SEAL: ENTANGLED WHITE-BOX WATERMARKS ON LOW-RANK ADAPTATION

Anonymous authors

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028029030

031

033

034

037

040

041

042

043

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Among parameter-efficient fine-tuning (PEFT) methods, LoRA has become widely adopted due to its effectiveness and lack of additional inference costs. Its small adapter weights also make LoRA practical as intellectual property (IP) that can be trained, exchanged, and disputed. However, watermarking techniques for LoRA remain underexplored. We introduce SEAL, a white-box watermarking scheme for LoRA based on entangled dual passports. During training, nontrainable passport matrices for ownership verification are inserted between the LoRA up/down matrices without auxiliary losses and become jointly entangled with the trainable weights; after training they are factorized so that the released adapter is indistinguishable from standard LoRA. Public verification accepts a claim only when the submitted passports reconstruct the released adapter and the *fidelity gap*—the performance difference between the two submitted passports, evidencing entanglement—is near zero under predeclared thresholds that control false positives. Across Large Language Models (LLMs), Vision-Language Models (VLMs), and text-to-image synthesis, SEAL preserves task performance and shows empirical resilience to pruning, fine-tuning, structural obfuscation, and ambiguity attacks. By watermarking the LoRA weights, SEAL aligns with real-world PEFT workflows and supports practical IP claims over trained LoRA weights. We also provide a minimal compatibility check on one LoRA variant.

1 Introduction

Parameter-Efficient Fine-Tuning (PEFT), especially Low-Rank Adaptation (LoRA) (Hu et al., 2022), is widely adopted to customize large pretrained models with modest compute and storage (Zhao et al., 2024; Jang et al., 2024; Mangrulkar et al., 2022). In practice, the distributable artifact is often the *LoRA weight update* (the adapter) rather than a full checkpoint; recent reports document large numbers of publicly posted adapters on open platforms (Luo et al., 2024). Consequently, adapter weights acquire practical intellectual-property (IP) relevance in downstream sharing and disputes.

Despite extensive work on DNN watermarking (Uchida et al., 2017; Zhang et al., 2018; Darvish Rouhani et al., 2019; Fan et al., 2019; Zhang et al., 2020; Lim et al., 2022; Xu et al., 2024), most schemes either mark the *base model* (weights/activations inside the backbone) or rely on *outputs* (trigger behaviors). These settings do not directly yield a public, white-box ownership test for a *released* LoRA adapter. Approaches that use LoRA to watermark a base model address a different objective from ours, where the adapter itself is the IP under test (Feng et al., 2024).

We study adapter-level ownership verification for LoRA in a white-box, open-distribution setting: the released adapter weights are visible to both verifier and adversary, while the adversary lacks the owner's private keys (passports) and original fine-tuning data and typically seeks to preserve task utility rather than retrain from scratch. This motivates a protocol that is public, reproducible, and equipped with predeclared decision thresholds to control false positives.

Our approach, SEAL, adapts the passport idea (Fan et al., 2019; Zhang et al., 2020) to LoRA's structure and release workflow. During adaptation, we insert small *non-trainable passport matrices* between LoRA's up/down factors; standard training entangles these passports with the trainable factors without auxiliary losses. After training, a factorization folds the passport into the learned factors so that the distributed adapter is indistinguishable from standard LoRA (Figure 1). Verification follows the passport paradigm but is instantiated for adapters using two co-trained passports: we

Figure 1: Overview of SEAL. (1) Start with LoRA factors A, B and two non-trainable passports C, C_p . (2) During training, we insert a passport between B and A and alternate C and C_p across mini-batches (no auxiliary losses), so gradients flow through the passport and entangle it with A, B. (3) After training, we factorize $C = f(C_1, C_2)$ and fold C_1 into B and C_2 into A, releasing standard-looking LoRA weights $B' = BC_1$, $A' = C_2A$. The second passport C_p remains private for ownership verification.

publicly check (i) exact reconstruction of the released adapter from the claimant's submission and (ii) a small *fidelity gap* between the two submitted passports under fixed thresholds; extraction is reserved for owner-in-the-loop cases. Formal protocol and assumptions are in Section 4. Training/inference effects and gradient analysis appear in Appendix D; a qualitative comparison to prior watermarking is in Appendix C.

Empirically, across LLM/VLM instruction tuning and text-to-image synthesis, SEAL matches LoRA-level task fidelity and shows resilience to pruning/removal (Han et al., 2016), additional fine-tuning, structural obfuscation (Yan et al., 2023; Pegoraro et al., 2024), and ambiguity-style forgeries (Fan et al., 2019). Our scope is LoRA-style low-rank updates; we include a minimal compatibility check on a LoRA variant and discuss limitations.

Contributions. (1) We specify adapter-level, white-box ownership verification for LoRA under an open-distribution threat model (Section 2.3). (2) Building on passport-based watermarking, we adapt it to LoRA: non-trainable passports entangle during standard adaptation (no auxiliary losses) and are hidden by post-training factorization so the released weights remain indistinguishable from standard LoRA (Figure 1; Appendix D, C). (3) We provide a public verification procedure for adapters that combines reconstruction with a two-passport fidelity test and predeclared thresholds (Section 4; Appendix E). (4) We report evidence of fidelity and robustness across tasks and attack classes, and document scope and limitations (Section 5; Appendix H).

2 BACKGROUND AND PROBLEM SETTING

2.1 LOW-RANK ADAPTATION (LORA)

LoRA (Hu et al., 2022) assumes that task-specific updates lie in a low-rank subspace. It freezes pretrained weights $W \in \mathbb{R}^{b \times a}$ and learns two low-rank factors $B \in \mathbb{R}^{b \times r}$ and $A \in \mathbb{R}^{r \times a}$ such that

$$W' = W + \Delta W = W + BA. \tag{1}$$

Since no nonlinearity lies between B and A, the update BA can be merged into W without inference overhead. Practical variants (e.g., DoRA (Liu et al., 2024b)) modify scaling/normalization yet retain a low-rank, matmul-style update; compatibility for DoRA and similar matmul-based variants appears in Appendix F.

2.2 WHITE-BOX DNN WATERMARKING AND PASSPORTS

Prior white-box watermarking embeds secrets at different loci of a network: within weights, activations or via outputs (Uchida et al., 2017; Zhang et al., 2018; Darvish Rouhani et al., 2019; Lim et al., 2022; Kirchenbauer et al., 2024; Fernandez et al., 2023). A complementary line, passport-based watermarking, inserts a small (often linear/normalization) module whose correct key restores normal task performance, enabling ownership tests with/without special triggers (Fan et al., 2019; Zhang et al., 2020). We adopt the passport semantics but tailor it to LoRA's factorization and release workflow, aiming at a public, adapter-level test.

2.3 THREAT MODEL AND EVALUATION CRITERIA

 Setting. We consider a white-box release of the LoRA adapter (B',A'). In the Kerckhoffs's principle, adversaries know the scheme and hyperparameters but not the owner's private passports (C,C_p) nor the original fine-tuning data. The *claimant* who asserts ownership presents (B,A,C_i) for public verification. Attackers generally aim to preserve task utility rather than retraining the backbone from scratch.

Attacks considered. We group attacks by the mechanism they exploit and the goal they pursue; the decisive signal is always stated in terms of our public checks (R1/R2 below).

- 1. **Removal.** *Mechanism:* magnitude pruning or unconstrained continued fine-tuning alters the adapter to erase embedded structure (LeCun et al., 1989; Han et al., 2016; Chen et al., 2021; Guo et al., 2021). *Goal:* break the hidden link between distributed weights and passports while keeping accuracy. *Decisive signal:* (R1) fails—passport extraction is not statistically significant—or (R2) the dual-passport fidelity gap exceeds the acceptance threshold.
- 2. Obfuscation. Mechanism: function-preserving reparameterizations change the representation of the adapter without changing its input—output map (Yan et al., 2023; Pegoraro et al., 2024; Li et al., 2023a). Goal: defeat extraction or confuse verifiers with equivalent factors. Decisive signal: (R1) must still succeed—reconstruction by the claimant's (B, A, C_i) matches (B', A') within tolerance—otherwise the claim is rejected; if (R1) holds, (R2) remains decisive.
- 3. **Ambiguity.** *Mechanism:* forge keys or claims so that multiple parties appear to own the same weights (Fan et al., 2019; Zhang et al., 2020; Chen et al., 2023). *Goal:* pass verification without the owner's entangled passports. *Decisive signal:* forged pairs fail (R2) unless they reproduce the owner's co-trained entanglement.

Criteria for Public Verification. Our verifier applies two orthogonal checks: (R1) reconstruction—the claimant's parameters must reconstruct the released adapter within tolerance—and (R2) a small dual-passport fidelity gap. Thresholds (reconstruction tolerance ρ_T , fidelity gap Δ_T) and false-positive control for accuracy-type metrics (level α_T via Hoeffding inequality (Hoeffding, 1963)) are defined formally in Section 4.

2.4 Problem definition and relation to prior work

What we protect. We study ownership of the *adapter itself*. The object under test is a distributed LoRA pair (B', A'). The verifier has white-box access to these weights and must decide whether a claimant who submits (B, A, C, C_p) is the rightful owner.

How this differs from prior watermarking. Most white-box watermarking targets the *base model* and verifies via weights, activations, outputs, or passport layers inserted into the backbone (Uchida et al., 2017; Fan et al., 2019; Zhang et al., 2020; Fernandez et al., 2024). Those settings do not directly yield a public, white-box test for a released adapter. A separate line *uses LoRA as a training tool* while watermarking a different artifact (e.g., watermarking latent representations in diffusion models and employing LoRA to recover fidelity) (Feng et al., 2024). In these works the adapter is not the watermark carrier nor the IP being verified. Consequently a one-to-one comparison of verification rules is not meaningful.

Problem scope and contribution. We address LoRA-adapter ownership: given a released adapter (B', A'), provide a public white-box rule that accepts the rightful claimant and rejects forgeries. We design a passported adapter that is indistinguishable from standard LoRA at release and specify decision thresholds. This focus is complementary to black-box provenance tests and output/data watermarking, which target different artifacts and are not claimed by our results (see Appendix C).

3 SEAL: MECHANISM AND TRAINING

We follow the notation summarized in Table 6.

Algorithm 1 SEAL Training

162

174175

176

177

178

179

181

182

183

185

187

188

189 190

191 192

193

194 195

196

197

198

199

200201

202

203

204

205206

207

208

209210211

212213

214

215

```
163
          Require: Frozen W, rank r, fixed passports (C, C_p), data \mathcal{D}, epochs E
164
          Ensure: Public adapter (B', A')
165
           1: Initialize A \in \mathbb{R}^{r \times a} and B \in \mathbb{R}^{b \times r} as trainable
166
           2: for e = 1 to E do
167
                   for (x,y) \in \mathcal{D} do
           3:
168
                        Sample C_t \in \{C, C_p\}
           4:
169
                        Forward: W' \leftarrow W + BC_t A; compute task loss \mathcal{L}_T(W', x, y)
           5:
170
                        Backpropagate \nabla \mathcal{L}_T and update (B, A)
           6:
171
           7:
                   end for
           8: end for
172
           9: Factorize C = C_1C_2; set B' = BC_1, A' = C_2A
173
```

Setting. We fine-tune a frozen backbone $W \in \mathbb{R}^{b \times a}$ with LoRA (Hu et al., 2022), but insert a fixed passport between B and A so that

$$W' = W + \Delta W = W + BCA. \tag{2}$$

Two passports $\{C, C_p\}$ are fixed and alternated by mini-batch: sample $C_t \in \{C, C_p\}$, run $W + BC_tA$, and update only (B, A) via \mathcal{L}_T . At release we fold *only* C into the adapter via a deterministic factorization

$$f: \mathbb{R}^{r \times r} \to \mathbb{R}^{r \times r} \times \mathbb{R}^{r \times r}, \quad f(C) = (C_1, C_2), \ C_1 C_2 = C,$$

and publish $(B', A') = (BC_1, C_2A)$; C_p remains private.

Rationale. Alternating $\{C, C_p\}$ acts as a swap-regularizer: it makes $\mathbb{N}(B, A, C)$ and $\mathbb{N}(B, A, C_p)$ behave similarly on task T, shrinking and stabilizing the owner's dual-passport gap Δ_T . Because only C is folded via $f(C) = (C_1, C_2)$, at least one passport (namely C) must match the public adapter exactly (up to dtype tolerance), while C_p is trained to be close—supporting tolerant reconstruction and a small owner gap used by the public verifier (Section 4).

3.1 COMPATIBILITY WITH MATMUL-STYLE ADAPTERS

Many PEFT variants keep a bilinear *operation* as the adapter core. Let \star denote such an operation (e.g., standard matrix multiplication, possibly composed with fixed diagonal scalings or norm factors). If an adapter update can be written in the form

$$\Delta W = B \star A$$
 or $\Delta W = B \star \Phi_0 \star A$,

where $B \in \mathbb{R}^{b \times r}$ and $A \in \mathbb{R}^{r \times a}$ are trainable and Φ_0 is a *fixed* (non–input-dependent, non-trainable) operation, then SEAL applies verbatim by inserting a non-trainable passport during training:

$$\Delta W = B \star C \star A, \qquad C \in \mathbb{R}^{r \times r}.$$

After training, choose a decomposition $C = C_1 \star C_2$ and fold it into the public adapter as

$$B' = B \star C_1, \qquad A' = C_2 \star A,$$

so the released update is $\Delta W_{\text{pub}} = B' \star A'$ and remains indistinguishable in interface from the original variant (no inference overhead). For the canonical matmul case (\star =matrix multiplication), we use the SVD root factorization by default (Appendix F).

Example (DoRA). DoRA (Liu et al., 2024b) rescales $W + \Delta W$ by a column-norm ratio that is typically detached from gradients. Replacing ΔW by B C A leaves this outer scaling intact, because C is fixed during the forward pass; folding proceeds via $C = C_1 C_2$ as above. A concrete recipe and an empirical case study appear in Appendix F.5.

4 Public White-Box Verification

4.1 THREAT MODEL

The released adapter (B', A') is visible to verifiers and adversaries. Adversaries know the scheme but not the owner's passports or fine-tuning data, and they aim to preserve task utility rather than

retrain from scratch, mirroring open-distribution releases on model hubs (Hu et al., 2022; Luo et al., 2024). See Section 2.3 for background.

4.2 DECISION RULE

Public verification. Given task T, metric M_T , public adapter (B', A'), and a claimant's (B, A, C_a, C_b) , accept if and only if both hold:

(R1) Reconstruction. $||BC_iA - B'A'||_F \le \rho_T$ for each $C_i \in \{C_a, C_b\}$.

(R2) Dual-passport gap. $\Delta_T = |M_T(\mathbb{N}(B, A, C_a)) - M_T(\mathbb{N}(B, A, C_b))| \le \tau_T$.

Thresholds (ρ_T, τ_T) are predeclared; calibration and FPR control are below.

Notes. ρ_T reflects dtype/serialization tolerance (set ρ_T =0 under exact formats). The operator $\mathbb{N}(\cdot)$ denotes the task adapter with/without passports.

4.3 CONTROLLING FALSE POSITIVES

When M_T is an accuracy over N_T independent items, Hoeffding's inequality (Hoeffding, 1963) gives

$$\tau_T^{\text{theory}} = \sqrt{\frac{\ln(2/\alpha_T)}{2N_T}},$$
(3)

which ensures FPR $\leq \alpha_T$ under i.i.d. sampling. Operationally we use

$$\tau_T = \max \{ \tau_T^{\text{theory}}, \, \widehat{\Delta}_T^{\text{owner}} + \eta_T \},$$
(4)

where $\widehat{\Delta}_T^{\, \mathrm{owner}}$ is the owner's observed two-passport gap and η_T is a rounding margin. We label the guarantee formal when $\widehat{\Delta}_T^{\, \mathrm{owner}} \leq \tau_T^{\, \mathrm{theory}}$ and empirical-only otherwise for that model–task pair.

Ambiguity and robustness. A forger must satisfy both the reconstruction and gap conditions without co-training on the owner's data; post-hoc keys typically violate the gap at the stated τ_T , making re-training to match the owner's dual entanglement the the most plausible path Appendix E. Under a fixed full-rank factorization $(\widetilde{B}, \widetilde{A})$ of the released adapter, the implied passport is *unique* (Appendix E.4); when factors become rank-deficient due to re-factorization or obfuscation, multiple passports can realize the same product. Our public rule does not assume uniqueness and instead enforces (R1) reconstruction and (R2) a small dual-passport gap.

4.4 Example: the commonsense suite

Table 1 instantiates the public rule in Section 4.2 on the commonsense micro-average. Here M_T is accuracy, evaluated on N_T =22,419 items (total number of evaluation questions in the commonsense suite). With α_T =0.01, Equation 3 yields the theoretical cutoff $\tau_T^{\rm theory}$ =1.09 %p.

For each model we report the owner's two-passport scores $M_T(\mathbb{N}(B, A, C))$ and $M_T(\mathbb{N}(B, A, C_p))$ and their gap

$$\widehat{\Delta}_T = |M_T(\mathbb{N}(B, A, C)) - M_T(\mathbb{N}(B, A, C_p))|.$$

If $\widehat{\Delta}_T \leq \tau_T^{\mathrm{theory}}$, the claim is accepted with a *formal* guarantee FPR $\leq \alpha_T$. Otherwise we accept using the operational rule $\tau_T = \max\{\tau_T^{\mathrm{theory}}, \widehat{\Delta}_T + \eta_T\}$ and label the guarantee *empirical-only*. Training details and per-benchmark scores appear in Section 5; this example only illustrates the decision rule.

Only Mistral-7B exceeds $\tau_T^{\rm theory}$; we therefore accept it using the operational threshold and mark the guarantee as empirical-only.

Table 1: Public verification on the commonsense micro-average (M_T =accuracy, percentage points). N_T =22,419, α_T =0.01, so τ_T^{theory} =1.09.

Model	$ au_T^{ ext{theory}}$	$M_T(\mathbb{N}(\cdot,C))$	$M_T(\mathbb{N}(\cdot, C_p))$	$\widehat{\Delta}_T$	Decision
LLaMA-2-7B	1.09	82.2	82.7	0.50	pass (formal)
Mistral-7B	1.09	84.2	87.9	3.70	pass (empirical-only)
Gemma-2B	1.09	76.3	76.6	0.30	pass (formal)

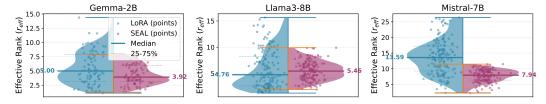


Figure 2: **Effective-rank distributions** of ΔW across layers. $r_{\text{eff}} = \exp(-\sum_i p_i \log p_i)$ with $p_i = \sigma_i^2 / \sum_i \sigma_i^2$. Split violins: LoRA (left), SEAL (right).

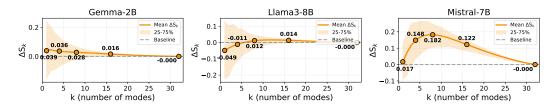


Figure 3: Cumulative-energy difference ΔS_k (SEAL-LoRA) across backbones. $S_k = \sum_{i=1}^k p_i$; curves show layer-wise mean with IQR bands. Positive values at small k indicate more top-mode concentration under SEAL.

5 EXPERIMENTS

5.1 SPECTRAL DIAGNOSTICS

Before reporting fidelity and robustness, we visualize how a fixed passport affects the learned adapter subspace. For each layer we compute the top-r singular values of ΔW and define $p_i = \sigma_i^2/\sum_j \sigma_j^2$, the effective rank $r_{\rm eff} = \exp\left(-\sum_i p_i \log p_i\right)$, and the cumulative energy $S_k = \sum_{i=1}^k p_i$. Across backbones, SEAL often shows a lower $r_{\rm eff}$ and a larger $\Delta S_k := S_k({\rm SEAL}) - S_k({\rm LoRA})$ at small k, indicating stronger concentration in early modes as depicted in Figure 2, 3. This pattern is consistent with the robustness we observe against rank-only obfuscations: when most spectral energy sits in a handful of leading directions, truncating tail modes by SVD preserves both task utility and the embedded relation needed by our public test (see Section 5.4 and Figure 5). Empirically, the same bias toward high-energy modes also helps explain why very aggressive parameter removal is required before extraction signals meaningfully degrade under pruning.

5.2 EXPERIMENTAL SETUP

We compare SEAL to standard LoRA on (i) LLM commonsense reasoning, (ii) textual and visual instruction tuning, and (iii) text-to-image synthesis. Unless noted, we keep data, loss, and optimization identical to LoRA; SEAL only inserts non-trainable passports during adaptation and factorizes them after training, with no auxiliary loss. Datasets, metrics, and hyperparameters are detailed in Appendix H. Verification follows Section 4.

Passport choice. $C \in \mathbb{R}^{r \times r}$ is any fixed, non-trainable matrix used at inference; we fold *only* C into (B', A') via $f(C) = (C_1, C_2)$ with $(B', A') = (BC_1, C_2A)$, while C_p remains private. We use two

Table 2: Commonsense Reasoning Accuracy (3 runs). Single-passport inference: only the published C is inserted at test time (C_p unused). SEAL (Ours) is our default. SEAL[†] uses a random constant passport C (sampled once at initialization from $\mathcal{N}(0,1)^{r\times r}$ and kept non-trainable). Both variants alternate $\{C, C_p\}$ during training and fold only C at release via $f(C) = (C_1, C_2)$ into (B', A') = (BC_1, C_2A) . Scores are averaged over three seeds; the last column shows mean±std.

	Method	BoolQ	PIQA	SIQA	HellaSwag	Wino.	ARC-e	ARC-c	OBQA	Avg. ↑
LLaMA-2-7B	LoRA SEAL (Ours)	73.75 72.70	82.99 85.27		86.14 90.15	85.06 85.79	86.15 87.07	73.63 74.60	85.80 85.00	$\begin{array}{c} 81.67 \pm 1.03 \\ 82.73 \pm 0.14 \end{array}$
	SEAL† (Ours)	73.19	86.31	81.95	91.21	86.69	88.55	75.51	86.80	$\textbf{83.78} \pm 0.27$
LLaMA-2-13B	LoRA SEAL (Ours) SEAL [†] (Ours)	75.57 75.34 75.67	86.98 87.41 88.63		91.82 93.33 93.95	88.53 88.42 89.29	90.08 90.68 91.72	78.78 79.61 81.46	86.73	$\begin{array}{c} 84.98 \pm 0.17 \\ 85.60 \pm 0.34 \\ \textbf{86.56} \pm 0.10 \end{array}$
LLaMA-3-8B	LoRA SEAL (Ours) SEAL [†] (Ours)		88.23		92.00 94.84 96.05	86.08 88.35 89.92	90.09 91.67 93.49	82.41 82.00 84.73	86.27	$\begin{array}{c} 85.10 \pm 1.39 \\ 85.94 \pm 0.29 \\ \textbf{88.02} \pm 0.11 \end{array}$
Gemma-2B	LoRA SEAL (Ours) SEAL [†] (Ours)		83.19 81.79 82.50		87.07 84.82 87.57	79.74 79.16 80.19	83.91 82.79 83.81	69.34 68.40 69.97	79.20	
Mistral-7B-v0.1	LoRA SEAL (Ours) SEAL [†] (Ours)	75.92 73.08 76.92	87.52	81.78 81.92 82.51	94.68 91.23 94.57	88.69 87.97 90.08	93.10 90.19 93.31	83.36 78.70 83.25	88.13	$87.07 \pm 0.27 \\ 84.84 \pm 0.44 \\ \textbf{87.85} \pm 0.02$

instantiations: SEAL (Ours) (user-chosen C, e.g., a small grayscale bitmap; see Appendix Figure 8) and SEAL[†] (a random constant C drawn once from $\mathcal{N}(0,1)^{r\times r}$ and kept frozen). The bitmap example (cropped, downsampled frame from a public video) is illustrative—any license-cleared or synthetic pattern (e.g., logo-like patch, QR-like grid, PRNG array) is valid since C is never trained or redistributed as media, only as its numeric matrix.

5.3 FIDELITY ACROSS TASKS

Commonsense reasoning. We evaluate on BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), ARCe/ARC-c (Clark et al., 2018), and OBQA (Mihaylov et al., 2018) using the combined setup of Hu et al., 2023. Backbones include LLaMA-2-7B/13B (Touvron et al., 2023), LLaMA-3-8B (AI@Meta, 2024), Gemma-2B (Team et al., 2024), and Mistral-7B-v0.1 (Jiang et al., 2023). As shown in Table 2, SEAL matches or slightly improves on LoRA within run-to-run noise.

Table 3: Instruction-tuning fidelity (higher is bet- Table 4: Text-to-Image fidelity on SD-1.5 (Dreampaca, 3 epochs). Visual: avg. accuracy over 7 subject fidelity (higher is better). VLM benchmarks on LLaVA-1.5-7B.

ter). Textual: MT-Bench on LLaMA-2-7B (Al- Booth). CLIP-T: prompt fidelity; CLIP-I/DINO:

Method	MT-Bench ↑	Visual Acc. ↑
LoRA	5.83	66.9
SEAL	5.81	63.1

Method	CLIP-T↑	CLIP-I ↑	DINO ↑
LoRA	0.20	0.80	0.68 0.67
SEAL	0.20	0.80	

Textual instruction tuning. On LLaMA-2-7B with Alpaca (Taori et al., 2023) (3 epochs), SEAL attains MT-Bench (Zheng et al., 2023) scores comparable to LoRA (Table 3), indicating that passports do not degrade instruction-following fidelity.

Visual instruction tuning. With LLaVA-1.5 (Liu et al., 2024a) we report the average over VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), VizWiz (Gurari et al., 2018), SQA (Lu et al., 2022), VQAT (Singh et al., 2019), POPE (Li et al., 2023b), and MMBench (Liu et al., 2023). SEAL is on par with LoRA (Table 3).

Text-to-image synthesis. For Stable Diffusion 1.5 (Rombach et al., 2022) with DreamBooth (Ruiz et al., 2023), SEAL maintains subject fidelity (CLIP-I, DINO) and prompt fidelity (CLIP-T) at LoRA levels (Table 4); qualitative examples are in Figure 7.

5.4 ROBUSTNESS

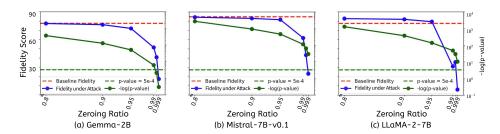


Figure 4: **Pruning attack.** X-axis: zeroing ratio of the smallest parameters in the public adapter (B',A') (L1). Left Y-axis: task fidelity (commonsense micro-average). Right Y-axis: $-\log(p\text{-value}) = -\log_{10}p$ for passport detection. We declare detection at $-\log(p\text{-value}) \geq 3.3$ (two-sided test; $\alpha = 5 \times 10^{-4}$). The watermark remains detectable until at least **99.9%** of parameters are zeroed, at which point task fidelity collapses.

Removal (pruning). We prune the public adapter (B',A') by L1 magnitude and then test both task fidelity and passport extraction. Because each key has $N \approx 10^5$ independent entries, we use a two-sided hypothesis test rather than BER and reject the null of an unrelated matrix at level $\alpha = 5 \times 10^{-4}$ —i.e., we declare detection when $-\log_{10} p \geq 3.3$. Removing the watermark requires zeroing $\geq 99.9\%$ of adapter parameters, which collapses task accuracy, while extraction remains significant as shown in Figure 4.

Table 5: Finetuning Attack. The detectability of passport on SEAL across either the same ($C_{3e} \rightarrow C_{1e}$ and $I_{3e} \rightarrow I_{1e}$) or different datasets ($C_{3e} \rightarrow I_{1e}$ and $I_{3e} \rightarrow C_{1\theta}$). Higher is better: larger -ln(p) means stronger rejection of 'extracted key is unrelated to C', i.e., more confident passport detectability. We declare detection if -log(p) ≥ 3.3 (i.e. $\alpha = 5 \times 10^{-4}$).

Tasks	Acc.	MT-Bench	-log(p-value)
C_{3e}	83.1	-	-
I_{3e}	-	5.81	-
$I_{3e} \rightarrow C_{1e}$	60.2	4.94	79.85
$egin{array}{l} I_{3e} ightarrow C_{1e} \ C_{3e} ightarrow I_{1e} \end{array}$	0.24	3.56	79.87
$C_{3e} o C_{1e}$		-	1824.9
$I_{3e} \rightarrow I_{1e}$	-	3.78	5.75

Finetuning. Starting from a public (B',A') trained for three epochs on Commonsense or Alpaca, we resume standard LoRA for one epoch on the same or the other dataset (e.g., $C_{3e} \rightarrow I_{1e}$, $I_{3e} \rightarrow C_{1e}$). Across all cases, the passport remains detectable with $N \approx 10^5$ and $-\log_{10} p \gg 3.3$ (Table 5), supporting robustness to routine post-hoc fine-tuning.

Structural obfuscation. We simulate function-preserving obfuscation by replacing (B', A') with its best rank-k truncated-SVD projection for $k \in \{31, \ldots, 1\}$ from original rank 32 (Yan et al., 2023). As indicated by our spectral diagnostics (Section 5.1), SEAL concentrates energy in early modes, so the watermark survives until k is very small—fidelity only then drops while extraction stays above threshold (Figure 5); being function-preserving, these transformations still require passing (R1).

Ambiguity. Two-passport verification rejects forged keys that were not co-trained (Fan et al., 2019). Table 1 reports owner gaps and thresholds; Figure 6 shows that counterfeit keys must achieve high similarity to the private passport (e.g., $\gamma \gtrsim 0.6$ blending with the true C_p) to keep the gap below τ_T ,

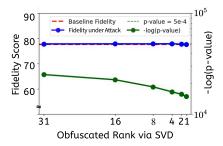


Figure 5: Structural obfuscation (Gemma-2B via SVD). Original rank is 32; we obfuscate to ranks k=31 down to 1 via best rank-k projections. Passport detection uses the same two-sided test with $N \approx 10^5$ and the $-\log(\text{p-value}) \geq 3.3$ criterion as in Figure 4.

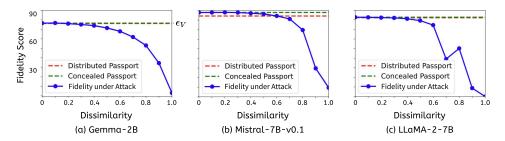


Figure 6: **Ambiguity attacks.** Fidelity $M_T(\mathbb{N}(B,A,C_t))$ on commonsense T using an inference-time passport C_t blended as $C_t = (1-\gamma)C_p + \gamma \, \widetilde{C}_{p\text{-adv}}$ (adversary's matrix). X-axis: dissimilarity γ . Verification accepts only when the *dual-passport gap* $\Delta_T = |M_T(\mathbb{N}(B,A,C)) - M_T(\mathbb{N}(B,A,C_p))|$ is below τ_T (Table 1); beyond $\gamma \gtrsim 0.6$, the gap typically exceeds τ_T and claims fail.

which is implausible without data and co-training. For LLaMA-2-7B and Gemma-2B, owner gaps lie below the Hoeffding bound at the stated α ; for Mistral-7B the gap exceeds the theoretical bound, so we mark the guarantee as *empirical-only* and list sensitivity.

6 CONCLUSION

SEAL is a white-box watermark for LoRA adapters: it inserts non-trainable passports during training and hides them by post-training factorization, so the released adapter is indistinguishable from standard LoRA. We provide an owner-agnostic public verifier (Section 4) that accepts a claim only if (R1) reconstruction and (R2) a small dual-passport gap hold under predeclared thresholds. Across LLM/VLM instruction tuning and text-to-image, SEAL matches LoRA's fidelity while resisting pruning/removal, post-hoc fine-tuning, SVD-style obfuscation, and ambiguity forgeries—non-cotrained keys typically fail the gap test. When the owner's gap satisfies $\widehat{\Delta}_T^{\text{owner}} \leq \tau_T^{\text{theory}}$, we offer a formal FPR $\leq \alpha_T$ guarantee; otherwise results are empirical-only. The mechanism extends to matmul-style variants and other bilinear operators; we release code and reference thresholds to reproduce the tests and guide task-specific calibration.

LIMITATIONS

This work targets adapter-level, white-box verification for LoRA-style PEFT. The decision rule is statistical and task-dependent: with i.i.d. verifier data and $\widehat{\Delta}_T^{\text{owner}} \leq \tau_T^{\text{theory}}$ we provide a formal FPR $\leq \alpha_T$ guarantee; otherwise thresholds are empirical-only (Section 4). Fidelity gaps vary by model, task, and rank, so per-task calibration may be needed and our coverage is representative, not exhaustive. Owner-side extraction assumes full-rank factors and is intended for owner-in-the-loop checks; recovering C from (B',A') alone is brittle and not required by the public verifier. An adversary who re-trains on similar data may reproduce the owner's dual entanglement and pass verification by design. The protocol is a reproducible test on parameters—not a legal determination.

REPRODUCIBILITY STATEMENT

We include all artifacts needed to reproduce our results.

- Code & configs. An anonymized repository (linked in the supplementary material) provides training, public verification, and attack scripts, seed-controlled runners, and YAML configs for every experiment. Upon acceptance we will open-source the repo under a permissive license.
- Models & checkpoints. We rely on official Hugging Face repositories for base models
 and third-party checkpoints; all use follows their licenses as cited in the Appendix. Our
 runners fetch these artifacts directly from their sources and reproduce adapters locally from
 the provided configs and seeds.
- 3. **Hyperparameters.** Complete settings (ranks, learning rates, batch sizes, optimizers, schedules, epochs) for every model—task pair are listed in the Appendix tables; we also include the exact thresholds used by the verifier.
- 4. **Evaluation.** Commonsense experiments follow the LLM-Adapters evaluation protocol (?). Other tasks use each benchmark's official prompts and scripts; we provide utilities for ROC and p-value computation and report N_T , α_T , and decision criteria (Section 4).
- 5. **Compute.** GPU types and approximate hours per setting are reported in the Appendix, along with scaled-down recipes to reproduce key figures under limited compute.

All figures and tables can be regenerated via a single entry-point script; required public datasets are downloaded automatically with license checks.

ETHICS STATEMENT

Watermarking in this paper is *not* cryptography: it provides statistical evidence of ownership (via public tests with stated false-positive control) rather than secrecy or hardness guarantees. Publishing the scheme may aid adversaries; we mitigate by fixing a white-box threat model, using a reproducible decision rule, and releasing code without private passports or proprietary data. Third-party verification presumes either a trusted verifier or an auditable commit-and-reveal of passport hashes recorded at training time; raw keys are revealed only if a dispute arises and must match the commitment. Our method does not address bias, safety, or legal ownership by itself and should be combined with appropriate licenses and operational controls. All experiments use public datasets under their licenses and involve no human subjects or sensitive data.

REFERENCES

- AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.
- Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 7432–7439, 2020.
- Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the International Conference on Computer Vision (ICCV)*, 2021.
- Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li, and Dawn Song. Refit: A unified watermark removal framework for deep learning systems with limited data. In *Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security*, ASIA CCS '21, pp. 321–335, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450382878. doi: 10.1145/3433210.3453079. URL https://doi.org/10.1145/3433210.3453079.

Yiming Chen, Jinyu Tian, Xiangyu Chen, and Jiantao Zhou. Effective ambiguity attack against passport-based dnn intellectual property protection schemes through fully connected layer substitution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8123–8132, 2023.

- Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv* preprint *arXiv*:1905.10044, 2019.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018.
- Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end watermarking framework for ownership protection of deep neural networks. In *Proceedings of the twenty-fourth international conference on architectural support for programming languages and operating systems*, pp. 485–497, 2019.
- Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. *arXiv preprint arXiv:2212.10650*, 2022.
- Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership verification: Embedding passports to defeat ambiguity attacks. *Advances in neural information processing systems*, 32, 2019.
- Weitao Feng, Wenbo Zhou, Jiyan He, Jie Zhang, Tianyi Wei, Guanlin Li, Tianwei Zhang, Weiming Zhang, and Nenghai Yu. Aqualora: Toward white-box protection for customized stable diffusion models via watermark lora. In *Forty-first International Conference on Machine Learning*, 2024.
- Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The stable signature: Rooting watermarks in latent diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 22466–22477, 2023.
- Pierre Fernandez, Guillaume Couairon, Teddy Furon, and Matthijs Douze. Functional invariants to watermark large transformers. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 4815–4819. IEEE, 2024.
- Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa matter: Elevating the role of image understanding in visual question answering. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.
- Shangwei Guo, Tianwei Zhang, Han Qiu, Yi Zeng, Tao Xiang, and Yang Liu. Fine-tuning is not enough: A simple yet effective watermark removal attack for dnn models. In *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, 2021.
- Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3608–3617, 2018.
- Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. *International Conference on Learning Representations*, 2016.
- Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models. In *Forty-first International Conference on Machine Learning*, 2024.
- Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American statistical association*, 58(301):13–30, 1963.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

- Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 5254–5276, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main. 319. URL https://aclanthology.org/2023.emnlp-main.319.
- Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6700–6709, 2019.
- Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for communication-efficient federated learning. *arXiv preprint arXiv:2108.06098*, 2021.
- Uijeong Jang, Jason D Lee, and Ernest K Ryu. Lora training in the ntk regime has no spurious local minima. *arXiv preprint arXiv:2402.11867*, 2024.
- Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.
- John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of watermarks for large language models. In *The Twelfth International Conference on Learning Representations*, 2024.
- Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix adaptation. In *The Twelfth International Conference on Learning Representations*, 2024.
- Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in neural information processing systems*, 2, 1989.
- Fang-Qi Li, Shi-Lin Wang, and Alan Wee-Chung Liew. Linear functionality equivalence attack against deep neural network watermarks and a defense method by neuron mapping. *IEEE Transactions on Information Forensics and Security*, 18:1963–1977, 2023a.
- Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.
- Jian Han Lim, Chee Seng Chan, Kam Woh Ng, Lixin Fan, and Qiang Yang. Protect, show, attend and tell: Empowering image captioning models with ownership protection. *Pattern Recognition*, 122: 108285, 2022.
- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2024a.
- Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. *arXiv preprint arXiv:2402.09353*, 2024b.
- Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? *arXiv preprint arXiv:2307.06281*, 2023.
- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019.

- Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
 2022.
 - Michael Luo, Justin Wong, Brandon Trabucco, Yanping Huang, Joseph E Gonzalez, Zhifeng Chen, Ruslan Salakhutdinov, and Ion Stoica. Stylus: Automatic adapter selection for diffusion models. *arXiv* preprint arXiv:2404.18928, 2024.
 - Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/peft, 2022.
 - Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. In *EMNLP*, 2018.
 - Jisu Nam, Heesu Kim, DongJae Lee, Siyoon Jin, Seungryong Kim, and Seunggyu Chang. Dreammatcher: Appearance matching self-attention for semantically-consistent text-to-image personalization, 2024.
 - Alessandro Pegoraro, Carlotta Segna, Kavita Kumari, and Ahmad-Reza Sadeghi. Deepeclipse: How to break white-box dnn-watermarking schemes. *arXiv preprint arXiv:2403.03590*, 2024.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/radford21a.html.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.
 - Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22500–22510, 2023.
 - Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
 - Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.
 - Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.
 - Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.
 - Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.
 - Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

- Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin'ichi Satoh. Embedding watermarks into deep neural networks. In *Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval*, ICMR '17, pp. 269–277, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450347013. doi: 10.1145/3078971.3078974. URL https://doi.org/10.1145/3078971.3078974.
- Hengyuan Xu, Liyao Xiang, Xingjun Ma, Borui Yang, and Baochun Li. Hufu: A modality-agnositc watermarking system for pre-trained transformers via permutation equivariance. *arXiv* preprint *arXiv*:2403.05842, 2024.
- Yifan Yan, Xudong Pan, Mi Zhang, and Min Yang. Rethinking white-box watermarks on deep learning models under neural structural obfuscation. In *32nd USENIX Security Symposium* (*USENIX Security 23*), pp. 2347–2364, 2023.
- Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard BW Yang, Giyeong Oh, and Yanmin Gong. Navigating text-to-image customization: From lycoris fine-tuning to model evaluation. In *The Twelfth International Conference on Learning Representations*, 2023.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.
- Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and Ian Molloy. Protecting intellectual property of deep neural networks with watermarking. In *Proceedings* of the 2018 on Asia conference on computer and communications security, pp. 159–172, 2018.
- Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Gang Hua, and Nenghai Yu. Passport-aware normalization for deep model protection. *Advances in Neural Information Processing Systems*, 33: 22619–22628, 2020.
- Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient low-rank adaptation for large language models fine-tuning. *arXiv preprint arXiv:2308.03303*, 2023a.
- Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *The Eleventh International Conference on Learning Representations*, 2023b.
- Justin Zhao, Timothy Wang, Wael Abid, Geoffrey Angus, Arnav Garg, Jeffery Kinnison, Alex Sherstinsky, Piero Molino, Travis Addair, and Devvret Rishi. Lora land: 310 fine-tuned llms that rival gpt-4, a technical report. *arXiv preprint arXiv:2405.00732*, 2024.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

A USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only as general-purpose assist tools:

- 1. **Writing aid.** Grammar/style checking, clarity edits, and minor LaTeX fixes; drafting boilerplate for tables/figures.
- 2. **Engineering aid.** Boilerplate code for data loaders, evaluation runners, and plotting scripts; all outputs were reviewed and tested by the authors.
- 3. **Explicit non-usage.** LLMs were *not* used to design the method or ideas, to plan/run experiments or tune hyperparameters, or to produce/alter quantitative results.
- 4. **Accountability.** All generated content was verified by the authors; prompts and model names are listed in the anonymized code package.
- 5. **No hidden instructions.** We do not embed hidden instructions, prompts, canary text, or promptinjection content in the paper, appendix, or supplementary materials; all guidance for reviewers and tools is presented visibly.

B NOTATION

Table 6: Notation for SEAL. Key symbols and their definitions.

Symbol	Description
$W \in \mathbb{R}^{b \times a}$	Pretrained backbone (frozen); LoRA/SEAL apply an adaptation on top.
a,b,r	Dimensions; $r \ll \min\{a, b\}$.
$B \in \mathbb{R}^{b \times r}, \ A \in \mathbb{R}^{r \times a}$	LoRA's trainable <i>up/down</i> factors.
$C, C_p \in \mathbb{R}^{r \times r}$	SEAL passports (fixed, non-trainable). C is folded into the public adapter; C_p remains private for verification.
(C_a,C_b)	Passports submitted by a <i>claimant</i> during public verification (owner: typically (C, C_p)).
C_t	Runtime passport used at inference/verification (e.g., ${\cal C}$ for single-passport inference).
$f: C \mapsto (C_1, C_2)$	Deterministic factorization with $C_1C_2 = C$ (e.g., f_{svd}). Publish $(B', A') = (BC_1, C_2A)$.
B',A'	Public LoRA adapter after folding C via f ; same shapes as B , A .
ΔW	Weight offset. Standard LoRA: $\Delta W = BA$; SEAL: $\Delta W = BCA$.
$\mathbb{N}(\cdot)$	Adapter operator. Examples: $\mathbb{N}(B, A)$ (LoRA), $\mathbb{N}(B, A, C_t)$ (SEAL with passport C_t).
T	Host task (e.g., instruction following, QA).
$M_T(\cdot)$	Task metric (e.g., accuracy) used for verification and reporting.
N_T	Number of i.i.d. items for M_T (used in theoretical cutoff).
Δ_T	Dual-passport gap: $ M_T(\mathbb{N}(B, A, C_a)) - M_T(\mathbb{N}(B, A, C_b)) $.
$ ho_T$	Reconstruction tolerance for (R1): $ BC_iA - B'A' _F \le \rho_T$.
$ au_T, \; au_T^{ ext{theory}}$	(R2) gap cutoff; theoretical bound from Hoeffding and the operational threshold used in practice.
$lpha_T$	Target false-positive rate for accuracy-type metrics (used to set τ_T^{ory}).
$-\log_{10} p$	Detection statistic for extraction tests; we declare detection at $-\log_{10} p \ge -\log_{10} \alpha$ (e.g., 3.3 for $\alpha = 5 \times 10^{-4}$).
$\widetilde{B}, \widetilde{A}, \widetilde{C}; \ \widetilde{C}_{p ext{-adv}}$	Adversarial refactorization of (B',A') and a forged passport used in ambiguity attacks.

Table 7: Qualitative Comparison with Existing DNN Watermarking Methods. Unlike prior approaches that often introduce additional trainable layers and explicit regularization losses, our method (SEAL) natively integrates into LoRA without extra overhead. BN = batch normalization and GN = group normalization. ♣: Test error, ★: Classification accuracy on AlexNet with CIFAR-100, ♦: FID score. ♠: Accuracy on commonsense reasoning tasks.

Method	Uchida et al.	Fan et al.	Feng et al.	SEAL (Ours)
Target Architecture	Convolutional Layer	Normalization Layer	U-Net	LoRA
Training Overhead	Regularizer	Regularizer	Latent watermark	Constant matrix
Inference Overhead	None	+BN/GN layer	+Secret Enc./Dec.	None
Extra Loss Required?	Yes	Yes	Yes	No
Performance Drop	$\Delta \approx 0.5\%$	$\Delta \approx 1.5\%$	$\Delta \approx 2.6\%^{\bullet}$	$\Delta pprox 0\%$
Attack Resistance	Pruning Finetune	Pruning / Finetune Ambiguity	Pruning Finetune	Pruning / Finetune Ambiguity / Obfuscation

C COMPARISON WITH OTHER DNN WATERMARKING SCHEME

Table 7 qualitatively contrasts four representative DNN watermarking approaches (Uchida et al., 2017; Fan et al., 2019; Feng et al., 2024), and our proposed SEAL. We compare them across multiple dimensions: the targeted network layer, overhead at training/inference time, whether additional loss terms are required, the typical performance drop, and the supported attack resistances. We briefly summarize each row below:

- Target Architecture. Each scheme embeds watermarks or passports into different architecture components: convolution layers (Uchida et al., 2017), normalization layers (Fan et al., 2019), U-Net blocks (Feng et al., 2024), and LoRA blocks (SEAL, ours). Our approach focuses on LoRA, a lightweight adapter mechanism.
- Training Overhead. Methods like (Uchida et al., 2017; Fan et al., 2019) use an explicit regularizer to embed watermarks, while (Feng et al., 2024) attaches latent-watermark modules during training. In contrast, SEAL entangles a constant matrix with LoRA's low-rank modules, introducing minimal overhead at training time.
- **Inference Overhead.** Despite some methods adding new layers or requiring a secret encoder/decoder at inference, SEAL has no additional components during inference. Once merged, our constant matrix seamlessly integrates into the LoRA parameters.
- Extra Loss Required? Most existing watermarking approaches rely on an additional loss term for embedding or regularizing. Our scheme needs *no* extra loss, as the constant matrix naturally entangles with LoRA blocks during the normal training objective.
- Performance Drop. We list the reported performance degradation Δ under each approach, measured by various metrics: (♣) test error, (★) classification accuracy drop, (♠) FID score changes, and (♠) commonsense reasoning tasks. Our SEAL achieves near-zero (Δ ≈ 0%) degradation.
- Attack Resistance. We indicate which attacks each method defends against attacks (e.g. pruning, fine-tuning, ambiguity, or obfuscation attack). Our SEAL covers a broader range of threats in a white-box setting, including pruning, fine-tuning, obfuscation, and ambiguity.

Our approach stands out for its simpler training pipeline (*no* explicit regularizer), near zero inference overhead, and broader attack coverage, all while incurring practically zero performance drop.

D TRAINING PROCESS OF SEAL

D.1 FORWARD PATH

In SEAL, the forward path produces the output W' by adding a learnable offset ΔW on top of the base weights W:

$$W' = W + \Delta W = W + BCA. \tag{5}$$

Here, B and A are trainable matrices, while C is a fixed *passport* matrix that carries the watermark. Unlike traditional LoRA layers that use $\Delta W = BA$ alone, SEAL inserts C between B and A. This additional matrix:

- Forces the resulting offset ΔW to pass through an extra linear transformation, potentially mixing or reorienting the learned directions.
- Ties the final weight update ΔW to the presence of C; removing or altering C would disrupt ΔW and hence the model's functionality.

If C were diagonal, it would merely scale each dimension independently, which can be easier to isolate or undo. However, when C is a full (non-diagonal) matrix, the learned offset ΔW may exhibit more complex structures, as the multiplication by C intermixes channels or dimensions.

D.2 BACKWARD PATH

The backward path computes gradients of the loss function ϕ with respect to A and B, revealing how C influences the updates. Let

$$\Delta := BCA \quad \text{and} \quad \Phi := \phi(\Delta x),$$
 (6)

where Δx represents applying Δ to some input x. Then, by the chain rule,

$$\frac{\partial \Phi}{\partial A} = (BC)^T \frac{\partial \phi}{\partial \Delta} = C^T B^T \frac{\partial \phi}{\partial \Delta},\tag{7}$$

$$\frac{\partial \Phi}{\partial B} = \frac{\partial \phi}{\partial \Delta} (CA)^T = \frac{\partial \phi}{\partial \Delta} A^T C^T. \tag{8}$$

These expressions highlight two key points:

- (1) Transformation of Gradients. Each gradient, ∇_A and ∇_B , is multiplied (from the left or right) by C^T . If C were diagonal, this would reduce to element-wise scaling of the gradient, which is relatively simple to reverse or interpret. In contrast, a *full* C applies a more general linear transformation—potentially a rotation or mixing—to the gradient directions.
- (2) Entanglement of Learnable Parameters. Because C is fixed but non-trivial, both B and A are continually updated in a manner dependent on C. Over many gradient steps, $\Delta W = BCA$ becomes entangled across multiple dimensions; single-direction modifications in B or A cannot easily isolate the watermark without affecting other directions.

E On Forging Multiple Passports from a Single Factorization

This section clarifies why an adversary *cannot* simply factorize the released LoRA weights (B',A') into some $(\widetilde{B},\widetilde{C},\widetilde{A})$ and then create an additional *passport* $\widetilde{C}_{p\text{-adv}}$ in order to circumvent our multipassport verification. We also reiterate that SEAL is intentionally indistinguishable from a standard LoRA, so an attacker generally cannot even discern that SEAL was used.

E.1 Indistinguishability from Standard Lora

By design, the publicly distributed weights are simply $B' \in \mathbb{R}^{b \times r}$ and $A' \in \mathbb{R}^{r \times a}$, analogous to standard LoRA. No additional matrix parameters (or suspicious metadata) are visible. Hence, without insider knowledge, an attacker cannot tell *a priori* if (B', A') derives from SEAL or a conventional LoRA finetuning. This alone imposes a significant hurdle:

Attacker must first discover (or guess) that SEAL was used.

Only then might they attempt forging hidden passports.

E.2 ATTEMPTING A SINGLE FACTORIZATION FOR TWO PASSPORTS

Assume, hypothetically, that an attacker somehow knows a given (B', A') came from SEAL. They might try a factorization of the form:

$$(B', A') \longrightarrow (\widetilde{B}, \widetilde{C}, \widetilde{A}),$$

so that $\widetilde{B}\widetilde{C}\widetilde{A} = B'A'$. Then they could designate \widetilde{C} as a *forged* version of the original C.

Creating a Second Passport. Furthermore, to break multi-passport verification (see Section 4), the attacker would need *another* passport, $\widetilde{C}_{p\text{-adv}}$, that also yields near-identical fidelity scores:

$$M_T(\mathbb{N}(\widetilde{B},\widetilde{A},\widetilde{C})) \ \approx \ M_T(\mathbb{N}(\widetilde{B},\widetilde{A},\widetilde{C}_{p\text{-adv}})) \quad \text{(for all relevant data for task, T)}.$$

However, this requires that \widetilde{B} , \widetilde{A} be *simultaneously* entangled with *two distinct* passports, which is nontrivial for a single factorization.

E.3 WHY A SINGLE FACTORIZATION CANNOT PRODUCE TWO ENTANGLED PASSPORTS

- Concurrent Entanglement is Required. In SEAL, B and A are co-trained (entangled) with both C and C_p at the same time during finetuning. This ensures that, for any batch, either C or C_p is used, such that B, A adapt to both passports. Merely performing a post-hoc factorization on (B', A') does not replicate this simultaneous learning process.
- One Factorization Yields One Mapping. A single factorization typically captures one equivalence, e.g. \widetilde{C} . Generating an additional $\widetilde{C}_{p\text{-adv}}$ that also achieves the same function (or fidelity) using the same $\widetilde{B}, \widetilde{A}$ is a significantly more constrained problem. In practice, an attacker would need to re-finetune $(\widetilde{B}, \widetilde{A})$ twice, once for each passport, effectively mimicking the original training—but without knowledge of the original dataset \mathcal{D} .
- Costly and Uncertain Outcome. Even if the attacker invests major computational resources, re-training two passports from scratch is as expensive as (or more expensive than) training a brand-new LoRA model. Moreover, success is not guaranteed, since the attacker must ensure $\widetilde{C}_{p\text{-adv}} \neq \widetilde{C}$ but still replicates near-identical behavior on the entire dataset, all while not knowing the original dataset \mathcal{D} or training schedule.

E.4 Uniqueness of the Passport Under Full-Rank Factors

Assumptions. The attacker fixes rank-r matrices $\widetilde{B} \in \mathbb{R}^{b \times r}$ and $\widetilde{A} \in \mathbb{R}^{r \times a}$ with $\mathrm{rank}(\widetilde{B}) = \mathrm{rank}(\widetilde{A}) = r$.

Claim (full-rank uniqueness). If two passports $\widetilde{C}, \widetilde{C}_{p\text{-adv}} \in \mathbb{R}^{r \times r}$ satisfy $\widetilde{B} \ \widetilde{C} \ \widetilde{A} = \widetilde{B} \ \widetilde{C}_{p\text{-adv}} \ \widetilde{A} = B'A'$, then $\widetilde{C} = \widetilde{C}_{p\text{-adv}}$.

Proof. Since \widetilde{B} has full column rank, there exists a left inverse $L \in \mathbb{R}^{r \times b}$ with $L\widetilde{B} = I_r$. Since \widetilde{A} has full row rank, there exists a right inverse $R \in \mathbb{R}^{a \times r}$ with $\widetilde{A}R = I_r$. Subtracting the two equalities and multiplying on the left/right gives

$$L\,\widetilde{B}\,(\widetilde{C}-\widetilde{C}_{p\text{-adv}})\,\widetilde{A}\,R=I_r\,(\widetilde{C}-\widetilde{C}_{p\text{-adv}})\,I_r=\widetilde{C}-\widetilde{C}_{p\text{-adv}}=\mathbf{0}_{r\times r}.$$

Hence
$$\widetilde{C} = \widetilde{C}_{p\text{-adv}}.$$

Remark (rank-deficient and re-factorization). If $\operatorname{rank}(\widetilde{B}) < r$ or $\operatorname{rank}(\widetilde{A}) < r$, uniqueness fails: there exist nonzero X with $\widetilde{B}X\widetilde{A} = \mathbf{0}_{b\times a}$. For example, letting r > s, take $\widetilde{B} = \begin{bmatrix} I_s \\ \mathbf{0} \end{bmatrix}$, $\widetilde{A} = \begin{bmatrix} I_s & \mathbf{0} \end{bmatrix}$,

and any X whose top-left $s \times s$ block is $\mathbf{0}$; then $\widetilde{B}(\widetilde{C} + X)\widetilde{A} = \widetilde{B}\widetilde{C}\widetilde{A}$. Thus many passports can realize the same product when factors lose rank (e.g., via truncation/obfuscation).

Remark on rank-deficient factorizations. If \widetilde{B} or \widetilde{A} has rank < r, then infinitely many \widetilde{C} can satisfy \widetilde{B} \widetilde{C} $\widetilde{A} = B'A'$. However, such rank-deficient choices almost always degrade the model's fidelity (losing degrees of freedom), thus failing to preserve the same performance as (B', A'). Consequently, attackers seeking to maintain *full utility* have no incentive to choose rank-deficient \widetilde{B} , \widetilde{A} . Therefore, we assume $\operatorname{rank}(\widetilde{B}) = \operatorname{rank}(\widetilde{A}) = r$ to ensure that (B'A') is matched faithfully.

E.5 NO PRACTICAL PAYOFF FOR SUCH AN ATTACK

- 1. Attackers Typically Lack Data. To even begin constructing $(\widetilde{C}, \widetilde{C}_{p\text{-adv}})$, attackers must have *access* to the original training data (or certain proportion of dataset with similar distribution) *and* be certain SEAL was used. Both are high barriers. Training dataset is not a part of SEAL, and is mostly proprietary. It does not violate Kerckhoff's principal.
- Equivalent to Costly Re-Training. Producing two passports that match all fidelity checks essentially replicates the original multi-passport entanglement from scratch. This yields no distinct advantage over simply training a new LoRA.
- 3. Cannot Disprove Legitimate Ownership. Even if they succeed in forging $\widetilde{C}, \widetilde{C}_{p\text{-adv}}$, the legitimate owner's original pair (C, C_p) still correctly verifies, preserving the rightful ownership claim.

E.6 CONCLUSION

In summary, forging multiple passports from a single factorization of (B',A') is infeasible because SEAL's multi-passport structure relies on *concurrent* entanglement of B,A with *both* passports C and C_p during training. A single post-hoc factorization can at best replicate *one* equivalent mapping, but not *two* functionally interchangeable mappings without a re-finetuning process that is as expensive and uncertain as building a new model. Furthermore, since SEAL weights are indistinguishable from standard LoRA, the attacker generally cannot even detect the scheme in the first place. Therefore, this approach does not offer a viable pathway to break or circumvent SEAL's multi-passport verification procedure.

F EXTENSIONS TO MATMUL-BASED LORA VARIANTS

Beyond the canonical LoRA (Hu et al., 2022) formulation, numerous follow-up works propose modifications and enhancements while still employing matrix multiplication (matmul) as the underlying low-rank adaptation operator. In this section, we illustrate how SEAL is compatible or can be adapted to these matmul-based variants. Although we do not exhaustively enumerate every LoRA-derived approach, the general principle remains: if the adaptation primarily uses matrix multiplication (possibly with additional diagonal, scaling, or regularization terms), then SEAL can often be inserted by embedding a non-trainable passport C between the up and down blocks.

F.1 LORA-FA (ZHANG ET AL., 2023A)

LoRA-FA (LoRA with frozen down blocks) modifies LoRA by keeping the *down* block frozen during training, while only the *up* block is trained. Structurally, however, it does not alter the fundamental matmul operator. Consequently, integrating SEAL follows the same procedure as standard LoRA: one can embed the passport C into the product B C A without requiring any special adjustments. The difference in training rules (i.e. freezing A) does not affect how C is placed or how it is decomposed into (C_1, C_2) for final public release.

F.2 LORA+ (HAYOU ET AL., 2024)

LoRA+ investigates the training dynamics of LoRA's up(B) and down(A) blocks. In particular, it emphasizes the disparity in gradient magnitudes and proposes using different learning rates:

$$A \leftarrow A - \eta G_A, \quad B \leftarrow B - \lambda \eta G_B,$$

where $\lambda \gg 1$ is a scale factor, η is the base learning rate, and G_A, G_B are the respective gradients. LoRA+ does *not* alter the structural operator (still matrix multiplication). Therefore, SEAL can be

employed by introducing $C \in \mathbb{R}^{r \times r}$ between B and A, yielding $\Delta W = B C A$. The difference in gradient scaling does not impact the usage of a non-trainable passport matrix C.

F.3 VERA (KOPICZKO ET AL., 2024)

VeRA introduces two diagonal matrices, Λ_b and Λ_d , to scale different parts of the low-rank factors:

$$\Delta W = \Lambda_b B \Lambda_d A,$$

where B,A may be random, frozen, shared across layers and the diagonal elements in Λ_b,Λ_d are trainable. Despite these diagonal scalings, the core operator remains matrix multiplication. Hence, embedding a passport C is still feasible. By leveraging the commutative property of diagonal matrices and C (assuming C commutes with Λ_d in the sense that one can re-factor C into $C_1\Lambda_dC_2$ or Λ_dC), SEAL can be inserted:

$\Delta W = \Lambda_b (B C_1) \Lambda_d (C_2 A),$

which is functionally identical to $\Lambda_b B \Lambda_d A$ except for the hidden passport $C = C_1 C_2$. Implementing SEAL in VeRA may require converting the final trained weights back into a standard (B', A') form plus a diagonal scaling term, but the fundamental principle is straightforward.

F.4 ADALORA (ZHANG ET AL., 2023B)

AdaLoRA applies a dynamic rank-allocating approach inspired by SVD. It factorizes the weight update into:

$$\Delta W = P \Lambda Q$$

where Λ is a diagonal matrix, and P,Q are regularized to maintain near-orthogonality. Since diagonal matrices commute under multiplication (up to a re-factorization), one can embed a passport C by decomposing it $(f(C) \to (C_1, C_2))$. In essence,

$$\Delta W = P C_1 \Lambda C_2 Q = P' \Lambda Q',$$

where $P' = PC_1$ and $Q' = C_2Q$. This preserves the rank-r structure and does not disrupt AdaLoRA's optimization logic. Regularization terms that enforce $P'^TP' \approx I$ and $Q'Q'^T \approx I$ remain valid, though one may incorporate C_1, C_2 into the initialization or adapt them carefully so as not to degrade the orthogonality constraints.

F.5 DORA (LIU ET AL., 2024B)

DoRA modifies the final LoRA update using a column-wise norm factor:

$$W' \ = \ \frac{\|W\|_c}{\|W + \Delta W\|_c} \, \big(W + \Delta W\big),$$

where $\|\cdot\|_c$ computes column-wise norms and the ratio is (by design) often detached from gradients to reduce memory overhead. Replacing ΔW with B C A in DoRA does not alter the external gradient manipulation logic, since C is non-trainable. Thus,

$$W' \; = \; \frac{\|W\|_c}{\|\,W + B\,C\,A\,\|_c} \, \big(W + B\,C\,A\big)$$

remains valid. The presence of ${\cal C}$ does not interfere with DoRA's approach to scaling or norm-based constraints.

F.6 INTEGRATING WITH DORA

Thanks to its flexible framework, SEAL can easily be applied to a wide variety of LoRA variants. In Table 8, we use DoRA (Liu et al., 2024b) as a case study to demonstrate that SEAL can seamlessly integrate with diverse LoRA-based methods, as exemplified by SEAL+DoRA. We measure wall time on four RTX 3090 GPUs. DoRA requires magnitude and direction computations, while SEAL's passport training also adds overhead. Still, SEAL+DoRA achieves near-DoRA accuracy.

Table 8: Commonsense Reasoning on Llama-2-7B for LoRA, DoRA, SEAL. SEAL+DoRA is a combined approach. Hyperparameters in Table 16

Method	Wall Time (h)	Avg.
LoRA	12.0	81.67 ±1.03
DoRA	18.5	81.98 ± 0.26
SEAL	19.6	83.78 ± 0.27
SEAL + DoRA	27.8	81.88 ± 1.08

F.7 VARIANTS WITH NON-MULTIPLICATIVE OPERATIONS

All of the above variants preserve the core LoRA assumption of a matrix multiplication operator for the rank-r adaptation. However, certain approaches introduce non-multiplicative adaptations (e.g., Hadamard product, Kronecker product, or other specialized transforms). In the following section, for these cases, which discuss how SEAL can be generalized to any bilinear or multilinear operator \star .

G EXTENSIONS TO GENERALIZED LOW-RANK OPERATORS

In the main text, we considered a standard LoRA (Hu et al., 2022) that uses a matrix multiplication operator:

$$\Delta W = B C A$$
,

where $B \in \mathbb{R}^{b \times r}$, $C \in \mathbb{R}^{r \times r}$, and $A \in \mathbb{R}^{r \times a}$. Recent work has explored alternative low-rank adaptation mechanisms beyond simple matmul, such as Kronecker product-based methods (Edalati et al., 2022; Yeh et al., 2023) or even elementwise (Hadamard) product (Hyeon-Woo et al., 2021) forms. Our approach can be extended in a straightforward manner to these generalized operators, which we denote as \star .

G.1 GENERAL OPERATOR *

Let \star be any bilinear or multilinear operator used for low-rank adaptation.¹ We can then write the trainable adaptation layer as

$$\Delta W = B \star C \star A$$
,

where B,A are the trainable low-rank parameters, and C is the non-trainable passport in SEAL. During training, B and A are optimized in conjunction with C held fixed (just as in the matrix multiplication case).

Decomposition Function for Operator \star . To *distribute* C into (B, A) after training, we require a *decomposition function* $f: C \mapsto (C_1, C_2)$ such that

$$C = C_1 \star C_2$$
.

For example, under the Kronecker product \otimes , one could define f(C) to split C into smaller block partitions, or use an SVD-like factorization in an appropriate transformed space. Under the Hadamard product, f(C) could involve elementwise roots or other transformations.

Once C_1 and C_2 are obtained, we apply:

$$B' = B \star C_1 \quad , \quad A' = C_2 \star A,$$

so that

$$B' \star A' = (B \star C_1) \star (C_2 \star A) = B \star (C_1 \star C_2) \star A = B \star C \star A.$$

Hence, the final distributed weights (B', A') for public remain *functionally equivalent* to using B, A, C.

¹Here, bilinear means $(X \star Y)$ is linear in both X and Y when one is held fixed, e.g. standard matrix multiplication, Kronecker product, or Hadamard product.

Table 9: Hyperparameter configurations of SEAL and LoRA for Gemma-2B, Mistral-7B-v0.1, LLaMA2-7B/13B, and LLaMA3-8B on the commonsense reasoning. All experiments are done with 4x A100 80GB (for LLaMA-2-13B) and 4x RTX 3090 (for the other models) with approximately 15 hours.

Models	Gemr	na-2B	Mistral	-7B-v0.1	LLaM	LLaMA-2-7B		LLaMA-2-13B		A-3-8B
Method	LoRA	SEAL	LoRA	SEAL	LoRA	SEAL	LoRA	SEAL	LoRA	SEAL
r					32	2				
alpha					3′	2				
Dropout					0.0)5				
LR	2e-4	2e-5	2e-5	2e-5	2e-4	2e-5	2e-4	2e-5	2e-4	2e-5
Optimizer			A	AdamW L	oshchilo	v & Hut	ter (2019	9)		
LR scheduler					Lin	ear				
Weight Decay		0								
Warmup Steps		100								
Total Batch size		16								
Epoch	3									
Target Modules				Query Ke	y Value	UpProj I	DownPro	oj		

G.2 IMPLICATIONS AND FUTURE DIRECTIONS

- Broader Applicability. By permitting * to be any bilinear or multilinear operator (Kronecker, Hadamard, etc.), SEAL naturally extends beyond the canonical matrix multiplication used in most LoRA implementations. This flexibility can be valuable for advanced parameter-efficient tuning methods (Edalati et al., 2022; Hyeon-Woo et al., 2021; Yeh et al., 2023).
- Same Security Guarantees. The central watermarking principle (embedding a non-trainable passport C into the adaptation) does not change. An adversary attempting to re-factor B'*\(\pi A'\) to recover C faces the same challenges described in the main text and Appendix E—non-identifiability, cost of reconstruction, and multi-passport verification barriers.
- **Potential Operator-Specific Designs.** Certain operators (e.g., Kronecker product) may admit additional constraints or factorization strategies that could be exploited for improved stealth or efficiency. Investigating these is an interesting direction for future work.

In summary, SEAL can be generalized to other operators \star by treating C as a non-trainable factor and defining a suitable decomposition function f(C) such that $C = C_1 \star C_2$. This allows us to hide the passport just as in the matrix multiplication case, thereby preserving the main SEAL pipeline for more complex LoRA variants.

H TRAINING DETAILS

H.1 COMMONSENSE REASONING TASKS

The hyperparameters used for these evaluations are listed in Table 16.

H.2 TEXTUAL INSTRUCTION TUNING

We conducted textual instruction tuning using Alpaca dataset (Taori et al., 2023) on LLaMA-2-7B (Touvron et al., 2023), trained for 3 epochs. The hyperparameters used for this process are detailed in Table 10.

H.3 VISUAL INSTRUCTION TUNING

We compared the fidelity of SEAL, LoRA, and FT on the visual instruction tuning tasks with LLaVA-1.5-7B (Liu et al., 2024a). To ensure a fair comparison, we used the same original model provided by

Table 10: Hyperparameter configurations of SEAL and LoRA for Instruction Tuning. All experiments are done with 1x A100 80GB for approximately 2 hours. All w/o LM HEAD are Query, Key, Value, Out, UpProj, DownProj, GateProj.

Model	LLal	MA-2-7B
Method	LoRA	SEAL
r		32
alpha		32
Dropout		0.0
LR		2e-5
LR scheduler	C	Cosine
Optimizer	A	damW
Weight Decay		0
Total Batch size		8
Epoch		3
Target Modules	All w/o	LM HEAD

Table 11: Performance comparison of different methods across seven visual instruction tuning benchmarks

Method	# Params (%)	VQAv2	GQA	VisWiz	SQA	VQAT	POPE	MMBench	Avg
FT	100	78.5	61.9	50.0	66.8	58.2	85.9	64.3	66.5
LoRA	4.61	79.1	62.9	47.8	68.4	58.2	86.4	66.1	66.9
SEAL	4.61	75.4	58.3	41.6	66.9	52.9	86.0	60.5	63.1

Table 12: Hyperparameters for visual instruction tuning. All experiments were performed with 4x A100 80GB with approximately 24 hours.

Model	LLaVA-1.5-7B
Method	LoRA SEAL
r	128
alpha	128
LR	2e-4 2e-5
LR scheduler	Linear
Optimizer	AdamW
Weight Decay	0
Warmup Ratio	0.03
Total Batch size	64

(Liu et al., 2024a) uses the same configuration as the LoRA setup with the same training dataset. We adhere to (Liu et al., 2024a) setting to filter the training data and design the tuning prompt format.

H.4 TEXT-TO-IMAGE SYNTHESIS

The DreamBooth dataset (Ruiz et al., 2023) encompasses 30 distinct subjects from 15 different classes, featuring a diverse array of unique objects and live subjects, including items such as backpacks and vases, as well as pets like cats and dogs. Each of the subjects contains 4-6 images. These subjects are categorized into two primary groups: inanimate objects and live subjects/pets. Of the 30 subjects, 21 are dedicated to objects, while the remaining 9 represent live subjects/pets.

For subject fidelity, following (Ruiz et al., 2023), we use CLIP-I, DINO. CLIP-I, an image-text similarity metric, compares the CLIP (Radford et al., 2021) visual features of the generated images with those of the same subject images. DINO (Caron et al., 2021), trained in a self-supervised manner to distinguish different images, is suitable for comparing the visual attributes of the same

Table 13: DreamBooth text prompts used for evaluation of inanimate objects and live subjects.

Prompts for Non-Live Objects	Prompts for Live Subjects
a {} in the jungle	a {} in the jungle
a {} in the snow	a {} in the snow
a {} on the beach	a {} on the beach
a {} on a cobblestone street	a {} on a cobblestone street
a {} on top of pink fabric	a {} on top of pink fabric
a {} on top of a wooden floor	a {} on top of a wooden floor
a {} with a city in the background	a {} with a city in the background
a {} with a mountain in the background	a {} with a mountain in the background
a {} with a blue house in the background	a {} with a blue house in the background
a {} on top of a purple rug in a forest	a {} on top of a purple rug in a forest
a {} with a wheat field in the background	a {} wearing a red hat
a {} with a tree and autumn leaves in the background	a {} wearing a santa hat
a {} with the Eiffel Tower in the background	a {} wearing a rainbow scarf
a {} floating on top of water	a {} wearing a black top hat and a monocle
a {} floating in an ocean of milk	a {} in a chef outfit
a {} on top of green grass with sunflowers around it	a {} in a firefighter outfit
a {} on top of a mirror	a {} in a police outfit
a {} on top of the sidewalk in a crowded street	a {} wearing pink glasses
a {} on top of a dirt road	a {} wearing a yellow shirt
a {} on top of a white rug	a {} in a purple wizard outfit
a red {}	a red {}
a purple {}	a purple {}
a shiny {}	a shiny {}
a wet {}	a wet {}
a cube shaped {}	a cube shaped {}

object generated by models trained with different methods. For prompt fidelity, the image-text similarity metric CLIP-T compares the CLIP features of the generated images and the corresponding text prompts without placeholders, as mentioned in (Ruiz et al., 2023; Nam et al., 2024). For the evaluation, we generated four images for each of the 30 subjects and 25 prompts, resulting in a total of 3,000 images. The prompts used for this evaluation are identical to those originally used in (Ruiz et al., 2023) to ensure consistency and comparability across models. These prompts are designed to evaluate subject fidelity and prompt fidelity across diverse scenarios, as detailed in Table 13.

Figure 7 visually compares LoRA and SEAL on representative subjects from the DreamBooth dataset. The top row shows example reference images for each subject, the middle row shows images generated by LoRA, and the bottom row shows images from our SEAL. Qualitatively, both methods faithfully capture key attributes of each subject (e.g., shape, color, general pose) and produce images of comparable visual quality. That is, SEAL does not degrade or alter the original subject's appearance relative to LoRA, suggesting that incorporating the constant matrix C does not introduce noticeable artifacts or reduce fidelity. These results align with the quantitative metrics on subject and prompt fidelity, indicating that SEAL maintains a quality level on par with LoRA while embedding a watermark in the learned parameters.

Figure 7: Qualitative comparison of LoRA and SEAL in Text-to-Image Synthesis task

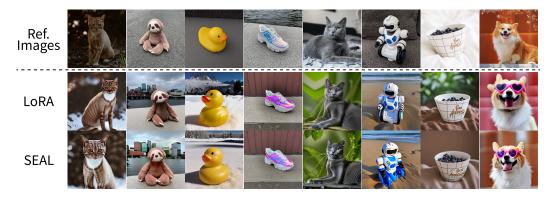


Table 14: Hyperparameter configurations of SEAL and LoRA for Text-to-Image Synthesis. All experiments are done with 4x RTX 4090 with approximately 15 minutes per subject.

Model	Stable Diffusion 1.5				
Method	LoRA	SEAL			
r	3	2			
alpha	32				
Dropout	0.0				
LR	5e-5	1e-5			
LR scheduler	Constant				
Optimizer	AdamW				
Weight Decay	1e	:-2			
Total Batch size	3	2			
Steps	30	00			
Target Modules	Q K V Out AddK AddV				

Table 15: Hyperparameter configurations of Finetruning Attack on SEAL which trains on 3-epoch. We resume training on $\mathbb{N}(B', A')$, which passport C is distributed in B, A via f_{svd} .

LLaMA-2-7B
LoRA
32
32
2e-5
AdamW
Linear
0
100
16
1
Query Key Value UpProj DownProj

Table 16: Hyperparameter configurations of Integrating with DoRA.

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

Model	LLaMA-2-7B						
Method	LoRA	SEAL	DoRA	SEAL+DoRA			
r			32				
alpha			32				
Dropout			0.05				
LR	2e-4	2e-5	2e-4	2e-5			
Optimizer			AdamW				
LR scheduler	Linear						
Weight Decay			0				
Warmup Steps			100				
Total Batch size			16				
Epoch			3				
Target Modules	Query Key Value UpProj DownProj						

Figure 8: Passport Example. Left: A 32×32 grayscale bitmap (cropped and downsampled from a YouTube clip²) serves as our non-trainable passport C. Right: The passport partially recovered (from 10% zeroed SEAL weight on LLaMA-2-7B).

I ABLATION STUDY

I.1 PASSPORT EXAMPLE

In order to provide a concrete illustration of our watermark extraction process, we construct a small 32×32 grayscale image as the *passport* C (or C_p). Specifically, we sampled 100 frames from a publicly available YouTube clip, applied center-cropping on each frame, converted them to grayscale, and then downsampled to 32×32 . From these frames, we selected one representative image (shown in Figure 8) to embed as the non-trainable matrix C in our SEAL pipeline Section 3.

This tiny passport image, while derived from a movie clip, is both *unrecognizable at* 32×32 and used exclusively for educational, non-commercial purposes. Nevertheless, it visually demonstrates how a low-resolution bitmap can be incorporated into the model's parameter space and later *extracted* (possibly with minor distortions) to verify ownership.

I.2 RANK ABLATION

To evaluate versatility of the proposed SEAL method under varying configurations, we conducted additional experiments focusing on different rank settings (4, 8, 16). The results are summarized in Table 17. We used the Gemma-2B model (Team et al., 2024) on commonsense reasoning tasks, as described previously. For comparison, we included the results of LoRA with r=32 and SEAL with r=32 as mentioned in Table 2.

Table 17: Accuracy across various rank settings on commonsense reasoning tasks. The table includes results for rank configurations (4, 8, 16) of SEAL, as well as LoRA r=32 and SEAL r=32.

Rank	BoolQ	PIQA	SIQA	HellaSwag	Wino.	ARC-c	ARC-e	OBQA	Avg.
4	65.05	78.18	75.64	76.16	73.56	65.02	81.65	74.80	73.76
8	64.83	81.23	77.02	83.92	77.35	68.43	83.00	79.20	76.87
16	66.24	82.32	77.94	86.10	79.24	67.32	83.12	78.60	77.61
32	66.45	82.16	78.20	83.72	79.95	68.09	82.62	79.40	77.57
$LoRA_{r=32}$	65.96	78.62	75.23	79.20	76.64	79.13	62.80	72.40	73.75

I.3 Impact of the Size of Passport C

To analyze how the magnitude of the passport C influences the final output, we train the model with $\Delta W = B\,C\,A$, but at inference time remove C (i.e., $\mathbb{N}(B,A,\emptyset)$) to observe the resulting images under different standard deviations \mathtt{std} of C. Specifically, we sample $C \sim \mathcal{N}(0,\mathtt{std}^2)$ with $\mathtt{std} \in \{0.01, 0.1, 1.0, 10.0, 100.0\}$ and keep B and A trainable. Figure 9 shows that lower \mathtt{std} (e.g., 0.01) produces markedly different images relative to the vanilla model **without** C, while higher \mathtt{std} (e.g., 10.0 or 100.0) yields outputs closer to the vanilla Stable Diffusion model³.

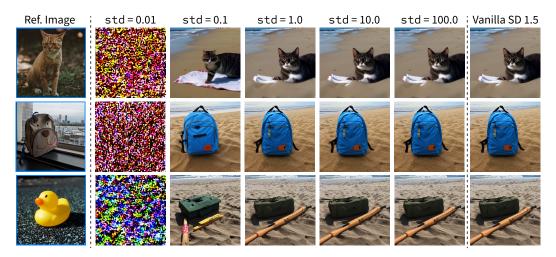
²https://www.youtube.com/watch?v=2zHHkSu1br4

 $^{^3}$ https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5. The original weight had been taken down.

Why does std of C affect $\mathbb{N}(B,A,\emptyset)$? Recall that $\Delta W=BCA$. If $\operatorname{std}(C)$ is very small (e.g., 0.01), then during training, the product BCA must still approximate the desired update ΔW . Because C is tiny, B and A tend to have relatively large values to compensate. Consequently, when we *remove* C at inference time (use $\mathbb{N}(B,A,\emptyset)$), these enlarged B and A inject strong perturbations, manifesting visually as high-frequency artifacts.

Conversely, if $\operatorname{std}(C)$ is very large (e.g., 10.0 or 100.0), then to avoid destabilizing training, B and A remain smaller in scale. Hence, removing C at inference, $\mathbb{N}(B,A,\emptyset)$, introduces only minor differences from the original model, leading to outputs that closely resemble the vanilla Stable Diffusion model.

Figure 9: Effect of passport C standard deviation (std) on SEAL weight. std = σ : Outputs are using only SEAL weight without $C \sim \mathcal{N}(0, \sigma^2)$, $\mathbb{N}(B, A, \emptyset)$. Vanilla SD 1.5: output from vanilla Stable Diffusion 1.5 with same prompt.



Quantitative Comparison. In addition to the qualitative results, Table 18 compares Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) between images generated using only trained SEAL weights **without** C, $\mathbb{N}(B,A,\emptyset)$, at various passport std values. Lower std (e.g., 0.01) shows significantly lower PSNR and SSIM, indicating large deviations (i.e., stronger perturbations) from the vanilla output. As std increases to 10.0 or 100.0, the outputs become more aligned with the vanilla model, reflected by higher PSNR/SSIM scores.

Table 18: Comparision of PSNR and SSIM values for images generated **without** $C \sim \mathcal{N}(0, \sigma^2)$, using only $\mathbb{N}(B, A, \emptyset)$, under varying standard deviations of the passport C, with images generated under vanilla SD 1.5 model. Obj. 1: Cat, Obj 2: Backpack dog, Obj. 3: Ducky toy. Object names are same as (Ruiz et al., 2023)

Ref.	Motwie A	Standard Deviation of ${\it C}$					
	Metric ↑	0.01	0.1	1.0	10.0	100.0	
Oh: 1	SSIM	0.104	0.691	0.936	0.987	0.998	
Obj. 1 PS	PSNR	7.80	19.02	30.87	43.64	53.16	
Obi 2	SSIM	0.102	0.652	0.941	0.993	0.998	
	PSNR	7.91	18.51	33.15	47.24	54.21	
Obj. 3	SSIM	0.115	0.651	0.959	0.992	0.998	
	PSNR	8.08	18.39	32.92	45.39	53.58	

J FUTURE WORK

J.1 MULTIPLE PASSPORTS AND DATASET-BASED MAPPINGS

So far, our main exposition has treated the watermark matrices C and C_p , constant passports. However, SEAL naturally extends to a setting in which one maintains multiple passports $\{C_1, C_2, \ldots, C_m\}$ (similarly $\{D_1, D_2, \ldots D_n\}$), each possibly tied to a distinct portion of the training set, or to a distinct sub-task within the same model. Formally, suppose that during mini-batch updates Algorithm 1 randomly picks *one* passport C_i associated with (x, y). Then line 4 and 5 of Algorithm 1 becomes:

pick
$$C_i$$
 s.t. $(x, y) \mapsto C_i$, $W' \leftarrow W + B C_i A$.

One can store a simple mapping function $\phi:(x,y)\mapsto i\in\{1,\ldots,m\}$ to tie each batch to its specific passport.

Distributed / Output-based Scenarios. Another angle is to use multiple passports not only at *training* time but also during *inference*. For instance, given a family $\{C_1,\ldots,C_m\}$, one could selectively load C_i to induce different behaviors or tasks in an otherwise single LoRA model. In principle, if each C_i is entangled with (B,A), switching passports at inference changes the effective subspace. This may be viewed as a *distributed watermark* approach: where each C_i can be interpreted as a unique "key" that enables (or modifies) certain model capabilities, separate from the main training objective. Though we do not explore this direction in detail here, it points to broader usage possibilities beyond simply verifying ownership, such as controlled multi-task inferences and individually licensed feature sets.

J.2 BEYOND LOW-RANK ADAPTATION: LINEAR OPERATORS

Although we focused on LoRA-style low-rank updates, the core passport idea (i.e. non-trainable matrices entangled with trainable weights) can apply to general *linear* operators as well. For instance, transformer blocks (query/key) rely on matrix multiplications (Fernandez et al., 2024), where a constant passport could similarly be inserted. Such embedding in broader architectures echoes the functional-layer approach and remains a promising future avenue to combine passports with various advanced parameter-efficient strategies.