorizing amortized models into three classes: parametric, explicit, and implicit.

Parametric. We define the class of amortized models with a fixed f and learnable gφ as parametric amortization. This
includes hypernetworks, learned optimizers for some given architecture, and other approaches to parametric inference using
ICL. In this framework, the functional form of the likelihood is fixed, for example a known simulator (Cranmer et al., 2020)
or a categorical likelihood with linear mapping. Here, gφ serves as an inference or estimation procedure that discovers
the optimal parameters (e.g., linear coefficients) at inference time from the observed data. Several works (Mittal et al.,
2025b; Reuter et al., 2025; Chang et al., 2024) approximate the posterior distribution over parameters of the likelihood as

3A system is Markovian if it only relies on the current (θ(j),∇(j)) or non Markovian if on more past states.
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gφ while others (Mittal et al., 2025a) investigate the interplay between point-based and distribution-based modeling of gφ4.
By relying on a fixed parametric assumption, this approach enables us to leverage task-specific observations DT as well
as gradient information to infer the optimal parameters of f . These inferred parameters can also offer a low-dimensional
representation of the task and provide interpretability benefits, especially when f possesses specific, interpretable structure.

Implicit. In contrast, we refer to amortized models with a trainable fγ and a fixed g as implicit amortization, which
subsumes in-context learning and specific cases of prior fitted networks and conditional neural processes (Nguyen & Grover,
2022; Hollmann et al., 2022). In this setting, a single trained model takes both the query and the set of observations as input
and directly learns to model predictions. The function g is typically either the identity mapping or a subsampling mechanism
used to manage large datasets. Unlike parametric approaches, the functional form of the output is learned directly, bypassing
explicitly inferring any task-specific parameters. It is non-trivial to pinpoint what part of network activations correspond
to dataset-specific vs prediction based activations. Some works (Von Oswald et al., 2023; Nichani et al., 2024) demonstrate
that, under certain assumptions, implicit models recover algorithmic behaviors such as gradient descent or causal discovery.
However, it remains unclear how these findings generalize beyond specific setups, apart from the broader perspective of
learning the posterior predictive distribution (Müller et al., 2021; Garg et al., 2022).

Explicit. In theory, it is possible to leverage the dimensionality reduction benefits offered by the parametric approach while
still utilizing a learnable form for the likelihood which the implicit model affords. This is accomplished with a trainable fγ ,
which learns the likelihood form shared across tasks like the laws of physics, as well as gφ, which provides a low-dimensional
encapsulation of the entire dataset like the gravitational constant. The explicit models considered in (Mittal et al., 2024;
Elmoznino et al., 2024), neural processes (Garnelo et al., 2018b), and certain conditional neural processes that first learn an
embedding of the dataset (Garnelo et al., 2018a) can be seen as specific cases of this approach. Similar to parametric methods,
it allows leveraging additional gradient information and provides dimensionality reduction and interpretability benefits; but at
the cost of inherent non-stationarity during learning − fγ and gφ are dependent on each other but have to be learned together.

D. Related Work
In this section, we formalize and contrast several existing related frameworks encapsulated in our setting. We highlight the
technical differences among these approaches through formal definitions and equations, while retaining key references.

D.1. Meta-Learning

Meta-learning generally refers to the problem of learning a model (which itself could be a learner, optimizer, or algorithm)
that can quickly and efficiently generalize to novel tasks. Formally, let there be a distribution over tasks p(T ), with each task
T associated with a dataset DT = {(xj ,yj)}Nj=1. The objective is to learn meta-parameters θ that enable fast adaptation to
new tasks T ′ with dataset DT ′ :

min
θ

ET L
(
Dvalid

T , Uk(θ,Dtrain
T )

)
,

where:

• Uk(θ,Dtrain
T ) is an adaptation operator applying k gradient steps or another procedure starting from θ,

• L
(
Dvalid

T , ·
)

is the loss on held-out data Dvalid
T .

The popular Model-Agnostic Meta-Learning (MAML) framework (Finn et al., 2017) fits into this paradigm with the update:

θ′ = θ − α∇θL
(
Dtrain

T , ·
)

where the meta-objective optimizes θ such that θ′ performs well on Dvalid
T . Extensions such as Reptile (Nichol & Schulman,

2018) and Meta-SGD (Antoniou et al., 2018) also follow this principle. These methods ultimately fit within the parametric
modeling framework, as the model parameters θ are explicitly adapted to new tasks (Raghu et al., 2019). Here, the adaptation
operator Uk can be seen as the analogue of gφ from our setting.

4gφ can be probability distributions or sampling operations.

9



Iterative Amortized Inference: Unifying In-Context Learning and Learned Optimizers

D.2. Amortization

Amortized inference traditionally refers to learning an inference network qϕ(z|x) to approximate the posterior p(z|x), as in
variational autoencoders (Kingma et al., 2013; Rezende et al., 2014). Our focus differs by considering amortization at the
dataset or task level, rather than per-observation. We formalize this as learning an amortized posterior:

qϕ(z | D) ≈ p(z | D),

where D is a dataset corresponding to a task. This approach implicitly or explicitly learns an optimizer or inference model
that can solve novel tasks zero-shot. This viewpoint aligns with probabilistic meta-learning frameworks (Garnelo et al.,
2018b; Amos et al., 2023), which emphasize amortizing inference across a distribution of tasks. Such methods can be
framed as parametric approaches when the target z of interest are all the parameters of the likelihood (Mittal et al., 2025b)
or explicit approaches when the likelihood is learned as well and z just represents some latents (Garnelo et al., 2018a;b).

In more general terms, all methods of meta-learning rely on some or the other notion of amortization and depending on the
object that is trained to be amortized, we recover parametric, explicit or implicit models.

D.3. Learned Optimizers

Learned optimizers learn parameter update functions hφ conditioned on gradients and optimization states:

θt+1 = θt + hφ(∇θL(BT ,θ), st),

where st denotes the optimizer’s internal state, e.g., momentum or recurrent memory and BT represents a mini-batch of
task-specific training data. These methods have been studied extensively (Metz et al., 2022b; Knyazev et al., 2024; Metz
et al., 2019; 2022a; Li & Malik, 2017; Wichrowska et al., 2017).

While learned optimizers enable scalable amortization of inference, their hypothesis class is limited by dependence on only
first-order gradient information and parameter updates. They cannot easily represent complex second-order dynamics such
as Newton methods, which rely on Hessian information. Furthermore, they require explicit task parameters θ, restricting
them to parametric models and preventing direct applicability to implicit modeling approaches. Here, one can see the
recursive application of hφ as the gφ.

D.4. Hypernetworks

Hypernetworks (Ha et al., 2016) are architectures that take a dataset D as input and generate the weights θ of a target neural
network to be used for predictions on that dataset:

θ = Hφ(D)

with the target model output

y = f(x,θ) = f(x, Hφ(D))

Such models have been studied extensively (Krueger et al., 2017; Chauhan et al., 2024; Schug et al., 2024; Von Oswald et al.,
2019), including recent work that shows standard transformers can be interpreted as hypernetworks (Schug et al., 2024).
Hypernetworks are generally parametric since θ is explicitly generated. However, if the hypernetwork conditions directly
on the query x, it can realize implicit models within our taxonomy. The general case of hypernetworks can, however, be
seen as parametric modeling with Hφ being the gφ component.

D.5. In-Context Learning and Prior-Fitted Networks

In-context learning (ICL) solves similar problems by training models (notably transformers) to make predictions conditioned
on example input-output pairs provided as context, either by modeling explicit parameters akin to hypernetworks (Mittal
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et al., 2025b;a) or without explicit parameter updates (Mittal et al., 2024; Elmoznino et al., 2024; Müller et al., 2021; Garg
et al., 2022; Von Oswald et al., 2023; Hollmann et al., 2022; Li et al., 2023; Bai et al., 2023).

Formally, given a context C = {(xi,yi)}Ki=1, the model learns to produce predictions fγ(x,D) with no parameter updates
performed during inference. ICL and PFNs share the same modeling setup when the input is a sequence of examples, though
ICL can be more general by conditioning on other forms of task information such as language prompts.

Both are subsumed within our unified framework, categorized as parametric, explicit, or implicit models depending on how
the in-context learner is parameterized.

E. Tasks
We describe the set of tasks considered for our setup, with additional information about how the tasks are structured being
differed to Appendix F.

Linear Regression. Each task T is defined by a ground-truth weight wT which specifies the data-generating distribution
pT (y|x), where we consider problems with x,wT ∈ R100.

MNIST / FashionMNIST Classification. Following (Kirsch et al., 2022), each task T involves a random projection
WT ∈ R784×100 applied to image pixels and a random label mapping (e.g. digits 4 are mapped to label 7; even digits
grouped together, etc.) which preserves the semantic structure. We train on MNIST tasks and evaluate on context and query
from FashionMNIST, and vice versa.

ImageNet Classification. Each task T involves sampling images from 100 different ImageNet classes and randomly
regrouping them into a maximum 100-way classification task, preserving semantic structure similar to above. Evaluation is
done on ImageNet validation data with support sets from training data provided in-context. We also conduct OoD evaluation
on CIFAR-10 and CIFAR-100. The images are fed to the transformer networks after obtaining embeddings from Dino-v2
(Oquab et al., 2023).

Topological Order Prediction. Following (Scetbon et al., 2024), each task involves sampling a structural causal model
(SCM) and inferring its topological order using only observational data.

GMM. Each task is defined by a mixture of Gaussians with the number of mixture components and corresponding means
sampled randomly per task. We apply the flow-matching framework (Lipman et al., 2022; Tong et al., 2023; Albergo
et al., 2023) to learn the conditional vector field given task data DT , and evaluate samples generated conditioned on novel
densities as context unseen during training.

Alphabets. We use the alphabets dataset (Atanackovic et al., 2024) where the context describes the alphabet and its scale
and rotation. The task is to leverage the conditioning information to draw samples from the underlying density, with OoD
settings corresponding to alphabets unseen during training.

F. Dataset Details
In this section, we provide details of all the datasets and tasks considered for pre-training the different variants of amortized
estimators as well as the tasks used for evaluation.

F.1. Linear Regression

For the problem of linear regression, we define each task with a corresponding weight vector wT such that observations in
the context and query set follow the mapping (x,y = wT

T x+ ϵ) where x is sampled from a standard normal distribution
and ϵ denotes random noise sampled from a normal distribution with standard deviation of 0.25. For this problem, we define
the family of tasks for pre-training and evaluation corresponding to wT sampled randomly from the unit normal.

For training we pass a set of {(xi,yi)}i as the context and a set of x as the query, where the underlying mapping between
them is shared to be the same wT . The task of the in-context learner is to predict either the coefficients θT that are fed to
a prediction network or known mapping (explicit or parametric), or it predicts the prediction corresponding to x directly.
Thus, the in-context learner has to learn to model and minimize the underlying validation loss corresponding to the problem.
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F.2. MNIST / FashionMNIST Classification

Similar to linear regression, we randomly sample a projection matrix WT ∈ R784×100 from unit normal and a class
re-labeling matrix πT such that πT ,i,j ∈ {0, 1} and

∑
πT ,i,: = 1 such that each task is defined with the following

transformations on observations and labels:

x → WT x y → πT y (8)

where x ∈ R784 and y denotes the one-hot vector corresponding to the class. This operation defined above can be seen as
randomly projecting pixel values to a lower dimensional space and re-labeling the classification problem such that the same
classes are mapped to the same new class − for e.g. the remapping could map digits 1, 4, 7 to class 1, and so on. That is,
this re-labeling can club multiple classes into a single class or rename class labels, but never sends two objects from the
same class to different labels.

We follow the same setup for FashionMNIST as well, and then check for OoD evaluation on the other dataset by feeding
a set of observations as context and evaluating on queries; note that task specific variables WT , πT are shared between
context and query.

F.3. ImageNet Classification

We follow the same setup as MNIST / FashionMNIST classification with just a few differences − dimensionality reduction
is done using a pre-trained Dino-v2 model and thus this projection operator is shared across tasks and not task-dependent
anymore, and each task is defined by sampling a subset of images corresponding to 100 random classes of ImageNet from
which grouping / re-labeling is done exactly as above. That is, for any task the problem is to solve the maximum 100-way
classification problem as opposed to the single 1000-way problem of ImageNet. Correspondingly, evaluation is done on
contexts from ImageNet training set and queries from evaluation set corresponding to multiple 100-way problems as well as
CIFAR-10 and CIFAR-100’s train and test set forming the context and query.

F.4. Topological Order Prediction

Problem Statement. We begin by defining Structural Causal Models (SCMs), which formalize the causal generative
process over a set of random variables. An SCM defines a distribution over of d endogenous variables V = {X1, . . . , Xd} ∼
PX , each determined by a deterministic function of its parents (Fi) and a corresponding exogenous noise term (Ni).
Specifically, each variable Xi is generated as:

Xi = Fi(Pa(Xi), Ni), with Pa(Xi) ⊆ V \ {Xi}

where the functions Fi define the causal mechanisms, Pa(Xi) denotes the set of direct causes (parents) of Xi, and Ni is a
latent noise variable drawn independently from a distribution PN . Collectively, the SCM is represented as S(PN , F,G),
where G ∈ {0, 1}d×d is the adjacency matrix of the causal graph, i.e., Gij = 1 if Xj ∈ Pa(Xi).

Following standard assumptions in the literature, we consider markovian SCMS, where we restrict the causal graph G to be
a directed acyclic graph (DAG) and the set of noise variables {Ni, · · · , Nd} to be mutually independent.

Given the DAG assumption, we can obtain a unique topological order τ associated with the causal graph G, and the prediction
task is defined as follows.

Given a dataset of causal variables DX ∈ Rn×d samples from an unknown SCM S(PN , F,G), the goal is predict
the associated topological order τ from DX .

Method. For amortized inference of topological order, we follow the approach from Scetbon et al. (2024). They leverage
transformer-based architecture that attend over both the sample dimension (n) and the node dimension (d) to attend over the
context, followed by a linear prediction layer to classify the leaf nodes (no outgoing edge) of the causal graph G. Once we
obtain the current leaf nodes, we can remove them from the dataset DX and repeat the procedure again to predict leaf nodes.
This recursive procedure will terminate in at most d iteration and output the inferred topological order τ̂ .

Synthetic Data Simulator. Following (Scetbon et al., 2024), we use the AVICI synthetic data simulator (Lorch et al.,
2022). This synthetic generator supports diverse structural and functional variations, making it particularly well-suited for
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training and evaluating models under distribution shifts. We describe below the options avaiable for each compoenent in the
SCM.

• Graph Structures. We can sample causal graphs from a variety of schemes; Erdős–Rényi graphs (Erdos & Renyi, 1959),
Scale-free networks (Barabási & Albert, 1999), Watts–Strogatz small-world graphs (Watts & Strogatz, 1998), and
Stochastic block models (Holland et al., 1983).

• Noise Distributions. Exogenous noise variables {Ni} are sampled from either Gaussian or Laplace distributions, with
randomly selected variances.

• Functional Relationships. Causal relationships are instantiated using either Linear (LIN) models with randomly
sampled weights and biases, or with Random Fourier Features (RFF) to generate more complex, non-linear mappings.

To simulate distribution shifts, two families of SCM distributions are defined:

• In-Distribution (Pin): Graphs are sampled from Erdős–Rényi and scale-free models, noise from Gaussian distributions,
and functions are either LIN or RFF using standard parameter ranges.

• Out-of-Distribution (Pout): Graphs are drawn from Watts–Strogatz or stochastic block models, noise from Laplace
distributions, and functions (LIN/RFF) are sampled from disjoint parameter ranges to introduce a shift.

Parameter Ranges:

• Linear Mechanisms:

– Pin: weights ∼ U±(1, 3), bias ∼ U(−3, 3)

– Pout: weights ∼ U±(0.5, 2) ∪ U±(2, 4), same bias range

• RFF Mechanisms:

– Pin: length scale ∼ U(7, 10), output scale ∼ U(5, 8) ∪ U(8, 12), bias ∼ U±(−3, 3)

– Pout: length scale ∼ U(10, 20), output scale ∼ U(8, 12) ∪ U(18, 22), bias ∼ U±(−3, 3)

Train Datasets. We train the model by randomly sampling SCMs from the Pin distribution. Each epoch contains datasets
with n = 1000 samples and d = 20 nodes.

Test Datasets. We evaluate performance across four distinct settings that differ in the distribution they induce over SCMs.
From each SCM, we sample a two test datasets, one with n = 1000 samples and d = 20 nodes; and the with n = 1000
samples and d = 50 nodes.

• LIN: Linear mechanisms under Pin; total of 9 randomly sampled SCMs with 3 different graph types.

• RIN: Nonlinear (RFF) mechanisms under Pin; total of 9 randomly sampled SCMs with 3 different graph types.

• LOUT: Linear mechanisms under Pout; total of 6 randomly sampled SCMs with 2 different graph types.

• ROUT: Nonlinear (RFF) mechanisms under Pout; total of 6 randomly sampled SCMs with 2 different graph types.

F.5. Alphabets

We next turn our attention to generation tasks where the goal is to generate novel samples by inferring the underlying
density defined by the context examples and consequently learning to sample from it. We first borrow the task of sampling
point clouds resembling alphabets (Atanackovic et al., 2024) where different tasks T correspond to different alphabets
with different scaling and rotation operations applied. Out of all the capitalized alphabets in the English language, we
reserve {D,H,N,T,X,Y} solely for evaluation, i.e. they are not provided for training on during pre-training. We then consider
evaluation on both in-distribution and out-of-distribution alphabets.
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F.6. Gaussian Mixture Model

Similar to the above, we consider the problem of sampling similar to a mixture of Gaussians provided as in-context examples.
Here, each task is defined by an underlying number of clusters nT as well as corresponding means µT ,i which are sampled
from a normal distribution with 5 standard deviation. Samples from this GMM are obtained by fixing the standard deviation
corresponding to each cluster as 0.3 and then drawing samples from this mixture distribution. We train the in-context
estimator on a constant stream of new tasks synthetically generated and then evaluate them on new tasks sampled randomly.
Our tasks involve both a simple version of GMM which is in 2-dimensional observed space as well as a more complex
GMM which is 5-dimensional. The number of clusters are uniformly sampled from a maximum of 100 clusters.

G. Metrics
For metrics, we consider the l2 loss for the regression problem while for the classification problems, we consider error as a
metric, which is 100−Accuracy, which we use for the topological prediction task as well. For the generative modeling tasks,
we consider the 2-Wasserstein and 1-Wasserstein distance which are based on optimal transport and can be described as

Wp = (inf
π

1

N

∑
i

∥xi − x̂πi
∥pp)1/p (9)

where π describes a permutation matrix, of which we use p = 1 or p = 2.

H. Experimental Details
We first describe the general motivation, benefits and how we instantiate iterative amortized inference, following which we
discuss how amortized fγ and gφ are modeled as (Transformers) and the design choices associated with each. We then look
at the training objectives leveraged as well as the specification of causal or non causal method.

H.1. Iterative Amortized Inference

A fundamental limitation of the existing approaches is their inability to leverage large-scale dataset as conditioning − they
are either restricted by context length or rely solely on low-dimensional pooling operations or gradients which can be quite
restrictive. Analogously, non-amortized learners like gradient descent resolve this scalability issue through a stochastic
mini-batch framework which iteratively refines an approximate solution based on a subset of observations, not the whole
dataset. Note that this iterative refinement is Markovian5 and greedy, i.e. the update given current state is independent
of history and leads to immediate single-step improvement which could be sub-optimal over multiple steps.

Taking inspiration from SGD and the connection between amortized meta-learners and optimization routines (Elmoznino
et al., 2024), we extend existing approaches using an iterative refinement approach; instead of directly modeling predictions,
embeddings or parameters, we iteratively refine the output from the previous step greedily using mini-batches as input
to a trained sequence model.

For parametric and explicit amortization, we achieve this by considering gφ as an iterative application of a learned sequence
model hφ on different subsampled training batches B(i)

train ⊂ Dtrain
T , starting from a learned initialization θ(0).6 In our

experiments, we use a Transformer though the specific architecture can change. This model hφ takes the current state
θ(i) and a mini-batch B(i)

train as input and returns a refined state θ(i+1) which, similar to meta-learning approaches, decreases
validation loss.

θ(0)
hφ

(
·,B(0)

train

)
−−−→ θ(1)

hφ

(
·,B(1)

train

)
−−−→ . . .

hφ

(
·,B(k−1)

train

)
−−−→ θ(k) =: θT (10)

denotes a k-step iterative refinement procedure for parametric and explicit models. While learned optimizers already utilize
a mini-batch approach, they only consider parametric cases with fixed f and the information about observations is fed

5Certain second-order gradient-based learners are non Markovian, or Markovian in an augmented state space.
6In theory, this should learn the appropriate prior for the class of tasks for the parametric setup.
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to hφ solely through gradients. In particular, they model hφ as

hφ(θ,B) := Transformerφ
(
θ,∇θ

∑
(x,y)∈B

L (y, fγ (x,θ))
∣∣
θ

)
(11)

where the learned model takes a sequence of parameter updates and gradients; the above equation shows a particular case
with Markovian assumption. At best, such methods can only recover gradient-based inference routines and cannot model
more general optimization schemes (e.g. closed-form linear regression solution) as the mapping from observations to
gradient is non-invertible.

In parametric and explicit methods, θs can be seen as recurrent memory which compresses useful information of the current
task from DT , and can then be leveraged to make predictions for new x, i.e. prediction for x given θT is conditionally
independent of DT (θT serves as sufficient statistics). In contrast, the implicit formulation does not consider task-specific
memory, instead its recurrent state is always tied to the query as well. This is achieved when gφ simply provides subsampled
mini-batches while fγ is modeled as a recurrent application of a transformer rγ with weights γ

ŷ(0)
rγ

(
[x,ŷ(0)],B(0)

train

)
−−−−−−−→ ŷ(1)

rγ

(
[x,ŷ(1)],B(1)

train

)
−−−−−−−→ . . .

rγ

(
[x,ŷ(k−1)],B(k−1)

train

)
−−−−−−−→ ŷ(k), (12)

where k is the number of steps in the iterative refinement procedure for implicit models, [·, ·] describes a token and ŷ the query-
specific predictions which form the recurrent states in this framework and are sequentially updated with ŷ(0) being a learned
initialization7. Here, fγ gets the current prediction state ŷ(i) and a mini-batch B(i)

train as input and provides a refined prediction
ŷ(i+1). Since the implicit model never exposes task specific parameters θT disentangled from queries, it is non-trivial to
leverage gradient information other than finetuning of the amortized model itself (Wei et al., 2021; Dalal et al., 2025).

Motivated by SGD, we learn φ and γ through a greedy strategy where training is done solely on single-step improvements
for all three paradigms. The respective computational graphs are provided below, where we prevent gradients to flow back
from θ(i) or ŷ(i)

θ(i)
hφ(·,B)

−−−−−→ θ(i+1) → L(y, fγ(x,θ(i+1))) or ŷ(i)
rγ([x,·],B)

−−−−−→ ŷ(i+1) → L(y, ŷ(i+1)) (13)

Here, an outer loop is used to obtain the states at the ith step − θ(i) and ŷ(i) respectively. Note that in this setup,
(x,y) ∈ Dvalid

T while B ⊆ Dtrain
T , i.e. we are amortizing a learner to minimize validation loss. For evaluation, however,

we use training and evaluation splits from completely new tasks T and thus test for generalization to new problems. All
three frameworks − parametric, explicit and implicit − leverage a modification of causal masking to provide efficient and
parallelizable computation of θ and ŷ with mini-batches having varied number of observations, detailed in Appendix H.

H.2. Model Parameterization

We parameterize the amortized model, gφ in the case of parametric and explicit model, and fγ in the case of implicit model,
as a transformer with 512 hidden dimensions, 2048 hidden dimensions in the feed-forward neural network and 8 heads and
8 layers. We use gelu activation function and perform normalization first in PyTorch’s version of transformers. In addition,
we consider a specific learnable linear encoder for gradients as well as observations, where observations are (x,y) pairs
and gradients correspond to ∇θL(y, fγ(x,θ))|θT for parametric and explicit models while implicit models cannot use
gradients.

In addition, for implicit models we append ŷ to query observations and re-use the observation encoder to embed queries in
the same space. We additionally use a learnable query embedding that is added to the query tokens for implicit model to be
able to differentiate context from query. For the ablation conducted on Pre-MLP state that is carried over, we leverage a
separate learnable query embedding matrix that does not share weights with the observation encoder. Finally, to model
predictions or vector fields in the case of generative modeling, we leverage a similar linear decoder that maps from 512
dimensions to dimensions of the prediction, parameters, latents or vector field depending on the task and modeling setup.

It is important to note that our model should be able to make predictions or model parameters conditioned on arbitrary
number of context examples, and hence should be trained in a manner that allows for varying context length − this is similar

7In theory, this initialization should learn the marginal (unconditional) distribution over predictions.
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Figure 2. Masking procedure for the causally masked parametric and explicit model, where the context evolves according to a causal mask
− the matrix of black and white squares describes the masking procedure where white blocks denote masks in the matrix − where each
token in parallel consequently predicts parameters of interest conditioned on past batch of data and previous state. This mimics having
variable sized dataset and processing for variable dataset sizes in parallel. The output corresponding to the last token is the θ

(t)
T that gets

fed back recurrently.

to decoder only transformers that learn to make predictions for every context length in parallel. Given the difference in our
setting from autoregressive language modeling, we provide two ways of implementing this amortization through the use of
either a causally masked transformer or a non causal transformer, the details of which are provided in the next subsections.

Finally, for modeling iterative amortized inference, we use a simple setup where the output from one batch − θ or ŷ
depending on the amortization framework used − is fed back into the transformer with another batch after being detached
from the computation graph. Here, θ is just fed as another token with or without its gradient information as an additional
token, while for implicit models ŷ is appended to its corresponding query, hence the state represents the predictions
corresponding to the query that get updated after every iteration − note that the state is tied to a query here. Given a number
of steps, e.g. k, we iterate over this process k times and compute gradients each time, accumulating them before taking a
gradient step. Given that we detach the state before feeding it again, it prevents backpropagation through time and thus
defines a greedy procedure.

H.3. Training Objective

The training procedure for all the models can be seen as optimization over the following loss for parametric and explicit
models, where the batch sizes can contain variable number of observations N which is randomly sampled from 1− 100.

argmin
γ,φ

1

T

T∑
t=1

ET EBvalid
T ⊆Dvalid

T
EB(t),train

T ⊆Dtrain
T

1

N

∑
(x,y)∈Bvalid

T

L(y, fγ(x, gφ(B(t),train
T ,θ

(t)
T ))) (14)

θ
(t)
T = gφ(B(t−1),train

T , sg(θ(t−1)
T )) (15)

In contrast, implicit models consider the following learning paradigm

argmin
γ,φ

1

T

T∑
t=1

ET EBvalid
T ⊆Dvalid

T
EB(t),train

T ⊆Dtrain
T

1

N

∑
(x,y)∈Bvalid

T

L(y, fγ(x,B(t),train
T , ŷ(t)))) (16)

ŷ(t) = fγ(B(t−1),train
T , [x, sg(ŷ(t−1))]) (17)

H.4. Causal Masked Model

Given that the implicit model differs considerably from the parametric and explicit model in terms of conditional inde-
pendence assumptions defined, we need to handle the two cases somewhat differently to enable efficient parallelized
implementations. We discuss the details below.

Parametric and Explicit. For the parametric and explicit model, we consider a simple causal masking over observations
such that the model predicts θT corresponding to each token conditioned on the previous token, and the loss is aggregated
by using all the intermediate θT ’s obtained to make predictions on a validation set and averaging them. This procedure is
highlighted in Fig. 2.
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Figure 3. Masking procedure for the causally masked implicit model, where the context evolves according to a causal mask and the
queries can attend somewhere in between, which conditions them on that particular position and the positions behind it. Since we use
multiple queries in parallel which can look at different number of past contexts through this manipulation of the masking, we obtain
parallel processing of multiple dataset sizes.

Figure 4. We show the case of non causal masked transformer for parametric and explicit setup where at each iteration, a differently sized
context is provided as input to predict the next state. The size of the context is randomly sampled. At evaluation we use the full context.

Implicit. In contrast to the parametric approach, the implicit framework cannot deal with this in such a simple manner since
the query is x itself which cannot remain in the same position as well as attend over variable sized context. To resolve this
issue, we process in parallel multiple points from the validation set and manipulate the masking matrix to randomly let them
attend to some token j and its predecessors. We use a causal transformer so this ensures that if the query looks at index j
and before, then that query models prediction using a dataset of size j instead of context length. We use multiple queries in
parallel, randomly choosing the corresponding j so that we can, in-parallel, model predictions for variable sized datasets in
a single forward pass (though they have to correspond to different queries). A pictorial representation of this is showcased in
Fig. 3.

H.5. Non-Causal Model

For the non causal masked version, at each training iteration we just randomly sample a length n and then consider a batch
of only n observations for a forward pass. The benefits of this approach is that it can allow for conditioning on the n
observations in-context without having to rely on a causal decomposition of attention but the downside is that the number of
observations have to be kept fixed for a training iteration leading to unbiased gradients but they may have high variance since
each training iteration only relies on a single sample (n) of the number of observations which then differ across training
iterations. Thus, it is not possible to leverage parallel computation for a variety of number of observations within a single
forward pass.

A benefit of this approach is that for parametric and explicit models, it can allow more than one token to denote the latents
which is computationally infeasible for the masked case. For explicit models in particular, we consider 8 tokens for latents
which are of 128 dimensions each; note that having this for masked case is possible but it will require complex masking
procedures as well as efficient sparse attention kernels otherwise the context length would blow up relatively quickly.

We refer to Figs. 4 and 5 for details regarding the non causal transformer model for the parametric, explicit and implicit
cases.
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Figure 5. We highlight the case of non-causal transformer model for the implicit model where at each iteration a subset of observations
are provided as context; their number randomly sampled. At evaluation we use the full context.

I. Additional Ablations
We first discuss ablations associated with parametric, explicit and implicit methods separately and then finally look at the
impact of having a causal or a non-causal transformer as the modeling choice across the three amortization regimes.

I.1. Parametric Amortization

We first test our framework in the space of parametric models − where f is fixed as a linear predictor and gφ trained to
infer the optimal parameters θT of this mapping. In our experiments, we consider gφ to be a transformer model which
amortizes to the conditional information DT either through gradient signal or observations, or both through a k-step iterative
procedure, where 1-step model solely taking observations as input reduces to amortization through hypernetworks while
multiple steps with only gradient information reduces to learned optimizers.

Greedy Iterative Refinement. Our experiments in Table 6 demonstrate that the iterative refinement methodology leads to
consistent improvements with increasing number of steps across a wide variety of tasks and the modality used for amortization
− i.e. gradients, observations, or both. We also see that such estimators generalize OoD, for example when pre-trained on Ima-
geNet classification and evaluated on CIFAR-10 at inference based solely on context examples without any parameter updates.

Beyond Gradient Signal. When gφ solely leverages gradient information, we recover the space of learned optimizers.
For relatively lower dimensional problems, we see that the space of sole gradient-based learned optimizers is suboptimal
and additionally leveraging the observations can lead to substantial improvements. Alternatively, we see a trend reversal
in higher dimensional problems as the hypothesis space is much larger, making it harder for the model to infer the right
parameters. In such cases, gradient provides a more reliable signal especially when there are fewer observations.

I.2. Explicit Amortization

Next, we consider the explicit model − fγ is a trained MLP taking a query x and latent θT as input, while gφ is a
transformer inferring the latent from DT . Here, the 1-step approach with just observations as input reduces to the explicit
model defined in (Mittal et al., 2024).

Greedy Iterative Refinement. Similar to the parametric setup, we see in Table 4 that our proposed approach leads to
improved performance with increasing number of steps, again consistent with all the input modalities. In contrast to the
parametric experiments, we see an increased importance of gradient information in inferring the right latents. Since there
is inherent non-stationarity in the optimization procedure we hypothesize that gradients provide a clearer signal for the
inference mechanism gφ.

Suboptimality at large-scale. Importantly, we see that parametric modeling outperforms the explicit setup highlighting
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the difficulty of jointly learning fγ and gφ, which is surprising since the class of solutions expressed by the former form
a subset of the latter. We attribute this suboptimality to the optimization process as fγ and gφ are linked in a complicated,
non-stationary manner, i.e. if the prediction function fγ changes then its inference mechanism gφ also needs to adapt,
and vice versa.

I.3. Implicit Amortization

Finally, we consider implicit parameterization where fγ jointly leverages both training dataset DT as well as the query
x to model predictions y. Here, the 1-step approach boils down to ICL (Mittal et al., 2024; Garg et al., 2022; Müller et al.,
2021; Von Oswald et al., 2023).

Greedy Iterative Refinement. Our experiments on iterative refinement in Tables 8 and 9 highlight improvement in
performance with increasing number of steps. In addition to predictive tasks, we also consider generative modeling where
the task is to model the underlying distribution described through the context examples. The amortized model is trained
to infer the conditional vector field which interpolates a path between standard normal and the observed distribution,
conditioned on DT (Atanackovic et al., 2024; Chang et al., 2024). Our results in Table 7 and Fig. 1 showcase improved
ability of modeling the underlying distributions defined by the context with more steps8.

State Parameterization. We analyze the design choices associated with the state that persists across iterations to be −
(a) Pre-MLP: high-level latent variables tied to the query, (b) Logits: current prediction before undergoing parameter-free
normalization like softmax, or (c) Softmax: current predictions after softmax. Fig. 7 shows that modeling the state at logits
leads to best performance, and in general shows the importance of being close to prediction for greedy refinement.

I.4. Causal vs Non Causal Transformer

We perform a thorough comparison between using a causal and non-causal transformer in all three amortization regimes −
parametric, explicit, and implicit. We generally see mixed results which we hypothesize is because while the non-causal
method is more expressive algorithm, it has a higher variance of gradients during training as one cannot process in parallel
multiple dataset sizes and thus leverage larger effective batch size which makes them inefficient to train and the optimization
process largely more unstable.

Parametric. For the parametric model, we consider the causal method that predicts weights of the linear predictor in
parallel conditioned on x1:n for all n in parallel by leveraging a causal mask, as described in the section above whereas the
non-causal framework leverages a more expressive transformer since the attention is not restricted to causal attention but at
every training iteration, a single n is sampled at random and conditioning is done on only a subset of n observations (this n
is changed at every iteration). We can see that this is an unbiased estimate of the gradient but with only a single sample of n,
and thus suffers from larger variance but allows for more expressive architecture. We highlight the performance difference
of the two approaches for various number of iterations of amortization as well as modalities of information − gradient or
observations or both − in Figs. 8 to 10.

Explicit. Similar to the parametric modeling setup, we look at the explicit amortization in the case of both a causal and
a non-causal transformer with different number of iterations as well as different modalities of information − gradient or
observations or both − in Figs. 11 to 13.

Implicit. We refer to Fig. 14 for experimental details contrasting the causal and non-causal transformer model.

As highlighted at the start of the section, our results on the comparisons are mixed as one model is more expressive while the
other leads to optimization challenges due to potential variance in gradients since it is a single sample monte carlo estimate.

8Here, more steps imply steps to infer the vector field vt(·|DT ) for each t, and not more integration steps.
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Training Tasks −−−→ MNIST FMNIST ImageNet

Steps Lin Reg MNIST FMNIST FMNIST MNIST ImageNet CIFAR10 CIFAR100

Grad
1 51.3±0.3 76.2±2.0 66.7±1.0 63.8±1.7 79.9±1.6 88.5±0.1 44.9±4.5 92.5±1.1

5 4.1±0.1 48.6±1.2 51.8±0.5 41.6±1.5 49.5±3.0 83.1±0.2 17.9±1.0 88.1±0.8

10 0.5±0.0 39.7±0.7 43.5±0.9 38.1±0.4 40.7±0.8 83.4±0.1 14.7±0.2 88.1±0.6

Data
1 16.3±0.2 43.9±1.3 40.5±1.2 35.9±1.7 38.8±1.4 90.8±0.2 60.9±3.5 93.9±1.1

5 0.5±0.0 35.5±0.5 34.3±0.6 30.8±0.3 31.3±0.5 95.2±0.1 46.9±1.8 96.3±0.6

10 0.3±0.0 36.6±0.3 35.3±0.3 29.8±0.3 29.1±0.4 93.2±0.1 28.8±0.8 95.0±0.8

Grad 1 25.1±0.3 52.3±1.5 48.2±0.8 37.7±1.9 41.9±1.3 96.7±0.1 70.2±4.2 97.2±0.8

+ 5 0.6±0.0 39.2±1.0 37.5±0.3 32.0±0.7 33.4±0.5 93.8±0.1 42.1±2.4 94.8±0.7

Data 10 0.4±0.0 32.0±0.5 32.0±0.2 30.5±0.2 30.3±0.3 92.5±0.1 24.8±1.0 94.1±0.4

Table 6. Our experiments on parametric amortization reveal benefits of multiple steps of iterative refinement across ID and OoD (gray
columns) evaluation. Top row describes pre-training tasks and the second row evaluation tasks, with error metric. We also see that sole
reliance on gradients is often insufficient and leveraging observations directly can lead to improved performance with fewer iterations.
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Figure 6. We analyze the benefits, or lack thereof, of leveraging multiple past states and gradients for parametric amortization, when we
use both observations and gradients as conditional inputs.

Alphabets GMM

Steps ID OoD 2-dimensional 5-dimensional
W2 W1 W2 W1 W2 W1 W2 W1

1 0.28±0.00 0.20±0.00 0.78±0.01 0.64±0.00 1.12±0.01 0.58±0.00 3.27±0.01 1.82±0.01

5 0.31±0.00 0.22±0.00 0.72±0.01 0.58±0.00 0.90±0.01 0.38±0.00 2.50±0.02 1.05±0.01

10 0.29±0.00 0.21±0.00 0.67±0.01 0.54±0.01 0.81±0.02 0.32±0.01 2.37±0.02 0.95±0.01

Table 7. We see improved sample quality (under Wasserstein metrics) using implicit amortization with increasing number of steps for
generative modeling over OoD alphabets and new GMMs.
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Figure 7. Our ablations reveal that carrying over logits as the recurrent state across iterations in implicit models outperforms other state
representations, with softmax outputs performing comparably.
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Training Tasks −−−→ MNIST FMNIST ImageNet

Steps Lin Reg MNIST FMNIST FMNIST MNIST ImageNet CIFAR10 CIFAR100

1 14.8±0.1 24.9±0.4 31.9±0.4 22.8±0.1 29.1±0.4 43.0±0.7 19.4±0.5 73.9±0.1

5 6.2±0.0 12.4±0.1 26.1±0.2 18.8±0.1 16.9±0.2 13.3±0.2 15.0±0.1 59.4±0.2

10 4.7±0.0 9.7±0.1 24.2±0.2 17.8±0.1 15.7±0.2 12.3±0.1 15.9±0.3 54.2±0.4

Table 8. Our experiments on implicit amortization show consistent improvements in performance with increasing number of steps across a
wide range of predictive tasks, with error as evaluation metric.
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model that leverages gradients but not data.
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parametric model that leverages data but not gradients.
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Figure 10. Parametric with Observations and Gradient Information. We look at the comparison between causal and non-causal
transformer for a parametric model that leverages both gradients and data.
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Figure 11. Explicit with Gradient Information. We look at the comparison between causal and non-causal transformer for an explicit
model that leverages gradients but not data.
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Figure 12. Explicit with Observation Information. We look at the comparison between causal and non-causal transformer for an explicit
model that leverages data but not gradients.
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Figure 13. Explicit with Observation and Gradient Information. We look at the comparison between causal and non-causal transformer
for an explicit model that leverages both gradients and data.
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20 Nodes 50 Nodes

Steps LIN IN RFF IN LIN OUT RFF OUT LIN IN RFF IN LIN OUT RFF OUT

1 0.52 ±0.05 0.43 ±0.04 0.64 ±0.04 0.51 ±0.06 0.7 ±0.05 0.66 ±0.04 0.78 ±0.03 0.69 ±0.08

5 0.52 ±0.06 0.35 ±0.05 0.68 ±0.08 0.33 ±0.06 0.66 ±0.05 0.56 ±0.04 0.74 ±0.04 0.67 ±0.05

10 0.44 ±0.11 0.37 ±0.07 0.66 ±0.08 0.61 ±0.05 0.64 ±0.06 0.52 ±0.04 0.77 ±0.03 0.73 ±0.03

Table 9. We evaluate implicit models on topological order prediction, where ID uses SCMs with linear (LIN IN) / non-linear (RFF IN)
mechanisms for 20 node graphs and OoD (gray columns) changes function parameters (LIN OUT / RFF OUT) or graph size (50 nodes),
with classification error as metric.

0

2

4

6

8

10

12

14

Er
ro

r

Dataset = Linear Regression

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Dataset = MNIST

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Dataset = FashionMNIST (OoD)

0.0

0.1

0.2

0.3

0.4

Dataset = MNIST (OoD)

1 5
# Steps

0.00

0.05

0.10

0.15

0.20

0.25

Er
ro

r

Dataset = FashionMNIST

1 5
# Steps

0.00

0.05

0.10

0.15

0.20
Dataset = CIFAR10 (OoD)

1 5
# Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dataset = CIFAR100 (OoD)

1 5
# Steps

0.0

0.1

0.2

0.3

0.4

Dataset = ImageNet (OoD)
Transformer

Causal
Non-Causal

Figure 14. Implicit with Observation Information. We look at the comparison between causal and non-causal transformer for an implicit
model, which can only leverage data.
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