
RepoQA: Evaluating Long Context Code Understanding

Jiawei Liu 1 * Jia Le Tian 1 * Vijay Daita 1 Yuxiang Wei 1 Yifeng Ding 1

Yuhan Katherine Wang 1 Jun Yang 1 Lingming Zhang 1

�: https://evalplus.github.io/repoqa.html

Abstract
Recent advances have been improving the context
windows of Large Language Models (LLMs).
To quantify the real long-context capabilities of
LLMs, evaluators such as the popular Needle in a
Haystack have been developed to test LLMs over
a large chunk of raw texts. While effective, current
evaluations overlook the insight of how LLMs
work with long-context code, i.e., repositories.

To this end, we initiate the RepoQA benchmark
to evaluate LLMs on long-context code under-
standing. Traditional needle testers ask LLMs to
directly retrieve the answer from the context with-
out necessary deep understanding. In RepoQA,
we built our initial task, namely Searching Needle
Function (SNF), which exercises LLMs to search
functions given their natural-language description,
i.e., LLMs cannot find the desired function if
they cannot understand the description and code.
RepoQA is multilingual and comprehensive:
it includes 500 code search tasks gathered
from 50 popular repositories across 5 modern
programming languages. By evaluating 33 general
and code-specific LLMs on RepoQA, we show
(i) there is still a small gap between the best open
and proprietary models; (ii) different models are
good at different languages; and (iii) models may
understand code better without comments.

1. Introduction
Recently, there has been a growing interest in applying Large
Language Models (LLMs) to process long documents in
challenging tasks. The long context capability of LLMs is
especially vital for assisting or even automating (Jimenez
et al., 2023) the development of real-world software projects
built up with thousands or even millions of lines of code.
For example, when working on a new repository, developers
would want to ask questions about the repository, e.g., how

*Equal contribution. 1University of Illinois Urbana-Champaign,
USA. Correspondence to: Jiawei Liu <jiawei6@illinois.edu>.

to locate a specific function over the massive lines of code,
where long-context LLMs can be helpful.

To quantify the long-context retrieval ability of LLMs, the
Needle in a Haystack (gkamradt, 2023) (NIAH) benchmark
was proposed. In this task, a random fact or statement (the
“needle”) is placed somewhere in the long context, such as
a long story (the “haystack”). The model is then asked to an-
swer a related question by retrieving this statement. The test
is considered passed if the retrieved statement matches with
the needle. Meanwhile, in the code domain, evaluators (Ding
et al., 2023; Liu et al., 2023) have been introduced to bench-
mark long-context code generation instead of understanding.

While existing benchmarks for long-context understanding
focus on general and synthetic use cases, to close the gap for
code, we propose RepoQA, whose position is to exercise the
code understanding ability of LLMs by creating tasks that
can closely reflect real-life long-context uses. Specifically,
inspired by code search (Paul & Prakash, 1994), in RepoQA
we built our initial task called Searching Needle Function
(SNF). Code search is a useful and real-life developer
tool to search for related code (e.g., functions) given a
programmatic (GitHub, 2024) or natural-language (Husain
et al., 2020) query. In SNF, we construct 500 code search
tests from 50 repositories across 5 programming languages.
Each test, as demonstrated by Figure 1, gives an LLM as
the input: (i) instruction, (ii) a long context of code, (iii) the
description of the desired function, and lastly (iv) a repetition
of the instruction. By understanding the description and
code, the model is expected to retrieve the desired function.

Below summarizes the contributions of RepoQA:

• Dimension: To our knowledge, RepoQA is the first
benchmark for long-context code understanding.

• Technique: We propose an automatic pipeline to build
evaluation sets for the Searching Needle Function task.

• Artifact: RepoQA is multilingual and comprehensive,
covering 500 code search tasks gathered from 50
repositories across 5 modern programming languages.

• Study: Using RepoQA, we comprehensively evaluate 33
models and show interesting findings into the long-context
abilities of current foundation models.

1

https://evalplus.github.io/repoqa.html

Instruction
Based on the function description and code context, please
retrieve and repeat the exact described function from the

code context in a code block wrapped by ѫѫѫ:

Code Context
(sorted by Dependency)

def foo():
 return “do bi do bi do”

def get_all_gpus(): ҎЄ the 🪡needle function to search
 return None

def bar():
ҎҎɷ

Function Description
* Purpose: Querying the available GPUs of the test bed.
* Input: No inputs are need for the function.
* Output: None will be returned as we have no GPUs.
* Procedure: The function directly returns None.

Repeated Instruction
ҎҎɷplease retrieve and repeat the exact described function

from the code context in a code block wrapped by ѫѫѫ:

Expected LLM Response
ѫѫѫpython
def get_all_gpus():
 return None
ѫѫѫ

Mo
de
l
In
pu
t

Ou
tp
ut

Figure 1. Exemplifying the Searching Needle Function task.

2. Related Work
As Large Language Models (LLMs) evolve, there is a clear
trend toward improved handling of increasingly longer
contexts. With recent models now supporting a 16k or larger
context size by default (OpenAI, 2023; Gemini Team, 2024a;
Jiang et al., 2024; Gemini Team, 2024b; Anthropic, 2024;
Abdin et al., 2024), long-context benchmarks are becoming
increasingly common. ZeroSCROLLS (Shaham et al., 2023)
is a zero-shot benchmark featuring 10 task categories such
as long-context question-answering and summarization.
Concurrently, L-Eval (An et al., 2023) and LongBench (Bai
et al., 2023) are proposed, where L-Eval comprises 20
sub-tasks with average input lengths from 4k to 60k and
LongBench includes 21 datasets across 6 task categories
in both English and Chinese. ∞Bench (Zhang et al., 2024)
further extends the context window beyond 100k tokens for
evaluating LLMs’ capability in handling extremely lengthy
documents. While these benchmarks mostly focus on real-
istic tasks, researchers have proposed synthetic long-context
tasks to systematize the benchmark curation process. For
example, Needle in A Haystack (gkamradt, 2023) (NIAH)
involves hiding a fact (the ”needle”) in a long document (the
“haystack”) and asking the model to retrieve this fact given
a related question. RULER (Hsieh et al., 2024) expands upon
the vanilla NIAH by providing four task categories with 13
representative tasks for long-context evaluation.

In the code domain, RepoBench (Liu et al., 2023) and Cross-
CodeEval (Ding et al., 2023) assess the ability of LLMs to per-
form repo-level code completion. While the two benchmarks
require LLMs to process cross-file code context, the number
of input tokens is still limited. SWE-BENCH (Jimenez et al.,

2023) consists of 2,294 real-world software engineering
problems, necessitating the models to do complex reasoning
with long context. However, it is typically used to evaluate
LLM-based code agents while being too complex for model-
only evaluation. For example, GPT-4 only has a 1.31% pass
rate using retrieval. Our work, RepoQA, fills the missing
piece as the first benchmark for evaluating the core code
understanding ability of LLMs over a very long context.

3. RepoQA
In this section, we introduce the design of RepoQA, which
includes two main phases: (i) data curation: how to create
long-context tests for the SNF task from repositories; and (ii)
model evaluation: how to evaluate LLMs over these tests.

For data curation, we consider 50 repositories from 5 popular
programming languages over various coding topics. For each
repository, 10 evenly distributed needle functions are selected
as the retrieval target and we prompt GPT-4 to annotate them
with a natural-language description. During evaluation, we
give the LLM under evaluation the corresponding code con-
text and the function description and ask the LLM to repeat
the corresponding function via an instruction. By comparing
the model retrieved function against all function candidates
within the context, the test is passed if the output is closest
to the target function over a certain threshold of similarity.

3.1. Dataset Curation

Repository preparation. The input to the data curation
pipeline of RepoQA is code repositories. Specifically, we
select high-quality and popular GitHub repositories featuring
various programming languages and application domains.
Language-wise, we consider Python, C++, Java, TypeScript,
and Rust, for their popularity and distinct positions in
software engineering. For each language, we carefully
selected 10 repositories, by mainly considering the following
factors: (i) topic diversity: repositories spanning different
topics (e.g., “web” and “database”); (ii) quality: packaged
repositories equipped with unit tests or CI/CD pipelines; and
(iii) popularity: repositories with at least 100 GitHub stars.

For each selected repository, we define a root directory of
the main package in the repository as the entry directory.
As such, we only perform dataset creation over source files
under this entry directory and ignore other less relevant files.
Meanwhile, we perform dependency analysis to annotate
these source files with their corresponding file dependencies,
which will be used in later steps.

Needle function selection. The objective of SNF is to
retrieve a desired function, which is termed needle functions
in our work, inspired by the pioneering NIAH task. For
each repository, we automatically select 10 needle functions
evenly distributed over the repository. First, we construct

2

a big source file by concatenating all source files under the
entry directory in a topologically sorted order. We then split
the big file into k (k = 64) evenly sized chunks, for each
of which we collect the first function which has a unique
function name and a reasonable function body length (i.e.,
< 2000 bytes). Lastly, we randomly sample 10 out of the
maximum k functions from the k chunks and use them as
the needle functions for the repository.

Function description annotation. In SNF, we give the tested
LLM a function description and ask it to retrieve the corre-
sponding function. For evaluation accuracy, it is important to
make the descriptions explicit and unique as vague and gen-
eral descriptions can lead to multiple functions being reason-
ably mapped. Therefore, in our design, we decompose the de-
scription into four sections: function purpose, input descrip-
tion, output description, and general procedures, which are
exemplified in the “Function Description” section in Figure 1.

We obtain these descriptions by using GPT-4-Turbo as the
annotator with a prompt in Listing 1. Besides asking the anno-
tator to output the four sections, the prompt asks the model to
not reveal the function name and variable names of the needle
function to avoid degrading to a simple keyword-matching
problem. Meanwhile, the prompt also asks the model to spe-
cialize the description to differentiate it from other functions.

3.2. Model Evaluation

Context construction. We use each needle function to
create a long-context test by constructing a task prompt
shown in Figure 1. As the input to the tested model, it
includes four components:

1. Instruction: A brief instruction clarifying the task.
2. Code context: A long sequence of N tokens (by the

CodeLlama (Rozière et al., 2023) tokenizer) of code
context including the needle function and other functions
for obfuscation. To test if the model can retrieve the
needle function at various context depths, within each
repository, we plant the 10 needle functions over evenly
paced depths, e.g., depths of 10%,20%,··· ,100%. The
surrounding context of each needle function is derived
from the repository code arranged in topological order.

3. Function description: A description of the needle
function to search, as described in Section 3.1.

4. Repeated instruction: Finally, we close the input prompt
by repeating the instruction, as prior work (Agrawal et al.,
2024) shows that it can help remind the model of the task.

Score computation. Given the input prompt, the tested
model produces outputs, based on which we decide if the
model really finds the needle function successfully. By aggre-
gating the success rate of retrieving needle functions across
all tests, we obtain a final accuracy score from 0 to 100 (%) to
represent the long-context code retrieval ability of the model.

We take a few steps to decide if a retrieval is successful
from the model output. First, we perform post-processing to
extract the first code block whose code is syntactically correct
checked by tree-sitter. Next, given all possible functions
within the code context F ={f1,f2,···,fn}, the needle func-
tion f̂ ∈F , and the model produced function fo, a successful
retrieval is determined by satisfying two conditions:

(i) the model produced function fo should be the most similar,
defined by BLEU score with a smoothing function (Chen
& Cherry, 2014), to the needle function f̂ compared to other
functions in F :

f̂=argmin{BLEU(fi,fo);fi∈F}

(ii) the similarity between the model produced function
fo and the needle function f̂ should be no smaller than a
user-given threshold (by default 0.8 in our work), to make
sure fo look close enough to f̂ :

BLEU(f̂ ,fo)>thresh

4. Evaluation
Experimental setup. We tested 33 major models on the 500
tasks in RepoQA and reported their retrieval accuracy on
individual languages. Specifically, we let the token size of
the code context be 16k (in Figure 1) and require a minimal
similarity threshold of 0.8 between the model-generated
function and the needle function (Section 3.2). We choose
16k as the code context size as Table 2 later shows that most
major models can meet these criteria. Notably, using 16k
code context can require a larger context length, as both other
parts in the prompt and output (Figure 1) require additional
token consumption. Therefore, for models with only 8k and
16k context sizes, we consider two training-free methods to
unlock their context limit: (i) dynamic RoPE scaling (bloc97,
2023); or (ii) directly overwriting the maximum length. Of
these, we report the best results.

Overall results. Table 1 lists the results of top-performing
models, while we defer a more comprehensive table in
Table 2 due to space limits. Overall we can see that the
best-tier models (i.e., with over 90% accuracy) are mostly
proprietary models. The best-tier open-source models on
this task are DeepSeek-V2-Chat and Llama-3-70B-Instruct
which achieve over 80% accuracy, slightly outperforming
proprietary models such as Claude-3-haiku and GPT-4-
Turbo. Meanwhile, within the same model family, most
larger models perform better than smaller ones, except for
CodeLlama-13B-Instruct surpasses the 33B version. Lastly,
the Llama-3-Instruct model family turns out to be secretly
long-context models, achieving outstanding performance by
simply extending the context using dynamic RoPE scaling.

3

Model Ctx Size .py .cpp .rs .java .ts Avg. (CF)

1 gemini-1.5-pro-latest 1000k 91 81 91 94 96 90.6 (90.2)

gpt-4o-2024-05-13 128k 95 80 85 96 97 90.6 (93.2)

3 gemini-1.5-flash-latest 1000k 93 79 87 94 97 90.0 (54.2)

4 DeepSeek-V2-Chat 128k 90 76 77 91 83 83.4 (84.4)

5 Meta-Llama-3-70B-Instruct* 8k 83 70 81 86 91 82.2 (86.2)

6 c4ai-command-r-plus 128k 81 74 76 84 77 78.4 (79.2)

7 gpt-4-turbo-2024-04-09 128k 84 79 75 89 55 76.4 (92.6)

8 Mixtral-8x7B-Instruct-v0.1 32k 66 65 64 71 74 68.0 (71.4)

9 Mixtral-8x22B-Instruct-v0.1 64k 60 67 74 83 55 67.8 (79.4)

10 Qwen1.5-72B-Chat 32k 62 60 68 75 70 67.0 (68.0)

11 Phi-3-medium-128k-instruct 128k 56 54 62 69 74 63.2 (71.2)

12 Mistral-7B-Instruct-v0.3 32k 61 56 51 61 80 62.0 (69.8)

13 Meta-Llama-3-8B-Instruct* 8k 54 48 51 53 62 53.6 (56.2)

14 deepseek-coder-33b-instruct 16k 59 44 23 53 63 48.4 (75.4)

15 Mistral-7B-Instruct-v0.2 32k 38 50 44 45 60 47.4 (54.0)

Table 1. Retrieval accuracy (%) of representative models with a matching threshold of 0.8. “CF” stands for the result differences when
using the comment-free mode. “*” Denotes models evaluated using dynamic ROPE scaling. The full list can be found in Table 2.

Impact of natural comments. In Table 1 we also study
the impact of natural-language code comments on retrieval
accuracy. Intuitively, if the comment includes similar
explanations and keywords to the query (i.e., function
description), it should be easier to retrieve compared to no
comments. Surprisingly, Table 1 shows that the performance
actually improves for models when comments are removed,
except for the Gemini models. This potentially indicates
LLMs can perform code understanding similarly or even
better without comment assistance. Specifically, we perform
comment removal using two steps to make comparison
less sensitive to positional bias: (i) remove all comments
in the code context, and (ii) use synthetic comment (e.g., #
{LINE NUMBER} in Python) to pad the context to 16k while
aligning the relative position with the default version. By
debugging failure cases by Gemini-1.5-Flash, we see that the
model often forgets the original task and simply continues
counting the line numbers in the comment-free mode.

Impact of programming languages. By looking at the score
distribution across different programming languages, we can
see that most models are doing best at Java and TypeScript,
followed by Python, C++, and then Rust, with some small-
model outliers such as CodeLlama-7B-Instruct, Phi-3-mini-
128k-instruct, and DeepSeek-Coder-6.7b-instruct doing best
on C++. Interestingly, the difficulty of programming lan-
guages on RepoQA might be related to the amount of code
corpus in their training set. For example, in the deduplicated

version of Stack v2 dataset (Lozhkov et al., 2024), JavaScrip-
t/TypeScript and Java have the leading amount of corpus.

5. Conclusion and Future Work
Conclusion. We present RepoQA, a benchmark evaluating
the long context understanding of LLMs. The benchmark
currently contains the Searching Needle Function (SNF)
task which asks the LLMs to fetch a given function given
its description in natural language. By evaluating 33 models
on this benchmark, we found that proprietary models still
outperform the best open-source models, performance across
languages differs depending on the model and removing
comments may help with model understanding.

Future work. We hope to expand the scope of RepoQA in
two ways, (i) expanding Searching Needle Function and (ii)
constructing more complex tasks.

To expand the SNF task, we plan to include more program-
ming languages and more models. We also hope to expand
RepoQA through more complex scenarios, such as multi-hop
retrieval and reasoning (Maharana et al., 2024).

Acknowledgement
We thank Google Deepmind and Weights & Biases for pro-
viding part of the compute. We especially thank Songrun Xie
for his discussion and help in the early stages of RepoQA.

4

References
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,

A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Bao, J., Behl, H., Benhaim, A., Bilenko, M., Bjorck, J.,
Bubeck, S., Cai, Q., Cai, M., Mendes, C. C. T., Chen, W.,
Chaudhary, V., Chen, D., Chen, D., Chen, Y.-C., Chen,
Y.-L., Chopra, P., Dai, X., Giorno, A. D., de Rosa, G.,
Dixon, M., Eldan, R., Fragoso, V., Iter, D., Gao, M., Gao,
M., Gao, J., Garg, A., Goswami, A., Gunasekar, S., Haider,
E., Hao, J., Hewett, R. J., Huynh, J., Javaheripi, M., Jin, X.,
Kauffmann, P., Karampatziakis, N., Kim, D., Khademi,
M., Kurilenko, L., Lee, J. R., Lee, Y. T., Li, Y., Li, Y.,
Liang, C., Liden, L., Liu, C., Liu, M., Liu, W., Lin, E.,
Lin, Z., Luo, C., Madan, P., Mazzola, M., Mitra, A., Modi,
H., Nguyen, A., Norick, B., Patra, B., Perez-Becker, D.,
Portet, T., Pryzant, R., Qin, H., Radmilac, M., Rosset, C.,
Roy, S., Ruwase, O., Saarikivi, O., Saied, A., Salim, A.,
Santacroce, M., Shah, S., Shang, N., Sharma, H., Shukla,
S., Song, X., Tanaka, M., Tupini, A., Wang, X., Wang, L.,
Wang, C., Wang, Y., Ward, R., Wang, G., Witte, P., Wu, H.,
Wyatt, M., Xiao, B., Xu, C., Xu, J., Xu, W., Yadav, S., Yang,
F., Yang, J., Yang, Z., Yang, Y., Yu, D., Yuan, L., Zhang, C.,
Zhang, C., Zhang, J., Zhang, L. L., Zhang, Y., Zhang, Y.,
Zhang, Y., and Zhou, X. Phi-3 technical report: A highly
capable language model locally on your phone, 2024.

Agrawal, D., Gao, S., and Gajek, M. Can’t remember details
in long documents? you need some r&r. arXiv preprint
arXiv:2403.05004, 2024.

An, C., Gong, S., Zhong, M., Zhao, X., Li, M., Zhang, J.,
Kong, L., and Qiu, X. L-eval: Instituting standardized
evaluation for long context language models, 2023.

Anthropic. Introducing the next generation of claude an-
thropic. https://www.anthropic.com/news/
claude-3-family, 2024.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z., Du,
Z., Liu, X., Zeng, A., Hou, L., Dong, Y., Tang, J., and Li,
J. Longbench: A bilingual, multitask benchmark for long
context understanding, 2023.

bloc97. Ntk-aware scaled rope allows llama models
to have extended (8k+) context size without any
fine-tuning and minimal perplexity degradation.
https://www.reddit.com/r/LocalLLaMA/
comments/14lz7j5/ntkaware_scaled_
rope_allows_llama_models_to_have/, 2023.

Chen, B. and Cherry, C. A systematic comparison of
smoothing techniques for sentence-level BLEU. In
Bojar, O., Buck, C., Federmann, C., Haddow, B.,
Koehn, P., Monz, C., Post, M., and Specia, L. (eds.),
Proceedings of the Ninth Workshop on Statistical

Machine Translation, pp. 362–367, Baltimore, Mary-
land, USA, June 2014. Association for Computational
Linguistics. doi: 10.3115/v1/W14-3346. URL
https://aclanthology.org/W14-3346.

Ding, Y., Wang, Z., Ahmad, W. U., Ding, H., Tan, M., Jain,
N., Ramanathan, M. K., Nallapati, R., Bhatia, P., Roth, D.,
and Xiang, B. Crosscodeeval: A diverse and multilingual
benchmark for cross-file code completion. In Thirty-
seventh Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2023. URLhttps:
//openreview.net/forum?id=wgDcbBMSfh.

Gemini Team. Gemini: A family of highly capable
multimodal models, 2024a.

Gemini Team. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context, 2024b.

GitHub. Github code search. https://github.com/
features/code-search, 2024.

gkamradt. Llmtest needle in a haystack – pressure
testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack, 2023.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., Zhang, Y., and Ginsburg, B. Ruler: What’s the real
context size of your long-context language models?, 2024.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. Codesearchnet challenge: Evaluating
the state of semantic code search, 2020.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. Swe-bench: Can language
models resolve real-world github issues?, 2023.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216,
Stanford, CA, 2000. Morgan Kaufmann.

Liu, T., Xu, C., and McAuley, J. Repobench: Benchmarking
repository-level code auto-completion systems. arXiv
preprint arXiv:2306.03091, 2023.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., et al.
Starcoder 2 and the stack v2: The next generation. arXiv
preprint arXiv:2402.19173, 2024.

5

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://aclanthology.org/W14-3346
https://openreview.net/forum?id=wgDcbBMSfh
https://openreview.net/forum?id=wgDcbBMSfh
https://github.com/features/code-search
https://github.com/features/code-search
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Maharana, A., Lee, D.-H., Tulyakov, S., Bansal, M., Barbieri,
F., and Fang, Y. Evaluating very long-term conversational
memory of llm agents., 2024.

OpenAI. Gpt-4 technical report, 2023.

Paul, S. and Prakash, A. A framework for source code search
using program patterns. IEEE Transactions on Software
Engineering, 20(6):463–475, 1994.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,
A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer, C. C.,
Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T., and
Synnaeve, G. Code llama: Open foundation models for
code, 2023.

Shaham, U., Ivgi, M., Efrat, A., Berant, J., and Levy, O.
ZeroSCROLLS: A zero-shot benchmark for long text
understanding. In Bouamor, H., Pino, J., and Bali, K.
(eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 7977–7989, Singapore,
December 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.findings-emnlp.536.
URL https://aclanthology.org/2023.
findings-emnlp.536.

Zhang, X., Chen, Y., Hu, S., Xu, Z., Chen, J., Hao, M. K., Han,
X., Thai, Z. L., Wang, S., Liu, Z., and Sun, M. ∞bench: Ex-
tending long context evaluation beyond 100k tokens, 2024.

6

https://aclanthology.org/2023.findings-emnlp.536
https://aclanthology.org/2023.findings-emnlp.536

Appendix
We include additional tables and figures in our appendix.

def make_prompt(fn_name: str, code_ctx: str):
instruction = f’Can
you **briefly** describe the purpose, input, output, and procedure of "{fn_name}"?’
return f"""\

{instruction}

‘‘‘
{code_ctx}
‘‘‘

{instruction}

Please follow the format to complete the skeleton below:

1. **Purpose**: ...
2. **Input**: ...
3. **Output**: ...
4. **Procedure**: ...

{instruction}

Notes:
1. DO NOT reveal function names ({fn_name}) and variable names
2. Customize the description to differentiate it from other functions
"""

Listing 1. Needle function annotation prompt for GPT-4-Turbo

7

Model Ctx Size Python C++ Rust Java TypeScript Average

1 claude-3-opus-20240229 200k 93 83 88 95 94 90.6

gemini-1.5-pro-latest 1000k 91 81 91 94 96 90.6

gpt-4o-2024-05-13 128k 95 80 85 96 97 90.6

4 gemini-1.5-flash-latest 1000k 93 79 87 94 97 90.0

5 claude-3-sonnet-20240229 200k 88 81 85 92 91 87.4

6 DeepSeek-V2-Chat 128k 90 76 77 91 83 83.4

7 Meta-Llama-3-70B-Instruct* 8k 83 70 81 86 91 82.2

8 claude-3-haiku-20240307 200k 80 75 74 90 90 81.8

9 c4ai-command-r-plus 128k 81 74 76 84 77 78.4

10 gpt-4-turbo-2024-04-09 128k 84 79 75 89 55 76.4

11 Mixtral-8x7B-Instruct-v0.1 32k 66 65 64 71 74 68.0

12 Mixtral-8x22B-Instruct-v0.1 64k 60 67 74 83 55 67.8

13 Qwen1.5-72B-Chat 32k 62 60 68 75 70 67.0

14 Phi-3-medium-128k-instruct 128k 56 54 62 69 74 63.2

15 CodeQwen1.5-7B-Chat 64k 69 47 56 74 67 62.8

16 Mistral-7B-Instruct-v0.3 32k 61 56 51 61 80 62.0

17 gpt-3.5-turbo-0125 16k 43 65 60 76 57 60.4

18 Meta-Llama-3-8B-Instruct* 8k 54 48 51 53 62 53.6

19 deepseek-coder-33b-instruct 16k 59 44 23 53 63 48.4

20 Mistral-7B-Instruct-v0.2 32k 38 50 44 45 60 47.4

21 CodeLlama-13b-Instruct-hf* 16k 45 30 31 50 56 42.6

22 CodeLlama-34b-Instruct-hf* 16k 41 31 53 40 43 41.6

DeepSeek-V2-Lite-Chat 32k 39 37 45 41 46 41.6

24 Phi-3-small-128k-instruct 128k 25 48 30 46 49 39.6

25 Qwen1.5-32B-Chat 32k 36 28 25 32 48 33.8

26 CodeLlama-7b-Instruct-hf* 16k 20 41 22 25 33 28.2

27 Qwen1.5-14B-Chat 32k 4 30 26 36 34 26.0

28 Magicoder-S-DS-6.7B 16k 27 21 7 25 36 23.2

29 Phi-3-mini-128k-instruct 128k 19 25 25 21 22 22.4

30 Mistral-7B-Instruct-v0.1 32k 10 9 10 11 15 11.0

31 deepseek-coder-6.7b-instruct 16k 11 21 2 3 16 10.6

32 Qwen1.5-7B-Chat 32k 1 6 2 2 3 2.8

33 codegemma-7b-it 8k 3 2 1 1 4 2.2

Table 2. Retrieval accuracy (%) of all evaluated models with a matching threshold of 0.8. “*” denotes models evaluated using dynamic
ROPE scaling

8

