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Text-to-visual models can now generate photo-realistic
images and videos that accurately depict objects and
scenes. Still, they struggle with compositions of attributes,
relationships, and higher-order reasoning such as count-
ing, comparison, and logic. Towards this end, we introduce
GenAlI-Bench ro evaluate compositional text-to-visual gen-
eration through 1,600 high-quality prompts collected from
professional designers, surpassing the difficulty and di-
versity of existing benchmarks like PartiPrompt and T2I-
CompBench. Our human and automated evaluations on
GenAl-Bench reveal that state-of-the-art models like DALL-
E 3, StableDiffusion, and Gen2 often fail to parse user
prompts requiring advanced compositional reasoning. Fi-
nally, we release over 24,000 human ratings on synthetic
images and videos produced by ten leading generative mod-
els (with the numbers still growing) to support the develop-
ment of automated text-to-visual evaluation metrics.

1. Introduction

State-of-the-art text-to-visual models like Stable Diffu-
sion [42], DALL-E 3 [2], and Sora [48] generate images
and videos of exceptional quality. Due to their rapid ad-
vancement, traditional evaluation metrics and benchmarks
(e.g., FID scores on the COCO dataset [18, 28]) are be-
coming insufficient [37]. For instance, in practical applica-
tions [36, 42], users often seek fine-grained control [3, 62]
using compositional text prompts [33, 50] that involve at-
tribute bindings, object relationships, and logical reasoning,
among other visio-linguistic reasoning skills (Figure 1).

GenAl-Bench.  We observe that existing bench-
marks [19, 24, 34] such as PartiPrompt [60] and T2I-
CompBench [20] do not fully capture the compositional
structure of real-world user prompts. To remedy this, we
identify a set of crucial skills for compositional text-to-
visual generation, covering both basic (object, scene, at-
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ferentiation, logic) aspects. Next, we collect 1,600 diverse

prompts from graphic designers who regularly use text-

to-visual tools [36] for work. This approach ensures the
quality and relevance of our prompts by excluding subjec-
tive and potentially toxic content crafted by malicious web

users [24].

Human and automated evaluations. GenAI-Bench has
collected over 24,000 human ratings for synthetically gener-
ated images and videos from ten leading models like DALL-
E 3 [2], Midjourney v6 [36], Gen2 [15], and Pika [38].
Our preliminary study reveals that while these models can
handle basic compositions (e.g., attributes and relations),
they still struggle with higher-order reasoning like nega-
tion and comparison. Additionally, these human ratings
enable us to benchmark automated metrics (e.g., CLIP-
Score [17]) that measure the alignment between an im-
age and a text prompt. Specifically, we show that a sim-
ple end-to-end metric, VQAScore [30], derived from mul-
timodal large language models (LLMs) [8, 31] trained
for VQA, significantly outperforms CLIPScore and other
carefully engineered metrics finetuned on human feed-
back (e.g., PickScore [24]) and question-generation-and-
answering techniques (e.g., Davidsonian [5]). We will re-
lease the human ratings to support future benchmarking of
automated evaluation metrics.

Contribution summary.

1. We present GenAl-Bench, a holistic benchmark with
1,600 quality prompts for compositional text-to-visual
generation, surpassing the diversity and difficulty of pre-
vious benchmarks.

2. GenAl-Bench provides over 24,000 human ratings (with
the number still growing) on synthetic images and videos
to further research on automatic evaluation metrics for
generative models.

2. Related Works

Text-to-visual benchmarks. Early benchmarks rely
on captions from existing datasets like COCO [6, 19, 28,
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Figure 1. Compositional text prompts of our GenAI-Bench (highlighted in green) reflect how real-world users seek precise control
in text-to-visual generation. For example, users might add details by specifying compositions of basic visual entities and properties
(highlighted in gray), such as scenes, attributes, and relationships (spatial/action/part). Moreover, user prompts may require advanced
visio-linguistic reasoning (highlighted in blue), such as counting, comparison, differentiation, and logic (negation/universality). We detail
these skills and provide additional examples in the Appendix. Compared to previous benchmarks [20, 24, 44] like PartiPrompt [60], Table 1
shows that GenAlI-Bench more comprehensively covers these essential aspects of compositional text-to-visual generation.

41], focusing on generating simple objects, attributes, and
scenes. Other benchmarks, such as HPDv2 [57] and Pick-
a-pic [24], primarily evaluate image quality (aesthetic) us-
ing simpler text prompts. Recently, DrawBench [44], Par-
tiPrompt [60], and T2I-CompBench [20] have shifted the
focus to compositional text-to-image generation with an
emphasis on attribute bindings and object relationships.
Our GenAlI-Bench escalates the challenge by incorporating
real-world user prompts that require “advanced” reasoning
(e.g., logic and comparison) to benchmark next-generation
text-to-visual models.

Automated metrics. Perceptual metrics like Inception
Score (IS) [45], Fréchet Inception Distance (FID) [18] and
Learned Perceptual Image Patch Similarity (LPIPS) [63]
use pre-trained networks to assess the quality of gener-
ated imagery using reference images. For evaluate vision-
language alignment (or faithfulness [9, 19]), recent stud-
ies [4, 13, 14, 23, 25, 35, 43, 46, 54] report CLIPScore [17],
which measures (cosine) similarity of the embedded im-
age and text prompt. However, CLIP cannot reliably pro-
cess compositional text prompts [22, 29, 50, 61] due to
its “bag-of-words” embeddings. Recent methods like Im-
ageReward [58], PickScore [24], and HPSv2 [57] further
leverage human-feedback to improve models like CLIP by
finetuning on large-scale human ratings. Another popular
line of works [7, 19, 20, 47, 55] uses LLMs like ChatGPT to
decompose texts into simpler components for analysis, e.g.,
via question generation and answering (QG/A). For exam-
ple, the Davidsonian method [5] decomposes a text prompt

into simpler QA pairs and outputs a score as the accuracy
of answers generated by a VQA model. However, Lin et
al. [29, 30] show that such methods still face challenges
with compositional prompts. Instead, they introduce an
end-to-end metric called VQAScore: for a given image, it
calculates the likelihood of a “Yes” answer to a simple ques-
tion like “Does this figure show {text}?” VQAScore can be
interpreted as the probability that the VQA model views the
image as accurately reflecting the text, and it demonstrates
a significantly stronger agreement with human judgment.

3. GenAlI-Bench for Text-to-Visual Evaluation

In this section, we present GenAI-Bench, a challenging
benchmark featuring real-world text prompts tagged with
essential aspects of compositional text-to-visual generation.

Skill taxonomy. Prior literature on text-to-visual gen-
eration [20, 44, 60] focuses on generating “basic” ob-
jects, attributes, relations, and scenes. However, as illus-
trated in Figure 1, real-world prompts often require “ad-
vanced” compositional reasoning, including comparison,
differentiation, counting, and logic. These “advanced”
compositions extend beyond the “basic” ones. For ex-
ample, real-world prompts may involve counting not just
objects, but also attribute-object pairs and even object-
relation-object triplets, e.g., “three white seagulls
flying over a blue lake”. Accordingly, we cat-
egorize compositional reasoning into “basic” (objects,
scenes, attributes, and spatial/action/part relations) and



“advanced” aspects (counting, comparison, differentiation,
negation, and universality). Figure | presents examples of
these skills in GenAl-Bench. Table 1 shows that GenAl-
Bench uniquely covers all these essential aspects. We pro-
vide definitions and more examples in Appendix A.

GenAlI-Bench. We collect 1,600 prompts from design-
ers who routinely use text-to-image tools [36]. To improve
diversity and quality, these designers also use ChatGPT for
brainstorming prompt variants and correcting grammatical
errors. Importantly, involving professional designers helps
ensure the prompts are free from subjective or toxic con-
tent. For example, we observe that ChatGPT-generated
prompts from T2I-CompBench [20] can include subjective
(e.g., non-visual) phrases like “a natural symbol of
rebirth and renewal”. Similarly, Pick-a-pic [24]
may contain inappropriate content (e.g., NSFW) crafted by
malicious web users. We detail our collection procedure
and discuss how we avoid these issues in the Appendix B.
Lastly, we tag each prompt with all its evaluated aspects
of compositional reasoning, in contrast to previous bench-
marks that either release no tags [24, 34, 57] or limit them
to one or two [20, 44, 60]. In total, GenAl-Bench provides
over 5,000 human-verified tags with a roughly balanced dis-
tribution of skills. Specifically, about half of the prompts in-
volve only “basic” compositions, while the other half poses
greater challenges by incorporating both “basic” and “ad-
vanced” compositions.

4. Evaluating Generative Models and Metrics

This section presents human and automated evaluations
using GenAlI-Bench for ten leading image and video gener-
ative models.

Human evaluation. We evaluate six text-to-image
models: Stable Diffusion [42] (SD v2.1, SD-XL, SD-XL
Turbo), DeepFloyd-IF [10], Midjourney v6 [36], DALL-
E 3 [2]; along with four text-to-video models: Mod-
elScope [51], Floor33 [12], Pika v1 [38], Gen2 [15]. Next,
we collect 1-5 Likert scale human ratings for image-text
or video-text alignment using the recommended annotation
protocol of [37]:

How well does the image (or video) match the description?
1. Does not match at all.

2. Has significant discrepancies.

3. Has several minor discrepancies.

4. Has a few minor discrepancies.

5. Matches exactly.

Our collected human ratings indicate a high level of inter-
rater agreement, with Krippendorff’s Alpha reaching 0.72
for image ratings and 0.70 for video ratings, suggesting sub-
stantial agreement [19].

Automated evaluation. We use recent multimodal
LLMs [8, 31] trained for VQA to compute the alignment
score. Given an image and text, we calculate the VQAS-

core [30] defined as the probability of a “Yes” answer to a
simple question like “Does this figure show ‘{text}’?
Please answer yes or no.”:

P(“Yes”|image, question) €))

We implement VQAScore on an in-house VQA model
CLIP-FlanT5 (which we will release) trained on the 665K
public VQA data from LLaVA-1.5 [31]. We attach imple-
mentation details in the Appendix. Despite its simplicity,
Table 2 shows that VQAScore achieves the best correlation
with human ratings on GenAl-Bench, outperforming previ-
ous methods including CLIPScore [17], models trained with
extensive human feedback [24, 57, 58], and QG/A methods
that use the same CLIP-FlanT5 VQA model [5, 59]. In Ap-
pendix, we also show that VQAScore achieves the state-of-
the-art performance on more alignment benchmarks such as
TIFA160 [19] and Winoground [50].

GenAl-Bench challenges leading text-to-visual mod-
els. Figure 2-a shows that state-of-the-art image and video
generative models still struggle with GenAI-Bench’s com-
positional text prompts. Figure 2-b compares the aver-
aged VQAScore (based on CLIP-FlanT5) of the ten im-
age and video generative models. We compute VQAScore
for video-text pairs by averaging across all video frames
following prior work [46]. We separately analyze each
model’s performance on “basic” and “advanced” prompts.
Our analysis reveals significant improvements in text-to-
visual generation for “basic” prompts from 2022 to 2023;
however, improvements are less pronounced for “advanced”
prompts, reflected in lower scores across models. Nonethe-
less, we find that models with stronger language capabil-
ities generally perform better. For example, one of the
best open-source models DeepFloyd-IF [10] uses strong
text embeddings from the TS5 language model [40] rather
than CLIP’s, which do not encode compositional struc-
ture [22]. Similarly, the best closed-source model DALL-E
3 [2] does not directly train on noisy web text captions but
instead improves them using captioning models. Finally,
we anticipate significant advancements in open-source and
video-generative models (e.g., SD-XL [42] and Gen2 [15]),
which currently lag behind their closed-source and image-
generative counterparts. We include per-skill human and
VQAScore results in the Appendix.

5. Conclusion

Limitations. GenAl-Bench currently does not evaluate
other aspects of generative models [26, 34, 56], such as tox-
icity, bias, aesthetics, and video motion.

Summary. We introduce a more challenging GenAl-
Bench to benchmark both compositional text-to-visual gen-
eration and automated evaluation metrics, in hope of ad-
vancing the scientific evaluation of generative models.



Table 1. Comparing GenAl-Bench to existing text-to-visual benchmarks. GenAl-Bench comprehensively covers essential aspects of
compositional text-to-visual generation, emphasizing advanced reasoning skills (highlight in blue) that are required to parse real-world
prompts. Moreover, GenAl-Bench tags each prompt with all evaluated aspects, in contrast to most benchmarks that assign merely one
or two tags per prompt, even when multiple aspects are involved. GenAl-Bench also provides human ratings for both image and video
generative models to support the benchmarking of automated metrics.

Aspects Covered in Compositional Text-to-Visual Generation

Benchmarks Tagging Human Annotation
Scene  Attribute  Relation  Count  Negation  Universal ~Compare  Differ
PartiPrompt (P2) [60] v v v 4 v X X X 2 Tags X
DrawBench [44] v v v v X X X X 1 Tag X
EditBench [52] v v v v X X X X X X
TIFAv1 [19] v v v v X X X X All Tags Images
Pick-a-pic [24] v v v v X X X X X Images
T2I-CompBench [20] v v v v X X X X 1 Tag Not Released
HPDv2 [57] v v v X X X X X X Images
EvalCrafter [34] v 4 v v X X X X X Videos
GenAI-Bench (Ours) v v v v v v v v All Tags Images & Videos

Table 2. Evaluating the human correlation of automated metrics on GenAI-Bench. We report Pairwise accuracy [11], Pearson, and
Kendall, with higher scores indicating better performance for all metrics. Our VQAScore based on the in-house CLIP-FlanT5 model
(detailed in the Appendix) achieves the strongest agreement with human ratings on images and videos, significantly surpassing popular
metrics like CLIPScore [17], PickScore [24], and Davidsonian [5].

Method Pairwise Pearson Kendall Method Pairwise Pearson Kendall
CLIPScore [17] 51.9 19.3 13.5 CLIPScore [17] 54.2 26.5 18.5
ImageReward [58] 57.4 36.3 25.2 ImageReward [58] 60.4 43.6 32.0
PickScore [24] 57.7 36.6 259 PickScore [24] 56.2 32.5 23.2
HPSv2 [57] 50.1 15.1 10.3 HPSv2 [57] 50.6 17.5 12.1
VQ2 [59] 52.5 16.2 14.8 VQ2 [59] 52.8 18.0 15.5
Davidsonian [5] 54.2 32.5 23.1 Davidsonian [5] 55.9 323 23.5
VQAScore (Ours) 63.3 46.0 38.0 VQAScore (Ours) 64.4 53.3 39.9
(a) GenAI-Bench (Image) (b) GenAI-Bench (Video)
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Figure 2. GenAI-Bench. Figure (a) shows example prompts and associated skill tags from GenAI-Bench. The advanced compositional
prompts of GenAl-Bench pose greater challenges to leading image and video generative models. Figure (b) presents the GenAI-Bench
performance of 10 open/closed-source generative models. For each model, we separately show the averaged VQAScore for basic (in
gray) and advanced (in blue) prompts. We find that (1) “advanced” prompts challenge all models more, (2) models that use stronger
text embeddings or captions (e.g., DALL-E 3 [2] and DeepFloyd [10]) outperform others (e.g, SD-XL [42]), (3) open-source and video
generative models [15, 42] still lag behind their closed-source and image counterparts [2, 36], indicating potential for further improvement.
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Supplementary Material

Outline

This document supplements the main paper with bench-
mark and method details. Below is the outline:

 Section A details GenAl-Bench’s evaluated aspects.

* Section B describes how we collect GenAl-Bench.

* Section C describes how we compute VQAScore.

¢ Section D describes our in-house VQA model (CLIP-
FlanT5).

Section E discusses other baseline methods.

* Section F discusses other alignment benchmarks.

A. Evaluated Aspects of GenAl-Bench

This section details the evaluated aspects of GenAl-
Bench.

Skill definitions. Most literature on text-to-visual gen-
eration [6, 19, 20, 44, 60] primarily focuses on generating
basic objects, attributes, relations, and scenes. While
these “basic” visual compositions still pose challenges,
real-world user prompts often introduce greater complexity.
Such prompts require higher-order reasoning beyond basic
compositions, including comparison, differentiation, count-
ing, and logic. For example, while existing benchmarks
focus only on counting objects [19, 60], real-world prompts
often require counting attribute-object pairs or even object-
relation-object triplets, like “one person wearing a
white shirt and the other five wearing
blue shirts”. To this end, after thoroughly reviewing
relevant literature [20, 36, 50, 60], we define a set of com-
positional reasoning skills common in real-world prompts,
categorizing them into “basic” and “advanced”, where the
latter can build upon the former. For logical reasoning, we
consider “negation” and “universality”, which are the two
most common types of logic we see in real-world prompts.
We provide detailed definitions for “basic” skills in Table 3
and “advanced” skills in Table 4.

Comparing skills across benchmarks. We find the
skill categorization in benchmarks like PartiPrompt [60]
to be ambiguous or even confusing. For example, Par-
tiPrompt introduces two categories “complex” and “fine-
grained detail”. The former refers to “..fine-grained, in-
teracting details or relationships between multiple par-
ticipants”, while the latter refers to “..attributes or
actions of entities or objects in a scene”. Upon

closer examination, the categorization of spatial, ac-
tion, and part relations into these categories appears ar-
bitrary. To address this, we attempt to compare the
skill coverage across all benchmarks by our unified set
of skills. For benchmarks (PartiPrompt/T2I-CompBench)
with pre-defined skill categories, we map their skills
to our definitions.  For benchmarks (TIFAv1/Pick-a-
pic/DrawBench/EditBench/HPDv2/EvalCrafter) without a
comprehensive skill set, we manually annotate a random
subset of samples. Finally, we calculate the skill propor-
tions in each benchmark, identifying skills that constitute
more than 2% as genuinely present.

B. GenAlI-Bench

This section describes how we collect GenAl-Bench.

Details of GenAI-Bench. GenAl-Bench consists of
1,600 diverse prompts that cover advanced skills not
addressed in previous benchmarks [20, 44, 60]. To source
prompts relevant to real-world applications, we employ
two graphic designers experienced in text-to-visual tools
like Midjourney [36]. First, we introduce them to our
skill definitions and examples. Then, we ask them to craft
prompts for each skill, collaborating with ChatGPT to
brainstorm prompt variants across diverse visual domains.
Importantly, these designers ensure that the prompts are
objective. This contrasts with T2I-CompBench [20], whose
prompts are almost entirely auto-generated. For example,
in T2I-CompBench’s “fexture” category, an overwhelming
40% of the 1000 programmatically-generated prompts use
“metallic” as the attribute, which limits their diversity.
Other T2I-CompBench’s prompts generated by ChatGPT
often contain subjective (non-visual) phrases. For in-
stance, in the prompt “the delicate, fluttering
wings of the butterfly signaled the
arrival of spring, a natural symbol of
rebirth and renewal”, the “rebirth and renewal”
can convey different meanings to different people. Simi-
larly, in “the soft, velvety texture of the
rose petals felt luxurious against the
fingertips, a romantic symbol of love
and affection”, the “love and affection” is also open
to diverse interpretations. Thus, we carefully guide the
designers to avoid such prompts. Lastly, each prompt
in GenAl-Bench is tagged with all its evaluated aspects.
We streamline this process by using GPT4 for automatic
tagging, providing it the skill definitions and in-context
exemplars. Later, we manually verify and correct all tags
for accuracy, resulting in over 5,000 human-verified tags.

Collecting human ratings. We evaluate six text-to-
image models: Stable Diffusion [42] (SD v2.1, SD-XL,
SD-XL Turbo), DeepFloyd-IF [10], Midjourney v6 [36],
DALL-E 3 [2]; along with four text-to-video models: Mod-
elScope [51], Floor33 [12], Pika v1 [38], Gen2 [15]. Due



Table 3. Skill definitions and examples for basic compositions.

Skill Type Definition Examples
Basic Compositions

Basic entities within an image, such as person, a dog, a cat and a chicken on a table; a young man with a
Object animal, food, items, vehicles, or text symbols green bat and a blue ball; a "No Parking’ sign on a busy

(e.g., “A”, “1+17). street.

Visual properties of entities, such as color, a silver spoon lies to the left of a golden fork on a wooden
Attribute material, emotion, size, shape, age, gender, state,  table; a green pumpkin is smiling happily, a red pumpkin is

and so on. sitting sadly.

Backerounds or settines of an imaee. such as A child making a sandcastle on a beach in a cloudy day; a
Scene & & &, grand fountain surrounded by historic buildings in a town

Spatial Relation

Action Relation

Part Relation

weather, location, and style.

Physical arrangements of multiple entities
relative to each other, e.g., on the right, on top,
facing, towards, inside, outside, near, far, and so
on.

Action interactions between entities, e.g.,
pushing, kissing, hugging, hitting, helping, and
SO on.

Part-whole relationships between entities — one
entity is a component of another, such as body
part, clothing, and accessories.

square.

a bustling city street, a neon 'Open 24 Hours’ sign glowing
above a small diner; a teacher standing in front of a world
map in a classroom; tea steams in a cup, next to a closed
diary with a pen resting on its cover.

a dog chasing a cat; a group of children playing on the
beach; a boat glides across the ocean, dolphins leaping
beside it and seagulls soaring overhead.

a pilot with aviator sunglasses; a baker with a cherry pin
on a polka dot apron.; a young lady wearing a T-shirt puts
her hand on a puppy’s head.

Table 4. SKkill definitions and examples for advanced compositions.

Skill Type Definition Examples
Advanced Compositions
.. o two cats playi ith a single ball; five enthusiastic athletes
Determining the quantity, size, or volume of R i e g a cntustasiie d
. i, . ; . . and one tired coach; one pirate ship sailing through space,
Counting entities, e.g., objects, attribute-object pairs, and , R ,
. . . . crewed by five robots; three pink peonies and four white
object-relation-object triplets. L
daisies in a garden.
. . . o . one cat is sleeping on the table and the other is playin
Differentiating objects within a category by their ping . L g
. . Lo under the table; there are two men in the living room, the
attributes or relations, such as distinguishing . ,
. o 1y « » taller one ‘o the left of the shorter one; a notebook lies open
Differentiation between “old” and “young” people by age, or . ,
« - « in the grass, with sketches on the left page and blank space
the cat on top of the table” versus “the cat under .
the table” by their spatial relations on the right; there are two shoes on the grass, the one
y P ’ without laces looks newer than the one with laces.
there are more people standing than sitting; between the two
cups on the desk, the taller one holds more coffee than the
. Comparing characteristics like number, shorter one, which is half-empty; a small child on a
Comparison . L. . . .
attributes, area, or volume between entities. skateboard has messier hair than the person next to him;
three little boys are sitting on the grass, and the boy in the
middle looks the strongest.
e o ‘our elephants, no giraffes; six people wear white shirts and
Specifying the absence or contradiction of Y ta H ﬁ i .
.. v e no people wear red shirts; a bookshelf with no books, only
. elements, as indicated by “no”, “not”, or ) , .. , ,
Negation - o o, . picture frames.; a person with short hair is crying while a
without”, e. g., entities not present or actions not . . =8 . 5 .
person with long hair is not; a smiling girl with short hair
taken. 3
and no glasses.; a cute dog without a collar.
e in a room, all the chairs are occupied except one; a bustling
Specifying when every member of a group shares . . . e
h . T . kitchen where every chef is preparing a dish; in a square,
. . a specific attribute or is involved in a common , . R .
Universality several children are playing, each wearing a red T-shirt; a

relation, indicated by words like “every”, “all”,
“each”, “both”.

table laden with apples and bananas, where all the fruits are
green; the little girl in the garden has roses in both hands.




to the lack of APIs for Floor33 [12], Pika vl [38], and
Gen?2 [15], we manually download videos from their web-
sites. For image generative models, we generate images
using all 1,600 GenAlI-Bench prompts. We use a coreset
of 800 prompts to collect videos for the four video mod-
els. The same 800 prompts are used to collect the rank-
ing benchmark in the main paper. In total, we collect over
80,000 human ratings, greatly exceeding the scale of hu-
man annotations in previous work [5, 19], e.g., TIFA160
collected 2,400 ratings.

GenAlI-Bench performance. We detail the performance
of the ten image and video generative models across all
skills in Table 5. Both humans and VQAScores rate DALL-
E 3 [2] higher than the other models in nearly all skills,
except for negation. In addition, prompts requiring “ad-
vanced” compositions are rated significantly lower by both
humans and VQAScores, with negation being the most
challenging skill. Lastly, current video models do not per-
form as well as image models, suggesting room for im-
provement.

C. Implementing VQAScore

In this section, we describe how we compute VQAScore.

Computing VQAScore as an auto-regressive product.
Recall that VQAScore calculates the alignment score of an
image i and text t directly from a VQA model. We first use
a simple QA template to convert the text t to a question and
an answer (denoted as q(t) and a(t)), for example:

q(t) = Does this figure show ”{t}”? Please answer yes or no.

)
a(t) = Yes 3)

We later demonstrate that such a straightforward question-
answer pair is sufficient for good performance. In language
modeling [1], a piece of text is pre-processed (or tokenized)
into a token sequence, e.g., a(t) = {a1, - ,am}. Al-
though “Yes” usually counts as a single token, we include
the EOS (end-of-sentence) token at the end of the text se-
quence for a simpler implementation. We find that the EOS
token only marginally affects the VQAScore results. Next,
the generative likelihood of the answer (conditioned on both
the question and image) can be naturally factorized as an
auto-regressive product [1]:

VQAScore(i, t) := P(a(t)[i,q(t)) = [ ] Plala<s i, q(t))
k=1

“4)

The answer decoders of VQA models [8, 32] return back
m softmax distributions corresponding to the m terms in
the above expression. Computing VQAScore is more ef-
ficient than generating answer token-by-token. Since the

Algorithm 1: PyTorch-style pseudocode for VQAScore.

# tokenize () : text tokenizer that converts texts
to a list of token indices

# vgamodel () : VQA model returns logits for
predicted answer

def vga-score (image, text):

# Format the text into the below QA pair

question = f"Does this figure show ‘{text}’?
Please answer yes or no."

answer = "Yes"

# Tokenize the QA pair into tokens

question_-tokens = tokenize (question)

answer_tokens = tokenize (answer)

# Extract logits for pred ed answer of shape
[len (answer_tokens), voc ize]

# answer_token a required input for
auto-regressive decoding

logits = vga-model (image, question_-tokens,
answer_tokens)

# labels must skip the first BOS
(Begin-Of-Sentence) token

labels = answer_tokens[1:]

# logits must skip the last EOS
(End-0Of-Sentence) token

logits = logits[:-1]

# Compute the log likelihood of the answer
log-likelihood =
—torch.nn.CrossEntropyLoss () (logits, labels)

# (Optional) Cancel the log to obtain P("Yes"
i ye, question)

score = log-likelihood.exp ()

return score

entire sequence of tokens {ay, } is already available as input
for VQAScore, the above m terms can be efficiently com-
puted in parallel. In contrast, answer generation as done
by [5, 19] requires sequential token-by-token prediction, as
token aj must be generated before it can serve as input to
generate the softmax distribution for the subsequent token
Ak+1-

Pseudocode of VQAScore. To better explain how
VQAScore works, we attach the pseudocode in algorithm 1.
We will release a pip-installable API to compute VQAScore
using one-line of Python code.

D. Training CLIP-FlanT$

In this section, we detail the training procedure of CLIP-
FlanTS5.

Training CLIP-FlanT5. We adhere to the training
recipe of the state-of-the-art LLaVA-1.5 [31]. We adopt the
same (frozen) CLIP visual encoder (ViT-L-336) [39] and
the 2-layer MLP projector for image tokenization. We also
follow LLaVA-1.5’s two-stage finetuning procedure and
datasets. In stage-1 training, we finetune the MLP projec-
tor on 558K captioning data (LAION-CC-SBU with BLIP
captions [27]). To accommodate FlanT5’s encoder-decoder
architecture, we adopt the split-text training method pro-
posed in BLIPv2 [27]. This involves splitting a caption



Table 5. Performance breakdown on GenAI-Bench. We present the averaged human ratings and VQAScores (based on CLIP-FlanT5)
for “basic” and “advanced” prompts. Human ratings use a 1-5 Likert scale, and VQAScore ranges from 0 to 1, with higher scores
indicating better performance for both. Generally, both human ratings and VQAScores favor DALL-E 3 over other models, with DALL-
E 3 preferred across almost all skills except for negation. We find that “advanced” prompts that require higher-order reasoning present
significant challenges. For instance, the state-of-the-art DALL-E 3 receives a remarkable average human rating of 4.3 for “basic” prompts,
indicating the images and prompts range from “having a few minor discrepancies” to “matching exactly”. However, it scores only 3.4 for
“advanced” prompts, suggesting “several minor discrepancies”. In addition, video models receive significantly lower scores than image

models. Overall, VQAScores closely match human ratings.

. Relation
Method Attribute Scenme 0 | Avg . Relation
. . Method Attribute Sceme @ | Avg
Spatial ~ Action  Part K i
Spatial ~ Action  Part
Image models
Image models
SDv2.1 33 33 3.0 32 31 | 32
SDv2.1 0.80 0.81 0.76 077 0.79 | 0.79
SD-XL Turbo 3.7 3.7 3.4 35 35 | 36
SD-XL Turbo 0.83 0.83 0.80 081 0.84 | 0.83
SD-XL 3.8 3.7 3.4 3.7 36 | 3.6
SD-XL 0.86 0.86 0.82 083 0.89 | 0.84
DeepFloyd-IF 3.7 3.7 3.7 37 36 | 3.7 .
. Midjourney v6 0.89 0.89 0.87 0.87  0.91 | 0.87
Midjourney v6 4.0 39 3.7 4.0 40 | 39
DALL-E 3 0.91 091 091 089 091 | 0.90
DALL-E 3 43 45 42 42 42 | 43
Video models
Video models
ModelScope 0.69 0.69 0.65 0.65 0.70 | 0.66
ModelScope 3.1 3.1 2.8 3.0 31 | 3.0
Floor33 0.70 0.71 0.64 0.66  0.67 | 0.67
Floor33 32 32 2.9 32 3.1 | 3.1 .
Pika vl 0.78 0.80 0.74 072 0.76 | 0.75
Pika v1 34 3.4 3.1 33 32 | 33
Gen2 0.79 0.81 0.74 076 0.83 | 0.77
Gen2 3.6 3.7 3.4 3.6 36 | 3.6
(a) Human ratings on “basic” prompts (b) VQAScores on “basic” prompts
Logical Logical
Method Count Differ Compare _ s | Avg Method Count Differ Compare sl Avg
Negate  Universal Negate Universal
Image models Image models
SDv2.1 2.7 24 2.5 2.7 29 2.8 SDv2.1 0.67 0.67 0.66 0.55 0.59 0.62
SD-XL 2.8 2.6 2.5 2.7 32 2.8 SD-XL 0.71 0.71 0.72 0.53 0.62 0.64
SD-XL Turbo 2.8 25 2.6 2.8 32 29 SD-XL Turbo 0.70 0.69 0.71 0.55 0.61 0.65
DeepFloyd-IF 3.1 2.8 29 2.8 33 3.0 DeepFloyd-IF 0.70 0.69 0.71 0.52 0.64 0.65
Midjourney v6 33 3.1 3.1 29 35 32 Midjourney v6 ~ 0.76 0.78 0.77 0.53 0.70 0.70
DALL-E 3 34 33 34 2.8 3.7 34 DALL-E 3 0.80 0.81 0.77 0.53 0.72 0.71
Video models Video models
ModelScope 2.4 24 22 2.6 2.8 25 ModelScope 0.58 0.61 0.57 0.52 0.52 0.55
Floor33 2.7 2.7 25 2.8 32 2.8 Floor33 0.60 0.64 0.59 0.53 0.55 0.57
Pika v1 2.7 2.7 2.6 2.9 33 29 Pika vl 0.65 0.64 0.63 0.55 0.63 0.61
Gen2 2.8 2.7 2.6 29 33 29 Gen2 0.69 0.69 0.64 0.54 0.58 0.62

(c) Human ratings on “advanced” prompts

into two parts at a random position, with the first part sent
to the encoder and the second part to the decoder. In
stage-2 training, we finetune both the MLP projector and
the language model (FlanT5) on 665K mixture of public
VQA datasets (e.g., VQAvV2 [16] and GQA [21]). To ef-
ficiently train the encoder-decoder architecture, we con-
vert all multi-turn VQA samples into single-turn, result-
ing in 3.4M image-question-answer pairs. We also retrain
LLaVA-1.5 on the same single-turn VQA samples and ob-
serve the same VQAScore results. We borrow hyperpa-
rameters of LLaVA-1.5 (see Table 6), such as the learning
rate schedule, optimizer, number of epochs, and weight de-
cay. We use 8 A100 (80Gbs) GPUs to train all our models.
Our largest CLIP-FlanT5-XXL (11B) takes 5 hours for the
stage-1 and 80 hours for the stage-2. For stage-2 training,

(d) VQAScores on “advanced” prompts

we adhere to the system (prefix) prompt of LLaVA-1.5 dur-
ing training ':

A chat between a curious user and an artificial intelli-
gence assistant. The assistant gives helpful, detailed, and
polite answers to the user’s questions.

USER: image \n question ASSISTANT: answer

E. Details of Baseline Methods

In this section, we detail the implementation of the base-
line methods. Note that Table 7 reports VQAScore perfor-

By default, we also use the system prompt during inference. Inter-
estingly, removing the system prompt (“A chat between a curious user ...
answers to the user’s questions”) during inference does not affect CLIP-
FlanT5 but will hurt LLaVA-1.5’s performance.



Table 6. Training hyperparameters for CLIP-FlanTS5.

Hyperparameter | Stage-1 Stage-2
dataset size 558K 665K
batch size 256 96

Ir le-2 2e-5
Ir schedule cosine decay

Ir warmup ratio 0.03
weight decay 0

epoch 1
optimizer AdamW
DeepSpeed stage 2 3

mance on seven more benchmarks that measures correlation
with human judgments.

CLIPScore and BLIPv2Score. To calculate CLIP-
Score, we use the same CLIP-L-336 model [17] of CLIP-
FlanT5. To calculate BLIPv2Score, we use the ITM head of
BLIPv2-vit-G [27]. For an in-depth analysis of how these
discriminatively pre-trained VLMs behave as bag-of-words
models, we refer readers to previous studies [22, 29, 50, 61].

Metrics finetuned on human feedback
(PickScore/ImageReward/HPSv2). We use the offi-
cial code and model checkpoints to calculate these metrics.
Specifically, PickScore [24] and HPSv2 [57] finetune
the CLIP-H model, and ImageReward [58] finetunes the
BLIPv2 [27], using costly human feedback from either
random web users or expert annotators. Our experiments
on the Winoground and EqBen benchmarks (Table 7) show
that these metrics perform no better than random chance,
likely because the discriminative pre-trained VLMs bottle-
neck their performance due to bag-of-words encodings. In
addition, their finetuning datasets may lack compositional
texts. Finally, we observe that human annotations can be
noisy or subjective, especially when these annotators are
not well trained (e.g., random web users of the Pick-a-pic
dataset [24]). We discuss these issues in Appendix F.

QG/A methods (VQ2/Davidsonian). We first note that
these divide-and-conquer methods are the most popular in
recent text-to-visual evaluation [2, 20, 49, 55]. VQ2 [59]
uses a finetuned FlanT5 to generate free-form QA pairs and
computes the average score of P(answer | image, question).
Davidsonian uses a more sophisticated pipeline by prompt-
ing ChatGPT to generate yes-or-no QA pairs while avoid-
ing inconsistent questions. For example, given the text “the
moon is over the cow”, if a VQA model already answers
“No” to “Is there a cow?”, it then skips the follow-up ques-
tion “Is the moon over the cow?”’. However, these methods
often generate nonsensical QA pairs, as shown in Table 8
on real-world user prompts from GenAl-Bench.

F. Details of Alignment Benchmarks

This section discusses other benchmarks.

TIFA160 [19]. TIFA160 collects 160 text prompts from
four sources: MSCOCO captions [28], DrawBench [44],
PartiPrompts [60], and PaintSkill [6]. Each text prompt
is paired with five text-to-image models, generating a total
of 800 image-text pairs. Furthermore, Davidsonian [5] la-
bels these image-text pairs using 1-5 Likert scale for human
evaluation.

Pic-a-pick [24]. We find that the text-to-image evalua-
tion benchmark, Pic-a-pick, contains an excessive amount
of NSFW (sexual/violent) content and incorrect labels,
likely due to an inadequate automatic filtering procedure.
Specifically, after manually reviewing the test set of 500
samples, we find that 10% contain inappropriate content
(e.g., “zentai” and “Emma Frost as an alluring college pro-
fessor wearing a low neckline top”) and approximately 50%
had incorrect labels. This may also account for the inferior
performance of PickScore. As a result, we manually filter
the test set to obtain a clean subset of 100 prompts paired
with 200 images for evaluating binary accuracy. We also re-
move all tied labels due to their subjective nature. We will
release this subset of Pick-a-pic for reproducibility.

SeeTrue [59] (DrawBench/EditBench/COCO-T2I).
We utilize the binary match-or-not labels collected by
SeeTrue [59] for the three benchmarks. These benchmarks
consist of individual image-text pairs, where some pairs are
correctly paired and others are not. We follow their origi-
nal evaluation protocols to report the AUROC (Area Under
the Receiver Operating Characteristic curve), taking into ac-
count all possible classification thresholds.

Winoground [50] and EqBen [53]. In our study, we
use the entire Winoground dataset consisting of 400 pairs
of image-text pairs. For EqBen, because the official test
set includes low-quality images (e.g., very dark or blurry
pictures), we analyze the higher-quality EqBen-Mini subset
of 280 pairs of image-text pairs, as recommended by their
official codebase. These two benchmarks evaluate image-
text alignment via matching tasks: each sample becomes 2
image-to-text matching tasks with one image and two can-
didate captions, and 2 text-to-image matching tasks with
one caption and two candidate images. The text (and im-
age) score is awarded 1 point only if both matching tasks
are correct. The final group score is awarded 1 point only
if all 4 matching tasks are correct. Importantly, we dis-
cover that these benchmarks (especially Winoground) test
advanced compositional reasoning skills crucial for under-
standing real-world prompts, such as counting, comparison,
differentiation, and logical reasoning. These advanced com-
positions operate on basic visual entities, which themselves
can be compositions of objects, attributes, and relations.



Table 7. VQAScore on image-text alignment benchmarks. We show Group Score for Winoground and EqBen; AUROC for DrawBench,
EditBench, and COCO-T2I; pairwise accuracy [11] for TIFA160 and GenAl-Bench; and binary accuracy for Pick-a-Pick, with higher
scores indicating better performance for all metrics. VQAScore (based on CLIP-FlanT5) outperforms all prior art across all benchmarks.

Method Models Winoground EqBen DrawBench EditBench COCO-T2I TIFA160 Pick-a-Pic | GenAI-Bench

Based on vision-language models

CLIPScore [17] CLIP-L-14 7.8 25.0 49.1 60.6 63.7 54.1 76.0 51.9
Finetuned on human feedback

PickScore [24] CLIP-H-14 (finetuned) 6.8 23.6 72.3 64.3 61.5 59.4 70.0 57.7
ImageReward [58] BLIPv2 (finetuned) 12.8 26.4 70.4 70.3 77.0 67.3 75.0 57.4
HPSv2 [57] CLIP-H-14 (finetuned) 4.0 17.0 63.1 64.1 60.3 552 69.0 50.1
QG/A methods

VQ2 [59] FlanT5, LLaVA-1.5 10.0 20.0 52.8 52.8 47.7 48.7 73.0 53.3
Davidsonian [5] ChatGPT, LLaVA-1.5 15.5 20.0 78.8 69.0 76.2 54.3 70.0 45.8
VQAScore (ours) using open-source VQA models

VQAScore InstructBLIP 28.5 38.6 82.6 75.7 83.0 70.1 83.0 61.9
VQAScore LLaVA-1.5 29.8 35.0 82.2 70.6 79.4 66.4 76.0 61.6

VQAScore (ours) using our VOQA model
VQAScore CLIP-FlanT5 46.0 479 85.3 77.0 85.0 71.2 84.0 63.1

Table 8. Failure cases of divide-and-conquer methods (VQ2/Davidsonian). We show generated question-and-answer pairs of VQ2
and Davidsonian on three GenAl-Bench prompts. These methods often generate irrelevant or erroneous QA pairs (highlighted in red),
especially with more compositional texts.

Method Generated questions Candidate answers (correct answer choice in bold)
Text: “a snowy landscape with a cabin, but no smoke from the chimney”
What is the name of the landscape on which it’s a cabin? a snowy landscape
vQ2 . - .
In this landscape what does the fire not go off? a cabin
Is there a landscape? yes, no
Davidsonian Is there no smoke from the chimney? yes, no
Is the cabin in the landscape? yes, no
Text: “six people wear white shirts and no people wear red shirts”
vQ2 What does the average American wear? white shirts
What kind of clothes do not all people wear? red shirts
Are there people? yes, no
Davidsonian Are the shirts red? yes, no
Are the shirts white? yes, no
Text: “in the classroom there are two boys standing together, the boy in the red jumper is taller than the boy in the white t-shirt”
Where do two tall kids stand? the classroom
vQ2 . - . .
Which color of jumper is the tallest? the red jumper
Is the boy in the red jumper wearing a red jumper? yes, no
Davidsonian Is the boy in the white t-shirt wearing a white t-shirt? yes, no

Are the boys standing together? yes, no
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