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ABSTRACT

Among parameter-efficient fine-tuning (PEFT) methods, LoRA has become widely
adopted due to its effectiveness and lack of additional inference costs. Its small
adapter weights also make LoRA practical as intellectual property (IP) that can
be trained, exchanged, and disputed. However, watermarking techniques for
LoRA remain underexplored. We introduce SEAL, a white-box watermarking
scheme for LoRA based on entangled dual passports. During training, non-
trainable passport matrices for ownership verification are inserted between the
LoRA up/down matrices without auxiliary losses and become jointly entangled
with the trainable weights; after training they are factorized so that the released
adapter is indistinguishable from standard LoRA. Public verification accepts a
claim only when the submitted passports reconstruct the released adapter and the
fidelity gap—the performance difference between the two submitted passports,
evidencing entanglement—is near zero under predeclared thresholds that control
false positives. Across Large Language Models (LLMs), Vision–Language Models
(VLMs), and text-to-image synthesis, SEAL preserves task performance and shows
empirical resilience to pruning, fine-tuning, structural obfuscation, and ambiguity
attacks. By watermarking the LoRA weights, SEAL aligns with real-world PEFT
workflows and supports practical IP claims over trained LoRA weights. We also
provide a minimal compatibility check on one LoRA variant.

1 INTRODUCTION

Parameter-Efficient Fine-Tuning (PEFT), especially Low-Rank Adaptation (LoRA) (Hu et al., 2022),
is widely adopted to customize large pretrained models with modest compute and storage (Zhao
et al., 2024; Jang et al., 2024; Mangrulkar et al., 2022). In practice, the distributable artifact is often
the LoRA weight update (the adapter) rather than a full checkpoint; recent reports document large
numbers of publicly posted adapters on open platforms (Luo et al., 2024). Consequently, adapter
weights acquire practical intellectual-property (IP) relevance in downstream sharing and disputes.

Despite extensive work on DNN watermarking (Uchida et al., 2017; Zhang et al., 2018;
Darvish Rouhani et al., 2019; Fan et al., 2019; Zhang et al., 2020; Lim et al., 2022; Xu et al.,
2024), most schemes either mark the base model (weights/activations inside the backbone) or rely
on outputs (trigger behaviors). These settings do not directly yield a public, white-box ownership
test for a released LoRA adapter. Approaches that use LoRA to watermark a base model address a
different objective from ours, where the adapter itself is the IP under test (Feng et al., 2024).

We study adapter-level ownership verification for LoRA in a white-box, open-distribution setting:
the released adapter weights are visible to both verifier and adversary, while the adversary lacks the
owner’s private keys (passports) and original fine-tuning data and typically seeks to preserve task
utility rather than retrain from scratch. This motivates a protocol that is public, reproducible, and
equipped with predeclared decision thresholds to control false positives.

Our approach, SEAL, adapts the passport idea (Fan et al., 2019; Zhang et al., 2020) to LoRA’s
structure and release workflow. During adaptation, we insert small non-trainable passport matrices
between LoRA’s up/down factors; standard training entangles these passports with the trainable
factors without auxiliary losses. After training, a factorization folds the passport into the learned
factors so that the distributed adapter is indistinguishable from standard LoRA (Figure 1). Verification
follows the passport paradigm but is instantiated for adapters using two co-trained passports: we
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Figure 1: Overview of SEAL. (1) Start with LoRA factors A,B and two non-trainable passports
C,Cp. (2) During training, we insert a passport between B and A and alternate C and Cp across
mini-batches (no auxiliary losses), so gradients flow through the passport and entangle it with
A,B. (3) After training, we factorize C = f(C1, C2) and fold C1 into B and C2 into A, releasing
standard-looking LoRA weights B′ = BC1, A

′ = C2A. The second passport Cp remains private
for ownership verification.

publicly check (i) exact reconstruction of the released adapter from the claimant’s submission and (ii)
a small fidelity gap between the two submitted passports under fixed thresholds; extraction is reserved
for owner-in-the-loop cases. Formal protocol and assumptions are in Section 4. Training/inference
effects and gradient analysis appear in Appendix D; a qualitative comparison to prior watermarking
is in Appendix C.

Empirically, across LLM/VLM instruction tuning and text-to-image synthesis, SEAL matches LoRA-
level task fidelity and shows resilience to pruning/removal (Han et al., 2016), additional fine-tuning,
structural obfuscation (Yan et al., 2023; Pegoraro et al., 2024), and ambiguity-style forgeries (Fan
et al., 2019). Our scope is LoRA-style low-rank updates; we include a minimal compatibility check
on a LoRA variant and discuss limitations.

Contributions. (1) We specify adapter-level, white-box ownership verification for LoRA under an
open-distribution threat model (Section 2.3). (2) Building on passport-based watermarking, we adapt
it to LoRA: non-trainable passports entangle during standard adaptation (no auxiliary losses) and are
hidden by post-training factorization so the released weights remain indistinguishable from standard
LoRA (Figure 1; Appendix D, C). (3) We provide a public verification procedure for adapters that
combines reconstruction with a two-passport fidelity test and predeclared thresholds (Section 4;
Appendix E). (4) We report evidence of fidelity and robustness across tasks and attack classes, and
document scope and limitations (Section 5; Appendix H).

2 BACKGROUND AND PROBLEM SETTING

2.1 LOW-RANK ADAPTATION (LORA)

LoRA (Hu et al., 2022) assumes that task-specific updates lie in a low-rank subspace. It freezes
pretrained weights W ∈Rb×a and learns two low-rank factors B∈Rb×r and A∈Rr×a such that

W ′ = W +∆W = W +BA. (1)

Since no nonlinearity lies between B and A, the update BA can be merged into W without inference
overhead. Practical variants (e.g., DoRA (Liu et al., 2024b)) modify scaling/normalization yet retain a
low-rank, matmul-style update; compatibility for DoRA and similar matmul-based variants appears
in Appendix F.

2.2 WHITE-BOX DNN WATERMARKING AND PASSPORTS

Prior white-box watermarking embeds secrets at different loci of a network: within weights, activa-
tions or via outputs (Uchida et al., 2017; Zhang et al., 2018; Darvish Rouhani et al., 2019; Lim et al.,
2022; Kirchenbauer et al., 2024; Fernandez et al., 2023). A complementary line, passport-based
watermarking, inserts a small (often linear/normalization) module whose correct key restores normal
task performance, enabling ownership tests with/without special triggers (Fan et al., 2019; Zhang
et al., 2020). We adopt the passport semantics but tailor it to LoRA’s factorization and release
workflow, aiming at a public, adapter-level test.
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2.3 THREAT MODEL AND EVALUATION CRITERIA

Setting. We consider a white-box release of the LoRA adapter (B′, A′). In the Kerckhoffs’s
principle, adversaries know the scheme and hyperparameters but not the owner’s private passports
(C,Cp) nor the original fine-tuning data. The claimant who asserts ownership presents (B,A,Ci)
for public verification. Attackers generally aim to preserve task utility rather than retraining the
backbone from scratch.

Attacks considered. We group attacks by the mechanism they exploit and the goal they pursue; the
decisive signal is always stated in terms of our public checks (R1/R2 below).

1. Removal. Mechanism: magnitude pruning or unconstrained continued fine-tuning alters the
adapter to erase embedded structure (LeCun et al., 1989; Han et al., 2016; Chen et al., 2021;
Guo et al., 2021). Goal: break the hidden link between distributed weights and passports
while keeping accuracy. Decisive signal: (R1) fails—passport extraction is not statistically
significant—or (R2) the dual-passport fidelity gap exceeds the acceptance threshold.

2. Obfuscation. Mechanism: function-preserving reparameterizations change the representa-
tion of the adapter without changing its input–output map (Yan et al., 2023; Pegoraro et al.,
2024; Li et al., 2023a). Goal: defeat extraction or confuse verifiers with equivalent fac-
tors. Decisive signal: (R1) must still succeed—reconstruction by the claimant’s (B,A,Ci)
matches (B′, A′) within tolerance—otherwise the claim is rejected; if (R1) holds, (R2)
remains decisive.

3. Ambiguity. Mechanism: forge keys or claims so that multiple parties appear to own the
same weights (Fan et al., 2019; Zhang et al., 2020; Chen et al., 2023). Goal: pass verification
without the owner’s entangled passports. Decisive signal: forged pairs fail (R2) unless they
reproduce the owner’s co-trained entanglement.

Criteria for Public Verification. Our verifier applies two orthogonal checks: (R1) reconstruc-
tion—the claimant’s parameters must reconstruct the released adapter within tolerance—and (R2) a
small dual-passport fidelity gap. Thresholds (reconstruction tolerance ρT , fidelity gap ∆T ) and
false-positive control for accuracy-type metrics (level αT via Hoeffding inequality (Hoeffding, 1963))
are defined formally in Section 4.

2.4 PROBLEM DEFINITION AND RELATION TO PRIOR WORK

What we protect. We study ownership of the adapter itself. The object under test is a distributed
LoRA pair (B′, A′). The verifier has white-box access to these weights and must decide whether a
claimant who submits (B,A,C,Cp) is the rightful owner.

How this differs from prior watermarking. Most white-box watermarking targets the base model
and verifies via weights, activations, outputs, or passport layers inserted into the backbone (Uchida
et al., 2017; Fan et al., 2019; Zhang et al., 2020; Fernandez et al., 2024). Those settings do not
directly yield a public, white-box test for a released adapter. A separate line uses LoRA as a training
tool while watermarking a different artifact (e.g., watermarking latent representations in diffusion
models and employing LoRA to recover fidelity) (Feng et al., 2024). In these works the adapter is not
the watermark carrier nor the IP being verified. Consequently a one-to-one comparison of verification
rules is not meaningful.

Problem scope and contribution. We address LoRA–adapter ownership: given a released adapter
(B′, A′), provide a public white-box rule that accepts the rightful claimant and rejects forgeries. We
design a passported adapter that is indistinguishable from standard LoRA at release and specify
decision thresholds. This focus is complementary to black-box provenance tests and output/data
watermarking, which target different artifacts and are not claimed by our results (see Appendix C).

3 SEAL: MECHANISM AND TRAINING

We follow the notation summarized in Table 6.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 SEAL Training

Require: Frozen W , rank r, fixed passports (C,Cp), data D, epochs E
Ensure: Public adapter (B′, A′)

1: Initialize A ∈ Rr×a and B ∈ Rb×r as trainable
2: for e = 1 to E do
3: for (x, y) ∈ D do
4: Sample Ct ∈ {C,Cp}
5: Forward: W ′ ←W +BCtA; compute task loss LT (W

′, x, y)
6: Backpropagate ∇LT and update (B,A)
7: end for
8: end for
9: Factorize C = C1C2; set B′ = BC1, A′ = C2A

Setting. We fine-tune a frozen backbone W ∈Rb×a with LoRA (Hu et al., 2022), but insert a fixed
passport between B and A so that

W ′ = W +∆W = W +BCA. (2)
Two passports {C,Cp} are fixed and alternated by mini-batch: sample Ct∈{C,Cp}, run W+BCtA,
and update only (B,A) via LT . At release we fold only C into the adapter via a deterministic
factorization

f : Rr×r→Rr×r×Rr×r, f(C) = (C1, C2), C1C2 = C,

and publish (B′, A′) = (BC1, C2A); Cp remains private.

Rationale. Alternating {C,Cp} acts as a swap-regularizer: it makes N(B,A,C) and N(B,A,Cp)
behave similarly on task T , shrinking and stabilizing the owner’s dual-passport gap ∆T . Because
only C is folded via f(C)=(C1, C2), at least one passport (namely C) must match the public adapter
exactly (up to dtype tolerance), while Cp is trained to be close—supporting tolerant reconstruction
and a small owner gap used by the public verifier (Section 4).

3.1 COMPATIBILITY WITH MATMUL-STYLE ADAPTERS

Many PEFT variants keep a bilinear operation as the adapter core. Let ⋆ denote such an operation
(e.g., standard matrix multiplication, possibly composed with fixed diagonal scalings or norm factors).
If an adapter update can be written in the form

∆W = B ⋆ A or ∆W = B ⋆ Φ0 ⋆ A,

where B∈Rb×r and A∈Rr×a are trainable and Φ0 is a fixed (non–input-dependent, non-trainable)
operation, then SEAL applies verbatim by inserting a non-trainable passport during training:

∆W = B ⋆ C ⋆ A, C ∈ Rr×r.

After training, choose a decomposition C = C1 ⋆ C2 and fold it into the public adapter as
B′ = B ⋆ C1, A′ = C2 ⋆ A,

so the released update is ∆Wpub = B′ ⋆ A′ and remains indistinguishable in interface from the
original variant (no inference overhead). For the canonical matmul case (⋆=matrix multiplication),
we use the SVD root factorization by default (Appendix F).

Example (DoRA). DoRA (Liu et al., 2024b) rescales W+∆W by a column-norm ratio that is
typically detached from gradients. Replacing ∆W by BC A leaves this outer scaling intact, because
C is fixed during the forward pass; folding proceeds via C = C1C2 as above. A concrete recipe and
an empirical case study appear in Appendix F.5.

4 PUBLIC WHITE-BOX VERIFICATION

4.1 THREAT MODEL

The released adapter (B′, A′) is visible to verifiers and adversaries. Adversaries know the scheme
but not the owner’s passports or fine-tuning data, and they aim to preserve task utility rather than

4
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retrain from scratch, mirroring open-distribution releases on model hubs (Hu et al., 2022; Luo et al.,
2024). See Section 2.3 for background.

4.2 DECISION RULE

Public verification. Given task T , metric MT , public adapter (B′, A′), and a claimant’s
(B,A,Ca, Cb), accept if and only if both hold:
(R1) Reconstruction. ∥BCi A−B′A′ ∥F ≤ ρT for each Ci∈{Ca, Cb}.
(R2) Dual-passport gap. ∆T =

∣∣MT (N(B,A,Ca))−MT (N(B,A,Cb))
∣∣ ≤ τT .

Thresholds (ρT , τT ) are predeclared; calibration and FPR control are below.

Notes. ρT reflects dtype/serialization tolerance (set ρT=0 under exact formats). The operator N(·)
denotes the task adapter with/without passports.

4.3 CONTROLLING FALSE POSITIVES

When MT is an accuracy over NT independent items, Hoeffding’s inequality (Hoeffding, 1963)
gives

τ theoryT =

√
ln(2/αT )

2NT
, (3)

which ensures FPR ≤ αT under i.i.d. sampling. Operationally we use

τT = max
{
τ theoryT , ∆̂ owner

T + ηT
}
, (4)

where ∆̂ owner
T is the owner’s observed two-passport gap and ηT is a rounding margin. We label the

guarantee formal when ∆̂ owner
T ≤ τ theoryT and empirical-only otherwise for that model–task pair.

Ambiguity and robustness. A forger must satisfy both the reconstruction and gap conditions
without co-training on the owner’s data; post-hoc keys typically violate the gap at the stated τT ,
making re-training to match the owner’s dual entanglement the the most plausible path Appendix E.
Under a fixed full-rank factorization (B̃, Ã) of the released adapter, the implied passport is unique
(Appendix E.4); when factors become rank-deficient due to re-factorization or obfuscation, multiple
passports can realize the same product. Our public rule does not assume uniqueness and instead
enforces (R1) reconstruction and (R2) a small dual-passport gap.

4.4 EXAMPLE: THE COMMONSENSE SUITE

Table 1 instantiates the public rule in Section 4.2 on the commonsense micro-average. Here MT is
accuracy, evaluated on NT=22,419 items (total number of evaluation questions in the commonsense
suite). With αT=0.01, Equation 3 yields the theoretical cutoff τ theoryT =1.09%p.

For each model we report the owner’s two-passport scores MT

(
N(B,A,C)

)
and MT

(
N(B,A,Cp)

)
and their gap

∆̂T =
∣∣MT

(
N(B,A,C)

)
−MT

(
N(B,A,Cp)

) ∣∣.
If ∆̂T ≤ τ theoryT , the claim is accepted with a formal guarantee FPR ≤ αT . Otherwise we accept
using the operational rule τT = max{τ theoryT , ∆̂T + ηT } and label the guarantee empirical-only.
Training details and per-benchmark scores appear in Section 5; this example only illustrates the
decision rule.

Only Mistral-7B exceeds τ theoryT ; we therefore accept it using the operational threshold and mark the
guarantee as empirical-only.
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Table 1: Public verification on the commonsense micro-average (MT=accuracy, percentage
points). NT=22,419, αT=0.01, so τ theoryT =1.09.

Model τ theory
T MT

(
N(·, C)

)
MT

(
N(·, Cp)

)
∆̂T Decision

LLaMA-2-7B 1.09 82.2 82.7 0.50 pass (formal)
Mistral-7B 1.09 84.2 87.9 3.70 pass (empirical-only)
Gemma-2B 1.09 76.3 76.6 0.30 pass (formal)
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Figure 2: Effective-rank distributions of ∆W across layers. reff = exp(−
∑

i pi log pi) with
pi = σ2

i /
∑

j σ
2
j . Split violins: LoRA (left), SEAL (right).
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Figure 3: Cumulative-energy difference ∆Sk (SEAL−LoRA) across backbones. Sk =
∑k

i=1 pi;
curves show layer-wise mean with IQR bands. Positive values at small k indicate more top-mode
concentration under SEAL.

5 EXPERIMENTS

5.1 SPECTRAL DIAGNOSTICS

Before reporting fidelity and robustness, we visualize how a fixed passport affects the learned adapter
subspace. For each layer we compute the top-r singular values of ∆W and define pi = σ2

i /
∑

j σ
2
j ,

the effective rank reff = exp
(
−

∑
i pi log pi

)
, and the cumulative energy Sk =

∑k
i=1 pi. Across

backbones, SEAL often shows a lower reff and a larger ∆Sk := Sk(SEAL)− Sk(LoRA) at small k,
indicating stronger concentration in early modes as depicted in Figure 2, 3. This pattern is consistent
with the robustness we observe against rank-only obfuscations: when most spectral energy sits in
a handful of leading directions, truncating tail modes by SVD preserves both task utility and the
embedded relation needed by our public test (see Section 5.4 and Figure 5). Empirically, the same
bias toward high-energy modes also helps explain why very aggressive parameter removal is required
before extraction signals meaningfully degrade under pruning.

5.2 EXPERIMENTAL SETUP

We compare SEAL to standard LoRA on (i) LLM commonsense reasoning, (ii) textual and visual
instruction tuning, and (iii) text-to-image synthesis. Unless noted, we keep data, loss, and optimization
identical to LoRA; SEAL only inserts non-trainable passports during adaptation and factorizes
them after training, with no auxiliary loss. Datasets, metrics, and hyperparameters are detailed in
Appendix H. Verification follows Section 4.

Passport choice. C∈Rr×r is any fixed, non-trainable matrix used at inference; we fold only C into
(B′, A′) via f(C) = (C1, C2) with (B′, A′) = (BC1, C2A), while Cp remains private. We use two
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Table 2: Commonsense Reasoning Accuracy (3 runs). Single-passport inference: only the published
C is inserted at test time (Cp unused). SEAL (Ours) is our default. SEAL† uses a random constant
passport C (sampled once at initialization from N (0, 1)r×r and kept non-trainable). Both variants
alternate {C,Cp} during training and fold only C at release via f(C) = (C1, C2) into (B′, A′) =
(BC1, C2A). Scores are averaged over three seeds; the last column shows mean±std.

Method BoolQ PIQA SIQA HellaSwag Wino. ARC-e ARC-c OBQA Avg. ↑

LLaMA-2-7B
LoRA 73.75 82.99 79.85 86.14 85.06 86.15 73.63 85.80 81.67 ±1.03

SEAL (Ours) 72.70 85.27 81.27 90.15 85.79 87.07 74.60 85.00 82.73 ±0.14

SEAL† (Ours) 73.19 86.31 81.95 91.21 86.69 88.55 75.51 86.80 83.78 ±0.27

LLaMA-2-13B
LoRA 75.57 86.98 81.39 91.82 88.53 90.08 78.78 86.67 84.98 ±0.17

SEAL (Ours) 75.34 87.41 83.28 93.33 88.42 90.68 79.61 86.73 85.60 ±0.34

SEAL† (Ours) 75.67 88.63 83.21 93.95 89.29 91.72 81.46 88.53 86.56 ±0.10

LLaMA-3-8B
LoRA 74.76 88.22 80.96 92.00 86.08 90.09 82.41 86.30 85.10 ±1.39

SEAL (Ours) 73.88 88.23 82.29 94.84 88.35 91.67 82.00 86.27 85.94 ±0.29

SEAL† (Ours) 75.78 90.37 83.25 96.05 89.92 93.49 84.73 90.60 88.02 ±0.11

Gemma-2B
LoRA 67.05 83.19 77.26 87.07 79.74 83.91 69.34 79.87 78.43 ±0.32

SEAL (Ours) 66.56 81.79 77.65 84.82 79.16 82.79 68.40 79.20 77.55 ±0.04

SEAL† (Ours) 66.70 82.50 78.88 87.57 80.19 83.81 69.97 79.87 78.68 ±0.11

Mistral-7B-v0.1
LoRA 75.92 90.72 81.78 94.68 88.69 93.10 83.36 88.30 87.07 ±0.27

SEAL (Ours) 73.08 87.52 81.92 91.23 87.97 90.19 78.70 88.13 84.84 ±0.44

SEAL† (Ours) 76.92 90.42 82.51 94.57 90.08 93.31 83.25 91.73 87.85 ±0.02

instantiations: SEAL (Ours) (user-chosen C, e.g., a small grayscale bitmap; see Appendix Figure 8)
and SEAL† (a random constant C drawn once from N (0, 1)r×r and kept frozen). The bitmap
example (cropped, downsampled frame from a public video) is illustrative—any license-cleared or
synthetic pattern (e.g., logo-like patch, QR-like grid, PRNG array) is valid since C is never trained or
redistributed as media, only as its numeric matrix.

5.3 FIDELITY ACROSS TASKS

Commonsense reasoning. We evaluate on BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), ARC-
e/ARC-c (Clark et al., 2018), and OBQA (Mihaylov et al., 2018) using the combined setup of Hu
et al., 2023. Backbones include LLaMA-2-7B/13B (Touvron et al., 2023), LLaMA-3-8B (AI@Meta,
2024), Gemma-2B (Team et al., 2024), and Mistral-7B-v0.1 (Jiang et al., 2023). As shown in Table 2,
SEAL matches or slightly improves on LoRA within run-to-run noise.

Table 3: Instruction-tuning fidelity (higher is bet-
ter). Textual: MT-Bench on LLaMA-2-7B (Al-
paca, 3 epochs). Visual: avg. accuracy over 7
VLM benchmarks on LLaVA-1.5-7B.

Method MT-Bench ↑ Visual Acc. ↑
LoRA 5.83 66.9
SEAL 5.81 63.1

Table 4: Text-to-Image fidelity on SD-1.5 (Dream-
Booth). CLIP-T: prompt fidelity; CLIP-I/DINO:
subject fidelity (higher is better).

Method CLIP-T ↑ CLIP-I ↑ DINO ↑
LoRA 0.20 0.80 0.68
SEAL 0.20 0.80 0.67

Textual instruction tuning. On LLaMA-2-7B with Alpaca (Taori et al., 2023) (3 epochs), SEAL
attains MT-Bench (Zheng et al., 2023) scores comparable to LoRA (Table 3), indicating that passports
do not degrade instruction-following fidelity.

Visual instruction tuning. With LLaVA-1.5 (Liu et al., 2024a) we report the average over
VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), VizWiz (Gurari et al., 2018),
SQA (Lu et al., 2022), VQAT (Singh et al., 2019), POPE (Li et al., 2023b), and MMBench (Liu et al.,
2023). SEAL is on par with LoRA (Table 3).
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Text-to-image synthesis. For Stable Diffusion 1.5 (Rombach et al., 2022) with DreamBooth (Ruiz
et al., 2023), SEAL maintains subject fidelity (CLIP-I, DINO) and prompt fidelity (CLIP-T) at LoRA
levels (Table 4); qualitative examples are in Figure 7.

5.4 ROBUSTNESS
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Figure 4: Pruning attack. X-axis: zeroing ratio of the smallest parameters in the public adapter
(B′, A′) (L1). Left Y-axis: task fidelity (commonsense micro-average). Right Y-axis: − log(p-value)
=− log10 p for passport detection. We declare detection at − log(p-value) ≥ 3.3 (two-sided test;
α = 5× 10−4). The watermark remains detectable until at least 99.9% of parameters are zeroed, at
which point task fidelity collapses.

Removal (pruning). We prune the public adapter (B′, A′) by L1 magnitude and then test both
task fidelity and passport extraction. Because each key has N ≈ 105 independent entries, we use
a two-sided hypothesis test rather than BER and reject the null of an unrelated matrix at level
α = 5× 10−4—i.e., we declare detection when − log10 p ≥ 3.3. Removing the watermark requires
zeroing ≥ 99.9% of adapter parameters, which collapses task accuracy, while extraction remains
significant as shown in Figure 4.

Table 5: Finetuning Attack. The detectability of passport on SEAL across either the same (C3e

→ C1eand I3e → I1e) or different datasets (C3e → I1eand I3e → C1e). Higher is better: larger
-ln(p) means stronger rejection of ‘extracted key is unrelated to C’, i.e., more confident passport
detectability. We declare detection if -log(p) ≥ 3.3 (i.e. α = 5× 10−4).

Tasks Acc. MT-Bench -log(p-value)

C3e 83.1 - -
I3e - 5.81 -

I3e → C1e 60.2 4.94 79.85
C3e→ I1e 0.24 3.56 79.87
C3e→ C1e 82.9 - 1824.9
I3e → I1e - 3.78 5.75

Finetuning. Starting from a public (B′, A′) trained for three epochs on Commonsense or Alpaca,
we resume standard LoRA for one epoch on the same or the other dataset (e.g., C3e→ I1e, I3e→C1e).
Across all cases, the passport remains detectable with N ≈ 105 and − log10 p ≫ 3.3 (Table 5),
supporting robustness to routine post-hoc fine-tuning.

Structural obfuscation. We simulate function-preserving obfuscation by replacing (B′, A′) with
its best rank-k truncated-SVD projection for k∈{31, . . . , 1} from original rank 32 (Yan et al., 2023).
As indicated by our spectral diagnostics (Section 5.1), SEAL concentrates energy in early modes, so
the watermark survives until k is very small—fidelity only then drops while extraction stays above
threshold (Figure 5); being function-preserving, these transformations still require passing (R1).

Ambiguity. Two-passport verification rejects forged keys that were not co-trained (Fan et al., 2019).
Table 1 reports owner gaps and thresholds; Figure 6 shows that counterfeit keys must achieve high
similarity to the private passport (e.g., γ≳0.6 blending with the true Cp) to keep the gap below τT ,

8
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Figure 5: Structural obfuscation (Gemma-2B via SVD). Original rank is 32; we obfuscate to ranks
k=31 down to 1 via best rank-k projections. Passport detection uses the same two-sided test with
N≈105 and the − log(p-value) ≥ 3.3 criterion as in Figure 4.

Fi
de

lit
y 

Sc
or

e

90

60

30

(a) Gemma-2B

Dissimilarity
0 0.2 0.4 0.6 0.8 1.0

(b) Mistral-7B-v0.1

Dissimilarity
0 0.2 0.4 0.6 0.8 1.0

(c) LLaMA-2-7B

Dissimilarity
0 0.2 0.4 0.6 0.8 1.0

Fidelity under Attack Fidelity under Attack Fidelity under Attack

}

Figure 6: Ambiguity attacks. Fidelity MT

(
N(B,A,Ct)

)
on commonsense T using an inference-time

passport Ct blended as Ct = (1− γ)Cp + γ C̃p-adv (adversary’s matrix). X-axis: dissimilarity γ. Ver-
ification accepts only when the dual-passport gap ∆T =

∣∣MT (N(B,A,C))−MT (N(B,A,Cp))
∣∣

is below τT (Table 1); beyond γ≳0.6, the gap typically exceeds τT and claims fail.

which is implausible without data and co-training. For LLaMA-2-7B and Gemma-2B, owner gaps lie
below the Hoeffding bound at the stated α; for Mistral-7B the gap exceeds the theoretical bound, so
we mark the guarantee as empirical-only and list sensitivity.

6 CONCLUSION

SEAL is a white-box watermark for LoRA adapters: it inserts non-trainable passports during training
and hides them by post-training factorization, so the released adapter is indistinguishable from
standard LoRA. We provide an owner-agnostic public verifier (Section 4) that accepts a claim only if
(R1) reconstruction and (R2) a small dual-passport gap hold under predeclared thresholds. Across
LLM/VLM instruction tuning and text-to-image, SEAL matches LoRA’s fidelity while resisting
pruning/removal, post-hoc fine-tuning, SVD-style obfuscation, and ambiguity forgeries—non–co-
trained keys typically fail the gap test. When the owner’s gap satisfies ∆̂owner

T ≤ τ theoryT , we offer
a formal FPR≤ αT guarantee; otherwise results are empirical-only. The mechanism extends to
matmul-style variants and other bilinear operators; we release code and reference thresholds to
reproduce the tests and guide task-specific calibration.

LIMITATIONS

This work targets adapter-level, white-box verification for LoRA-style PEFT. The decision rule is
statistical and task-dependent: with i.i.d. verifier data and ∆̂owner

T ≤ τ theoryT we provide a formal
FPR≤αT guarantee; otherwise thresholds are empirical-only (Section 4). Fidelity gaps vary by
model, task, and rank, so per-task calibration may be needed and our coverage is representative, not
exhaustive. Owner-side extraction assumes full-rank factors and is intended for owner-in-the-loop
checks; recovering C from (B′, A′) alone is brittle and not required by the public verifier. An
adversary who re-trains on similar data may reproduce the owner’s dual entanglement and pass
verification by design. The protocol is a reproducible test on parameters—not a legal determination.

9
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REPRODUCIBILITY STATEMENT

We include all artifacts needed to reproduce our results.

1. Code & configs. An anonymized repository (linked in the supplementary material) provides
training, public verification, and attack scripts, seed-controlled runners, and YAML configs
for every experiment. Upon acceptance we will open-source the repo under a permissive
license.

2. Models & checkpoints. We rely on official Hugging Face repositories for base models
and third-party checkpoints; all use follows their licenses as cited in the Appendix. Our
runners fetch these artifacts directly from their sources and reproduce adapters locally from
the provided configs and seeds.

3. Hyperparameters. Complete settings (ranks, learning rates, batch sizes, optimizers, sched-
ules, epochs) for every model–task pair are listed in the Appendix tables; we also include
the exact thresholds used by the verifier.

4. Evaluation. Commonsense experiments follow the LLM-Adapters evaluation protocol (?).
Other tasks use each benchmark’s official prompts and scripts; we provide utilities for ROC
and p-value computation and report NT , αT , and decision criteria (Section 4).

5. Compute. GPU types and approximate hours per setting are reported in the Appendix,
along with scaled-down recipes to reproduce key figures under limited compute.

All figures and tables can be regenerated via a single entry-point script; required public datasets are
downloaded automatically with license checks.

ETHICS STATEMENT

Watermarking in this paper is not cryptography: it provides statistical evidence of ownership (via
public tests with stated false-positive control) rather than secrecy or hardness guarantees. Publishing
the scheme may aid adversaries; we mitigate by fixing a white-box threat model, using a reproducible
decision rule, and releasing code without private passports or proprietary data. Third-party verification
presumes either a trusted verifier or an auditable commit-and-reveal of passport hashes recorded at
training time; raw keys are revealed only if a dispute arises and must match the commitment. Our
method does not address bias, safety, or legal ownership by itself and should be combined with
appropriate licenses and operational controls. All experiments use public datasets under their licenses
and involve no human subjects or sensitive data.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only as general-purpose assist tools:

1. Writing aid. Grammar/style checking, clarity edits, and minor LaTeX fixes; drafting boilerplate
for tables/figures.

2. Engineering aid. Boilerplate code for data loaders, evaluation runners, and plotting scripts; all
outputs were reviewed and tested by the authors.

3. Explicit non-usage. LLMs were not used to design the method or ideas, to plan/run experiments
or tune hyperparameters, or to produce/alter quantitative results.

4. Accountability. All generated content was verified by the authors; prompts and model names are
listed in the anonymized code package.

5. No hidden instructions. We do not embed hidden instructions, prompts, canary text, or prompt-
injection content in the paper, appendix, or supplementary materials; all guidance for reviewers
and tools is presented visibly.

B NOTATION

Table 6: Notation for SEAL. Key symbols and their definitions.

Symbol Description

W ∈ Rb×a Pretrained backbone (frozen); LoRA/SEAL apply an adaptation on top.
a, b, r Dimensions; r ≪ min{a, b}.

B ∈ Rb×r, A ∈
Rr×a LoRA’s trainable up/down factors.

C, Cp ∈ Rr×r SEAL passports (fixed, non-trainable). C is folded into the public adapter;
Cp remains private for verification.

(Ca, Cb)
Passports submitted by a claimant during public verification (owner:
typically (C,Cp)).

Ct
Runtime passport used at inference/verification (e.g., C for single-passport
inference).

f : C 7→
(C1, C2)

Deterministic factorization with C1C2 = C (e.g., fsvd). Publish
(B′, A′) = (BC1, C2A).

B′, A′ Public LoRA adapter after folding C via f ; same shapes as B,A.
∆W Weight offset. Standard LoRA: ∆W = BA; SEAL: ∆W = BCA.

N(·) Adapter operator. Examples: N(B,A) (LoRA), N(B,A,Ct) (SEAL with
passport Ct).

T Host task (e.g., instruction following, QA).
MT (·) Task metric (e.g., accuracy) used for verification and reporting.
NT Number of i.i.d. items for MT (used in theoretical cutoff).
∆T Dual-passport gap:

∣∣MT (N(B,A,Ca))−MT (N(B,A,Cb))
∣∣.

ρT Reconstruction tolerance for (R1): ∥BCiA−B′A′∥F ≤ ρT .

τT , τ
theory
T

(R2) gap cutoff; theoretical bound from Hoeffding and the operational
threshold used in practice.

αT Target false-positive rate for accuracy-type metrics (used to set τ ory
T ).

− log10 p
Detection statistic for extraction tests; we declare detection at
− log10 p ≥ − log10 α (e.g., 3.3 for α=5×10−4).

B̃, Ã, C̃; C̃p-adv
Adversarial refactorization of (B′, A′) and a forged passport used in
ambiguity attacks.
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Table 7: Qualitative Comparison with Existing DNN Watermarking Methods. Unlike prior approaches
that often introduce additional trainable layers and explicit regularization losses, our method (SEAL)
natively integrates into LoRA without extra overhead. BN = batch normalization and GN = group
normalization. ♣: Test error, ⋆: Classification accuracy on AlexNet with CIFAR-100, ♦: FID score.
♠: Accuracy on commonsense reasoning tasks.

Method Uchida et al. Fan et al. Feng et al. SEAL (Ours)

Target Architecture Convolutional Layer Normalization Layer U-Net LoRA
Training Overhead Regularizer Regularizer Latent watermark Constant matrix
Inference Overhead None +BN/GN layer +Secret Enc./Dec. None
Extra Loss Required? Yes Yes Yes No
Performance Drop ∆ ≈ 0.5%♣ ∆ ≈ 1.5%⋆ ∆ ≈ 2.6%♦ ∆ ≈ 0%♠

Attack Resistance Pruning Pruning / Finetune Pruning Pruning / Finetune
Finetune Ambiguity Finetune Ambiguity / Obfuscation

C COMPARISON WITH OTHER DNN WATERMARKING SCHEME

Table 7 qualitatively contrasts four representative DNN watermarking approaches (Uchida et al.,
2017; Fan et al., 2019; Feng et al., 2024), and our proposed SEAL. We compare them across multiple
dimensions: the targeted network layer, overhead at training/inference time, whether additional loss
terms are required, the typical performance drop, and the supported attack resistances. We briefly
summarize each row below:

• Target Architecture. Each scheme embeds watermarks or passports into different architec-
ture components: convolution layers (Uchida et al., 2017), normalization layers (Fan et al.,
2019), U-Net blocks (Feng et al., 2024), and LoRA blocks (SEAL, ours). Our approach
focuses on LoRA, a lightweight adapter mechanism.

• Training Overhead. Methods like (Uchida et al., 2017; Fan et al., 2019) use an explicit
regularizer to embed watermarks, while (Feng et al., 2024) attaches latent-watermark
modules during training. In contrast, SEAL entangles a constant matrix with LoRA’s
low-rank modules, introducing minimal overhead at training time.

• Inference Overhead. Despite some methods adding new layers or requiring a secret
encoder/decoder at inference, SEAL has no additional components during inference. Once
merged, our constant matrix seamlessly integrates into the LoRA parameters.

• Extra Loss Required? Most existing watermarking approaches rely on an additional loss
term for embedding or regularizing. Our scheme needs no extra loss, as the constant matrix
naturally entangles with LoRA blocks during the normal training objective.

• Performance Drop. We list the reported performance degradation ∆ under each approach,
measured by various metrics: (♣) test error, (⋆) classification accuracy drop, (♦) FID score
changes, and (♠) commonsense reasoning tasks. Our SEAL achieves near-zero (∆ ≈ 0%)
degradation.

• Attack Resistance. We indicate which attacks each method defends against attacks (e.g.
pruning, fine-tuning, ambiguity, or obfuscation attack). Our SEAL covers a broader range
of threats in a white-box setting, including pruning, fine-tuning, obfuscation, and ambiguity.

Our approach stands out for its simpler training pipeline (no explicit regularizer), near zero inference
overhead, and broader attack coverage, all while incurring practically zero performance drop.

D TRAINING PROCESS OF SEAL

D.1 FORWARD PATH

In SEAL, the forward path produces the output W ′ by adding a learnable offset ∆W on top of the
base weights W :

W ′ = W +∆W = W +BCA. (5)
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Here, B and A are trainable matrices, while C is a fixed passport matrix that carries the watermark.
Unlike traditional LoRA layers that use ∆W = BA alone, SEAL inserts C between B and A. This
additional matrix:

• Forces the resulting offset ∆W to pass through an extra linear transformation, potentially
mixing or reorienting the learned directions.

• Ties the final weight update ∆W to the presence of C; removing or altering C would disrupt
∆W and hence the model’s functionality.

If C were diagonal, it would merely scale each dimension independently, which can be easier to
isolate or undo. However, when C is a full (non-diagonal) matrix, the learned offset ∆W may exhibit
more complex structures, as the multiplication by C intermixes channels or dimensions.

D.2 BACKWARD PATH

The backward path computes gradients of the loss function ϕ with respect to A and B, revealing how
C influences the updates. Let

∆ := BCA and Φ := ϕ(∆x), (6)

where ∆x represents applying ∆ to some input x. Then, by the chain rule,

∂Φ

∂A
= (BC)T

∂ϕ

∂∆
= CTBT ∂ϕ

∂∆
, (7)

∂Φ

∂B
=

∂ϕ

∂∆
(CA)T =

∂ϕ

∂∆
AT CT . (8)

These expressions highlight two key points:

(1) Transformation of Gradients. Each gradient, ∇A and ∇B , is multiplied (from the left or
right) by CT . If C were diagonal, this would reduce to element-wise scaling of the gradient,
which is relatively simple to reverse or interpret. In contrast, a full C applies a more general
linear transformation—potentially a rotation or mixing—to the gradient directions.

(2) Entanglement of Learnable Parameters. Because C is fixed but non-trivial, both B
and A are continually updated in a manner dependent on C. Over many gradient steps,
∆W = BCA becomes entangled across multiple dimensions; single-direction modifications
in B or A cannot easily isolate the watermark without affecting other directions.

E ON FORGING MULTIPLE PASSPORTS FROM A SINGLE FACTORIZATION

This section clarifies why an adversary cannot simply factorize the released LoRA weights (B′, A′)

into some (B̃, C̃, Ã) and then create an additional passport C̃p-adv in order to circumvent our multi-
passport verification. We also reiterate that SEAL is intentionally indistinguishable from a standard
LoRA, so an attacker generally cannot even discern that SEAL was used.

E.1 INDISTINGUISHABILITY FROM STANDARD LORA

By design, the publicly distributed weights are simply B′ ∈ Rb×r and A′ ∈ Rr×a, analogous to
standard LoRA. No additional matrix parameters (or suspicious metadata) are visible. Hence, without
insider knowledge, an attacker cannot tell a priori if (B′, A′) derives from SEAL or a conventional
LoRA finetuning. This alone imposes a significant hurdle:

Attacker must first discover (or guess) that SEAL was used.

Only then might they attempt forging hidden passports.
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E.2 ATTEMPTING A SINGLE FACTORIZATION FOR TWO PASSPORTS

Assume, hypothetically, that an attacker somehow knows a given (B′, A′) came from SEAL. They
might try a factorization of the form:

(B′, A′) −→ (B̃, C̃, Ã),

so that B̃ C̃ Ã = B′A′. Then they could designate C̃ as a forged version of the original C.

Creating a Second Passport. Furthermore, to break multi-passport verification (see Section 4), the
attacker would need another passport, C̃p-adv, that also yields near-identical fidelity scores:

MT (N(B̃, Ã, C̃)) ≈ MT (N(B̃, Ã, C̃p-adv)) (for all relevant data for task, T ).

However, this requires that B̃, Ã be simultaneously entangled with two distinct passports, which is
nontrivial for a single factorization.

E.3 WHY A SINGLE FACTORIZATION CANNOT PRODUCE TWO ENTANGLED PASSPORTS

• Concurrent Entanglement is Required. In SEAL, B and A are co-trained (entangled)
with both C and Cp at the same time during finetuning. This ensures that, for any batch,
either C or Cp is used, such that B,A adapt to both passports. Merely performing a post-hoc
factorization on (B′, A′) does not replicate this simultaneous learning process.

• One Factorization Yields One Mapping. A single factorization typically captures one
equivalence, e.g. C̃. Generating an additional C̃p-adv that also achieves the same function
(or fidelity) using the same B̃, Ã is a significantly more constrained problem. In practice,
an attacker would need to re-finetune (B̃, Ã) twice, once for each passport, effectively
mimicking the original training—but without knowledge of the original dataset D.

• Costly and Uncertain Outcome. Even if the attacker invests major computational resources,
re-training two passports from scratch is as expensive as (or more expensive than) training
a brand-new LoRA model. Moreover, success is not guaranteed, since the attacker must
ensure C̃p-adv ̸= C̃ but still replicates near-identical behavior on the entire dataset, all while
not knowing the original dataset D or training schedule.

E.4 UNIQUENESS OF THE PASSPORT UNDER FULL-RANK FACTORS

Assumptions. The attacker fixes rank-r matrices B̃ ∈ Rb×r and Ã ∈ Rr×a with rank(B̃) =

rank(Ã) = r.

Claim (full-rank uniqueness). If two passports C̃, C̃p-adv ∈ Rr×r satisfy B̃ C̃ Ã = B̃ C̃p-adv Ã =

B′A′, then C̃ = C̃p-adv.

Proof. Since B̃ has full column rank, there exists a left inverse L ∈ Rr×b with LB̃ = Ir. Since Ã
has full row rank, there exists a right inverse R ∈ Ra×r with ÃR = Ir. Subtracting the two equalities
and multiplying on the left/right gives

L B̃ (C̃ − C̃p-adv) ÃR = Ir (C̃ − C̃p-adv) Ir = C̃ − C̃p-adv = 0r×r.

Hence C̃ = C̃p-adv. □

Remark (rank-deficient and re-factorization). If rank(B̃) < r or rank(Ã) < r, uniqueness fails:

there exist nonzero X with B̃XÃ = 0b×a. For example, letting r > s, take B̃ =

[
Is
0

]
, Ã = [Is 0],

and any X whose top-left s× s block is 0; then B̃(C̃ +X)Ã = B̃C̃Ã. Thus many passports can
realize the same product when factors lose rank (e.g., via truncation/obfuscation).
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Remark on rank-deficient factorizations. If B̃ or Ã has rank < r, then infinitely many C̃ can
satisfy B̃ C̃ Ã = B′A′. However, such rank-deficient choices almost always degrade the model’s
fidelity (losing degrees of freedom), thus failing to preserve the same performance as (B′, A′).
Consequently, attackers seeking to maintain full utility have no incentive to choose rank-deficient
B̃, Ã. Therefore, we assume rank(B̃) = rank(Ã) = r to ensure that (B′A′) is matched faithfully.

E.5 NO PRACTICAL PAYOFF FOR SUCH AN ATTACK

1. Attackers Typically Lack Data. To even begin constructing (C̃, C̃p-adv), attackers must
have access to the original training data (or certain proportion of dataset with similar
distribution) and be certain SEAL was used. Both are high barriers. Training dataset is not a
part of SEAL, and is mostly proprietary. It does not violate Kerckhoff’s principal.

2. Equivalent to Costly Re-Training. Producing two passports that match all fidelity checks
essentially replicates the original multi-passport entanglement from scratch. This yields no
distinct advantage over simply training a new LoRA.

3. Cannot Disprove Legitimate Ownership. Even if they succeed in forging C̃, C̃p-adv,
the legitimate owner’s original pair (C,Cp) still correctly verifies, preserving the rightful
ownership claim.

E.6 CONCLUSION

In summary, forging multiple passports from a single factorization of (B′, A′) is infeasible because
SEAL’s multi-passport structure relies on concurrent entanglement of B,A with both passports C
and Cp during training. A single post-hoc factorization can at best replicate one equivalent mapping,
but not two functionally interchangeable mappings without a re-finetuning process that is as expensive
and uncertain as building a new model. Furthermore, since SEAL weights are indistinguishable from
standard LoRA, the attacker generally cannot even detect the scheme in the first place. Therefore, this
approach does not offer a viable pathway to break or circumvent SEAL’s multi-passport verification
procedure.

F EXTENSIONS TO MATMUL-BASED LORA VARIANTS

Beyond the canonical LoRA (Hu et al., 2022) formulation, numerous follow-up works propose modi-
fications and enhancements while still employing matrix multiplication (matmul) as the underlying
low-rank adaptation operator. In this section, we illustrate how SEAL is compatible or can be adapted
to these matmul-based variants. Although we do not exhaustively enumerate every LoRA-derived
approach, the general principle remains: if the adaptation primarily uses matrix multiplication (possi-
bly with additional diagonal, scaling, or regularization terms), then SEAL can often be inserted by
embedding a non-trainable passport C between the up and down blocks.

F.1 LORA-FA (ZHANG ET AL., 2023A)

LoRA-FA (LoRA with frozen down blocks) modifies LoRA by keeping the down block frozen during
training, while only the up block is trained. Structurally, however, it does not alter the fundamental
matmul operator. Consequently, integrating SEAL follows the same procedure as standard LoRA:
one can embed the passport C into the product BC A without requiring any special adjustments. The
difference in training rules (i.e. freezing A) does not affect how C is placed or how it is decomposed
into (C1, C2) for final public release.

F.2 LORA+ (HAYOU ET AL., 2024)

LoRA+ investigates the training dynamics of LoRA’s up (B) and down (A) blocks. In particular, it
emphasizes the disparity in gradient magnitudes and proposes using different learning rates:

A ← A − η GA, B ← B − λ η GB ,

where λ≫ 1 is a scale factor, η is the base learning rate, and GA, GB are the respective gradients.
LoRA+ does not alter the structural operator (still matrix multiplication). Therefore, SEAL can be
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employed by introducing C ∈ Rr×r between B and A, yielding ∆W = BC A. The difference in
gradient scaling does not impact the usage of a non-trainable passport matrix C.

F.3 VERA (KOPICZKO ET AL., 2024)

VeRA introduces two diagonal matrices, Λb and Λd, to scale different parts of the low-rank factors:

∆W = Λb B Λd A,

where B,A may be random, frozen, shared across layers and the diagonal elements in Λb,Λd are
trainable. Despite these diagonal scalings, the core operator remains matrix multiplication. Hence,
embedding a passport C is still feasible. By leveraging the commutative property of diagonal matrices
and C (assuming C commutes with Λd in the sense that one can re-factor C into C1ΛdC2 or ΛdC),
SEAL can be inserted:

∆W = Λb (BC1) Λd (C2 A),

which is functionally identical to Λb B Λd A except for the hidden passport C = C1C2. Implementing
SEAL in VeRA may require converting the final trained weights back into a standard (B′, A′) form
plus a diagonal scaling term, but the fundamental principle is straightforward.

F.4 ADALORA (ZHANG ET AL., 2023B)

AdaLoRA applies a dynamic rank-allocating approach inspired by SVD. It factorizes the weight
update into:

∆W = P ΛQ,

where Λ is a diagonal matrix, and P,Q are regularized to maintain near-orthogonality. Since diagonal
matrices commute under multiplication (up to a re-factorization), one can embed a passport C by
decomposing it (f(C)→ (C1, C2)). In essence,

∆W = P C1 ΛC2 Q = P ′ ΛQ′,

where P ′ = PC1 and Q′ = C2Q. This preserves the rank-r structure and does not disrupt AdaLoRA’s
optimization logic. Regularization terms that enforce P ′TP ′ ≈ I and Q′Q′T ≈ I remain valid,
though one may incorporate C1, C2 into the initialization or adapt them carefully so as not to degrade
the orthogonality constraints.

F.5 DORA (LIU ET AL., 2024B)

DoRA modifies the final LoRA update using a column-wise norm factor:

W ′ =
∥W∥c

∥W +∆W ∥c
(
W +∆W

)
,

where ∥ · ∥c computes column-wise norms and the ratio is (by design) often detached from gradients
to reduce memory overhead. Replacing ∆W with BC A in DoRA does not alter the external gradient
manipulation logic, since C is non-trainable. Thus,

W ′ =
∥W∥c

∥W +BC A ∥c
(
W +BC A

)
remains valid. The presence of C does not interfere with DoRA’s approach to scaling or norm-based
constraints.

F.6 INTEGRATING WITH DORA

Thanks to its flexible framework, SEAL can easily be applied to a wide variety of LoRA variants.
In Table 8, we use DoRA (Liu et al., 2024b) as a case study to demonstrate that SEAL can seamlessly
integrate with diverse LoRA-based methods, as exemplified by SEAL+DoRA. We measure wall time
on four RTX 3090 GPUs. DoRA requires magnitude and direction computations, while SEAL’s
passport training also adds overhead. Still, SEAL+DoRA achieves near-DoRA accuracy.
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Table 8: Commonsense Reasoning on Llama-2-7B for LoRA, DoRA, SEAL. SEAL+DoRA is a
combined approach. Hyperparameters in Table 16

Method Wall Time (h) Avg.
LoRA 12.0 81.67 ±1.03

DoRA 18.5 81.98 ±0.26

SEAL 19.6 83.78 ±0.27

SEAL + DoRA 27.8 81.88 ±1.08

F.7 VARIANTS WITH NON-MULTIPLICATIVE OPERATIONS

All of the above variants preserve the core LoRA assumption of a matrix multiplication operator for
the rank-r adaptation. However, certain approaches introduce non-multiplicative adaptations (e.g.,
Hadamard product, Kronecker product, or other specialized transforms). In the following section, for
these cases, which discuss how SEAL can be generalized to any bilinear or multilinear operator ⋆.

G EXTENSIONS TO GENERALIZED LOW-RANK OPERATORS

In the main text, we considered a standard LoRA (Hu et al., 2022) that uses a matrix multiplication
operator:

∆W = B C A,

where B ∈ Rb×r, C ∈ Rr×r, and A ∈ Rr×a. Recent work has explored alternative low-rank
adaptation mechanisms beyond simple matmul, such as Kronecker product-based methods (Edalati
et al., 2022; Yeh et al., 2023) or even elementwise (Hadamard) product (Hyeon-Woo et al., 2021)
forms. Our approach can be extended in a straightforward manner to these generalized operators,
which we denote as ⋆.

G.1 GENERAL OPERATOR ⋆

Let ⋆ be any bilinear or multilinear operator used for low-rank adaptation.1 We can then write the
trainable adaptation layer as

∆W = B ⋆ C ⋆ A,

where B,A are the trainable low-rank parameters, and C is the non-trainable passport in SEAL.
During training, B and A are optimized in conjunction with C held fixed (just as in the matrix
multiplication case).

Decomposition Function for Operator ⋆. To distribute C into (B,A) after training, we require a
decomposition function f : C 7→ (C1, C2) such that

C = C1 ⋆ C2.

For example, under the Kronecker product ⊗, one could define f(C) to split C into smaller block
partitions, or use an SVD-like factorization in an appropriate transformed space. Under the Hadamard
product, f(C) could involve elementwise roots or other transformations.

Once C1 and C2 are obtained, we apply:

B′ = B ⋆ C1 , A′ = C2 ⋆ A,

so that

B′ ⋆ A′ = (B ⋆ C1) ⋆ (C2 ⋆ A) = B ⋆ (C1 ⋆ C2) ⋆ A = B ⋆ C ⋆ A.

Hence, the final distributed weights (B′, A′) for public remain functionally equivalent to using
B,A,C.

1Here, bilinear means (X ⋆ Y ) is linear in both X and Y when one is held fixed, e.g. standard matrix
multiplication, Kronecker product, or Hadamard product.
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Table 9: Hyperparameter configurations of SEAL and LoRA for Gemma-2B, Mistral-7B-v0.1,
LLaMA2-7B/13B, and LLaMA3-8B on the commonsense reasoning. All experiments are done with
4x A100 80GB (for LLaMA-2-13B) and 4x RTX 3090 (for the other models) with approximately 15
hours.

Models Gemma-2B Mistral-7B-v0.1 LLaMA-2-7B LLaMA-2-13B LLaMA-3-8B

Method LoRA SEAL LoRA SEAL LoRA SEAL LoRA SEAL LoRA SEAL
r 32
alpha 32
Dropout 0.05
LR 2e-4 2e-5 2e-5 2e-5 2e-4 2e-5 2e-4 2e-5 2e-4 2e-5
Optimizer AdamW Loshchilov & Hutter (2019)
LR scheduler Linear
Weight Decay 0
Warmup Steps 100
Total Batch size 16
Epoch 3
Target Modules Query Key Value UpProj DownProj

G.2 IMPLICATIONS AND FUTURE DIRECTIONS

• Broader Applicability. By permitting ⋆ to be any bilinear or multilinear operator (Kro-
necker, Hadamard, etc.), SEAL naturally extends beyond the canonical matrix multiplica-
tion used in most LoRA implementations. This flexibility can be valuable for advanced
parameter-efficient tuning methods (Edalati et al., 2022; Hyeon-Woo et al., 2021; Yeh et al.,
2023).

• Same Security Guarantees. The central watermarking principle (embedding a non-trainable
passport C into the adaptation) does not change. An adversary attempting to re-factor B′⋆A′

to recover C faces the same challenges described in the main text and Appendix E—non-
identifiability, cost of reconstruction, and multi-passport verification barriers.

• Potential Operator-Specific Designs. Certain operators (e.g., Kronecker product) may
admit additional constraints or factorization strategies that could be exploited for improved
stealth or efficiency. Investigating these is an interesting direction for future work.

In summary, SEAL can be generalized to other operators ⋆ by treating C as a non-trainable factor
and defining a suitable decomposition function f(C) such that C = C1 ⋆ C2. This allows us to hide
the passport just as in the matrix multiplication case, thereby preserving the main SEAL pipeline for
more complex LoRA variants.

H TRAINING DETAILS

H.1 COMMONSENSE REASONING TASKS

The hyperparameters used for these evaluations are listed in Table 16.

H.2 TEXTUAL INSTRUCTION TUNING

We conducted textual instruction tuning using Alpaca dataset (Taori et al., 2023) on LLaMA-2-7B
(Touvron et al., 2023), trained for 3 epochs. The hyperparameters used for this process are detailed
in Table 10.

H.3 VISUAL INSTRUCTION TUNING

We compared the fidelity of SEAL, LoRA, and FT on the visual instruction tuning tasks with LLaVA-
1.5-7B (Liu et al., 2024a). To ensure a fair comparison, we used the same original model provided by
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Table 10: Hyperparameter configurations of SEAL and LoRA for Instruction Tuning. All experiments
are done with 1x A100 80GB for approximately 2 hours. All w/o LM HEAD are Query, Key, Value,
Out, UpProj, DownProj, GateProj.

Model LLaMA-2-7B

Method LoRA SEAL
r 32
alpha 32
Dropout 0.0
LR 2e-5
LR scheduler Cosine
Optimizer AdamW
Weight Decay 0
Total Batch size 8
Epoch 3
Target Modules All w/o LM HEAD

Table 11: Performance comparison of different methods across seven visual instruction tuning
benchmarks

Method # Params (%) VQAv2 GQA VisWiz SQA VQAT POPE MMBench Avg

FT 100 78.5 61.9 50.0 66.8 58.2 85.9 64.3 66.5
LoRA 4.61 79.1 62.9 47.8 68.4 58.2 86.4 66.1 66.9
SEAL 4.61 75.4 58.3 41.6 66.9 52.9 86.0 60.5 63.1

Table 12: Hyperparameters for visual instruction tuning. All experiments were performed with 4x
A100 80GB with approximately 24 hours.

Model LLaVA-1.5-7B

Method LoRA SEAL
r 128
alpha 128
LR 2e-4 2e-5
LR scheduler Linear
Optimizer AdamW
Weight Decay 0
Warmup Ratio 0.03
Total Batch size 64

(Liu et al., 2024a) uses the same configuration as the LoRA setup with the same training dataset. We
adhere to (Liu et al., 2024a) setting to filter the training data and design the tuning prompt format.

H.4 TEXT-TO-IMAGE SYNTHESIS

The DreamBooth dataset (Ruiz et al., 2023) encompasses 30 distinct subjects from 15 different classes,
featuring a diverse array of unique objects and live subjects, including items such as backpacks and
vases, as well as pets like cats and dogs. Each of the subjects contains 4-6 images. These subjects are
categorized into two primary groups: inanimate objects and live subjects/pets. Of the 30 subjects, 21
are dedicated to objects, while the remaining 9 represent live subjects/pets.

For subject fidelity, following (Ruiz et al., 2023), we use CLIP-I, DINO. CLIP-I, an image-text
similarity metric, compares the CLIP (Radford et al., 2021) visual features of the generated images
with those of the same subject images. DINO (Caron et al., 2021), trained in a self-supervised
manner to distinguish different images, is suitable for comparing the visual attributes of the same
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Table 13: DreamBooth text prompts used for evaluation of inanimate objects and live subjects.

Prompts for Non-Live Objects Prompts for Live Subjects
a {} in the jungle a {} in the jungle
a {} in the snow a {} in the snow
a {} on the beach a {} on the beach
a {} on a cobblestone street a {} on a cobblestone street
a {} on top of pink fabric a {} on top of pink fabric
a {} on top of a wooden floor a {} on top of a wooden floor
a {} with a city in the background a {} with a city in the background
a {} with a mountain in the background a {} with a mountain in the background
a {} with a blue house in the background a {} with a blue house in the background
a {} on top of a purple rug in a forest a {} on top of a purple rug in a forest
a {} with a wheat field in the background a {} wearing a red hat
a {} with a tree and autumn leaves in the
background

a {} wearing a santa hat

a {} with the Eiffel Tower in the background a {} wearing a rainbow scarf
a {} floating on top of water a {} wearing a black top hat and a monocle
a {} floating in an ocean of milk a {} in a chef outfit
a {} on top of green grass with sunflowers
around it

a {} in a firefighter outfit

a {} on top of a mirror a {} in a police outfit
a {} on top of the sidewalk in a crowded
street

a {} wearing pink glasses

a {} on top of a dirt road a {} wearing a yellow shirt
a {} on top of a white rug a {} in a purple wizard outfit
a red {} a red {}
a purple {} a purple {}
a shiny {} a shiny {}
a wet {} a wet {}
a cube shaped {} a cube shaped {}

object generated by models trained with different methods. For prompt fidelity, the image-text
similarity metric CLIP-T compares the CLIP features of the generated images and the corresponding
text prompts without placeholders, as mentioned in (Ruiz et al., 2023; Nam et al., 2024). For the
evaluation, we generated four images for each of the 30 subjects and 25 prompts, resulting in a total
of 3,000 images. The prompts used for this evaluation are identical to those originally used in (Ruiz
et al., 2023) to ensure consistency and comparability across models. These prompts are designed to
evaluate subject fidelity and prompt fidelity across diverse scenarios, as detailed in Table 13.

Figure 7 visually compares LoRA and SEAL on representative subjects from the DreamBooth
dataset. The top row shows example reference images for each subject, the middle row shows
images generated by LoRA, and the bottom row shows images from our SEAL. Qualitatively, both
methods faithfully capture key attributes of each subject (e.g., shape, color, general pose) and produce
images of comparable visual quality. That is, SEAL does not degrade or alter the original subject’s
appearance relative to LoRA, suggesting that incorporating the constant matrix C does not introduce
noticeable artifacts or reduce fidelity. These results align with the quantitative metrics on subject and
prompt fidelity, indicating that SEAL maintains a quality level on par with LoRA while embedding a
watermark in the learned parameters.
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Figure 7: Qualitative comparison of LoRA and SEAL in Text-to-Image Synthesis task

SEAL

LoRA

Ref.

Images

Table 14: Hyperparameter configurations of SEAL and LoRA for Text-to-Image Synthesis. All
experiments are done with 4x RTX 4090 with approximately 15 minutes per subject.

Model Stable Diffusion 1.5

Method LoRA SEAL
r 32
alpha 32
Dropout 0.0
LR 5e-5 1e-5
LR scheduler Constant
Optimizer AdamW
Weight Decay 1e-2
Total Batch size 32
Steps 300
Target Modules Q K V Out AddK AddV

Table 15: Hyperparameter configurations of Finetruning Attack on SEAL which trains on 3-epoch.
We resume training on N(B′, A′), which passport C is distributed in B,A via fsvd.

Model LLaMA-2-7B

Method LoRA
r 32
alpha 32
LR 2e-5
Optimizer AdamW
LR scheduler Linear
Weight Decay 0
Warmup Steps 100
Batch size 16
Epoch 1
Target Modules Query Key Value UpProj DownProj

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 16: Hyperparameter configurations of Integrating with DoRA.

Model LLaMA-2-7B

Method LoRA SEAL DoRA SEAL+DoRA
r 32
alpha 32
Dropout 0.05
LR 2e-4 2e-5 2e-4 2e-5
Optimizer AdamW
LR scheduler Linear
Weight Decay 0
Warmup Steps 100
Total Batch size 16
Epoch 3
Target Modules Query Key Value UpProj DownProj

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 8: Passport Example. Left: A 32×32 grayscale bitmap (cropped and downsampled from a
YouTube clip2) serves as our non-trainable passport C. Right: The passport partially recovered (from
10% zeroed SEAL weight on LLaMA-2-7B).

I ABLATION STUDY

I.1 PASSPORT EXAMPLE

In order to provide a concrete illustration of our watermark extraction process, we construct a small
32×32 grayscale image as the passport C (or Cp). Specifically, we sampled 100 frames from a
publicly available YouTube clip, applied center-cropping on each frame, converted them to grayscale,
and then downsampled to 32×32. From these frames, we selected one representative image (shown
in Figure 8) to embed as the non-trainable matrix C in our SEAL pipeline Section 3.

This tiny passport image, while derived from a movie clip, is both unrecognizable at 32×32 and used
exclusively for educational, non-commercial purposes. Nevertheless, it visually demonstrates how
a low-resolution bitmap can be incorporated into the model’s parameter space and later extracted
(possibly with minor distortions) to verify ownership.

I.2 RANK ABLATION

To evaluate versatility of the proposed SEAL method under varying configurations, we conducted
additional experiments focusing on different rank settings (4, 8, 16). The results are summarized
in Table 17. We used the Gemma-2B model (Team et al., 2024) on commonsense reasoning tasks, as
described previously. For comparison, we included the results of LoRA with r = 32 and SEAL with
r = 32 as mentioned in Table 2.

Table 17: Accuracy across various rank settings on commonsense reasoning tasks. The table includes
results for rank configurations (4, 8, 16) of SEAL, as well as LoRA r=32 and SEAL r=32.

Rank BoolQ PIQA SIQA HellaSwag Wino. ARC-c ARC-e OBQA Avg.
4 65.05 78.18 75.64 76.16 73.56 65.02 81.65 74.80 73.76
8 64.83 81.23 77.02 83.92 77.35 68.43 83.00 79.20 76.87
16 66.24 82.32 77.94 86.10 79.24 67.32 83.12 78.60 77.61
32 66.45 82.16 78.20 83.72 79.95 68.09 82.62 79.40 77.57

LoRAr=32 65.96 78.62 75.23 79.20 76.64 79.13 62.80 72.40 73.75

I.3 IMPACT OF THE SIZE OF PASSPORT C

To analyze how the magnitude of the passport C influences the final output, we train the model
with ∆W = BC A, but at inference time remove C (i.e., N(B,A, ∅)) to observe the resulting
images under different standard deviations std of C. Specifically, we sample C ∼ N (0,std2) with
std ∈ {0.01, 0.1, 1.0, 10.0, 100.0} and keep B and A trainable. Figure 9 shows that lower std
(e.g., 0.01) produces markedly different images relative to the vanilla model without C, while higher
std (e.g., 10.0 or 100.0) yields outputs closer to the vanilla Stable Diffusion model3.

2https://www.youtube.com/watch?v=2zHHkSu1br4
3https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5. The

original weight had been taken down.
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Why does std of C affect N(B,A, ∅)? Recall that ∆W = BC A. If std(C) is very small
(e.g., 0.01), then during training, the product BC A must still approximate the desired update ∆W .
Because C is tiny, B and A tend to have relatively large values to compensate. Consequently, when
we remove C at inference time (use N(B,A, ∅)), these enlarged B and A inject strong perturbations,
manifesting visually as high-frequency artifacts.

Conversely, if std(C) is very large (e.g., 10.0 or 100.0), then to avoid destabilizing training, B
and A remain smaller in scale. Hence, removing C at inference, N(B,A, ∅), introduces only minor
differences from the original model, leading to outputs that closely resemble the vanilla Stable
Diffusion model.

Figure 9: Effect of passport C standard deviation (std) on SEAL weight. std = σ: Outputs are
using only SEAL weight without C ∼ N (0, σ2), N(B,A, ∅). Vanilla SD 1.5: output from vanilla
Stable Diffusion 1.5 with same prompt.

std = 0.01 std = 0.1 std = 1.0 std = 10.0 std = 100.0 Vanilla SD 1.5Ref. Image

Quantitative Comparison. In addition to the qualitative results, Table 18 compares Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM) between images generated using only trained
SEAL weights without C, N(B,A, ∅), at various passport std values. Lower std (e.g., 0.01)
shows significantly lower PSNR and SSIM, indicating large deviations (i.e., stronger perturbations)
from the vanilla output. As std increases to 10.0 or 100.0, the outputs become more aligned with
the vanilla model, reflected by higher PSNR/SSIM scores.

Table 18: Comparision of PSNR and SSIM values for images generated without C ∼ N (0, σ2),
using only N(B,A, ∅), under varying standard deviations of the passport C, with images generated
under vanilla SD 1.5 model. Obj. 1: Cat, Obj 2: Backpack dog, Obj. 3: Ducky toy. Object
names are same as (Ruiz et al., 2023)

Ref. Metric ↑ Standard Deviation of C
0.01 0.1 1.0 10.0 100.0

Obj. 1 SSIM 0.104 0.691 0.936 0.987 0.998
PSNR 7.80 19.02 30.87 43.64 53.16

Obj. 2 SSIM 0.102 0.652 0.941 0.993 0.998
PSNR 7.91 18.51 33.15 47.24 54.21

Obj. 3 SSIM 0.115 0.651 0.959 0.992 0.998
PSNR 8.08 18.39 32.92 45.39 53.58
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J FUTURE WORK

J.1 MULTIPLE PASSPORTS AND DATASET-BASED MAPPINGS

So far, our main exposition has treated the watermark matrices C and Cp, constant passports. However,
SEAL naturally extends to a setting in which one maintains multiple passports {C1, C2, . . . , Cm}
(similarly {D1, D2, . . . Dn), each possibly tied to a distinct portion of the training set, or to a distinct
sub-task within the same model. Formally, suppose that during mini-batch updates Algorithm 1
randomly picks one passport Ci associated with (x, y). Then line 4 and 5 of Algorithm 1 becomes:

pick Ci s.t. (x, y) 7→ Ci, W ′ ← W +BCi A.

One can store a simple mapping function ϕ : (x, y) 7→ i ∈ {1, . . . ,m} to tie each batch to its specific
passport.

Distributed / Output-based Scenarios. Another angle is to use multiple passports not only at training
time but also during inference. For instance, given a family {C1, . . . , Cm}, one could selectively load
Ci to induce different behaviors or tasks in an otherwise single LoRA model. In principle, if each
Ci is entangled with (B,A), switching passports at inference changes the effective subspace. This
may be viewed as a distributed watermark approach: where each Ci can be interpreted as a unique
“key” that enables (or modifies) certain model capabilities, separate from the main training objective.
Though we do not explore this direction in detail here, it points to broader usage possibilities beyond
simply verifying ownership, such as controlled multi-task inferences and individually licensed feature
sets.

J.2 BEYOND LOW-RANK ADAPTATION: LINEAR OPERATORS

Although we focused on LoRA-style low-rank updates, the core passport idea (i.e. non-trainable
matrices entangled with trainable weights) can apply to general linear operators as well. For instance,
transformer blocks (query/key) rely on matrix multiplications (Fernandez et al., 2024), where a
constant passport could similarly be inserted. Such embedding in broader architectures echoes the
functional-layer approach and remains a promising future avenue to combine passports with various
advanced parameter-efficient strategies.
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