Invisible Tokens, Visible Bills: The Urgent Need to
Audit Hidden Operations in Opaque LLM Services

Guoheng Sun'* Ziyao Wang'; Xuandong Zhao?, Bowei Tian',
Zheyu Shen!, Yexiao He!, Jinming Xing®, Ang Li'
!University of Maryland, College Park
ZUniversity of California, Berkeley
3North Carolina State University

Abstract

Modern large language model (LLM) services increasingly rely on complex, often
abstract operations, such as multi-step reasoning and multi-agent collaboration, to
generate high-quality outputs. While users are billed based on token consumption
and API usage, these internal steps are typically not visible. We refer to such sys-
tems as Commercial Opaque LLM Services (COLS). This position paper highlights
emerging accountability challenges in COLS: users are billed for operations they
cannot observe, verify, or contest. We formalize two key risks: quantity inflation,
where token and call counts may be artificially inflated, and quality downgrade,
where providers might quietly substitute lower-cost models or tools. Addressing
these risks requires a diverse set of auditing strategies, including commitment-
based, predictive, behavioral, and signature-based methods. We further explore
the potential of complementary mechanisms such as watermarking and trusted
execution environments to enhance verifiability without compromising provider
confidentiality. We also propose a modular three-layer auditing framework for
COLS and users that enables trustworthy verification across execution, secure
logging, and user-facing auditability without exposing proprietary internals. Our
aim is to encourage further research and policy development toward transparency,
auditability, and accountability in commercial LLM services.

1 Introduction

Large language models (LLMs) have advanced rapidly in recent years, demonstrating strong ca-
pabilities in long context understanding [2]], reasoning [3} 4], reflection [5], tool use [6} [7], and
planning [8, 9]]. These abilities now enable LLMs to perform increasingly complex tasks [10],
often through reasoning and collaboration strategies that resemble human problem-solving [[L1} [12].
Therefore, service pipelines built on LLMs have grown correspondingly sophisticated. Contemporary
systems frequently orchestrate extended reasoning chains and coordinate multiple LLM agents to
enhance output quality [[11]. However, these intermediate steps are invisible to users, who are billed
solely based on token and API usage. We term such invisible computations as hidden operations, and
define any LLM service that hides its internal steps and returns only the final output as a Commercial
Opaque LLM Service (COLS). See Figure [I|for an overview of a typical COLS.

COLS conceal their intermediate tokens for three well-established reasons. First, reasoning traces
and agentic collaborations are typically verbose and noisy, often containing backtracking, speculative
branches, and occasional hallucinations [[13}[14}[15]. Exposing such raw information could detract

*Equal contribution. ghsun@umd.edu; ziyaow @umd.edu
fangliece @umd.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: ResponsibleFM.

"

. Explicit Operation |

Charges Are Fair? I
. De//very

Prompt
g : '
User Answer Bill \ Hidden Opcrat/on I
Task

- @ Co?

Auditor _ £
—— Planning | Q) - :
csTTTTTT N 1 S = 1
[| ? () & > WE E A
: ? @ : Reflection Call Better Modé/ : = & ‘? 6(;,:
1 C—]J 1 N 1 O N O) (| ? /oﬁl
: @ @ P & I’ ? @ é N I) ! I
! b : I
C_ o= Tool Call ? ! \ Exploration !
b 1
Toolkit ' = ﬂjj Q &) Soooocoscosooo -7
____________ |
(a) Agentic LLMs (b) Reasoning LLM

Figure 1: Overview of Commercial Opaque LLM Services and their hidden operations. Part of the
illustration was generated by GPT-4o [1].

from usability or overwhelm users. Second, these traces encode COLS’s internal reasoning strategies,
tool-using protocols, and multi-agent workflows. Making them public risks model stealing [16} [17],
workflow extraction [18} [19], and jailbreaking attacks [20, 21} 22]], compromising the system’s
intellectual property (IP). Third, abstracting internals allows developers to update backend models,
prompts, or tools without changing the user-facing interface, ensuring better scalability.

While these design choices offer clear engineering and user experience benefits, they also introduce
systemic challenges for transparency and accountability. Users are charged based on the quantity
and quality of operations entirely managed by the service provider, whose incentives are profit-
driven. Because these operations are unobservable and unverifiable from the user’s side, billing
becomes effectively non-auditable and unregulated. In the absence of technical or legal standards,
current systems require users to place implicit trust in providers—highlighting the need for verifiable
accountability mechanisms. In a competitive landscape where major AI companies increasingly
prioritize reasoning and agentic capabilities as profit drivers, this lack of verifiability and regulatory
oversight is a serious concern. There exists a fundamental asymmetry between providers and users:
users bear financial responsibility for operations they cannot observe, verify, or dispute. Therefore,
we make the central claim of this paper: there is an urgent need to design an auditing framework
for hidden operations in COLS.

In this paper, we examine the quantity and quality of hidden operations, both of which directly impact
billing in COLS. On the quantity side, we identify three forms of potential inflation used by COLS to
increase charges: token count inflation, API call inflation, and model call inflation. To detect such
manipulations from the user’s side, we introduce the concepts of token auditing and call auditing. On
the quality side, COLS may reduce service fidelity to lower internal costs and increase profit. We
define two forms of service degradation: model downgrade [23]] and tool downgrade, and propose
model auditing and tool auditing to verify service quality.

For each potential attack performed by COLS, we articulate underlying incentives, operational
context, and potential harms in the domain of reasoning and agent APIs. For each user-side auditing
or defense strategy, we analyze the challenges across different API settings and propose feasible
approaches. Finally, we present a forward-looking research agenda aimed at building a trustworthy
framework that balances service quality with user interests. We hope the position taken in this paper
can help guide the development of billing verification protocols, regulatory standards, and governance
policies for the rapidly growing commercial LLM ecosystems.

Our key contributions are summarized as follows:

* We formalize three billing-related inflation vectors, including token count, API call, and model
call inflation, and introduce concrete user-side auditing methods to detect each.

* We identify two forms of service quality degradation, i.e., model and tool substitution, and design
model and tool auditing techniques to verify service integrity.

* We analyze the motivations, scenarios, and potential harms of COLS-side manipulations in
reasoning and agentic APIs, and map them to corresponding user defense strategies.

* We present a roadmap for building trustworthy LLM services, including technical protocols and
policy recommendations for verifiable and transparent billing.

2 Background and Problem Formulation

2.1 Commercial Opaque LLM Service

COLS are LLM-based services that expose only the final outputs to users while abstracting the
underlying computational steps. Such services are typically accessed through cloud APIs: users
submit prompts or tasks to a single endpoint and receive a final output, without visibility into
intermediate reasoning or operations.

There are two common forms of COLS in prac-
tice. The first is the reasoning LLM APIs, which
encapsulates models designed for complex tasks

Table 1: Visibility and pricing of reasoning LLM
API’s reasoning tokens. MTok = Million tokens

requiring multi-step inference. These services Provider Visible? Pricing

typically employ models that are optimized with OpenAl ol [24] X $60 / MTok
reinforcement learning to improve reasoning OpenAl o3 [24] X $40 / MTok
depth and answer quality, particularly on com- OpenAl ol-pro [24] X $600 / MTok
plex tasks such as mathematical problem solving Gemini 2.5 Pro [25] X $15/ MTok
and code generation. Although the model may ~_Claude Opus 4 [20] X $75 / MTok

internally perform multiple function calls, spec-

ulative reasoning paths, and self-reflections, only the final output is shown to users. Importantly, users
are billed based on the total number of tokens generated, including both the visible answer tokens and
the unexposed reasoning tokens. As Table[I|shows, some major reasoning model providers charge
users for these hidden tokens, based on information available as of May 2025. Although they provide
brief summaries generated from the hidden tokens, users remain unaware of the actual reasoning
process. Nevertheless, Claude Opus 4 [26] encrypts the full reasoning and returns it as a signature,
which is a significant advancement and signals a future trend. Our empirical results, summarized in
Table [2] show that in current reasoning LLM APIs, the number of hidden reasoning tokens often
exceeds the number of answer tokens by more than an order of magnitude. In many cases, more than
90% of the tokens billed to the user are never exposed. This highlights a significant transparency gap
and raises questions of billing clarity and fairness.

The second fprm is thp qgentic LLM API, which enables collaborgtion Table 2: Ratio of reason-
among multiple specialized LLM agents. These systems coordinate ¢ tokens to answer tokens
agents to solve complex tasks through planning, task decomposition, across OpenAl’s APIs.

execution, and summarization. Compared to reasoning LLM APIs, -
agentic APIs involve more intricate hidden operations. Beyond internal Model R/A Ratio

reasoning, agents communicate by exchanging prompts, summaries, ol 38.71
and planning instructions. Each agent both interprets inputs from others 03 25.35
and generates outputs to guide the workflow. These inter-agent mes- 03-mini 46.33
sages may consume substantial tokens, which are often not directly o4-mini 25.03

visible to end users. All tokens consumed during agent coordination,
including generated prompts, responses, and tool-related instructions, are typically not surfaced to
the user. When the agents themselves use reasoning models, billing becomes even more opaque.
Moreover, such systems can dynamically substitute or reconfigure tools to reduce backend costs,
while continuing to charge premium rates. These behaviors are difficult to detect and audit. These
manipulations are difficult to detect, making effective auditing especially challenging in agentic APIs.
Table [3| summarizes the pricing models and billing structures adopted by several Al agent providers,
with the data reflecting the state of these services up to May 2025. Subscription fees are often tied
to credit-based systems, which in turn constrain the number and complexity of tasks that can be
executed. However, users are rarely able to determine the true cost of individual tasks.

The most straightforward way to address the auditing challenge is for COLS to directly expose all
hidden operations to users. In principle, such full transparency would eliminate ambiguity in both
billing and service quality. However, full disclosure of hidden operations is impractical in commercial
settings, especially in agentic systems, due to their volume, complexity, and the risk of exposing

proprietary models and strategies. As a result, this paper adopts a key assumption: COLS will
not fully expose their hidden operations, or if they do, such disclosure must be protected by
mechanisms that prevent extraction, misuse, or unauthorized imitation. All auditing approaches
proposed in this work operate under this practical constraint.

In summary, COLS represent a class of LLM services that prioritize usability, abstraction, and IP
protection by hiding internal operations. While this design improves product polish and shields
business logic, it also introduces concerns regarding transparency, accountability, and fairness,
especially when users are charged for every hidden operation they cannot observe or validate.

2.2 Threat Model

In our scenario, we model COLS as potentially misaligned with user interests, not out of malice,
but due to profit-driven incentives and structural opacity. COLS may increase the quantity of
billed operations or reduce their effective quality, or both, in order to lower operational costs while
maintaining or increasing user charges. The user, as the recipient of the service, and the auditor, as
an independent verifier, jointly aim to detect and mitigate such manipulations. Together, they verify
the accuracy of the reported quantity of hidden operations and assess the actual quality of service
delivered by the COLS. Specifically, given a series of hidden operations triggered by a user request to
a COLS, we define the actual quantity of tokens and calls as Ty and Cg, respectively. Let T, and C,
denote the unit quality scores of the tokens (determined by the LLMs used) and tools. Then, the fair
charge of the COLS, excluding profit, should be Ty - T, + Cgq - C,.

The quantities reported by the COLS to the user are denoted as TQ and CQ, while the actual service
quality (which may be degraded) is denoted as Tj, and C,;. The real cost incurred by the COLS
becomes Ty - T, + Cgq - Cy, while the user is charged based on the reported quantities and nominal
quality values as T, Q 1Ty+ C’Q - Cy. By inflating the quantities and downgrading the actual service
quality, i.e., Tg > T, Co > Cg, and T, < T, C, < C,, the COLS can gain extra profit P:

P:(TQ'Tq+OQ'Cq)_(TQ'Tq+CQ'Oq)- (H
The user’s goal is to audit whether the reported quantities match the actual ones, i.e., TQ =Tog,

C’Q = C, and whether the actual service quality matches the nominal values, i.e., Tq =T,

Cq = Cy. In this setup, the COLS has access to the user request, the full LLM generation and
agent collaboration process, the actual quantity and quality values (T, Ty, Cq, Cy), and the reported

quantity and quality values (TQ, Tq, C‘Q, C'q). In contrast, the user only observes the request, the final
output, and the reported values (T, T, Co, C,).

2.3 Auditing Principles

We suggest a reoriented design philosophy for auditing COLS, one that views auditing as a core
capability of system design. There are several general principles for the auditing process:

¢ COLS IP Preservation. To protect the provider’s interests, the auditing process should safe-
guard the confidentiality of internal operations, including reasoning traces, agent workflows, and
proprietary toolchains that may be sensitive to reverse engineering or IP concerns.

* Service-Integrated Verifiability. Auditing should be seamlessly embedded into the user ex-
perience. The system should not only certify billing correctness but also provide users with
interpretable confidence metrics, enabling informed trust without accessing internal details.

Table 3: Pricing plans and billing details of various Al agent providers.

Provider | Pricing Plan | Pricing Details

Manus [27] Subscription | $19 / month for 1900 credits, sufficient for completing two to three complex tasks. 300 credits
refreshed daily.
Relevance AI [28] Subscription | $19 / month for 10,000 credits. Tasks can use official or custom API keys. Supports customiza-
tion, but remains hard to audit due to the coarse-grained reporting of LLM APIs.
AgentGPT [29] Subscription $40 / month. Includes 30 agents per day and 25 loops per agent.

Firecrawl’s Deep

Research API [30] Pay-as-you-go | $9 for 1,000 credits. Billing is based on number of URLs analyzed 1 credit per URL.

* Low False Positive Rate. Auditing methods should minimize unwarranted flags. Incorrectly
flagging honest service providers as misreporting can undermine trust in the auditing framework
and create unnecessary friction in commercial deployments.

« Efficiency and Scalability. Auditing mechanisms must be practically deployable at scale. They
should introduce minimal latency or cost overhead, and remain adaptable across diverse LLM
service architectures and usage models.

These principles reflect a normative position: that as LLM services grow in complexity and economic
significance, verifiability and transparency should be embedded into their governance and system
design.

3 Quantity Inflation and Auditing of Hidden Operations

In this section, we define the possible inflation behaviors related to the quantity of hidden operations
in COLS, which may result in Ty > T or Cg > Cg in Eq. [I} We focus on two key forms of
inflation: token inflation and call inflation, and analyze how they may manifest in reasoning LLM
APIs and agentic LLM APIs. We then identify the core challenges in auditing these quantities from
the user’s perspective. Finally, we discuss potential solutions for detecting and mitigating such
inflation through targeted auditing strategies.

3.1 Reasoning LLM: Token Inflation and Token Auditing

We define the behavior that COLS increases the number of hidden tokens to inflate billing without
necessarily improving the answer quality as token inflation. We identify two primary forms of token
inflation. The first is naive inflation, in which the provider simply overreports the token count without
changing the underlying content. The second is adaptive inflation, where the provider appends
low-effort or irrelevant content to the reasoning trace. These additional tokens may include duplicated
steps, off-topic retrieval results, or meaningless filler text, crafted to evade simple statistical checks.
This also includes inserting prompt phrases (e.g., “think as many steps as you can”) that implicitly
induce the model to generate unnecessarily long reasoning traces without injecting any fabricated
tokens. This kind of inflation happens even if COLS release the hidden reasoning tokens.

The potential risk of token inflation underscores the urgent need for token auditing for COLS. A
token auditing mechanism should verify that the number of reasoning tokens reported by COLS
corresponds to meaningful internal computation. Given the user prompt, the final answer, and the
reported token count, auditing should assess whether the total number of hidden tokens falls within a
reasonable range and whether these tokens make substantive contributions to the final output. Such
auditing must not rely on access to the full reasoning trace, and must operate under asymmetric
information. This calls for new designs that combine model-based estimation, statistical analysis,
and content relevance checks, all while preserving provider confidentiality.

3.2 Agentic LLMs: Call Inflation and Call Auditing

Agentic LLM APIs coordinate multiple specialized LLM agents to solve complex tasks through
multiple LLM calls and tool invocations, most of which are hidden from the user. However, all these
internal LLM calls, model-to-model messages, and tool executions contribute to the final billing. This
creates new opportunities for unjustified overhead through what we refer to as call inflation.

Call inflation in agentic systems can take several forms. The most direct is model call inflation, where
the provider either makes excessive model calls, for example by splitting reasoning into unnecessarily
fine-grained subtasks or repeating subqueries, or overreports the number of such calls without
actually executing them. Another form is communication inflation, where agents exchange verbose
or redundant messages that generate additional token usage. These messages may be genuinely
produced or artificially claimed, yet contribute little to actual task completion. A third form is fool
call inflation, where external tools are invoked excessively or irrelevantly, or where the reported
number of tool interactions is inflated to simulate complexity or justify higher billing.

These forms of inflation are difficult to detect, especially since users have no visibility into the internal
workflow, agent structure, or the tool interfaces being used. As a result, users may unknowingly
pay for inflated agent interactions and unnecessary tool calls that do not improve the quality of the

Table 4: Reasoning token length prediction accuracy on multiple datasets from DeepSeek-R1 [31]]
using two-layer neural networks. Classification predicts discrete length bins (9—12 per dataset), while
regression is considered accurate if within 25% error of the ground truth. All accuracies are below
50%, supporting the challenge discussed in Section[3.3]

Tasks | R1-Math [32] R1-Coding [33] R1-Medical [34] R1-General [35]
Classification 22.26 33.88 43.95 25.52
Regression 26.82 29.30 20.50 19.88

final answer. This motivates the need for call auditing mechanisms tailored to agentic APIs. A
call auditing framework should allow users to assess whether the number and type of internal calls
reported by COLS are justified by the complexity of the input task and the content of the final output.
Auditing should also consider whether the communication patterns and tool usage are consistent with
efficient task execution, rather than artificially inflated for billing.

As with token auditing, call auditing must operate under asymmetric information, without access
to proprietary agent configurations or execution traces. Designing such mechanisms requires new
strategies for estimating agent behavior, benchmarking task complexity, and validating reported usage
patterns while respecting the confidentiality constraints of commercial services.

3.3 Challenges of Quantity Auditing

Auditing the quantity of hidden operations in COLS presents several key challenges:

* Limited observability. The internal reasoning traces and agentic workflows are entirely opaque.
Auditing must rely solely on observable information, such as the user prompt, final answer, billing
metadata, and the declared service identity. This limited visibility may necessitate a trusted auditor
with partial access to internal information, such as proxy datasets or encrypted usage records.

* High variability of LLMs. LLM services exhibit significant randomness in computation. Even
with identical prompts, the number of reasoning tokens or internal calls can vary across runs. This
stochasticity makes it difficult to determine a reliable ground truth for expected usage. Auditing
methods based solely on input length or task type may result in high false positive rates. For
example, our experiments in Table {] indicate that a regression neural network cannot accurately
predict the number of reasoning tokens given only the length of the prompt and the answer, even
when trained on a large-scale reasoning dataset.

* Adaptive inflation. COLS may inject tokens or calls that appear superficially relevant but provide
little actual value to the output. These low-cost, semantically plausible additions are difficult to
distinguish from legitimate computation. Detecting such subtle inflation requires sensitive auditing
methods capable of capturing fine-grained differences without introducing excessive false alarms.

3.4 Possible Solutions

We propose two complementary strategies for quantity auditing in COLS: commitment-based auditing
and predictive auditing. These two strategies approach the problem from opposite sides, one from
the COLS’s commitments and the other from the user’s expectations. In addition to these auditing
strategies, a third line of work, watermarking, becomes viable when COLS providers (especially
those deploying reasoning LLMs) are willing to expose a partial or redacted internal token traces. In
such scenarios, watermarking techniques [36} 37]] can embed lightweight, verifiable signatures into
the generated content to enable downstream verification of both authenticity and integrity.

Commitment-based auditing has been exemplified by Coln [38] framework, which commits to
hashed fingerprints of hidden reasoning tokens and enables third-party verification via Merkle-
tree [39] proofs. More generally, commitment-based auditing relies on the COLS provider to generate
cryptographic commitments to its internal operations. During the inference process, the provider
constructs secure summaries of reasoning tokens, model calls, and tool usage. These commitments
are exposed to the user or a third-party auditor in encrypted or abstracted form, allowing selective
verification of usage claims without revealing the full trace. Such methods preserve confidentiality
while enabling provable consistency between reported and actual operations. The commitment-based
auditing requires COLS’ cooperation and introduces additional infrastructure and protocol complexity.
The main limitation of commitment-based auditing lies in its limited ability to detect adaptive inflation.
If COLS injects low-cost fabricated tokens or calls during generation, prior to the construction of

secure summaries, these operations may still be faithfully committed and thus bypass verification.
In such cases, commitment-based auditing may need to be complemented by additional semantic
checks to identify operations that appear valid structurally but contribute little to the final output.

Predictive auditing, as exemplified by the PALACE [40] framework, allows users to independently
estimate hidden reasoning token or call usage directly from prompt—answer pairs without relying on
provider-side commitments. This strategy uses learned models or statistical baselines to predict a
plausible usage range, then checks whether the reported quantity falls within this range. For example,
an LLM may be trained to estimate the expected number of reasoning tokens given the prompt,
answer, and the answer correctness, or to predict the typical number of agent calls for tasks of similar
complexity. Predictive auditing does not require access to internal traces or provider cooperation,
but it may suffer from uncertainty, especially on diverse or highly stochastic tasks. A key limitation
of predictive auditing is its reliance on proxy training datasets to estimate reasonable token or call
usage. Since users do not have access to internal reasoning traces, they cannot directly supervise the
predictive models. To enable meaningful estimation, COLS may need to release representative data
samples, including prompts, outputs, and the associated usage statistics. Without such data, predictive
auditing may struggle to produce accurate or generalizable estimates, particularly for diverse task
types or proprietary model behaviors.

Watermarking, in contrast to the above two, is not feasible in fully opaque settings but offers a
powerful enhancement when COLS providers are willing to expose partial internal traces. In such
cases, watermarking techniques provide a lightweight and effective means to embed verifiable signals
directly into model outputs or intermediate steps [36} 37]]. These signals can assist downstream users
or auditors in confirming the authenticity and provenance of results, and in detecting unauthorized
content injection. Beyond provenance tracking, watermarking also serves as a practical tool for
intellectual property protection. Recent studies show that carefully designed watermarks and sampling
strategies have the potential to deter unauthorized model distillation [41} 42} 43]]. By making outputs
traceable or resistant to distillation, watermarking helps preserve the integrity of high-value models.
In sum, watermarking is not a general-purpose solution for opaque COLS but becomes a potent
auditing and protection mechanism when partial observability is permitted, serving as a bridge
between full transparency and strict confidentiality.

4 Quality Downgrade and Auditing of Hidden Operations

The COLS performs quality downgrade by committing to providing the user with a service of
quality level 77, C,; but generate the answer in a lower quality level Tq, C'q, allowing the provider
to profit from the difference in cost. This downgrade is invisible to the user but has significant
impact on service fairness, especially when users are billed as if top-tier resources were used. Since
the performance level of modern LLMs is difficult to evaluate using limited samples and fixed
benchmarks, quality downgrade is even easier for COLS to implement than quantity inflation. In this
section, we analyze model downgrade in reasoning LLMs and tool downgrade in agentic systems.
We identify the core challenges in detecting such downgrade and discuss possible solutions.

4.1 Reasoning LLM: Model Downgrade and Model Auditing

In reasoning LLM APIs, providers often maintain multiple variants of the same model family,
differing in capacity, training data, or optimization strategy (e.g., ChatGPT ol, 03). Model downgrade
refers to the silent substitution of lower-cost models, which may introduce misalignment between
expected and actual service quality. For example, a prompt may be processed by a smaller-sized
model, while billing remains unchanged. This practice is difficult for users to detect, as the final
answer may still appear plausible for many tasks. However, over time, such downgrade can lead to
subtle reductions in answer correctness and factual accuracy. The lack of output deviation in simple
tasks makes downgrade especially dangerous in high-stakes settings where users expect consistent
high-quality reasoning.

To address this issue, model auditing should evaluate whether the quality of the underlying model
used by COLS matches the claimed or expected configuration. Since users cannot access model
internals, model auditing must rely on behavioral cues such as reasoning patterns, failure cases, and
performance on calibrated challenge prompts. It may also involve response fingerprinting or output
signature estimation to match against known model behavior.

4.2 Agentic LLMs: Tool Downgrade and Tool Auditing

In agentic LLM systems, tool usage plays a central role in enabling accurate and verifiable problem
solving. Tools may include web search, code execution, database lookup, or external APIs. Tool
downgrade occurs when the provider substitutes or disables these tools in favor of cheaper or
offline alternatives, while still charging the user as if full tool access were provided. In addition to
model downgrade, which may happen within individual agents, tool downgrade introduces another
dimension of hidden quality degradation. In some cases, COLS may even simulate tool usage
by fabricating plausible answers without actually invoking the tool, further reducing cost while
maintaining the appearance of tool interaction.

For example, a call to a live calculator API may be replaced with a local approximation module,
or a web search may be omitted entirely and replaced with static retrieval. In some cases, the tool
call may be simulated in the trace without actually invoking the backend. These modifications can
significantly reduce operational cost but also degrade answer quality or freshness, particularly for
knowledge-intensive or real-time tasks.

Tool auditing aims to verify whether the advertised tools were actually used, and whether the
responses reflect genuine tool outputs. Since tool executions are hidden, auditing must infer tool
usage based on answer structure, timing signals, and comparison against known tool response patterns.
Detecting simulated or skipped tool calls requires robust signatures of real tool interaction that cannot
be easily mimicked.

4.3 Challenges

Auditing quality downgrade presents several distinct challenges:

* Lack of reference outputs. Quality auditing lacks ground truth outputs to compare against. Users
often cannot tell whether a different model or tool would have produced a better answer, especially
on subjective or open-ended tasks.

* Behavioral similarity. Downgraded models and tools can still produce fluent and plausible outputs.
The differences between high-quality and downgraded responses may be subtle, task-dependent,
or only observable in aggregate over many queries. This makes downgrade hard to detect with
single-sample audits.

» Sampling stochasticity. LLMs often use stochastic decoding (e.g., temperature, top-k), so the
same input can yield different outputs each time. This randomness makes it hard to tell if a
lower-quality response is due to true model degradation or just natural variation. It adds noise to
audits and complicates fair comparisons.

4.4 Possible Solutions

We outline three complementary strategies for auditing quality downgrade: behavioral auditing,
signature auditing, and TEE-based auditing.

Behavioral auditing seeks to detect downgrade by analyzing specific response patterns. By submit-
ting calibrated prompts, measuring reasoning depth, tracking accuracy on known benchmarks, users
can infer whether the underlying model or tool matches the claimed quality. Behavioral auditing may
also leverage LLM-based judges to compare responses across services or against known baselines.

Signature auditing relies on hidden but detectable artifacts that distinguish models or tools. These
may include stylistic fingerprints, output entropy patterns, or timing signals that reveal whether a real
tool was used. Providers could optionally embed verifiable usage signatures into responses, which
users or auditors could extract and verify without exposing internal details.

TEE-based auditing provides a hardware-secure mechanism for verifying model identity or tool
usage without exposing internal logic. By executing parts of the COLS pipeline within Trusted
Execution Environments (TEEs), providers can generate attested summaries that external auditors can
verify with strong integrity guarantees. Unlike behavioral or signature-based methods, TEE-based
approaches offer cryptographic assurance under confidentiality. While modern TEEs introduce
minimal overhead (e.g., under 3% throughput loss), they require enclave-enabled infrastructure
and standardized attestation protocols. As such, TEE-based auditing is best suited for high-stakes
deployments where strong auditability outweighs deployment complexity.

All approaches face challenges in generality and robustness, but together they offer a path toward
holding COLS accountable for quality degradation. As commercial LLM services continue to evolve,
we argue that auditing quality is just as important as auditing quantity in ensuring fairness and
transparency for users.

S Blueprint for Auditing Frameworks

To enable trustworthy and practical auditing of hidden operations in COLS, we propose a three-layer
architectural framework that spans the entire lifecycle of COLS interaction, from service execution
and secure logging to external verification and user-facing feedback. This framework is designed
to support both reasoning LLM APIs and agentic LLM APIs, incorporating the auditing strategies
discussed in previous sections.

Layer 1: COLS Service Execution. This foun-

Layer 3: Auditing and User Verification

dational layer 1nclude§ all operations performed T

by the COLS provider in response to a user query, R

such as token generation, model calls, inter-agent Receives reports | <—— | Performs Auditing
communication, and tool usage. Some operations Auditing l

are opaque to users but determine both functional N B A G B e T
outcomes and billing. Providers maintain com- M G e

plete control over these execution strategies, which
makes independent verification essential.

Task
Jamsuy

a4k For Agents A\

coLs Metadata —> Commitments

Layer 2: Secure Commitment and Recording. Metadata & Partial Hidden Operations
Upon task completion, the COLS, possibly under Layer 1: COLS Service Execution
auditor supervision, encodes internal operations Hidden operations |—> | Metadata | + | Answer

into verifiable commitments, including hashed rea-

soning traces, semantic embeddings, or encrypted Fjgure 2: Three-layer architecture of the auditing
call logs, following standardized auditable pro- framework. Layer 1 handles execution, Layer 2

tocols. In agentic settings, each agent’s commit- generates verifiable commitments, and Layer 3
ments can be anchored into a shared and tamper- hrovides auditing services.

resistant ledger using blockchain or similar infras-
tructure, ensuring traceability across the multi-agent workflow. The commitment process must be
transparent and deterministic, preserving confidentiality while enabling verifiability.

Layer 3: Auditing and User Verification. The final layer supports external verification and user-
facing auditability. An auditor, either a third-party service or part of the user platform, verifies token
usage, model identity, or tool behavior based on the commitments produced in Layer 2. Crucially,
this layer is modular: it supports a wide range of auditing techniques, including commitment-based
verification, predictive estimation, behavioral analysis, and signature-based detection, as well as
complementary measures such as watermarking and TEEs. New auditing tools can be flexibly
integrated into this layer as models and usage patterns evolve. Users interact with the auditor to
initiate verification requests and receive audit reports, enabling transparency and dispute resolution
without accessing proprietary internals.

6 Conclusion

As LLM services become more sophisticated and economically significant, the risks introduced by
opaque and unverifiable internal operations are growing. Current COLS often lack transparency in
internal reasoning and decision-making processes, making it difficult for users to independently assess
the quantity and quality of the services provided. In this position paper, we identified two critical
risks associated with hidden operations, quantity inflation and quality downgrade, and proposed
corresponding auditing strategies grounded in realistic threat models and technical constraints. We
first outlined a taxonomy of auditing mechanisms that balance provider confidentiality with user
verifiability. Based on these methods, we introduced a three-layer auditing framework that enables
COLS to commit to internal actions in a verifiable yet privacy-preserving manner.

We encourage the research community to recognize COLS auditability as a foundational challenge.
Future LLM services must incorporate secure commitments, verifiable summaries, and user-accessible
audit interfaces as integral parts of their infrastructure. Such architectural changes can play a crucial
role in promoting fairness, transparency, and trust in the next generation of intelligent systems.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7

—

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

Saurav Pawar, SM Tonmoy, SM Zaman, Vinija Jain, Aman Chadha, and Amitava Das. The
what, why, and how of context length extension techniques in large language models—a detailed
survey. arXiv preprint arXiv:2401.07872, 2024.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang
Hu, Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long
chain-of-thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving
performance. arXiv preprint arXiv:2405.06682, 2024.

Shijue Huang, Wanjun Zhong, Jianqgiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou,
Xingshan Zeng, Yasheng Wang, Lifeng Shang, et al. Planning, creation, usage: Benchmark-
ing llms for comprehensive tool utilization in real-world complex scenarios. arXiv preprint
arXiv:2401.17167, 2024.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma,
Shen Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive
evaluation benchmark for 1lm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 2998-3009,
2023.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. Plangenllms: A modern
survey of llm planning capabilities. arXiv preprint arXiv:2502.11221, 2025.

Quan Yuan, Mehran Kazemi, Xin Xu, Isaac Noble, Vaiva Imbrasaite, and Deepak Ramachandran.
Tasklama: probing the complex task understanding of language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 19468—19476, 2024.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’ Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan Liu, and Ji-Rong
Wen. Large language model-based human-agent collaboration for complex task solving. arXiv
preprint arXiv:2402.12914, 2024.

Yusen Zhang, Sarkar Snigdha Sarathi Das, and Rui Zhang. Verbosity # veracity: Demystify
verbosity compensation behavior of large language models. arXiv preprint arXiv:2411.07858,
2024.

Yiyou Sun, Yu Gai, Lijie Chen, Abhilasha Ravichander, Yejin Choi, and Dawn Song. Why
and how llms hallucinate: Connecting the dots with subsequence associations. arXiv preprint
arXiv:2504.12691, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on
efficient reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan
Hayase, A Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, et al.
Stealing part of a production language model. arXiv preprint arXiv:2403.06634, 2024.

10

[17] Ashwinee Panda, Christopher A Choquette-Choo, Zhengming Zhang, Yaoqing Yang, and
Prateek Mittal. Teach llms to phish: Stealing private information from language models. arXiv
preprint arXiv:2403.00871, 2024.

[18] Miao Yu, Fanci Meng, Xinyun Zhou, Shilong Wang, Junyuan Mao, Linsey Pang, Tianlong
Chen, Kun Wang, Xinfeng Li, Yongfeng Zhang, et al. A survey on trustworthy 1lm agents:
Threats and countermeasures. arXiv preprint arXiv:2503.09648, 2025.

[19] Ang Li, Yin Zhou, Vethavikashini Chithrra Raghuram, Tom Goldstein, and Micah Goldblum.
Commercial 1lm agents are already vulnerable to simple yet dangerous attacks. arXiv preprint
arXiv:2502.08586, 2025.

[20] Mark Russinovich, Ahmed Salem, and Ronen Eldan. Great, now write an article about that:
The crescendo multi-turn 1lm jailbreak attack. arXiv preprint arXiv:2404.01833, 2024.

[21] Zhun Wang, Vincent Siu, Zhe Ye, Tianneng Shi, Yuzhou Nie, Xuandong Zhao, Chenguang
Wang, Wenbo Guo, and Dawn Song. Agentxploit: End-to-end redteaming of black-box ai
agents. arXiv preprint arXiv:2505.05849, 2025.

[22] Zihao Xu, Yi Liu, Gelei Deng, Yuekang Li, and Stjepan Picek. Llm jailbreak attack versus
defense techniques—a comprehensive study. arXiv e-prints, pages arXiv—2402, 2024.

[23] Will Cai, Tianneng Shi, Xuandong Zhao, and Dawn Song. Are you getting what you pay for?
auditing model substitution in llm apis. arXiv preprint arXiv:2504.04715, 2025.

[24] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

[25] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of
highly capable multimodal models. corr, abs/2312.11805, 2023. doi: 10.48550. arXiv preprint
ARXIV.2312.11805, pages 24-28, 2023.

[26] Anthropic. Introducing claude 4, May 2025. Accessed: 2025-05-22.
[27] Manus Al. Manus ai website, 2025. Accessed: 2025-05-22.

[28] Relevance AI. Relevance ai website, 2025. Accessed: 2025-05-22.
[29] AgentGPT. Agentgpt website, 2025. Accessed: 2025-05-22.

[30] Firecrawl. Firecrawl’s deep research api, 2025. Accessed: 2025-05-22.

[31] DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

[32] Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025.
[33] Open Thoughts Team. Open Thoughts, January 2025.

[34] Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye
Hou, and Benyou Wang. Huatuogpt-ol, towards medical complex reasoning with llms, 2024.

[35] Glaive Al Glaive reasoning vl 20m. https://huggingface.co/datasets/glaiveai/
reasoning-v1-20m, 2025. Available from Hugging Face Datasets. Company: https://
glaive.aij.

[36] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, lan Miers, and Tom Goldstein.
A watermark for large language models. In International Conference on Machine Learning,
pages 17061-17084. PMLR, 2023.

[37] Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

11

https://huggingface.co/datasets/glaiveai/reasoning-v1-20m
https://huggingface.co/datasets/glaiveai/reasoning-v1-20m
https://glaive.ai
https://glaive.ai

[38] Guoheng Sun, Ziyao Wang, Bowei Tian, Meng Liu, Zheyu Shen, Shwai He, Yexiao He,
Wanghao Ye, Yiting Wang, and Ang Li. Coin: Counting the invisible reasoning tokens in
commercial opaque llm apis. arXiv preprint arXiv:2505.13778, 2025.

[39] Ralph C Merkle. A digital signature based on a conventional encryption function. In Conference
on the theory and application of cryptographic techniques, pages 369-378. Springer, 1987.

[40] Ziyao Wang, Guoheng Sun, Yexiao He, Zheyu Shen, Bowei Tian, and Ang Li. Predic-
tive auditing of hidden tokens in 1lm apis via reasoning length estimation. arXiv preprint
arXiv:2508.00912, 2025.

[41] Xuandong Zhao, Lei Li, and Yu-Xiang Wang. Distillation-resistant watermarking for model
protection in nlp. arXiv preprint arXiv:2210.03312, 2022.

[42] Yash Savani, Asher Trockman, Zhili Feng, Avi Schwarzschild, Alexander Robey, Marc Finzi,
and J Zico Kolter. Antidistillation sampling. arXiv preprint arXiv:2504.13146, 2025.

[43] Leyi Pan, Aiwei Liu, Shiyu Huang, Yijian Lu, Xuming Hu, Lijie Wen, Irwin King, and Philip S

Yu. Can llm watermarks robustly prevent unauthorized knowledge distillation? arXiv preprint
arXiv:2502.11598, 2025.

12

	Introduction
	Background and Problem Formulation
	Commercial Opaque LLM Service
	Threat Model
	Auditing Principles

	Quantity Inflation and Auditing of Hidden Operations
	Reasoning LLM: Token Inflation and Token Auditing
	Agentic LLMs: Call Inflation and Call Auditing
	Challenges of Quantity Auditing
	Possible Solutions

	Quality Downgrade and Auditing of Hidden Operations
	Reasoning LLM: Model Downgrade and Model Auditing
	Agentic LLMs: Tool Downgrade and Tool Auditing
	Challenges
	Possible Solutions

	Blueprint for Auditing Frameworks
	Conclusion

