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ABSTRACT

Inferring reward functions from human behavior is at the center of value alignment
– aligning AI objectives with what we, humans, actually want. But doing so
relies on models of how humans behave given their objectives. After decades of
research in cognitive science, neuroscience, and behavioral economics, obtaining
accurate human models remains an open research topic. This begs the question:
how accurate do these models need to be in order for the reward inference to be
accurate? On the one hand, if small errors in the model can lead to catastrophic
error in inference, the entire framework of reward learning seems ill-fated, as we
will never have perfect models of human behavior. On the other hand, if as our
models improve, we can have a guarantee that reward accuracy also improves, this
would show the benefit of more work on the modeling side. We study this question
both theoretically and empirically. We do show that it is unfortunately possible to
construct small adversarial biases in behavior that lead to arbitrarily large errors
in the inferred reward. However, and arguably more importantly, we are also able
to identify reasonable assumptions under which the reward inference error can be
bounded linearly in the error in the human model. Finally, we verify our theoretical
insights in discrete and continuous control tasks with simulated and human data.

1 INTRODUCTION

The expanding interest in the area of reward learning stems from the concern that it is difficult
(or even impossible) to specify what we actually want AI agents to optimize, when it comes to
increasingly complex, real-world tasks (Ziebart et al., 2009; Muelling et al., 2017). At the core of
reward learning is the idea that human behavior serves as evidence about the underlying desired
objective. Research on inferring rewards typically uses noisy-rationality as a model for human
behavior: the human will take higher value actions with higher probability. It has enjoyed great
success in a variety of reward inference applications (Ziebart et al., 2008; Vasquez et al., 2014;
Wulfmeier et al., 2015), but researchers have also started to come up against its limitations (Reddy
et al., 2018). This is not surprising, given decades of research in behavioral economics that has
identified a deluge of systematic biases people have when making decisions on how to act, like
myopia/hyperbolic discounting (Grüne-Yanoff, 2015), optimism bias (Sharot et al., 2007), prospect
theory (Kahneman & Tversky, 2013), and many more (Thompson, 1999; Do et al., 2008). Hence, the
noisy-rationality model has become a complication in many reward learning tasks AI researchers are
interested in. For instance, in shared autonomy (Javdani et al., 2015), a human operating a robotic arm
may behave suboptimally due to being unfamiliar with the control interface or the robot’s dynamics,
leading to the robot inferring the wrong goal (Reddy et al., 2014; Chan et al., 2021).

Recent work in reward learning attempts to go beyond noisy rationality and consider more accurate
models of human behavior, by for instance looking at biases as variations on the Bellman update (Chan
et al., 2021), modeling the human’s false beliefs (Reddy et al., 2018), or learning their suboptimal
perception process (Reddy et al., 2020). And while we might be getting closer, we will realistically
never have a perfect model of human behavior. This raises an obvious question: Does the human
model need to be perfect in order for reward inference to be successful? On the one hand, if small
errors in the model can lead to catastrophic error in inference, the entire framework of reward learning
seems ill-fated, especially as it applies to value alignment: we will never have perfect models, and we
will therefore never have guarantees that the agent does not do something catastrophically bad with
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respect to what people actually value. On the other hand, if we can show that as our models improve,
we have a guarantee that reward accuracy also improves, then there is hope: though modeling human
behavior is difficult, we know that improving such models will make AI agents more aligned with us.

The main goal of this work is to study whether we can bound the error in inferred reward parameters
by some function of the distance between the assumed and true human model, specifically the KL
divergence between the two models. We study this question both theoretically and empirically. Our
first result is a negative answer: we show that given a finite dataset of demonstrations, it is possible
to hypothesize a true human model, under which the dataset is most likely to be generated, that is
"close" to the assumed model, but results in arbitrarily large error in the reward we would infer via
maximum likelihood estimation (MLE). However, we argue that though this negative scenario can
arise, it is unlikely to occur in practice. This is because the result relies on an adversarial construction
of the human model, and though the dataset is most likely, it is not necessarily representative of
datasets sampled by the model. Given this, our main result is thus a reason for hope: we identify mild
assumptions on the true human behavior, under which we can actually bound the error in inferred
reward parameters linearly by the error of the human model. Thus, if these assumptions hold, refining
the human model will monotonically improve the accuracy of the learned reward. We also show how
this bound simplifies for particular biases like false internal dynamics or myopia.

Empirically, we also show a similar, optimistic message about reward learning, using both diagnostic
gridworld domains (Fu et al., 2019b), as well as the Lunar Lander game, which involves continuous
control over a continuous state space. First, we verify that under various simulated biases, when the
conditions on the human model are likely to be satisfied, small divergences in human models do not
lead to large reward errors. Second, using real human demonstration data, we derive a natural human
bias and demonstrate that the same finding holds even with real humans. Overall, our results suggest
an optimistic perspective on the framework of reward learning, and that efforts in improving human
models will further enhance the quality of the inferred rewards.

2 RELATED WORK

Inverse reinforcement learning (IRL) aims to use expert demonstrations, often from a human, to
infer a reward function (Ng & Russel, 2000; Ziebart et al., 2008). Maximum-entropy (MaxEnt) IRL
is a popular IRL framework that models the demonstrator as noisily optimal, maximizing reward
while also randomising actions as much as possible (Ziebart et al., 2008; 2010). This is equivalent to
modeling humans as Boltzmann rational. MaxEnt IRL is preferred in practice over Bayesian IRL
(Ramachandran & Amir, 2007), which learns a posterior over reward functions rather than a point
estimate, due to better scaling in high-dimensional environments (Wulfmeier et al., 2015). More
recently, Guided Cost Learning (Finn et al., 2016) and Adversarial IRL (Fu et al., 2018) learn reward
functions more robust to environment changes, but build off similar modeling assumptions as MaxEnt
IRL. Gleave & Toyer (2022) connected MaxEnt IRL to maximum likelihood estimation (MLE),
which is the framework that we consider in this work. One of the challenges with IRL is that rewards
are not always uniquely identified from expert demonstrations (Cao et al., 2021; Kim et al., 2021).
Since identifiability is orthogonal to the main message of our work–sensitivity to misspecified human
models–we assume that the dataset avoids this ambiguity.

Recent IRL algorithms attempt to account for possible irrationalities in the expert (Evans et al.,
2016; Reddy et al., 2018; Shah et al., 2019). Reddy et al. (2018; 2020) consider when experts
behave according to an internal physical and belief dynamics, and show that explicitly learning
these dynamics improves accuracy of the learned reward. Singh et al. (2018) account for human
risk sensitivity when learning the reward. Shah et al. (2019) propose learning general biases using
demonstrations across similar tasks, but conclude that doing so without prior knowledge is difficult.
Finally, Chan et al. (2021) show that knowing the type of irrationality the expert exhibits can improve
reward inference over even an optimal expert. In this work, we do not assume the bias can be
uncovered, but rather analyze how sensitive reward inference is to such biases.

More generally, reward learning is a specific instantiation of an inverse problem, which is well-studied
in existing literature. In the framework of Bayesian inverse problems, prior work has analyzed how
misspecified likelihood models affect the accuracy of the inferred quantity when performing Bayesian
inference. Owhadi et al. (2015) showed that two similar models can lead to completely opposite
inference of the desired quantity. Meanwhile, Sprungk (2020) showed inference is stable under a
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different measure of distance between models. In this work, we also derive both instability and
stability results, but consider the different problem of reward learning using MLE.

3 PROBLEM SETUP

Reward parameters. We consider Markov decision processes (MDP), which are defined by a tuple
(S,A, P, r, γ). Here, S,A represent state and action spaces, P (s′|s, a) and r(s, a) represent the
dynamics and reward function, and γ ∈ (0, 1) represents the discount factor. In this work, we are
interested in the setting where the reward function r is unknown and needs to be inferred by a learner.
We assume rewards are bounded |r(s, a)| ≤ Rmax. We assume that the reward can be parameterized
by reward function parameters θ ∈ Θ. We denote by r(·; θ) the reward function with θ as parameters.

True vs. assumed human policy. Instead of having access to the reward, we observe the behavior of
an “expert" demonstrator. Let π∗ : Θ× S → ∆(A) be the reward-conditioned demonstrator policy,
and D = {(st, at)}nt=1 be a dataset of demonstrations provided to the learner, sampled from π∗. We
use (s, a) ∼ wπ to denote observations generated by policy π, where wπ denotes the discounted
stationary distribution. We shorthand wπ

∗
as w∗. Finally, let π̃ : Θ × S → ∆(A) be the model

that the learner assumes generated the dataset. In practice, π̃ is often the Boltzmann rational policy
(Ziebart et al., 2008), while π∗ is an irrational policy based on human biases.

Reward inference using the assumed policy. Many popular algorithms in inverse reinforcement
learning (IRL) (Ziebart et al., 2008; 2010) infer the reward function parameters via maximum-
likelihood estimation (MLE). This is because unlike Bayesian IRL methods that learn a posterior
over rewards, such MLE methods are shown to scale to high-dimensional environments (Wulfmeier
et al., 2015). Using a dataset D, the learner would estimate parameters

θ̃ = arg min
θ

1

n

n∑
t=1

− log π̃(at | st; θ) := arg min
θ
L(θ; π̃,D) . (1)

Let θ∗ be the true reward function parameters. Though θ∗ cannot always be uniquely determined
(Cao et al., 2021; Kim et al., 2021), for simplicity of analysis, we assume that θ∗ is identifiable:
Assumption 1. There exists a unique θ∗ satisfying θ∗ = arg minθ L(θ;π∗,D).

Though Assumption 1 is rather strong, we make it only because we view identifiability as orthogonal
to the subject of our work – sensitivity to misspecified models.

Goal: effect of error in the model on the error in the inferred reward. The goal of our paper
is to answer whether we can bound the distance between the inferred reward and the true reward,
dθ(θ

∗, θ̃), as a function of the distance between the assumed human model and the true human policy,
dπ(π∗, π̃), for some useful notions of distance. If so, then we know that more accurate policies will
monotonically improve the fidelity of the learned rewards. We discuss our choice of distances below.

Reward inference error. The inferred reward is typically used to optimize a policy in a test
environment, and ultimately evaluated using the policy’s performance in the new environment (Ng &
Russel, 2000; Ziebart et al., 2008). However, the reason we infer reward (instead of simply cloning
the human policy) is because we do not necessarily know the test environment – having the reward
means we can optimize it in environments with different dynamics or initial state distributions. And
unfortunately, adversarial environments exist whose dynamics amplify small disagreements between
the learned and true reward functions. Hence, without prior knowledge about the test environment,
we cannot derive any bound on a performance-based distance metric. We thus focus on analysis
directly on a distance between the rewards themselves, via their parameters, dθ(θ∗, θ̃) = ‖θ̃ − θ∗‖22.
We choose squared distance as a natural and general distance metric, but admit that rewards may not
be smooth in their parameters. As future work, we can improve our work using more robust measures
of reward similarity (Gleave et al., 2021).

Human model error. Since policies are probability distributions, we can measure error in the human
model as the KL-divergence between the model and demonstrator policies. We consider two different
instatiations of policy divergence. The first is a worst-case policy divergence that takes the supremum
over all reward parameters and states:

dwcπ (π∗, π̃) = sup
θ∈Θ

sup
s∈S

DKL(π∗(· | s; θ)||π̃(· | s; θ)) . (2)
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We use the forward direction of KL-divergence because it contains an expectation over the demon-
strator policy, which aligns with the sampling distribution of the dataset. Also note that this direction
implies that the human model must cover actions of the true human to have small divergence. Finally,
note that a small model error entails having small error across all states. This is thus a strong metric
for a lower bound. It is not, however, a strong metric for an upper bound: when used in an upper
bound, it would allow the model to be wrong on states and rewards without paying any more penalty
than a model that is only wrong on one state and reward. We thus also consider an average error that
makes for a stronger upper bound – it considers the model only on the true reward parameters θ∗ and
takes an expectation over states. We term this the weighted policy divergence:

dwπ(π∗, π̃) = Es∼w∗ [DKL(π∗(· | s; θ∗) || π̃(· | s; θ∗))] . (3)
The weighted policy divergence only looks at the states visited under the true human behavioral
policy π∗ as compared to the worst case divergence, which compares against all states and rewards.

4 THE BAD NEWS: INSTABILITY RESULTS

We begin our theoretical analysis with a negative result. We prove that even under the worst-case
policy divergence from eq. (2), a small difference between the model and the true human policy
dwcπ (π∗, π̃) < ε can lead to a large inference error dθ(θ∗, θ̃). Since a trivial way for this to happen
is to get “unlucky" with the data set D drawn from π∗, and contain actions that are unlikely even if
π∗ = π̃, we strengthen the result by excluding tail events and imposing the strong requirement that D
contains the most likely actions under the demonstrator policy and the true reward:
Definition 1. A policy π “likely generates" D if for every (st, at) ∈ D, the observed action is the
most likely one under the true reward, i.e., at = arg maxπ(at | st; θ∗).

This means that actions that appear in D are always at the modes of the policy π∗. Our theorem
shows that despite the two policies being close on each state and reward pair, under the stronger
notion of worst-case policy divergence, the inference procedure can lead to large errors.
Theorem 2. For any MDPM with continuous actions, policy error ε > 0, assumed model π̃, and
dataset D, there exists a demonstrator policy π∗ that likely generates D such that the worst-case
policy divergence satisfies dwcπ (π∗, π̃) < ε, but the reward inference error satisfies

‖θ̃ − θ∗‖22 >
1

2
sup
θ,θ′∈Θ

‖θ − θ′‖22 .

The theorem shows that for any continuous-action MDP, and any observed dataset D, even a small
perturbation in the assumed human model can lead to large inference error. We are able to prove such
a strong result by perturbing the policy π∗ on only the observed state-action pairs in the dataset. We
defer the proof of the theorem to Appendix C, and provide an illustrative example in Appendix A.
Though the theorem presents a pessimistic worse-case scenario, there are aspects of the proof of
it that make it impractical and potentially unlikely to occur in practice. First, the construction of
π∗ is adversarial, by biasing the demonstrator at exactly the actions in the dataset. Second, though
Definition 1 means the dataset is most likely to be generated by the demonstrator, it may contain
actions that are not representative of what they would take. Since actions are continuous, this means
that actions that are similar to the observed one (via some distance metric) are in fact very unlikely.

5 THE GOOD NEWS: A STABILITY RESULT

Theorem 2 paints a pessimistic picture on the feasibility of reward inference from human demon-
strations, but as discussed towards the end of Section 4, the mechanisms used to derive Theorem 2
may be impractical and unlikely to occur. In this section, we show that under reasonable assumptions
on the true policy we can indeed obtain a positive stability result wherein we can upper bound the
reward inference error by a linear function of the weighted policy error. We identify the following
assumption that enables such a result:
Assumption 2. The true and model policies π∗, π̃ are strongly log-concave with respect to reward
parameters θ ∈ Θ. Formally, there exists constant c > 0 such that for any s ∈ S, a ∈ A, π∗ satisfies

log π∗(a | s; θ′) ≤ log π∗(a | s; θ) +∇θ log π∗(a | s; θ)>(θ − θ′)− c

2
‖θ − θ′‖22 ,

and analogously for π̃.
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The adversarial construction of demonstrator policy π∗ in deriving Theorem 2 violate the above
log-concavity assumption as they involve drastic perturbations of the probabilities of just the observed
actions, creating policies that are not smooth in their parameters.

Intuition. We know that log-concavity is violated by unnatural, adversarial constructions, but, we
aim to answer: does log-concavity always hold outside of such contrived examples? Intuitively, we
notice that log-concavity holds only if, as the reward parameter increases, an action that has become
less preferred cannot become more preferred in the future. This appears to be a natural property of
many policies. For example, if someone already prefers chocolate over vanilla, increasing the reward
of chocolate will never cause the person to prefer vanilla over chocolate. However, it turns out there
are simple problems where this is violated. In Appendix B, we present a simple navigation example
where Assumption 2 is violated. Though counter examples exist, we show in our experiments that
many natural biases still result in human models that satisfy Assumption 2.

Under Assumption 2, we can show that the reward inference error can be bounded linearly by
weighted policy divergence. We state the formal result below, and defer its proof to Appendix C.
Theorem 3. Under Assumption 2 with parameter c > 0, for any policies π∗, π̃ with corresponding
MLE reward parameters θ̃, θ∗, the reward inference error dθ(θ∗, θ̃) is bounded as

ED∼π∗
[
‖θ̃ − θ∗‖22

]
≤ 2

c
Es∼w∗ [DKL(π∗(· | s; θ∗) || π̃(· | s; θ∗))] .

Theorem 3 differs from Theorem 2 in two important ways: (1) the reward inference error is in
expectation over sampled datasets, and (2) the policy divergence is the weighted policy divergence.
Both these properties are desirable, as we are agnostic to tail events due to randomness in dataset
sampling, and as discussed in Section 3, we use the smaller of the two notions of divergence in the
upper bound.

5.1 INSTANTIATING THE UPPER BOUND FOR SPECIFIC BIASES

Theorem 3 shows that the reward inference error can be bounded by the weighted policy divergence
between the assumed and true policies. To understand the result in more detail, we now consider
different systematic biases that could appear in human behavior, and show how they affect the
weighted policy divergence and thus the upper bound.

Without loss of generality, we parameterize both the true and assumed policies as acting noisily
optimal with respect to their own “Q-functions”, i.e., π∗(a | s; θ) ∝ exp(Q∗(s, a; θ)) and π̃(a |
s; θ) ∝ exp(Q̃(s, a; θ)). Importantly, note that even though this parameterization is used in MaxEnt
IRL with the soft Q-values (Ziebart et al., 2008; 2010), neither Q∗ nor Q̃ need necessarily be optimal
– in this analysis, we will use Q̃, the human model, as the soft Q-value function, and show what
happens when the true model coming from Q∗ suffers from certain biases. Following prior work
(Reddy et al., 2018; Chan et al., 2021), we examine biases that can be modelled as deviations from
the Bellman update. For a tabular MDP M with |S| , |A| <∞, the soft Bellman update satisfies:

Q(s, a; θ) := r(s, a; θ) + γ
∑
s′

P (s′ | s, a)V (s; θ) , V (s; θ) := log

(∑
a∈A

exp(Q(s, a; θ)

)
. (4)

Formally, we study examples under which the human demonstrator’s Q-values Q∗(s, a; θ) satisfy (4)
but under a biased MDP M∗. We consider two specific sources of bias in the MDP: (1) the transition
model P and (2) the discounting factor γ. By parameterizing the biases in this way, we now have
an intuitive notion of the degree of bias, and can study how the magnitude of the bias affects the
policy divergence in (3). For brevity, we simply state the results as corollaries and defer proofs to
Appendix C.

Internal dynamics. We first consider irrationalities that result from human demonstrators having
an internal dynamics model P ∗ that is misspecified. For example, studies in cognitive science have
shown that humans tend to underestimate the effects of inertia in projectile motion (Caramazza et al.,
1981). Similar studies have also shown that humans overestimate their control over randomness in the
environment (Thompson, 1999), dubbed illusion of control. The latter irrationality can be formalized
in our parameterization by assuming that P ∗(· | s, a) ∝ (P (· | s, a))n, where as n→∞, the human
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will believe the dynamics of the MDP are increasingly more deterministic. In Corollary 4, we show
that the policy distance can be bounded linearly by the bias in transition dynamics:

Corollary 4. Let ∆P = sups,a ‖P ∗(· | s, a) − P̃ (· | s, a)‖1. Also, let π∗, π̃ be the policies that
result from from value iteration using (4) with dynamics models P ∗, P̃ , respectively. Then, their
weighted policy divergence is bounded as

Es∼d∗ [DKL(π∗(· | s; θ∗) || π̃(· | s; θ∗))] ≤ 2|A|Rmax

(1− γ)2
∆P .

Myopia Bias. The other irrationality we study is when humans overvalue near-term rewards, dubbed
myopia (Grüne-Yanoff, 2015). Such bias can be captured in our parameterization through a biased
discount factor γ∗, where as γ∗ → 0, the human will act more greedily and prioritize immediate
reward. In Corollary 5, we bound the distance between policies by the absolute difference in their
internal discount factor.
Corollary 5. Let π∗, π̃ be the policies that result from value iteration using (4) with discount factors
γ∗, γ̃, respectively. Then, their weighted policy divergence is bounded as

Es∼d∗ [DKL(π∗(· | s; θ∗) || π̃(· | s; θ∗))] ≤ 2|A|Rmax

(1− γ̃)(1− γ∗)
|γ̃ − γ∗| .

The above result shows that the degree of bias linearly upper-bounds the weighted policy divergence
and hence, from Theorem 3, the expected reward inference error.

6 EMPIRICAL ANALYSIS

Our theoretical results predict that in the worst-case, reward inference error can be arbitrarily bad
relative to the human model error, but on average, under some assumptions, the reward error should
be small. Our empirical results aim to complement our theory by answering the following question
under natural biases in human models in various environments: do we find a stable relationship
between policy divergence and reward error?

We tackle this in three ways: (1) simulating the specific biases we analyzed in Section 5.1, (2)
simulating a non-Bellman-update structured kind of bias (a demonstrator that is still learning about
the environment), and (3) collecting real human data. We consider both tabular navigation tasks
on gridworld, as well as more challenging continuous control tasks on the Lunar Lander game
(Brockman et al., 2016b).

Experiment design. Each experiment has a bias we study and an environment (gridworld or
LunarLander). When considering simulated biases, we manipulate π∗ by manipulating the magnitude
of the bias starting at π∗ = π̃ the Boltzmann optimal policy. This helps us simulate different
hypothetical humans, and see what degree of deviation from optimality ends up negatively impacting
reward inference. When modeling bias with real human data, we instead fix π∗ as the real human
policy, and manipulate π̃ by interpolating between the Boltzmann optimal policy and the real human
policy – this emulates a practical process where human models get increasingly more accurate.

6.1 TABULAR EXPERIMENTS WITH STRUCTURED BIASES

Figure 3: Gridworld environments.

First, we consider tabular navigation in gridworld domains (Fu
et al., 2019a), where the task is the reach the goal state and
earn a reward of θ > 1, which is not known to the agent, while
avoiding getting trapped at lava states. To further complicate the
task, the agent can also get stuck at “waypoint" states that yield
a reward of 1. Depending on the environment, it can be better
for the agent to stop at the waypoint state, to circumvent taking
the longer, more treacherous path to the goal state. The agent is
able to move in either of the four directions, or choose to stay
still. To introduce stochasticity in the transition dynamics, there
is a 30% chance that the agent travels in a different direction
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Figure 1: Effect of transition error (measured as the degree of underestimation of unintended transitions) on (a)
weighted policy divergence and (b) reward inference error on three Gridworld environments (A,B,C). In (c), we
show a scatter plot of the policy and reward errors for different biased transition model. Note that small policy
divergence results in small reward inference error.
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Figure 2: Effect of discount error in the three Gridworld environments. Like Figure 1, we see a strong correlation
between policy divergence and reward inference error.

than commanded. We consider three different gridworlds (which we simply call environments A, B,
and C) where we vary in the location of the waypoint state (shown in Figure 3).

In each environment, we want to the learn the underlying reward parameter θ from demonstrations;
however, the model π̃ is noisily optimal, whereas the demonstrator policy π∗ is irrational by suffering
from false internal dynamics, or myopia. We model these irrationalities by either modifying the
transition matrix or discount factor, respectively, in the soft Bellman update in Equation (4). Note
that the stationary distribution wπ for a policy π can be exactly computed; hence, instead of sampling
data from π∗, we use w∗ to compute exact quantities (see Appendix D.1 for technical details).

Internal dynamics. The first irrationality we consider is illusion of control, where the demonstrator
policy significantly underestimates the stochasticity in the environment. Such biased policies π∗ are
obtained via value iteration on a biased transition matrix P ∗, where the human wrongly believes the
probability p of unintended transitions is smaller than the true value. As p → 0, the demonstrator
becomes more confident that they can reach the goal state, and will prefer reaching the goal over
the waypoint state, even when the latter is much closer and safely reachable (see Appendix D.1 for
visualizations of the biased policies). In Figure 1, we show the effect of the transition bias (error
in p) on both the weighted policy divergence, and the reward inference error. The sub-linear trend
in Figure 1a agrees with Corollary 4. Figure 1b and c show a sub-linear dependence of the reward
inference error on the policy divergence, as predicted by Theorem 3. For environment A, the reward
error goes up most quickly with the dynamics error, but so does the weighted policy divergence,
making this divergence a better indicator of reward error than simply the dynamics error.

Myopia. The next irrationality we look at is myopia, where the demonstrator policy assumes a biased
discounting factor γ∗ that underestimates the true one. As γ∗ → 0, the biased agent will much more
strongly prefer the closer waypoint state over the goal state. In Figure 2, we see analogous results to
the internal dynamics bias. Namely, Figure 2a agrees with Corollary 5, and Figure 2b and c shows a
sub-linear correlation between policy and reward error, as predicted by Theorem 3.

6.2 CONTINUOUS CONTROL EXPERIMENTS

Next, we consider a more challenging domain of navigation with continuous states and actions.
The exact navigation environment is a modification the Lunar Lander game with continuous actions
(Brockman et al., 2016a), where the agent receives a reward for landing safely on the landing pad. The
agent is able to take a continuous action in [−1, 1]2 that encodes the directions it wants to move (left,
right, up) via its sign, as well as how much power it wants to use in each direction via its cardinality.
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Figure 4: Effect of transition error (measured as error in p) in the continuous Lunar Lander environments. The
results are consistent with earlier Gridworld results.
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Figure 5: Effect of the simulated human learning bias in the continuous Lunar Lander environments.

Figure 6: Lunar Lander environments.

In constrast to the classic version of the game where the
landing pad is always in the middle, we vary its location.
The unknown reward parameter θ ∈ (0, 1) is the location
of the landing pad (as a horizontal displacement normal-
ized by the total width of the environment). We consider
three different environments that differ in the location of
the landing pad (see Figure 6). In each environment, the
human model π̃ is the near-optimal one obtained by soft
actor-critic (Haarnoja et al., 2018). We provide details
on the training procedure in Appendix D.2. In these ex-
periments, we simulate the internal dynamics bias as well as a new one based on the notion of a
demonstrator that is still themselves learning.

Internal dynamics. We first study of the effect of demonstrator policies with biased dynamics
models. We bias the dynamics model by varying a parameter p that describes how much one unit of
power will increase acceleration in the corresponding direction. This is a plausibly natural human bias
as people tend to underestimate the effects of inertia in projectile motion (Caramazza et al., 1981).
For each false setting of p, we learn a biased policy that is near-optimal for that p. As p increase, the
biased policy tends to underestimate the amount of power required to move the lander enough to the
right to reach the landing pad (see Appendix D.2 for visualizations). In Figure 4, we show the effect
of the transition bias (error in p) on both the weighted policy divergence and the reward inference
error. We see that even in a challenging continuous control domain, Theorem 3 still holds.

Demonstrators that are learning. We next simulate a bias that might arise from humans that are
learning how to do the task (as would be the case, for instance, in our Lunar Lander task). We do
so by varying the amount of training iterations in learning the policy. The degree of such bias is
captured in a parameter ρ ∈ [0, 1], that denotes the number of training iterations, normalized by
the amount used to learn the near-optimal believed policy. In Figure 5, we show the effect of ρ on
both the weighted policy divergence and the reward inference error. Reassuringly, we again notice a
sub-linear correlation in line with Theorem 3.

6.3 ANALYSIS OF REAL HUMAN POLICIES

Figure 8: Visualization of trajectories under
the human policy.

The previous experiments have considered natural but sim-
ulated biases to construct demonstrator policies modeling
biased humans. However, it remains to be seen whether
Theorem 3 remains predictive even when biases are from
real humans. We consider the same Lunar Lander game in
Section 6.2 but discretize the action space so that people
can intuitively interact in it.Using this environment, we
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Figure 7: Effect of modeling human bias (measured by probability of acting according to human policy) on (a)
weighted policy divergence and (b) reward inference error on discrete Lunar Lander environments. In (c), we
show a scatter plot of the policy and reward errors for different probabilities. We see that more accurate human
models correspond to lower reward inference error.

create a demonstrator policy grounded in real human demonstrations. We do this by collecting
trajectories from 10 human demonstrators, then learning a policy that imitates human behavior by
running behavior cloning (BC) on the aggregated trajectories. We visualize trajectories from this
policy in Figure 8. We observe that in general, humans tend to be unable to properly account for
the effect of gravity, causing them to crash the lander before it has moved enough horizontally,
particularly in environments B and C where the landing pad is horizontally displaced from the middle.

Then, we emulate a process through which the learner’s model of the human, π̃, would evolve to
align more and more with the true human policy. Specifically, we vary π̃ to interpolate between near-
optimal and the true human policy, while keeping π∗ fixed to the latter. To do so, we vary a parameter
α that controls the probability of sampling from the human policy (vs. the near-optimal one). In
Figure 7, we show the effect of α on the weighted policy divergence and reward inference error,
and conclude that larger α result in smaller policy divergence as well as reward error. Importantly,
this suggest that as the model gets closer and closer to the true human policy, the reward estimate
gets increasingly better, with no sign that a small model error leads to a terrible reward. In addition,
we also match the simulation experiments by keeping π̃ fixed as the optimal policy, and interpolate
between the optimal policy and the real human policy for π∗ (see Appendix D.3). This gives us hope
that even in real-world problems, better human models π̃ can translate to better reward inference.

7 DISCUSSION

Summary. In this paper, we conduct a theoretical and empirical study of how sensitive reward
learning from human demonstrations is to misspecification of the human model. First, we provide
an ominous result that arbitrarily small divergences in the assumed human model can result in large
reward inference error. While this is in theory possible, it requires a rather adversarial construction that
makes it unlikely to occur in practice. In light of this, we identify assumptions under which the reward
error can actually be upper-bounded linearly by the model error. Experiments with multiple biases in
different environments, as well as an analysis of the true human policy (which potentially suffers
from unknown, yet to be characterized suboptimalities), reassuringly show remarkably consistent
results: over and over again, we see that as the human model and the true human behavior are more
and more aligned, the reward error decreases. Overall, our results convey the optimistic message
that reward learning improves as we obtain better human models, and motivate further research into
improved models.

Limitations and future work. Our upper-bound relies on Assumption 2 of log-concavity of the
human policy. However, we hypothesize that weaker assumptions exist from which we can derive
similar bounds as Theorem 3. In addition, via Assumption 1, we ignore ambiguity in reward
identification. It may be important in the future to consider reward error and identifiability jointly,
potentially through equivalence classes of reward functions. Finally, as alluded to in Section 3, more
robust measures of reward similarity exist that avoid needing to implicitly assume smoothness of the
reward function in their parameters (Gleave et al., 2021). Interesting directions of further investigation
include: (1) how to better model human biases, or orthogonally, (2) how to modify existing reward
inference algorithms to be more robust to misspecification. A negative side-effect of our work could
occur when we mistakenly rely on the upper-bound in Theorem 3 when its conditions are not met, i.e.,
Assumption 2 does not hold, resulting in catastrophically bad inference without knowing it. More
broadly, reward learning in general has the issue that it does not specify whose reward to learn, and
how to combine different people’s values.
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A EXAMPLE WHERE LOWER-BOUND OCCURS

Let us consider a stochastic bandit with continuous actions A ∈ [0, 1]. Since bandits consist of a
single, stationary state, we drop dependence on state in all quantities. The reward for choosing action
a ∈ A is r(a; θ) = aθ(1− a)1−θ , for some parameter θ ∈ (0, 1). When θ is close to 0, the reward is
higher for actions close to 0, and vice-versa when θ is close to 1.

For simplicity, let us only consider a dataset of a single action a1. Let us consider a Boltzmann
rational policy as the assumed model, namely π̃(a; θ) ∝ exp(r(a; θ)) and have the demonstrator
policy π∗ be an adversarial perturbation of π̃ that overestimates the reward of a1:

π∗(a; θ) ∝

{
exp(r(a; θ))

(
1
{
a 6∈ (a1 − δ

2
, a1 +

δ
2
)
}
+ 109 1

{
a ∈ (a1 − δ

2
, a1 +

δ
2
)
})

if θ < 0.001

exp(r(a; θ)) otherwise ,

for some δ ∈ (0, 1). The interpretation of this is that the human is believed to be noisily optimal;
however, the human actually overestimates the value of an infinitesimal region centered at action
a1 only if θ is close to 0. Note that dwcπ (π∗, π̃) < cδ for some constant c, so we can choose δ such
that the two policies are “close" to each other. When a1 = 1, we will infer θ̃ ≈ 1; however, θ∗ ≈ 0,
leading to reward inference error equal to the range of reward parameters.

B EXAMPLE WHERE LOG-CONCAVITY IS VIOLATED

The environment is a 3× 3 gridworld with deterministic transitions and discount γ = 1. Let s be the
center cell, and a be going up. In Figure 9, we show that a natural policy that chooses “up" according
to π(a | s; θ) ∝ exp(max(θ, 10− θ)) violates log-concavity. The reason is that “up" is optimal for
θ ∈ [0, 4] ∪ [6, 10] but not in between.

Figure 9: Simple navigation environment where a near optimal policy violates Assumption 2.

C PROOFS

C.1 PROOF OF THEOREM 2

Without loss of generality, let π̃ satisfy π̃(a | s; θ) = exp(Φ(s, a; θ))/Z(s; θ). Note that this
parameterization can be used to express any probability distribution. Also, for any δ > 0, let us define

Bδ(D) =

n⋃
t=1

(
at −

δ

2
, at +

δ

2

)
as a union of δ2 -balls around the actions that appear in dataset D. Then, for any θ∗ ∈ Θ, let π∗ satisfy

π∗(a | s; θ) =

{
1

Z′(s;θ) (exp(Φ(s, a; θ))1{a 6∈ Bδ(D)}+ C 1{a ∈ Bδ(D)}) if θ = θ∗ ,
1

Z(s;θ) exp(Φ(s, a; θ)) otherwise ,

where C is the supremum C = sups,a,θ exp(Φ(s, a; θ)). By construction, it is clear that MLE on
D using π∗ would yield reward parameter θ∗. Since such π∗ can be constructed for any θ∗, we can
choose θ∗ that satisfies ‖θ̃ − θ∗‖22 > supθ,θ′ ‖θ − θ′‖2/2. What remains is showing that there exists
δ such that dwcπ (π∗, π̃) < ε.
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Bounding the worst-case policy divergence. Note that the worst-case divergence is necessarily
satisfied at θ∗. Fix any state s ∈ S. We have,

DKL(π∗(· | s; θ∗)||π̃(· | s; θ∗)) =

∫
A
π∗(a | s; θ∗) log

π∗(a | s; θ∗)
π̃(a | s; θ∗)

da

=

∫
A\Bδ(D)

π∗(a | s; θ∗) log
π∗(a | s; θ∗)
π̃(a | s; θ∗)

da+

∫
Bδ(D)

π∗(a | s; θ∗) log
π∗(a | s; θ∗)
π̃(a | s; θ∗)

da .

We consider each term individually. Starting with the first term, we have∫
A\Bδ(D)

π∗(a | s; θ∗) log
π∗(a | s; θ∗)
π̃(a | s; θ∗)

da ≤ log
Z(s; θ∗)

Z ′(s; θ∗)

≤ 1

Z(s; θ∗)
|Z(s; θ∗)− Z ′(s; θ∗)| ,

where we use that the policies only differ in their normalizers in the first inequality, and that
log(t)− log(s) ≤ 1

min{t,s} |t− s| in the second. Now, using that

Z ′(s; θ∗) =

∫
A\Bδ(D)

exp(Φ(s, a, ; θ∗)da+ C |Bδ(D)| ,

we have ∫
A\Bδ(D)

π∗(a | s; θ∗) log
π∗(a | s; θ∗)
π̃(a | s; θ∗)

da ≤ C

Z(s; θ∗)
|Bδ(D)| .

Now, let us consider the second term. we have∫
Bδ(D)

π∗(a | s; θ∗) log
π∗(a | s; θ∗)
π̃(a | s; θ∗)

da ≤
∫
Bδ(D)

π∗(a | s; θ∗) |logC − Φ(s, a; θ∗)| da+ log
Z(s; θ∗)

Z ′(s; θ∗)

≤ 2 logC |Bδ(D)|+ C

Z(s; θ∗)
|Bδ(D)| ,

where we reuse the bound for the first term, and use that |φ(s, a; θ∗)| ≤ logC. Combining the two
bounds yields

DKL(π∗(· | s; θ∗)||π̃(· | s; θ∗)) ≤ 2 logC |Bδ(D)|+ 2C

Z(s; θ∗)
|Bδ(D)| .

Using that |Bδ(D)| ≤ nδ by construction, we can solve for δ = O(ε/n) such that dwcπ (π∗, π̃) < ε,
as desired. This completes the proof.

C.2 PROOF OF THEOREM 3

Recall that L(θ;π,D) is the negative log-likelihood of demonstrations D under policy π and reward
parameters θ. Note that we can write

L(θ; π̃,D) =
1

n

n∑
t=1

− log π̃(at | st; θ) =
1

n

n∑
t=1

− log π∗(at | st; θ) + log
π∗(at | st; θ)
π̃(at | st; θ)

= L(θ;π∗,D) +
1

n

n∑
t=1

log
π∗(at | st; θ)
π̃(at | st; θ)

.

By the law of large numbers, we have that under expectation over dataset D,

ED∼π∗
[

1

n

n∑
t=1

log
π∗(at | st; θ)
π̃(at | st; θ)

]
= Es∼d∗ [DKL(π∗(· | s; θ∗) || π̃(· | s; θ∗))]

Using Assumption 2 on π∗, for any θ ∈ Θ, we also have

L(θ;π∗,D) ≥ L(θ∗;π∗,D) +∇θL(θ∗;π∗,D)>(θ∗ − θ) +
cn

2
‖θ − θ∗‖22 .

13



Published as a conference paper at ICLR 2023

By definition of θ∗ and Assumption 1, we know that ∇θL(θ∗;π∗,D) = 0. Substituting θ = θ̃ and
rearranging yields

‖θ̃ − θ∗‖22 ≤
2

c

(
L(θ̃;π∗,D)− L(θ∗;π∗,D)

)
.

Analogously, using Assumption 2 on π̃ 1, we have that

‖θ̃ − θ∗‖22 ≤
2

c

(
L(θ∗; π̃,D)− L(θ̃; π̃,D)

)
.

Combining the two bounds yields,

‖θ̃ − θ∗‖22 ≤
2

c

(
L(θ∗; π̃,D)− L(θ∗;π∗,D) + L(θ̃;π∗,D)− L(θ̃; π̃,D)

)
≤ 2

c

(
1

n

n∑
t=1

log
π∗(at | st; θ∗)
π̃(at | st; θ∗)

− 1

n

n∑
t=1

log
π∗(at | st; θ̃)
π̃(at | st; θ̃)

)
Taking an expectation over dataset D yields the desired result

E
[
‖θ̃ − θ∗‖22

]
≤ 2

c
Es∼d∗

[
DKL(π∗(· | s; θ∗) || π̃(· | s; θ∗))−DKL(π∗(· | s; θ̃) || π̃(· | s; θ̃))

]
≤ 2

c
Es∼d∗ [DKL(π∗(· | s; θ∗) || π̃(· | s; θ∗))] ,

which is the desired result.

C.3 PROOF OF COROLLARY 4

Recall that π̃, π∗ are parameterized by Q-values Q̃,Q∗ that satisfy the soft Bellman update in (4).
Fix state s. We have

DKL(π∗(· | s; θ∗)||π̃(· | s; θ∗)) = Ea∼π∗(·|s;θ∗)
[
Q∗(s, a; θ∗)− Q̃(s, a; θ∗)

]
+ log

∑
a′ exp(Q̃(s, a′; θ∗))∑
a′ exp(Q∗(s, a′; θ∗))

.

For any action a, we have

Q∗(s, a; θ∗)− Q̃(s, a; θ∗) = γ
∑
s′

P ∗(s′ | s, a)V ∗(s′; θ∗)− γ
∑
s′

P̃ (s′ | s, a)Ṽ (s′; θ∗)

= γ
∑
s′

P ∗(s′ | s, a)V ∗(s′; θ∗) + γ
∑
s′

P ∗(s′ | s, a)Ṽ (s′; θ∗)

− γ
∑
s′

P ∗(s′ | s, a)Ṽ (s′; θ∗)− γ
∑
s′

P̃ (s′ | s, a)Ṽ (s′; θ∗)

= γ‖P ∗(· | s, a)− P̃ (· | s, a)‖1Ṽ (s′; θ∗) + γ
∑
s′

P ∗(s′ | s, a)(V ∗(s′; θ∗)− Ṽ (s′; θ∗))

≤ Rmax

1− γ
∆P + γ

∑
s′

P ∗(s′ | s, a) max
a′
{Q∗(s′, a′; θ∗)− Q̃(s′, a′; θ∗)}

≤ . . .

≤ Rmax

(1− γ)2
∆P .

Now, let us consider the normalization term. We have

log

∑
a′ exp(Q̃(s, a′; θ∗))∑
a′ exp(Q∗(s, a′; θ∗))

≤ 1∑
a′ exp(Q̃(s, a′; θ∗))

∑
a′

exp(Q̃(s, a′; θ∗)) log
exp(Q̃(s, a′; θ∗))

exp(Q∗(s, a′; θ∗))

≤
∑
a′

(Q̃(s, a′; θ∗)−Q∗(s, a′; θ∗))

≤ |A|Rmax

(1− γ)2
∆P .

Combining the two bounds and taking an expectation over s yields the desired result.
1In the statement of Assumption 2 in the main paper, we only assume log-concavity for π∗. This will be

corrected in a future revision to include both π∗, π̃
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C.4 PROOF OF COROLLARY 5

The proof follows the format of the proof for Corollary 4. Fix state s. We have

DKL(π∗(· | s; θ∗)||π̃(· | s; θ∗)) = Ea∼π∗(·|s;θ∗)
[
Q∗(s, a; θ∗)− Q̃(s, a; θ∗)

]
+ log

∑
a′ exp(Q̃(s, a′; θ∗))∑
a′ exp(Q∗(s, a′; θ∗))

.

For any action a, we have

Q∗(s, a; θ∗)− Q̃(s, a; θ∗) = γ∗
∑
s′

P (s′ | s, a)V ∗(s′; θ∗)− γ̃
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗)

= γ∗
∑
s′

P (s′ | s, a)V ∗(s′; θ∗) + γ∗
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗)

− γ∗
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗)− γ̃
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗)

= (γ∗ − γ̃)
∑
s′

P (s′ | s, a)Ṽ (s′; θ∗) + γ∗
∑
s′

P (s′ | s, a)(V ∗(s′; θ∗)− Ṽ (s′; θ∗))

≤ Rmax

1− γ̃
|γ∗ − γ̃|+ γ∗

∑
s′

P (s′ | s, a) max
a′
{Q∗(s′, a′; θ∗)− Q̃(s′, a′; θ∗)}

≤ . . .

≤ Rmax

(1− γ̃)(1− γ∗)
|γ∗ − γ̃| .

Now, let us consider the normalization term. We have

log

∑
a′ exp(Q̃(s, a′; θ∗))∑
a′ exp(Q∗(s, a′; θ∗))

≤ 1∑
a′ exp(Q̃(s, a′; θ∗))

∑
a′

exp(Q̃(s, a′; θ∗)) log
exp(Q̃(s, a′; θ∗))

exp(Q∗(s, a′; θ∗))

≤
∑
a′

(Q̃(s, a′; θ∗)−Q∗(s, a′; θ∗))

≤ |A|Rmax

(1− γ̃)(1− γ)
|γ̃ − γ∗| .

Combining the two bounds yields the desired result.
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Figure 10: Visualization of gridworld policies (as state-visitation distributions) with (a) different transition
biases (probability p of unintended transitions), and (b) different discount factors.

D EXPERIMENT DETAILS

D.1 TABULAR EXPERIMENTS

Environment and training details Recall that the gridworld environments we consider are de-
scribed by 8 × 4 grids, with a start and goal state, and walls, lava, and exactly one waypoint state
placed in between. We consider a sparse reward where the agent earns a reward of θ = 3 upon
reaching the goal state. Alternatively, if the agent reaches a lava or waypoint state, then its reward
is 0 or 1, respectively, for the rest of the trajectory. The agent is able to move in either of the four
direction (or choose to stay still), and there is a p = 30% chance that the agent travels in a different
direction than commanded. We choose γ∗ = 0.98 high enough that the goal state is preferred over
the closer waypoint state under the optimal policy.

A reward-conditioned policy (model or demonstrator) under each environment is given by π(a |
s; θ) ∝ exp(Q(s, a; θ)), where Q(s, a; θ) were derived by value iteration using the an MDP model
(can be the true underlying MDP or a biased one) of the environment. During reward inference, we
discretize the reward parameter space Θ = [1, 4] with resolution 64. Because the environment is
tabular, instead of sampling demonstrations D from π, we can instead compute wπ the discounted
stationary distribution. Specifically, let ρ be the distribution of the starting state (which in our case, is
an indicator vector at the start state of each environment), then wπ satisfies:

wπ(s) = (1− γ)ρ(s) + γ∗
∑
s′∈S

∑
a′∈A

wπ(s′)π(a′ | s′)P (s | s′, a′) .

We can use this to solve for the true state visitations w∗ for any demonstrator policy π∗, which can be
used to compute the weighted policy divergence as in (3) without explicitly sampling a dataset D of
demonstrations.

Visualization of biased policies In Figure 10, we visualize the demonstrator policies π∗ under the
systematic biases considered. We see that in Figure 10(a), when the demonstrator underestimates
the probability of unintended transitions, it heavily prefers the goal state, which has higher reward
but is much more dangerous to reach, over the waypoint state Conversely, in Figure 10(b), when the
demonstrator underestimates the discount factor, they strongly prefer the waypoint state that yields
lower reward but is much closer.

D.2 CONTINUOUS CONTROL EXPERIMENTS

Environment and training details Recall that the domain we consider is the Lunar Lander game,
where an agent needs to navigate a lander onto the landing pad. The reward function yields a large
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Figure 11: Visualization of Lunar Lander trajectories for policies with (a) biased internal dynamics that
underestimate left-right acceleration and (b) correct internal dynamics.
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Figure 12: Effect of human bias (measured by probability of acting according to human policy) on (a) weighted
policy divergence and (b) reward inference error on discrete Lunar Lander environments. In (c), we show a
scatter plot of the policy and reward errors for fixed probabilities.

reward for landing on the pad, and a penalty for crashing or going out of bounds. The magnitude of
the reward depends on the speed and tilt of the lander upon reaching the landing pad. The physics
of the game are deterministic. The reward parameter θ ∈ [0, 1] we try to infer is the location of the
landing pad (expressed as normalized horizontal displacement).

In this domain, we train a reward-conditioned policy π(a | s; θ) by folding the reward parameter θ
into the state representation, which is an 8-dimensional vector capturing the lander’s current location,
velocity, and tilt. The policy is parameterized as a 3-layer fully-connected neural network with hidden
dimension of 128, and outputs a squashed Gaussian distribution over actions. Because the state and
action space are continuous, we use soft-actor-critic (SAC) (Haarnoja et al., 2018) with fixed entropy
regularization α = 1. We train the policy for 600 episodes of length at most 1, 000, with a batch
size of 264, until the policy was able to land on the landing pad with a high success rate. During
reward inference, we discretize the reward parameter space Θ = [0, 1] with resolution 32. We sample
datasets D consisting of 10, 000 observations, and report the mean and standard error of policy and
reward error across 10 independent samples of datasets.

Visualization of biased policies In Figure 11, we visualize the demonstrator policies π∗ under
different degrees of internal dynamics bias. Recall that parameter p describes how much one unit of
power will increase acceleration in the left-right directions. When p is underestimated, the policy
will not move right enough to reach the landing pad; in contrast, when p is properly estimated, the
policy will reach the landing pad with a high success rate.

D.3 ADDITIONAL EXPERIMENT WITH HUMAN POLICIES

In line with the experiments with simulated biases, we run an additional experiment similar to the
one in Section 6.3, where we instead keep π̃ fixed as the optimal policy, and interpolate between
the optimal policy and the real human policy for demonstrator policy π∗. We show the effect of the
interpolation proportion on policy divergence and reward inference error in Figure 12. Again, we
notice the consistent message that policy error bounds reward error.
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