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Abstract

We study parameter-efficient transfer learning
methods that adapt a pre-trained model by fine-
tuning a small number of parameters, for ma-
chine translation. We conduct experiments
across a diverse set of languages, comparing
different fine-tuning methods in terms of (1)
parameter budget, (2) language-pair, and (3)
different pre-trained models. We show that
methods such as adapters and prefix-tuning
that add parameters to a pre-trained model
perform best. However, methods which fine-
tune a subset of existing parameters, e.g. BitFit
and cross-attention tuning, are better correlated
with pre-trained model capability. Furthermore,
we found a large performance variation across
language pairs, with parameter-efficient meth-
ods particularly struggling for distantly related
language-pairs. Finally, we show that increas-
ing model size, but tuning only 0.03% of total
parameters, can outperform tuning 100% of the
parameters of a smaller model'.

1 Introduction

There has been recent progress on scaling up neu-
ral machine translation models, improving perfor-
mance. Such scale allows for ‘massively multilin-
gual’ models, i.e. a single model that can translate
between any pair of languages. Driving this trend
is the availability of web-scale data in many lan-
guages, used to train sequence-to-sequence Trans-
former models. One approach leverages monolin-
gual data with a denoising auto-encoder or masked
language modelling objective (Liu et al., 2020; Xue
et al.,, 2021). Another approach directly targets
many-to-many multilingual machine translation
(MT) by mining parallel corpora (Fan et al., 2020).

However models that are trained on monolingual
data need to be fine-tuned for MT. As for mul-
tilingual MT systems that are trained on parallel
data, they may need specialisation to a language

"We will share our code and scripts to reproduce all exper-
iments in the paper.

pair (or domain) of interest (Neubig and Hu, 2018).
Therefore in order to get the most out of available
pre-trained models we may need to adapt them to a
particular setting, simply fine-tuning all the param-
eters (Zoph et al., 2016) of the pre-trained model
to learn MT and/or specialize to a language-pair.

Nonetheless, there are many reasons to fine-tune
less than 100% of the pre-trained model’s parame-
ters: (1) To avoid the large memory cost at training
time associated with full fine-tuning, especially as
model size increases. (2) Similarly, to prevent the
storage cost of using many different large models
for particular language pairs or domains. Further-
more, it enables us to probe model capability by
measuring performance on different tasks or lan-
guages when only a small number of parameters are
changed. We use parameter-efficient methods as
shorthand for the more precise ‘parameter-efficient
fine-tuning methods’.

Many such methods have been proposed in NLP,
namely adapter-tuning (Houlsby et al., 2019), Bit-
Fit (Zaken et al., 2021), prefix-tuning (Li and Liang,
2021), and specifically for MT, updating only cross-
attention layers (Gheini et al., 2021). These meth-
ods show promising results for many NLP tasks,
e.g. recent work shows that for some classifica-
tion tasks the performance of full fine-tuning can
be matched by only training 20k parameters for a
model (T5) with 11 billion parameters (Lester et al.,
2021). However, their potential for MT across
different language-pairs, parameter budgets, and
based on different pre-trained (parent) models has
not been covered yet. Previous work has found
parameter-efficient methods designed for classifi-
cation can fail for MT (Stickland et al., 2021a), and
it is well known that NLP performance is unequal
across the world’s languages (Blasi et al., 2021).

In this work, we provide a comprehensive anal-
ysis of parameter-efficient methods for MT, cov-
ering typographically and geographically diverse
languages. Our main focus is on methods tuning



less than 1% of total model parameters, but also
cover methods with more parameters that are able
to match full fine-tuning. We experiment with mod-
els pre-trained on both monolingual and parallel
data, varying from around 400m to 1 billion total
parameters. Our main research questions are:

1. How do different parameter-efficient meth-
ods perform on MT for different lan-
guages/parameter budgets?

2. How does pre-trained model size effect the
performance of parameter-efficient methods?

3. How do parameter-efficient methods differ in
terms of performance and ability to reveal
model capability?

Findings We found methods which add param-
eters to a pre-trained model, namely adapters and
prefix tuning, give us the best performance (§ 4.1),
while methods tuning a subset of existing param-
eters (like bias terms or cross attention) are better
correlated with pre-trained model capability (§ 5.4).
We found a large performance variation across lan-
guage pairs, with translating between distantly re-
lated languages decreasing performance, especially
for the most parameter-efficient methods (§ 5.3).
Finally, we observe that increasing model size, but
keeping the same number of fine-tuned parameters,
substantially increases MT performance (§ 5.2).

2 Background

This section briefly describes the two multilingual
pre-trained models that we focus on in this work,
namely mBART and M2M-100.

Multilingual Denoising Pre-training Multilin-
gual BART, mBART (Liu et al., 2020), is a
sequence-to-sequence transformer model (Vaswani
et al., 2017) that consists of an encoder and an
autoregressive decoder. It is pre-trained with a de-
noising objective, reconstructing a document from
a noisy version. mBART uses span masking and
sentence permutation to noise the original docu-
ment. Its architecture consists of 12 encoder and 12
decoder layers, with hidden dimension of 1024 and
16 attention heads. mBART is trained entirely on
monolingual data that includes multiple languages
and it has a large multilingual vocabulary of 250k
tokens. In our experiments, we use mBART-50
(Tang et al., 2020) which was pre-trained on 50
languages.

Many-to-Many Multilingual MT The M2M-
100 model (Fan et al., 2020) is a many-to-many
multilingual translation system that is pre-trained
on a large-scale parallel dataset for 100 languages
and 100x99 translation directions. This dataset is
automatically constructed with a novel data mining
method based on language similarities and back-
translation. The model is trained in a many-to-
many fashion, balancing languages using sinkhorn
temperature sampling. In our experiments, we use
the base size M2M-100 with 484M parameters that
consists of 12 encoder and 12 decoder layers, and
feedforward dimension of 4096. To study the ef-
fect of the model size, we also use the medium
size M2M-100 with 1.2B parameters. Both models
have a multilingual vocabulary of 128K unique to-
kens that are distributed across 100 languages with
temperature sampling.

3 Parameter-efficient Methods

All of our experiments fall under the umbrella
of specialising a pre-trained sequence-to-sequence
transformer model for MT of a particular language
pair, with source language x and target language
y. If the pre-training task was MT, and z and y
were included, then a lower bound will be sim-
ply applying the pre-trained model without any
changes. Conversely an upper bound is fine-tuning
100% of the pre-trained model parameters (‘full
fine-tuning’). In between full fine-tuning and di-
rectly using the pre-trained model, we consider the
following parameter efficient-methods in this work:

Adapter-tuning (Houlsby et al., 2019) ‘Adapter
layers’ are lightweight, learnable units inserted be-
tween transformer layers. They typically take the
form of a feedforward network inserted as the final
operation in a transformer layer. Formally, we fol-
low the architecture introduced by Bapna and Firat
(2019) for MT:

Ag(h’) = W - f(W{LN(h") + bf) + bf, (1)

where an adapter module A at layer ¢ consists of
a layer-normalization LN of the input hf € RY,
followed by a down-projection Wy € R%*? with
bottleneck dimension b, a non-linear function f(-)
and a up projection W, € R**?. Finally, a resid-
ual connection with the input A’ is added to the
output of the adapter: h’ — A,(h®) + h’. We
write ‘adapter-b’ to mean adapters with bottleneck
dimension b throughout this work.



Language Language Dataset Parallel
family source data (K)
Czech (cs) Slavic TED 103
French (fr) Romance TED 192
Korean (ko) Korean TED 205
Russian (ru) Slavic TED 208
Italian (it) Romance IWSLT17 231
Portuguese (pt) Romance TED 184
Turkish (tr) Turkic TED 182
Vietnamese (vi)  Austri-Asiatic IWSLT15 133
German (de) Germanic IWSLT17 206
Farsi (fa) Iranian TED 150
Hindi (hi) Indic IITB 1600
Finnish* (fi) Finnic mParacrawl 200
Estonian* (et) Finnic mParacrawl 200

Table 1: Languages that are used in the experiments.
We gather language pairs (x<+en) from TED (Qi et al.,
2018), IWSLT (Cettolo et al., 2012), MultiParacrawl
(mParaCrawl) and IITB (Kunchukuttan et al., 2018).
“*> indicates that we randomly sampled 200k parallel
sentences from the original datasets for corresponding
language pairs.

Prefix-tuning (Li and Liang, 2021) prepends a
sequence of continuous task-specific vectors (‘pre-
fixes’) to the model input, in analogy to natural
language prompts (e.g. ‘translate this sentence:’).
The transformer can attend to the prefix as if it
were a sequence of ‘virtual tokens’, but the pre-
fix consists entirely of free parameters. For each
transformer layer, the prefix is replaced with a new
set of vectors, increasing the expressiveness of the
method. Concretely, we replace token embeddings
by

E, = Concat(V’, E), ()

with £ € RE*? the original token embeddings
packed into a matrix, V? € RP*? the prefix
vectors, and L the original sequence length, p
the prefix length and d model dimension. Be-
fore transformer layer ¢ we additionally set the
first p hidden states to a new prefix vector, i.e.
H[:p,] = V¢ with H € RUEAP)*4 the hidden
states and V¢ € RP*?,

BitFit (Zaken et al., 2021) Bias term fine-tuning
was introduced in the context of fine-tuning BERT
for classification tasks, and consists of freezing
most of the transformer-encoder parameters, and
training only the bias terms and the task-specific
classification layer. To use this method for MT
we simply additionally fine-tune all decoder bias
terms, and do not need the classification head.

We introduce a simple improvement to BitFit,
based on replacing redundant parameters with ones

Fine-tuning # Trainable =~ Parameter
Method Parameters  Ratio (%)
mBART
Full FT 610m 100
Adapter (b=1024) 50m 8.2
X-attention 50m 8.2
BitFit 335k 0.05
Adapter (b=5) 320k 0.05
Prefix (p=13) 320k 0.05
Adapter (b=1) 123k 0.02
Prefix (p=5) 123k 0.02
M2M-100 (base, 484M parameters)
Full FT 484m 100
Adapter (b=1024) 50m 10.3
X-attention 50m 10.3
BitFit 335k 0.07
Adapter (b=5) 320k 0.07
Prefix (p=13) 320k 0.07
Adapter-1 123k 0.03
Prefix (p=5) 123k 0.03
No FT 0 0
M2M-100 (medium, 1.2B parameters)
Adapter (b=2) 344k 0.03*
No FT 0 0

Table 2: Fine-tuning methods used in our experiments.
“*’ indicates that Adapter-2’s parameter ratio is calcu-
lated w.r.t M2M-100 (medium, 1.2B), but its parameter
count matches Adapter (b=5) (base) and BitFit (base).

that increase the expressiveness of the method.
Note BitFit fine-tunes bias parameters in layer-
norm (LN) modules (Ba et al., 2016), since layer-
norm contains the following affine transformation:

LNi(z') =y ozt + 3)

where z° is the normalized input after a resid-
ual connection. v, € R? are learnable weight
and the bias parameters of the layer-norm module.
For the standard transformer model we consider
in this work, the LN module is always followed
by a matrix multiplication plus a bias term i.e.
WS, - LNG(2) + b, = W -y 0zt + W - B+,
Notice the same space of functions is available by
only updating the b%, term in WY, - B + b’,. We
simply switch to updating - instead of £, i.e. un-
freezing the LN weight parameters and freezing the
bias term in order to increase expressiveness and
downstream performance (confirmed empirically
in § 4.1). We use this version of BitFit throughout
this work unless stated otherwise.

L

X-attention Tuning (Gheini et al., 2021) refers
fine-tuning only cross-attention (X-attention) and
corresponding layer-norm parameters located in
each decoder layer of a transformer model. This



mBART M2M-100
it—en tr—en it—en tr—en
Full FT 38.2 31.7 36.6 30.1
X-attention 34.8 27.0 36.1 29.2
Adapter (b=1024) 38.0 30.6 36.3 30.0
Prefix (p=13) 29.7 20.3 33.0 26.7
BitFit (LN-bias) 29.3 19.9 324 26.2
BitFit (LN-weights)  30.5 21.1 32.6 26.4
Adapter (b=5) 29.9 21.0 33.1 26.9
Prefix (p=5) 28.4 19.1 32.4 26.3
Adapter (b=1) 27.8 153 32.5 26.5

Table 3: BLEU scores for it—en and tr—en when differ-
ent fine-tuning methods used for mBART and M2M-100.
Each block represents same ratio of updated parame-
ters, respectively 100%, 8.2/10.3%, 0.05/0.07%, and
0.02/0.03% for mBART/M2M-100. chrF scores for
these experiments are shown in Appendix C

method is based off the importance of cross-
attention for MT.

4 Experiments & Results

Datasets We selected 13 typologically and geo-
graphically diverse languages for our experiments.
Language families and dataset sources are shown
in Table 1. For each language x, we paired it with
English (en), and fine-tuned the pre-trained models
separately. To pick these languages, we consider
variation in language families and scripts.

Experimental Settings We used mBART-50
(Liu et al., 2020; Tang et al., 2020) and M2M-100
(Fan et al., 2020) as our multilingual pre-trained
models, and all the languages we experiment with
are included in their pre-training data. mBART
needs to learn machine translation with parallel
data, but M2M-100 can be used without fine-tuning,
due to their pre-training tasks (see § 2). We experi-
mented with medium size M2M-100 (1.2B param-
eters), to measure the impact of parent model size.

Table 2 shows all the fine-tuning methods (§ 3)
we use, with their base model, number of train-
able parameters and parameter ratio over full fine-
tuning. As prefix-tuning is computationally ex-
pensive for large prefix lengths and generally does
not perform as well as adapter-tuning for the same
parameter budget, we do not include it in the exper-
iments on every language pair (see § 4.1).

For all directions (x<>en) and fine-tuning meth-
ods, we fine-tuned models with 1e-4 maximum
learning rate for 100K training updates. We picked
the best model based on dev set perplexity. We used

Adapters & Prefix-Tuning (mBART)
b=1024
100 b=256 ol
Full FT
(upper bound)

;

it — en / adapter
p=5 tr — en / adapter
it — en / prefix
tr — en / prefix

Relative performance over FT (%)

t4

T T T T
10 10 10" 10°
Number of fine-tuned parameters

Figure 1: Relative MT performance over full fine-tuning
vs. number of fine-tuned parameters for mBART. b and
p refer to adapter bottleneck dimension and prefix length
respectively. Due to the large effective sequence length,
we limit prefix-tuning experiments.

a maximum batch size of 1024 tokens for mBART
and 600 tokens for M2M-100, with a gradient ac-
cumulation step (update-frequency) of 2 for both
models. All experiments are performed with the
fairseq (Ott et al., 2019) library. Additional details
including dataset splits are in Appendix A.

We use BLEU scores to estimate MT quality, cal-
culated from Sacrebleu? (Post, 2018). To compare
fine-tuning methods across different languages, we
often report relative performance with respect to
full fine-tuning (FT) for each language by calculat-
ing the ratio of each method’s BLEU score w.r.t. the
full FT BLEU score.? On the recommendation of
Marie et al. (2021) we report chrF (Popovié, 2015)
in Appendix C for each fine-tuning method.

4.1 Comparing fine-tuning methods

We can compare fine-tuning methods on several
dimensions. Table 3 shows performance in terms
of BLEU score for it—en and tr—en (similar and
dissimilar language pairs*). Adapters outperform
other methods at almost all parameter budgets. At
the largest parameter budget, adapter-1024 outper-
forms X-attention. For medium budgets (adapter-
5 size) prefix-tuning is in second place, but for
the smallest parameter budget (adapter-1 size) we
consider, prefix-tuning outperforms adapters for
mBART. However, prefix-tuning quickly falls be-
hind adapters as parameter count, i.e. prefix length
or adapter size, increases (see Fig. 1), in a result

2Sacrebleu signature (BLEU):
nrefs: 1lcase:mixedleff:noltok: 13alsmooth:explversion:2.0.0
3BLEU scores for each direction are given in Appendix C
“Due to computational constraints, we did not perform
experiments on all combinations of method and language pair.
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Figure 2: Relative performances over the full fine-tuning (%) for x<>en when mBART is fine-tuned by using
different methods. We show in brackets the percentage of total mBART parameters that are fine-tuned for each

method.

similar to He et al. (2021). Tuning LN weights
rather than LN biases in the BitFit method outper-
forms the version tuning LN biases, confirming
that our version improves expressiveness.

In terms of training speed/memory cost, prefix-
13 causes a 30% slow-down in training speed rela-
tive to adapter-5, and larger models impose signifi-
cant costs due to a large effective sequence length;
see also Appendix B. BitFit and adapters have sim-
ilar training speed.

4.2 Comparing language pairs

mBART Fig. 2 shows the performance of several
parameter-efficient method as we vary language
pair, when initialized from mBART. Only adapter-
1024 (8.2% of mBART parameters) is consistently
competitive with full FT. Updating only cross-
attention blocks (x-attn; 8.2% of mBART parame-
ters) generates +90% relative performance with re-
spect to full FT for Farsi, German, Russian, French,
Portuguese, Vietnamese, and Czech in both direc-
tions (x<+en). For other languages this decreases
to =85%, and for Hindi (hi) to 50.4% and 61.7%
in x—en and en—x respectively.

For smaller parameter budgets (BitFit and
adapter-5; 0.05% of mBART parameters), we see

better performance when translating into English
(x—en). We expect better representation quality for
English given the unequal amount of data per lan-
guage used in mBART pre-training®. We observe
that adapter-5 consistently outperforms BitFit in
en—x (see also § 4.1). Finally note Hindi, Korean,
and Turkish are particularly challenging for these
methods, in both directions.

M2M-100 Fig. 3 shows relative MT performance
when initializing with M2M-100. Here, we also
include results for M2M-100 with no fine-tuning
(‘no FT’), as M2M-100 is pre-trained with parallel
data for MT. Again, languages such as Korean
and Turkish present a bigger challenge than others
(~=85% vs +90% performance relative to full FT)
when tuning with either zero or a small number of
parameters, although the performance drop is not
as large as for mBART.

Adapter-5 again achieves better results than
BitFit (+1% overall performance), in both direc-
tions (x<ren). M2M-100 without fine-tuning (no
FT) generally performs the worst; No FT reaches
78% mean relative MT performance w.r.t full FT,

SEnglish is the largest portion (55M tokens, 300GB) of the
data that is used for mBART pre-training (Liu et al., 2020)
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Figure 3: Relative performance w.r.t. full fine-tuning (%) for x<+en when M2M-100 is fine-tuned with different
methods. Note that ‘adapt-1024° and ‘x-attn’ are not shown as they perform similarly to full FT (§ Appendix C)

whereas adapter-5 achieves 92%. And for no FT
the performance difference between languages is
larger as can be seen in Farsi, Korean, and Turkish.

Interestingly, the results for Hindi (hi) do not
follow the same trend as mBART. For en—hi,
compared to Korean or Turkish we see better rel-
ative performance for small parameter budgets.
For hi—en, full fine-tuning gives the worst per-
formance. However, updating a small number of
parameters (BitFit; 0.07% of the model param-
eters) outperforms the base model with no fine-
tuning (115% vs 107%). The corresponding en<+hi
dataset consists of noisily aligned parallel sen-
tences, and for the hi—en direction we speculate
that fitting larger numbers of parameters gives the
model enough capacity to model these noisy sen-
tence pairs, hurting generalization. Finally, for
fa<ren, M2M-100 performance is considerably
lower than for other language-pairs when we do
not fine-tune the model.

5 Analysis

5.1 Impact of parent model & pre-training

Fig. 4 shows the relative performances over full
fine-tuning for all languages (x<»en) when the

120

ol gd
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Relative performances over FT (%)
B mbart
B m2m-100

[ * N,

ft adapt 1024 X- attn bltf it

40 —

adapt 5

Figure 4: Relative performance w.r.t. full fine-tuning (%)
for all languages (x<+en) when the model is initialized
with mBART or M2M-100.

model is initialized with mBART or M2M-100.
Overall, parameter-efficient fine-tuning of M2M-
100 consistently provides higher relative perfor-
mance than mBART (Fig. 4). This difference is
larger when the number of trainable parameters is
small (BitFit and adapter-5). While M2M-100 is
pre-trained for MT with parallel data, mBART is
pre-trained with a (monolingual®) denoising objec-
tive. Perhaps more parameters are required at fine-
tuning time to ‘learn’ the MT task for mBART. Tun-

8 Although mBART-50 pre-trained on 50 languages, the
pre-training objective does not use any cross-lingual signal.



ing fewer parameters is better at revealing innate
model capability than full FT or larger adapters,
with the differences between parent models pretty
minor for larger parameter budgets. Finally, we
note mBART results have a higher variance than
M2M-100 (see Fig. 4).

5.2 Impact of parent model size

We investigate how parent model size affects the
performance of fine-tuning methods across lan-
guages, comparing M2M-100’s base model with
418M total parameters to its medium size version
(1.2B parameters). Fig. 3 shows the relative perfor-
mances over full fine-tuning (484M) for adapter-5
with the base model and adapter-2 with the medium
model, which correspond to roughly the same num-
ber of trainable parameters (0.07% of 418M param-
eters or 0.03% of 1.2B). No fine-tuning (no FT)
results are also shown, representing lower bounds.

When translating into English (x—en), adapter-
2 with the medium model outperforms full fine-
tuning of the base model for most languages despite
tuning only 0.03% of its parent model parameters.
Compared to adapter-5 (484M) the difference is
even larger (104.3% vs 93.6% mean relative MT
performance w.r.t FT). Moreover, adapter-2 (1.2B)
has a lower variance in performance compared to
other models. For x—en, adapter-2 is still competi-
tive with full fine-tuning of the base model with al-
most the same average performance. However, the
difference between adapter-2 (1.2B) and adapter-5
(484M) is lower in this direction (97.9% vs 90.1%).
Furthermore, the performance variation across lan-
guages is more visible: for Hindi, Farsi, Korean
and Turkish adapter-2 (1.2B) performance falls be-
hind full fine-tuning of the base model.

When it is used without any parameter updates,
the medium model shows mixed results. Although
performance is considerably higher than the base
model without fine-tuning, the medium model is
not competitive with adapter-5 (484M), in either
direction (x<+en). Furthermore, there is relatively
high variance in results across language, with some
languages remaining challenging. Therefore, for
large parent models, parameter-efficient fine-tuning
(<1%) can take MT performance to the upper
bound of a smaller model, showing the usefulness
of fine-tuning even at large scales.

5.3 Impact of language relatedness

In order to investigate the impact of language re-
latedness on parameter-efficient fine-tuning, we

designed another set of controlled experiments. We
pick 3 languages from MultiParaCrawl, namely
Finnish, Estonian and English, where Finnish and
Estonian are from the same language family and
typologically similar. We measure translation per-
formance into Finish from Estonian and English,
for different fine-tuning methods, and similarly for
translation into Estonian. Fig. 5 shows relative
MT performances with respect to full fine-tuning
for adapter-1024, X-attention, BitFit and adapter-5,
corresponding to decreasing numbers of trainable
parameters, for both mBART and M2M-100.

As shown in the first two plots, when translat-
ing into Finnish, Estonian as the source language
gives an advantage over English for BitFit and
adapter-5 (This advantage is higher in M2M-100
than mBART). Likewise, for translation into Es-
tonian, as the number of trainable parameters de-
creases, relative MT performance drops less when
Finnish is the source language compared to En-
glish, for both parent models. These results suggest
that, when the source and target languages are ty-
pologically similar, parameter-efficient fine-tuning
methods make better use of the parent model.

Similarly, Fig. 1 shows relative MT performance
with an increasing number of trainable parameters
in mBART for a similar language pair (it—en) and
a dissimilar one (tr—en). At low parameter budgets
tr—en performance is much lower than it—en, but
the gap between the two decreases as parameter
budget increases.

5.4 Revealing model capability

Comparing methods on their ability to reveal pre-
trained model capability, we find methods that
don’t add any additional parameters (x-attn and
BitFit) are the most useful. These methods show
the most variation across language pairs (see e.g.
Fig. 4). Additionally since for M2M-100 we can
measure pre-trained model capability by evaluating
the performance of the model without fine-tuning
(‘no FT”), for M2M-100 we also calculate the cor-
relation between relative performance of different
fine-tuning methods and no FT performance for
each language. We find, for x—en, BitFit (0.84)
> adapter-5 (0.77) > x-attn (0.73) > adapter-1024
(0.66), where the number in brackets is the Pearson
product-moment correlation coefficient. We have
the same ranking for en—x. This shows that both a
small parameter budget and not adding additional
parameters i.e. adapters seems to be important for
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Figure 5: Decrease in relative performance (%) over full fine-tuning as the number of updated parameters decreases
for translating into Finnish and Estonian with different source language (en, et, fi).

revealing model capability.

6 Related Work

In NLP, parameter-efficient methods have been
widely used for fine-tuning of Transformer models
to new tasks, domains or languages. Among those
that add additional parameters, adapters (Houlsby
et al., 2019) are ‘modular’, adding separate net-
works to the base model. As well as simple fine-
tuning, they can be used in contexts such as multi-
task learning (Stickland and Murray, 2019; Pfeif-
fer et al., 2021; Karimi Mahabadi et al., 2021),
cross-lingual transfer (Ustiin et al., 2020; Pfeiffer
et al., 2020) and multilingual NMT (Bapna and
Firat, 2019; Philip et al., 2020; Stickland et al.,
2021b; Ustiin et al., 2021).

Prefix-tuning (Li and Liang, 2021) and Prompt-
tuning (Lester et al., 2021; Qin and Eisner, 2021)
(i.e. only using soft prompt tokens without prefix
vectors in each layer), have a natural interpretation
in terms of virtual tokens. They can be used as task
embeddings for inter-task transferability (Vu et al.,
2021). LoRA (Hu et al., 2021) injects trainable low-
rank matrices into query and value projection matri-
ces of each transformer layer. Concurrently to our
work, He et al. (2021) present a unified framework
that integrates the above methods. Diff-pruning
(Guo et al., 2021) modifies model parameters with
a sparse vector. Some methods don’t add any pa-
rameters: BitFit (Zaken et al., 2021) fine-tunes
only existing bias vectors, for classification tasks,
and for MT, Gheini et al. (2021) propose updating
only cross-attention blocks in decoder layers of the
model.

Some of these methods have been compared in
a controlled setting for English classification tasks
(Mahabadi et al., 2021) or only a single language
pair (English and Romanian) for MT (He et al.,
2021). Aspects of efficiency and scale in MT in
terms of inference cost (Kasai et al., 2021; Berard

et al., 2021), vocabulary size (Gowda and May,
2020) data (Gordon et al., 2021), model size (Gor-
don et al., 2021; Arivazhagan et al., 2019) and num-
ber of languages (Arivazhagan et al., 2019) have
been explored. Other work aims to improve full FT
for domain adaptation by mixing in different data
(Chu et al., 2017), regularisation (Miceli Barone
etal., 2017) or many other methods (Chu and Wang,
2018; Saunders, 2021). However, none of these
works study parameter-efficient transfer-learning
methods for MT, and we aim to fill this gap.

7 Conclusion

We recommend: when fine-tuning a pre-trained
model for MT, adapter layers usually have the high-
est performance out of all parameter-efficient fine-
tuning methods (§ 4.1). For large parameter bud-
gets (=50m parameters) they almost recover full
fine-tuning performance, and even for lower bud-
gets, if the pre-training task was MT, i.e. M2M-
100, adapters can recover >90% of full FT perfor-
mance. However methods like BitFit which only
tune existing parameters are better correlated with
pre-trained model capability (§ 5.4), and for the
smallest parameter budgets we consider, prefix tun-
ing outperforms adapters for mBART.

Tuning only a small fraction of a larger model’s
(M2M-100 medium size) parameters can outper-
form full FT of a smaller model (M2M-100 base
size). However when translating in the en—x di-
rection where x is distantly related to English e.g.
Korean, full FT is superior (§ 5.2). More gener-
ally, distantly related language pairs require more
parameters to be tuned to get close to full FT, for
all methods (§ 5.3). Although we attempted to
cover a diverse set of languages, future work could
explore truly low resource languages, and those
not included in the pre-training data of our models,
where one would expect even larger performance

gaps.
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Language Dev Test Train
Size (k) Size (k) Size (k)
Czech (cs) 3.5 3.8 103
French (fr) 4.3 4.9 192
Korean (ko) 4.4 5.6 205
Russian (ru) 4.8 5.5 208
Italian (it) 0.9 1.6 231
Portuguese (pt) 4 4.9 184
Turkish (tr) 4 5 182
Vietnamese (vi) 1.6 1.3 133
German (de) 0.9 1.6 206
Farsi (fa) 3.9 4.5 150
Hindi (hi) 0.5 2.5 1600
Finnish* (fi) 3 3 200
Estonian* (et) 3 3 200

Table 4: Train, dev and test splits for the languages that
are used in the experiments, in thousands of parallel sen-
tences. **’ indicates that we randomly sampled parallel
sentences from the original datasets for corresponding
language pairs.

A Reproducibility Report

Datasets All datasets that are used in our ex-
perimetns are publicly available. We used TED
talks (Qi et al., 2018) for (cs, fr, ko, ru, pt, tr,
fa)<»en, IWSLT15 and IWSTL17 (Cettolo et al.,
2012) for vi<+en and (it, de)<>en respectively, IITB
(Kunchukuttan et al., 2018) for hi<+en. Finally, for
(en, et, fi) experiments, we randomly sampled 200k
parallel sentences for each language-pair from Mul-
tiParacrawl by using OPUS (Tiedemann, 2012).
Sizes of train, dev and test splits are given in Ta-
ble 4. All datasets have licenses allowing non-
commercial use.

Pre-trained models and Hyper-parameters We
used mBART (Liu et al., 2020) that is extended to
50 languages (Tang et al., 2020). For M2M-100
(Fan et al., 2020), we used base- and medium-size
models that consist of 484M and 1.2B parameters
respectively.

For all experiments we used the hyper-
parameters that are reported by Liu et al. (2020)
except learning rate. For the learning rate, we fol-
low Ustiin et al. (2021) and used maximum of le-4
with polynomial learning rate decay, based on their
adapter-tuning experiments. We fine-tune models
by using 0.3 dropout, 0.2 label smoothing, 2500
warm-up steps for 100K training updates with an
early-stopping patience of 10 epochs. We used a
maximum batch size of 1024 tokens for mBART
and 600 tokens for M2M-100, with a gradient ac-
cumulation step (update-frequency) of 2 for both
models. We report the result of a single random
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mBART M2M-100
it—en tr—en it—en tr—en
Full FT 59.4 53.3 58.2 52.6
X-attention 56.6 48.9 57.7 51.6
Adapter (b=1024) 59.2 52.3 57.8 52.2
Prefix (p=13) 52.4 42.8 55.3 49.7
BitFit (LN-bias) 51.8 41.7 55.0 49.3
BitFit (LN-weights)  52.7 42.8 55.1 49.5
Adapter (b=5) 52.4 42.8 55.5 49.8
Prefix (p=5) 51.4 41.4 54.9 49.5
Adapter (b=1) 50.5 36.5 55.0 49.5

Table 5: chrF scores for it—en and tr—en when differ-
ent fine-tuning methods used for mBART and M2M-100.
Each block represents same ratio of updated parame-
ters, respectively 100%, 8.2/10.3%, 0.05/0.07%, and
0.02/0.03% for mBART/M2M-100.

seed/training run throughout this work whenever
we list BLEU scores. All parameter-efficient fine-
tuning methods are implemented on top of the
Fairseq framework (Ott et al., 2019). We will share
our code and scripts to reproduce all experiments.

Computing Budget and Infrastructure All the
experiments are conducted using Tesla V100 GPUs
with mixed precision (fp16). Parameters that are
fine-tuned for each model are reported in the exper-
iments section (§ 4). Each individual experiment
took 3-10 hours on one GPU depending on the
fine-tuning method and the language-pair.

B Prefix-tuning Details

There is relationship between memory cost and
training time for prefix-tuning: including virtual to-
kens in a sentence will increase the effective length
of that sentence, and we can either impose addi-
tional memory cost for the virtual tokens, or we
can reduce the total number of ‘real’ i.e. natural
language as opposed to virtual tokens in each batch.
With the latter method we avoid a large memory
cost, however the time taken to iterate through a
given number of training examples will be longer,
since the number of real tokens per batch will be
decreased, increasing training time. We use the
latter (decreased ‘real’ tokens) method in all exper-
iments.

Finally we note that inference speed will de-
crease as we increase the number of virtual tokens,
since the decoder attention mechanism needs to
attend to virtual tokens, i.e. when decoding token
n it will attend to n — 1 + p previous tokens for
prefix length p.



C Additional Results and Metrics

Table 5 shows chrF scores’ for the experiments
comparing different parameter-efficient methods
on it—en and tr—en (Table 3). These results con-
firms that the trends discussed in Section 4 are the
same regardless of metric used for MT quality.

In Tables 6, 7 and 8, we show BLEU scores for
other experiments presented in the paper only in
terms of performance relative to full FT. Addition-
ally we show adapter-1024 and X-attention scores
for M2M-100; in general adapter-1024 outperforms
X-attention, and both methods come close to full
FT performance or slightly outperform it.

In Table 7 we show results of a smaller (40m pa-
rameters) transformer model trained from scratch
on each dataset separately, with an architecture
consisting of 6 encoder and decoder layers, hid-
den dimension of 512 and feed-forward hidden
dimension 1024. We train a unique sentence-
piece (Kudo and Richardson, 2018) vocabulary
for each dataset, shared between source and tar-
get language, of size approximately 16k. Train-
ing hyper-parameters were the same as our other
models. For the x—en direction almost all of our
methods based on pre-trained models outperformed
the ‘from scratch’ baseline, however in the en—x
direction for mBART the most parameter efficient
methods sometimes fall short (see e.g. Turkish or
French). For translating into Farsi no pre-trained
model outperformed the from scratch model, even
with full fine-tuning, suggesting a weakness for
particularly low resource resource languages like
Farsi.

Note per-dataset hyper-parameter search would
likely improve performance, especially for ‘from
scratch’ results, but we did not attempt this due to
computational constraints.

"Sacrebleu signature (chrF2++):
nrefs: 1lcase:mixedleff:yesnc:6lnw:2Ispace:nolversion:2.0.0
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No. hi fa it de ru ko fr pt tr vi cs

M2M-100 Params 1.6m 150k 230k 208k 208k 205k 192k 184k 182k 133k 103k
en—Xx

Full FT 484m 194 17.6 328 320 220 96 413 421 179 339 245
Adapter (b=1024)  50m 186 176 327 313 220 93 410 424 179 334 248
X-attention 50m 183 173 317 310 219 92 408 420 177 33.6 245
BitFit 335k 175 160 289 273 200 78 377 385 152 315 224
Adapter (b=5) 320k 173 162 293 275 205 81 378 390 156 314 228
Adapter (b=2; 1.2B) 344k 174 146 325 321 231 89 422 431 167 346 264
No FT (1.2B) 0 180 97 296 299 211 55 376 396 132 329 240
No FT (484M) 0 173 106 268 259 184 50 336 358 124 300 206
X—en

Full FT 484m 204 323 366 372 278 222 432 479 30.1 343 3238
Adapter (b=1024)  50m 224 323 363 363 280 22 432 478 30 347 339
X-attention 50m 219 316 361 363 271 214 428 471 292 336 334
BitFit 335k 234 272 326 329 245 190 394 44 264 315 313
Adapter (b=5) 320k 226 288 331 332 255 196 402 448 269 333 319
Adapter (b=2; 1.2B) 344k 248 315 373 377 289 222 440 487 299 375 356
No FT (1.2B) 0 245 149 325 321 241 176 375 420 242 299 30.1
No FT (484m) 0 219 149 297 295 214 158 349 386 220 27.1 272

Table 6: x<»en results in terms of BLEU for M2M-100 experiments.

No. hi fa it de ru ko fr pt tr vi cs
mBART Params 1.6m 150k 230k 208k 208k 205k 192k 184k 182k 133k 103k
en—x
Full FT 610m 19.3 178 329 331 235 10.1 427 435 1877 352 252
Adapter (b=1024) 50m 18.1 180 333 328 229 9.9 379 428 182 346 243
X-attention 50m 11.9 16.8 27.7 303 212 8.8 395 408 163 335 222
BitFit 335k 7.9 128 227 233 16.6 53 309 309 9.5 268 15.6
Adapter (b=5) 320k 8.1 137 227 239 154 5.8 293 323 9.9 273 154
From Scratch 40m 53 250 239 229 153 5.5 325 354 11.0 262 170
x—en
Full FT 610m 226 339 382 341 296 235 448 494 317 360 343
Adapter (b=1024) 50m 194 328 380 335 289 229 444 486 306 352 329
X-attention 50m 114 308 329 316 268 197 419 438 270 340 31.1
BitFit 335k 113 23,6 295 259 220 149 352 388 21.1 281 260
Adapter (b=5) 320k 128 232 299 257 218 154 348 382 21.0 274 264
From Scratch 40m 5.0 209 273 263 192 116 343 394 191 219 238

Table 7: x<»en results in terms BLEU for mBART experiments.
M2M-100 mBART

en< >fi en< >et fi< >et en< >fi en< >et fi< >et
Full FT 439 379 404 334 33,6 334 | 454 398 423 355 348 354
Adapter (b=1024) 4277 355 396 309 31.6 315 | 453 391 419 338 33.6 338
X-attention 429 359 395 312 316 31.1 | 406 342 361 289 285 29.1
BitFit 354 25.6 339 229 268 261|289 189 250 138 18.0 173
Adapter (b=5) 36.1 26.8 343 232 269 265|289 192 243 146 182 169
Adapter (b=2; 1.2B) 419 320 396 288 31.8 314 - - - - - -
No FT (1.2B) 403 286 381 273 313 31.0 - - - - - -
No FT (484M) 341 23.6 329 226 268 262 - - - - - -

Table 8: (en, et, fi) results in terms of BLEU for M2M-100 and mBART experiments. Note that BLEU scores are
not directly comparable as the datasets are different for each language-pair. For a comparison between fine-tuning
methods, we refer to relative performances over full fine-tuning (Fig. 5).
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