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Abstract

Modern large language model (LLM) services increasingly rely on complex, often1

abstract operations, such as multi-step reasoning and multi-agent collaboration, to2

generate high-quality outputs. While users are billed based on token consumption3

and API usage, these internal steps are typically not visible. We refer to such sys-4

tems as Commercial Opaque LLM Services (COLS). This position paper highlights5

emerging accountability challenges in COLS: users are billed for operations they6

cannot observe, verify, or contest. We formalize two key risks: quantity inflation,7

where token and call counts may be artificially inflated, and quality downgrade,8

where providers might quietly substitute lower-cost models or tools. Addressing9

these risks requires a diverse set of auditing strategies, including commitment-10

based, predictive, behavioral, and signature-based methods. We further explore11

the potential of complementary mechanisms such as watermarking and trusted12

execution environments to enhance verifiability without compromising provider13

confidentiality. We also propose a modular three-layer auditing framework for14

COLS and users that enables trustworthy verification across execution, secure15

logging, and user-facing auditability without exposing proprietary internals. Our16

aim is to encourage further research and policy development toward transparency,17

auditability, and accountability in commercial LLM services.18

1 Introduction19

Large language models (LLMs) have advanced rapidly in recent years, demonstrating strong ca-20

pabilities in long context understanding [2], reasoning [3, 4], reflection [5], tool use [6, 7], and21

planning [8, 9]. These abilities now enable LLMs to perform increasingly complex tasks [10],22

often through reasoning and collaboration strategies that resemble human problem-solving [11, 12].23

Therefore, service pipelines built on LLMs have grown correspondingly sophisticated. Contemporary24

systems frequently orchestrate extended reasoning chains and coordinate multiple LLM agents to25

enhance output quality [11]. However, these intermediate steps are invisible to users, who are billed26

solely based on token and API usage. We term such invisible computations as hidden operations, and27

define any LLM service that hides its internal steps and returns only the final output as a Commercial28

Opaque LLM Service (COLS). See Figure 1 for an overview of a typical COLS.29

COLS conceal their intermediate tokens for three well-established reasons. First, reasoning traces30

and agentic collaborations are typically verbose and noisy, often containing backtracking, speculative31

branches, and occasional hallucinations [13, 14, 15]. Exposing such raw information could detract32

from usability or overwhelm users. Second, these traces encode COLS’s internal reasoning strategies,33

tool-using protocols, and multi-agent workflows. Making them public risks model stealing [16, 17],34

workflow extraction [18, 19], and jailbreaking attacks [20, 21, 22], compromising the system’s35
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Figure 1: Overview of Commercial Opaque LLM Services and their hidden operations. Part of the
illustration was generated by GPT-4o [1].

intellectual property (IP). Third, abstracting internals allows developers to update backend models,36

prompts, or tools without changing the user-facing interface, ensuring better scalability.37

While these design choices offer clear engineering and user experience benefits, they also introduce38

systemic challenges for transparency and accountability. Users are charged based on the quantity39

and quality of operations entirely managed by the service provider, whose incentives are profit-40

driven. Because these operations are unobservable and unverifiable from the user’s side, billing41

becomes effectively non-auditable and unregulated. In the absence of technical or legal standards,42

current systems require users to place implicit trust in providers—highlighting the need for verifiable43

accountability mechanisms. In a competitive landscape where major AI companies increasingly44

prioritize reasoning and agentic capabilities as profit drivers, this lack of verifiability and regulatory45

oversight is a serious concern. There exists a fundamental asymmetry between providers and users:46

users bear financial responsibility for operations they cannot observe, verify, or dispute. Therefore,47

we make the central claim of this paper: there is an urgent need to design an auditing framework48

for hidden operations in COLS.49

In this paper, we examine the quantity and quality of hidden operations, both of which directly impact50

billing in COLS. On the quantity side, we identify three forms of potential inflation used by COLS to51

increase charges: token count inflation, API call inflation, and model call inflation. To detect such52

manipulations from the user’s side, we introduce the concepts of token auditing and call auditing. On53

the quality side, COLS may reduce service fidelity to lower internal costs and increase profit. We54

define two forms of service degradation: model downgrade [23] and tool downgrade, and propose55

model auditing and tool auditing to verify service quality.56

For each potential attack performed by COLS, we articulate underlying incentives, operational57

context, and potential harms in the domain of reasoning and agent APIs. For each user-side auditing58

or defense strategy, we analyze the challenges across different API settings and propose feasible59

approaches. Finally, we present a forward-looking research agenda aimed at building a trustworthy60

framework that balances service quality with user interests. We hope the position taken in this paper61

can help guide the development of billing verification protocols, regulatory standards, and governance62

policies for the rapidly growing commercial LLM ecosystems.63

Our key contributions are summarized as follows:64

• We formalize three billing-related inflation vectors, including token count, API call, and model65

call inflation, and introduce concrete user-side auditing methods to detect each.66

• We identify two forms of service quality degradation, i.e., model and tool substitution, and design67

model and tool auditing techniques to verify service integrity.68
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• We analyze the motivations, scenarios, and potential harms of COLS-side manipulations in69

reasoning and agentic APIs, and map them to corresponding user defense strategies.70

• We present a roadmap for building trustworthy LLM services, including technical protocols and71

policy recommendations for verifiable and transparent billing.72

2 Background and Problem Formulation73

2.1 Commercial Opaque LLM Service74

COLS are LLM–based services that expose only the final outputs to users while abstracting the75

underlying computational steps. Such services are typically accessed through cloud APIs: users76

submit prompts or tasks to a single endpoint and receive a final output, without visibility into77

intermediate reasoning or operations.78

Table 1: Visibility and pricing of reasoning LLM
API’s reasoning tokens. MTok = Million tokens

Provider Visible? Pricing

OpenAI o1 [24] ✗ $60 / MTok
OpenAI o3 [24] ✗ $40 / MTok
OpenAI o1-pro [24] ✗ $600 / MTok
Gemini 2.5 Pro [25] ✗ $15 / MTok
Claude Opus 4 [26] ✗ $75 / MTok

There are two common forms of COLS in prac-79

tice. The first is the reasoning LLM APIs, which80

encapsulates models designed for complex tasks81

requiring multi-step inference. These services82

typically employ models that are optimized with83

reinforcement learning to improve reasoning84

depth and answer quality, particularly on com-85

plex tasks such as mathematical problem solving86

and code generation. Although the model may87

internally perform multiple function calls, spec-88

ulative reasoning paths, and self-reflections, only the final output is shown to users. Importantly, users89

are billed based on the total number of tokens generated, including both the visible answer tokens90

and the unexposed reasoning tokens. As Table 1 shows, some major reasoning model providers91

charge users for these hidden tokens. Although they provide brief summaries generated from the92

hidden tokens, users remain unaware of the actual reasoning process. Nevertheless, Claude Opus93

4 [26] encrypts the full reasoning and returns it as a signature, which is a significant advancement and94

signals a future trend. Our empirical results, summarized in Table 2, show that in current reasoning95

LLM APIs, the number of hidden reasoning tokens often exceeds the number of answer tokens by96

more than an order of magnitude. In many cases, more than 90% of the tokens billed to the user are97

never exposed. This highlights a significant transparency gap and raises questions of billing clarity98

and fairness.99

Table 2: Ratio of reason-
ing tokens to answer tokens
across OpenAI’s APIs.

Model R/A Ratio
o1 38.71
o3 25.35
o3-mini 46.33
o4-mini 25.03

The second form is the agentic LLM API, which enables collaboration100

among multiple specialized LLM agents. These systems coordinate101

agents to solve complex tasks through planning, task decomposition,102

execution, and summarization. Compared to reasoning LLM APIs,103

agentic APIs involve more intricate hidden operations. Beyond internal104

reasoning, agents communicate by exchanging prompts, summaries,105

and planning instructions. Each agent both interprets inputs from others106

and generates outputs to guide the workflow. These inter-agent mes-107

sages may consume substantial tokens, which are often not directly108

visible to end users. All tokens consumed during agent coordination,109

including generated prompts, responses, and tool-related instructions, are typically not surfaced to110

the user. When the agents themselves use reasoning models, billing becomes even more opaque.111

Moreover, such systems can dynamically substitute or reconfigure tools to reduce backend costs,112

while continuing to charge premium rates. These behaviors are difficult to detect and audit. These113

manipulations are difficult to detect, making effective auditing especially challenging in agentic APIs.114

Table 3 summarizes the pricing models and billing structures adopted by several AI agent providers.115

Subscription fees are often tied to credit-based systems, which in turn constrain the number and116

complexity of tasks that can be executed. However, users are rarely able to determine the true cost of117

individual tasks.118

The most straightforward way to address the auditing challenge is for COLS to directly expose all119

hidden operations to users. In principle, such full transparency would eliminate ambiguity in both120

billing and service quality. However, full disclosure of hidden operations is impractical in commercial121

settings, especially in agentic systems, due to their volume, complexity, and the risk of exposing122
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proprietary models and strategies. As a result, this paper adopts a key assumption: COLS will123

not fully expose their hidden operations, or if they do, such disclosure must be protected by124

mechanisms that prevent extraction, misuse, or unauthorized imitation. All auditing approaches125

proposed in this work operate under this practical constraint.126

In summary, COLS represent a class of LLM services that prioritize usability, abstraction, and IP127

protection by hiding internal operations. While this design improves product polish and shields128

business logic, it also introduces concerns regarding transparency, accountability, and fairness,129

especially when users are charged for every hidden operation they cannot observe or validate.130

2.2 Threat Model131

In our scenario, we model COLS as potentially misaligned with user interests, not out of malice,132

but due to profit-driven incentives and structural opacity. COLS may increase the quantity of133

billed operations or reduce their effective quality, or both, in order to lower operational costs while134

maintaining or increasing user charges. The user, as the recipient of the service, and the auditor, as135

an independent verifier, jointly aim to detect and mitigate such manipulations. Together, they verify136

the accuracy of the reported quantity of hidden operations and assess the actual quality of service137

delivered by the COLS. Specifically, given a series of hidden operations triggered by a user request to138

a COLS, we define the actual quantity of tokens and calls as TQ and CQ, respectively. Let Tq and Cq139

denote the unit quality scores of the tokens (determined by the LLMs used) and tools. Then, the fair140

charge of the COLS, excluding profit, should be TQ · Tq + CQ · Cq .141

The quantities reported by the COLS to the user are denoted as T̂Q and ĈQ, while the actual service142

quality (which may be degraded) is denoted as Ťq and Čq. The real cost incurred by the COLS143

becomes TQ · Ťq + CQ · Čq , while the user is charged based on the reported quantities and nominal144

quality values as T̂Q · Tq + ĈQ · Cq. By inflating the quantities and downgrading the actual service145

quality, i.e., T̂Q > TQ, ĈQ > CQ, and Ťq < Tq , Čq < Cq , the COLS can gain extra profit P :146

P = (T̂Q · Tq + ĈQ · Cq)− (TQ · Ťq + CQ · Čq). (1)

The user’s goal is to audit whether the reported quantities match the actual ones, i.e., T̂Q = TQ,147

ĈQ = CQ, and whether the actual service quality matches the nominal values, i.e., Ťq = Tq,148

Čq = Cq. In this setup, the COLS has access to the user request, the full LLM generation and149

agent collaboration process, the actual quantity and quality values (TQ, Tq, CQ, Cq), and the reported150

quantity and quality values (T̂Q, Ťq, ĈQ, Čq). In contrast, the user only observes the request, the final151

output, and the reported values (T̂Q, Ťq, ĈQ, Čq).152

2.3 Auditing Principles153

We suggest a reoriented design philosophy for auditing COLS, one that views auditing as a core154

capability of system design. There are several general principles for the auditing process:155

• COLS IP Preservation. To protect the provider’s interests, the auditing process should safe-156

guard the confidentiality of internal operations, including reasoning traces, agent workflows, and157

proprietary toolchains that may be sensitive to reverse engineering or IP concerns.158

Table 3: Pricing plans and billing details of various AI agent providers.

Provider Pricing Plan Pricing Details

Manus [27] Subscription $19 / month for 1900 credits, sufficient for completing two to three complex tasks. 300 credits
refreshed daily.

Relevance AI [28] Subscription $19 / month for 10,000 credits. Tasks can use official or custom API keys. Supports customiza-
tion, but remains hard to audit due to the coarse-grained reporting of LLM APIs.

AgentGPT [29] Subscription $40 / month. Includes 30 agents per day and 25 loops per agent.

Firecrawl’s Deep
Research API [30] Pay-as-you-go $9 for 1,000 credits. Billing is based on number of URLs analyzed 1 credit per URL.

4



• Service-Integrated Verifiability. Auditing should be seamlessly embedded into the user ex-159

perience. The system should not only certify billing correctness but also provide users with160

interpretable confidence metrics, enabling informed trust without accessing internal details.161

• Low False Positive Rate. Auditing methods should minimize unwarranted flags. Incorrectly162

flagging honest service providers as misreporting can undermine trust in the auditing framework163

and create unnecessary friction in commercial deployments.164

• Efficiency and Scalability. Auditing mechanisms must be practically deployable at scale. They165

should introduce minimal latency or cost overhead, and remain adaptable across diverse LLM166

service architectures and usage models.167

These principles reflect a normative position: that as LLM services grow in complexity and economic168

significance, verifiability and transparency should be embedded into their governance and system169

design.170

3 Quantity Inflation and Auditing of Hidden Operations171

In this section, we define the possible inflation behaviors related to the quantity of hidden operations172

in COLS, which may result in T̂Q > TQ or ĈQ > CQ in Eq. 1. We focus on two key forms of173

inflation: token inflation and call inflation, and analyze how they may manifest in reasoning LLM174

APIs and agentic LLM APIs. We then identify the core challenges in auditing these quantities from175

the user’s perspective. Finally, we discuss potential solutions for detecting and mitigating such176

inflation through targeted auditing strategies.177

3.1 Reasoning LLM: Token Inflation and Token Auditing178

We define the behavior that COLS increases the number of hidden tokens to inflate billing without179

necessarily improving the answer quality as token inflation. We identify two primary forms of token180

inflation. The first is naive inflation, in which the provider simply overreports the token count without181

changing the underlying content. The second is adaptive inflation, where the provider appends182

low-effort or irrelevant content to the reasoning trace. These additional tokens may include duplicated183

steps, off-topic retrieval results, or meaningless filler text, crafted to evade simple statistical checks.184

This also includes inserting prompt phrases (e.g., “think as many steps as you can”) that implicitly185

induce the model to generate unnecessarily long reasoning traces without injecting any fabricated186

tokens. This kind of inflation happens even if COLS release the hidden reasoning tokens.187

The potential risk of token inflation underscores the urgent need for token auditing for COLS. A188

token auditing mechanism should verify that the number of reasoning tokens reported by COLS189

corresponds to meaningful internal computation. Given the user prompt, the final answer, and the190

reported token count, auditing should assess whether the total number of hidden tokens falls within a191

reasonable range and whether these tokens make substantive contributions to the final output. Such192

auditing must not rely on access to the full reasoning trace, and must operate under asymmetric193

information. This calls for new designs that combine model-based estimation, statistical analysis,194

and content relevance checks, all while preserving provider confidentiality.195

3.2 Agentic LLMs: Call Inflation and Call Auditing196

Agentic LLM APIs coordinate multiple specialized LLM agents to solve complex tasks through197

multiple LLM calls and tool invocations, most of which are hidden from the user. However, all these198

internal LLM calls, model-to-model messages, and tool executions contribute to the final billing. This199

creates new opportunities for unjustified overhead through what we refer to as call inflation.200

Call inflation in agentic systems can take several forms. The most direct is model call inflation, where201

the provider either makes excessive model calls, for example by splitting reasoning into unnecessarily202

fine-grained subtasks or repeating subqueries, or overreports the number of such calls without203

actually executing them. Another form is communication inflation, where agents exchange verbose204

or redundant messages that generate additional token usage. These messages may be genuinely205

produced or artificially claimed, yet contribute little to actual task completion. A third form is tool206

call inflation, where external tools are invoked excessively or irrelevantly, or where the reported207

number of tool interactions is inflated to simulate complexity or justify higher billing.208
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Table 4: Reasoning token length prediction accuracy on multiple datasets from DeepSeek-R1 [31]
using two-layer neural networks. Classification predicts discrete length bins (9–12 per dataset), while
regression is considered accurate if within 25% error of the ground truth. All accuracies are below
50%, supporting the challenge discussed in Section 3.3.

Tasks R1-Math [32] R1-Coding [33] R1-Medical [34] R1-General [35]

Classification 22.26 33.88 43.95 25.52
Regression 26.82 29.30 20.50 19.88

These forms of inflation are difficult to detect, especially since users have no visibility into the internal209

workflow, agent structure, or the tool interfaces being used. As a result, users may unknowingly210

pay for inflated agent interactions and unnecessary tool calls that do not improve the quality of the211

final answer. This motivates the need for call auditing mechanisms tailored to agentic APIs. A212

call auditing framework should allow users to assess whether the number and type of internal calls213

reported by COLS are justified by the complexity of the input task and the content of the final output.214

Auditing should also consider whether the communication patterns and tool usage are consistent with215

efficient task execution, rather than artificially inflated for billing.216

As with token auditing, call auditing must operate under asymmetric information, without access217

to proprietary agent configurations or execution traces. Designing such mechanisms requires new218

strategies for estimating agent behavior, benchmarking task complexity, and validating reported usage219

patterns while respecting the confidentiality constraints of commercial services.220

3.3 Challenges of Quantity Auditing221

Auditing the quantity of hidden operations in COLS presents several key challenges:222

• Limited observability. The internal reasoning traces and agentic workflows are entirely opaque.223

Auditing must rely solely on observable information, such as the user prompt, final answer, billing224

metadata, and the declared service identity. This limited visibility may necessitate a trusted auditor225

with partial access to internal information, such as proxy datasets or encrypted usage records.226

• High variability of LLMs. LLM services exhibit significant randomness in computation. Even227

with identical prompts, the number of reasoning tokens or internal calls can vary across runs. This228

stochasticity makes it difficult to determine a reliable ground truth for expected usage. Auditing229

methods based solely on input length or task type may result in high false positive rates. For230

example, our experiments in Table 4 indicate that a regression neural network cannot accurately231

predict the number of reasoning tokens given only the length of the prompt and the answer, even232

when trained on a large-scale reasoning dataset.233

• Adaptive inflation. COLS may inject tokens or calls that appear superficially relevant but provide234

little actual value to the output. These low-cost, semantically plausible additions are difficult to235

distinguish from legitimate computation. Detecting such subtle inflation requires sensitive auditing236

methods capable of capturing fine-grained differences without introducing excessive false alarms.237

3.4 Possible Solutions238

We propose two complementary strategies for quantity auditing in COLS: commitment-based auditing239

and predictive auditing. These two strategies approach the problem from opposite sides, one from240

the COLS’s commitments and the other from the user’s expectations. In addition to these auditing241

strategies, a third line of work, watermarking, becomes viable when COLS providers (especially242

those deploying reasoning LLMs) are willing to expose a partial or redacted internal token traces. In243

such scenarios, watermarking techniques [36, 37] can embed lightweight, verifiable signatures into244

the generated content to enable downstream verification of both authenticity and integrity.245

Commitment-based auditing relies on the COLS provider to generate cryptographic commitments246

to its internal operations. During the inference process, the provider constructs secure summaries247

of reasoning tokens, model calls, and tool usage, for example, using hash-based structures such as248

Merkle trees [38]. These commitments are exposed to the user or a third-party auditor in encrypted or249

abstracted form, allowing selective verification of usage claims without revealing the full trace. Such250

methods preserve confidentiality while enabling provable consistency between reported and actual251

operations. The commitment-based auditing requires COLS’ cooperation and introduces additional252
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infrastructure and protocol complexity. The main limitation of commitment-based auditing lies in its253

limited ability to detect adaptive inflation. If COLS injects low-cost fabricated tokens or calls during254

generation, prior to the construction of secure summaries, these operations may still be faithfully255

committed and thus bypass verification. In such cases, commitment-based auditing may need to be256

complemented by additional semantic checks to identify operations that appear valid structurally but257

contribute little to the final output.258

Predictive auditing, in contrast, allows users to independently estimate the reasonable token or call259

usage based on the task prompt and final answer. This strategy uses learned models or statistical260

baselines to predict a plausible usage range, then checks whether the reported quantity falls within261

this range. For example, an LLM may be trained to estimate the expected number of reasoning262

tokens given the prompt, answer, and the answer correctness, or to predict the typical number of263

agent calls for tasks of similar complexity. Predictive auditing does not require access to internal264

traces or provider cooperation, but it may suffer from uncertainty, especially on diverse or highly265

stochastic tasks. A key limitation of predictive auditing is its reliance on proxy training datasets to266

estimate reasonable token or call usage. Since users do not have access to internal reasoning traces,267

they cannot directly supervise the predictive models. To enable meaningful estimation, COLS may268

need to release representative data samples, including prompts, outputs, and the associated usage269

statistics. Without such data, predictive auditing may struggle to produce accurate or generalizable270

estimates, particularly for diverse task types or proprietary model behaviors.271

Watermarking, in contrast to the above two, is not feasible in fully opaque settings but offers a272

powerful enhancement when COLS providers are willing to expose partial internal traces. In such273

cases, watermarking techniques provide a lightweight and effective means to embed verifiable signals274

directly into model outputs or intermediate steps [36, 37]. These signals can assist downstream users275

or auditors in confirming the authenticity and provenance of results, and in detecting unauthorized276

content injection. Beyond provenance tracking, watermarking also serves as a practical tool for277

intellectual property protection. Recent studies show that carefully designed watermarks and sampling278

strategies have the potential to deter unauthorized model distillation [39, 40, 41]. By making outputs279

traceable or resistant to distillation, watermarking helps preserve the integrity of high-value models.280

In sum, watermarking is not a general-purpose solution for opaque COLS but becomes a potent281

auditing and protection mechanism when partial observability is permitted, serving as a bridge282

between full transparency and strict confidentiality.283

4 Quality Downgrade and Auditing of Hidden Operations284

The COLS performs quality downgrade by committing to providing the user with a service of285

quality level Tq, Cq but generate the answer in a lower quality level Ťq, Čq, allowing the provider286

to profit from the difference in cost. This downgrade is invisible to the user but has significant287

impact on service fairness, especially when users are billed as if top-tier resources were used. Since288

the performance level of modern LLMs is difficult to evaluate using limited samples and fixed289

benchmarks, quality downgrade is even easier for COLS to implement than quantity inflation. In this290

section, we analyze model downgrade in reasoning LLMs and tool downgrade in agentic systems.291

We identify the core challenges in detecting such downgrade and discuss possible solutions.292

4.1 Reasoning LLM: Model Downgrade and Model Auditing293

In reasoning LLM APIs, providers often maintain multiple variants of the same model family,294

differing in capacity, training data, or optimization strategy (e.g., ChatGPT o1, o3). Model downgrade295

refers to the silent substitution of lower-cost models, which may introduce misalignment between296

expected and actual service quality. For example, a prompt may be processed by a smaller-sized297

model, while billing remains unchanged. This practice is difficult for users to detect, as the final298

answer may still appear plausible for many tasks. However, over time, such downgrade can lead to299

subtle reductions in answer correctness and factual accuracy. The lack of output deviation in simple300

tasks makes downgrade especially dangerous in high-stakes settings where users expect consistent301

high-quality reasoning.302

To address this issue, model auditing should evaluate whether the quality of the underlying model303

used by COLS matches the claimed or expected configuration. Since users cannot access model304

internals, model auditing must rely on behavioral cues such as reasoning patterns, failure cases, and305

performance on calibrated challenge prompts. It may also involve response fingerprinting or output306

signature estimation to match against known model behavior.307

7



4.2 Agentic LLMs: Tool Downgrade and Tool Auditing308

In agentic LLM systems, tool usage plays a central role in enabling accurate and verifiable problem309

solving. Tools may include web search, code execution, database lookup, or external APIs. Tool310

downgrade occurs when the provider substitutes or disables these tools in favor of cheaper or311

offline alternatives, while still charging the user as if full tool access were provided. In addition to312

model downgrade, which may happen within individual agents, tool downgrade introduces another313

dimension of hidden quality degradation. In some cases, COLS may even simulate tool usage314

by fabricating plausible answers without actually invoking the tool, further reducing cost while315

maintaining the appearance of tool interaction.316

For example, a call to a live calculator API may be replaced with a local approximation module,317

or a web search may be omitted entirely and replaced with static retrieval. In some cases, the tool318

call may be simulated in the trace without actually invoking the backend. These modifications can319

significantly reduce operational cost but also degrade answer quality or freshness, particularly for320

knowledge-intensive or real-time tasks.321

Tool auditing aims to verify whether the advertised tools were actually used, and whether the322

responses reflect genuine tool outputs. Since tool executions are hidden, auditing must infer tool323

usage based on answer structure, timing signals, and comparison against known tool response patterns.324

Detecting simulated or skipped tool calls requires robust signatures of real tool interaction that cannot325

be easily mimicked.326

4.3 Challenges327

Auditing quality downgrade presents several distinct challenges:328

• Lack of reference outputs. Quality auditing lacks ground truth outputs to compare against. Users329

often cannot tell whether a different model or tool would have produced a better answer, especially330

on subjective or open-ended tasks.331

• Behavioral similarity. Downgraded models and tools can still produce fluent and plausible outputs.332

The differences between high-quality and downgraded responses may be subtle, task-dependent,333

or only observable in aggregate over many queries. This makes downgrade hard to detect with334

single-sample audits.335

• Sampling stochasticity. LLMs often use stochastic decoding (e.g., temperature, top-k), so the336

same input can yield different outputs each time. This randomness makes it hard to tell if a337

lower-quality response is due to true model degradation or just natural variation. It adds noise to338

audits and complicates fair comparisons.339

4.4 Possible Solutions340

We outline three complementary strategies for auditing quality downgrade: behavioral auditing,341

signature auditing, and TEE-based auditing.342

Behavioral auditing seeks to detect downgrade by analyzing specific response patterns. By submit-343

ting calibrated prompts, measuring reasoning depth, tracking accuracy on known benchmarks, users344

can infer whether the underlying model or tool matches the claimed quality. Behavioral auditing may345

also leverage LLM-based judges to compare responses across services or against known baselines.346

Signature auditing relies on hidden but detectable artifacts that distinguish models or tools. These347

may include stylistic fingerprints, output entropy patterns, or timing signals that reveal whether a real348

tool was used. Providers could optionally embed verifiable usage signatures into responses, which349

users or auditors could extract and verify without exposing internal details.350

TEE-based auditing provides a hardware-secure mechanism for verifying model identity or tool351

usage without exposing internal logic. By executing parts of the COLS pipeline within Trusted352

Execution Environments (TEEs), providers can generate attested summaries that external auditors can353

verify with strong integrity guarantees. Unlike behavioral or signature-based methods, TEE-based354

approaches offer cryptographic assurance under confidentiality. While modern TEEs introduce355

minimal overhead (e.g., under 3% throughput loss), they require enclave-enabled infrastructure356

and standardized attestation protocols. As such, TEE-based auditing is best suited for high-stakes357

deployments where strong auditability outweighs deployment complexity.358
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All approaches face challenges in generality and robustness, but together they offer a path toward359

holding COLS accountable for quality degradation. As commercial LLM services continue to evolve,360

we argue that auditing quality is just as important as auditing quantity in ensuring fairness and361

transparency for users.362

5 Blueprint for Auditing Frameworks363

To enable trustworthy and practical auditing of hidden operations in COLS, we propose a three-layer364

architectural framework that spans the entire lifecycle of COLS interaction, from service execution365

and secure logging to external verification and user-facing feedback. This framework is designed366

to support both reasoning LLM APIs and agentic LLM APIs, incorporating the auditing strategies367

discussed in previous sections.368

Layer 3: Auditing and User Verification

Layer 2: Secure Commitment and Recording

Layer 1: COLS Service Execution

Initiates Requests

Answer

User

Auditor

Metadata

Hidden operations

Commitments

Ledger

MetadataHidden operations

COLS

Auditor

COLS

Request

Report

For Agents Ta
sk

Answ
er

Metadata & Partial Hidden Operations

Auditing

+

+

Receives reports Performs Auditing

Figure 2: Three-layer architecture of the auditing
framework. Layer 1 handles execution, Layer 2
generates verifiable commitments, and Layer 3
provides auditing services.

Layer 1: COLS Service Execution. This foun-369

dational layer includes all operations performed370

by the COLS provider in response to a user query,371

such as token generation, model calls, inter-agent372

communication, and tool usage. Some operations373

are opaque to users but determine both functional374

outcomes and billing. Providers maintain com-375

plete control over these execution strategies, which376

makes independent verification essential.377

Layer 2: Secure Commitment and Recording.378

Upon task completion, the COLS, possibly under379

auditor supervision, encodes internal operations380

into verifiable commitments, including hashed rea-381

soning traces, semantic embeddings, or encrypted382

call logs, following standardized auditable pro-383

tocols. In agentic settings, each agent’s commit-384

ments can be anchored into a shared and tamper-385

resistant ledger using blockchain or similar infras-386

tructure, ensuring traceability across the multi-agent workflow. The commitment process must be387

transparent and deterministic, preserving confidentiality while enabling verifiability.388

Layer 3: Auditing and User Verification. The final layer supports external verification and user-389

facing auditability. An auditor, either a third-party service or part of the user platform, verifies token390

usage, model identity, or tool behavior based on the commitments produced in Layer 2. Crucially,391

this layer is modular: it supports a wide range of auditing techniques, including commitment-based392

verification, predictive estimation, behavioral analysis, and signature-based detection, as well as393

complementary measures such as watermarking and TEEs. New auditing tools can be flexibly394

integrated into this layer as models and usage patterns evolve. Users interact with the auditor to395

initiate verification requests and receive audit reports, enabling transparency and dispute resolution396

without accessing proprietary internals.397

6 Conclusion398

As LLM services become more sophisticated and economically significant, the risks introduced by399

opaque and unverifiable internal operations are growing. Current COLS often lack transparency in400

internal reasoning and decision-making processes, making it difficult for users to independently assess401

the quantity and quality of the services provided. In this position paper, we identified two critical402

risks associated with hidden operations, quantity inflation and quality downgrade, and proposed403

corresponding auditing strategies grounded in realistic threat models and technical constraints. We404

first outlined a taxonomy of auditing mechanisms that balance provider confidentiality with user405

verifiability. Based on these methods, we introduced a three-layer auditing framework that enables406

COLS to commit to internal actions in a verifiable yet privacy-preserving manner.407

We encourage the research community to recognize COLS auditability as a foundational challenge.408

Future LLM services must incorporate secure commitments, verifiable summaries, and user-accessible409

audit interfaces as integral parts of their infrastructure. Such architectural changes can play a crucial410

role in promoting fairness, transparency, and trust in the next generation of intelligent systems.411
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