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Abstract

We study parameter-efficient transfer learning001
methods that adapt a pre-trained model by fine-002
tuning a small number of parameters, for ma-003
chine translation. We conduct experiments004
across a diverse set of languages, comparing005
different fine-tuning methods in terms of (1)006
parameter budget, (2) language-pair, and (3)007
different pre-trained models. We show that008
methods such as adapters and prefix-tuning009
that add parameters to a pre-trained model010
perform best. However, methods which fine-011
tune a subset of existing parameters, e.g. BitFit012
and cross-attention tuning, are better correlated013
with pre-trained model capability. Furthermore,014
we found a large performance variation across015
language pairs, with parameter-efficient meth-016
ods particularly struggling for distantly related017
language-pairs. Finally, we show that increas-018
ing model size, but tuning only 0.03% of total019
parameters, can outperform tuning 100% of the020
parameters of a smaller model1.021

1 Introduction022

There has been recent progress on scaling up neu-023

ral machine translation models, improving perfor-024

mance. Such scale allows for ‘massively multilin-025

gual’ models, i.e. a single model that can translate026

between any pair of languages. Driving this trend027

is the availability of web-scale data in many lan-028

guages, used to train sequence-to-sequence Trans-029

former models. One approach leverages monolin-030

gual data with a denoising auto-encoder or masked031

language modelling objective (Liu et al., 2020; Xue032

et al., 2021). Another approach directly targets033

many-to-many multilingual machine translation034

(MT) by mining parallel corpora (Fan et al., 2020).035

However models that are trained on monolingual036

data need to be fine-tuned for MT. As for mul-037

tilingual MT systems that are trained on parallel038

data, they may need specialisation to a language039

1We will share our code and scripts to reproduce all exper-
iments in the paper.

pair (or domain) of interest (Neubig and Hu, 2018). 040

Therefore in order to get the most out of available 041

pre-trained models we may need to adapt them to a 042

particular setting, simply fine-tuning all the param- 043

eters (Zoph et al., 2016) of the pre-trained model 044

to learn MT and/or specialize to a language-pair. 045

Nonetheless, there are many reasons to fine-tune 046

less than 100% of the pre-trained model’s parame- 047

ters: (1) To avoid the large memory cost at training 048

time associated with full fine-tuning, especially as 049

model size increases. (2) Similarly, to prevent the 050

storage cost of using many different large models 051

for particular language pairs or domains. Further- 052

more, it enables us to probe model capability by 053

measuring performance on different tasks or lan- 054

guages when only a small number of parameters are 055

changed. We use parameter-efficient methods as 056

shorthand for the more precise ‘parameter-efficient 057

fine-tuning methods’. 058

Many such methods have been proposed in NLP, 059

namely adapter-tuning (Houlsby et al., 2019), Bit- 060

Fit (Zaken et al., 2021), prefix-tuning (Li and Liang, 061

2021), and specifically for MT, updating only cross- 062

attention layers (Gheini et al., 2021). These meth- 063

ods show promising results for many NLP tasks, 064

e.g. recent work shows that for some classifica- 065

tion tasks the performance of full fine-tuning can 066

be matched by only training 20k parameters for a 067

model (T5) with 11 billion parameters (Lester et al., 068

2021). However, their potential for MT across 069

different language-pairs, parameter budgets, and 070

based on different pre-trained (parent) models has 071

not been covered yet. Previous work has found 072

parameter-efficient methods designed for classifi- 073

cation can fail for MT (Stickland et al., 2021a), and 074

it is well known that NLP performance is unequal 075

across the world’s languages (Blasi et al., 2021). 076

In this work, we provide a comprehensive anal- 077

ysis of parameter-efficient methods for MT, cov- 078

ering typographically and geographically diverse 079

languages. Our main focus is on methods tuning 080
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less than 1% of total model parameters, but also081

cover methods with more parameters that are able082

to match full fine-tuning. We experiment with mod-083

els pre-trained on both monolingual and parallel084

data, varying from around 400m to 1 billion total085

parameters. Our main research questions are:086

1. How do different parameter-efficient meth-087

ods perform on MT for different lan-088

guages/parameter budgets?089

2. How does pre-trained model size effect the090

performance of parameter-efficient methods?091

3. How do parameter-efficient methods differ in092

terms of performance and ability to reveal093

model capability?094

Findings We found methods which add param-095

eters to a pre-trained model, namely adapters and096

prefix tuning, give us the best performance (§ 4.1),097

while methods tuning a subset of existing param-098

eters (like bias terms or cross attention) are better099

correlated with pre-trained model capability (§ 5.4).100

We found a large performance variation across lan-101

guage pairs, with translating between distantly re-102

lated languages decreasing performance, especially103

for the most parameter-efficient methods (§ 5.3).104

Finally, we observe that increasing model size, but105

keeping the same number of fine-tuned parameters,106

substantially increases MT performance (§ 5.2).107

2 Background108

This section briefly describes the two multilingual109

pre-trained models that we focus on in this work,110

namely mBART and M2M-100.111

Multilingual Denoising Pre-training Multilin-112

gual BART, mBART (Liu et al., 2020), is a113

sequence-to-sequence transformer model (Vaswani114

et al., 2017) that consists of an encoder and an115

autoregressive decoder. It is pre-trained with a de-116

noising objective, reconstructing a document from117

a noisy version. mBART uses span masking and118

sentence permutation to noise the original docu-119

ment. Its architecture consists of 12 encoder and 12120

decoder layers, with hidden dimension of 1024 and121

16 attention heads. mBART is trained entirely on122

monolingual data that includes multiple languages123

and it has a large multilingual vocabulary of 250k124

tokens. In our experiments, we use mBART-50125

(Tang et al., 2020) which was pre-trained on 50126

languages.127

Many-to-Many Multilingual MT The M2M- 128

100 model (Fan et al., 2020) is a many-to-many 129

multilingual translation system that is pre-trained 130

on a large-scale parallel dataset for 100 languages 131

and 100×99 translation directions. This dataset is 132

automatically constructed with a novel data mining 133

method based on language similarities and back- 134

translation. The model is trained in a many-to- 135

many fashion, balancing languages using sinkhorn 136

temperature sampling. In our experiments, we use 137

the base size M2M-100 with 484M parameters that 138

consists of 12 encoder and 12 decoder layers, and 139

feedforward dimension of 4096. To study the ef- 140

fect of the model size, we also use the medium 141

size M2M-100 with 1.2B parameters. Both models 142

have a multilingual vocabulary of 128K unique to- 143

kens that are distributed across 100 languages with 144

temperature sampling. 145

3 Parameter-efficient Methods 146

All of our experiments fall under the umbrella 147

of specialising a pre-trained sequence-to-sequence 148

transformer model for MT of a particular language 149

pair, with source language x and target language 150

y. If the pre-training task was MT, and x and y 151

were included, then a lower bound will be sim- 152

ply applying the pre-trained model without any 153

changes. Conversely an upper bound is fine-tuning 154

100% of the pre-trained model parameters (‘full 155

fine-tuning’). In between full fine-tuning and di- 156

rectly using the pre-trained model, we consider the 157

following parameter efficient-methods in this work: 158

Adapter-tuning (Houlsby et al., 2019) ‘Adapter 159

layers’ are lightweight, learnable units inserted be- 160

tween transformer layers. They typically take the 161

form of a feedforward network inserted as the final 162

operation in a transformer layer. Formally, we fol- 163

low the architecture introduced by Bapna and Firat 164

(2019) for MT: 165

Aℓ(h
ℓ) = W T

u · f(W T
d LN(hℓ) + bℓ

d) + bℓ
u, (1) 166

where an adapter module Aℓ at layer ℓ consists of 167

a layer-normalization LN of the input hℓ ∈ Rd, 168

followed by a down-projection Wd ∈ Rd×b with 169

bottleneck dimension b, a non-linear function f(·) 170

and a up projection Wu ∈ Rb×d. Finally, a resid- 171

ual connection with the input hℓ is added to the 172

output of the adapter: hℓ → Aℓ(h
ℓ) + hℓ. We 173

write ‘adapter-b’ to mean adapters with bottleneck 174

dimension b throughout this work. 175
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Language Language Dataset Parallel
family source data (K)

Czech (cs) Slavic TED 103
French (fr) Romance TED 192
Korean (ko) Korean TED 205
Russian (ru) Slavic TED 208
Italian (it) Romance IWSLT17 231
Portuguese (pt) Romance TED 184
Turkish (tr) Turkic TED 182
Vietnamese (vi) Austri-Asiatic IWSLT15 133
German (de) Germanic IWSLT17 206
Farsi (fa) Iranian TED 150
Hindi (hi) Indic IITB 1600
Finnish* (fi) Finnic mParacrawl 200
Estonian* (et) Finnic mParacrawl 200

Table 1: Languages that are used in the experiments.
We gather language pairs (x↔en) from TED (Qi et al.,
2018), IWSLT (Cettolo et al., 2012), MultiParacrawl
(mParaCrawl) and IITB (Kunchukuttan et al., 2018).
‘*’ indicates that we randomly sampled 200k parallel
sentences from the original datasets for corresponding
language pairs.

Prefix-tuning (Li and Liang, 2021) prepends a176

sequence of continuous task-specific vectors (‘pre-177

fixes’) to the model input, in analogy to natural178

language prompts (e.g. ‘translate this sentence:’).179

The transformer can attend to the prefix as if it180

were a sequence of ‘virtual tokens’, but the pre-181

fix consists entirely of free parameters. For each182

transformer layer, the prefix is replaced with a new183

set of vectors, increasing the expressiveness of the184

method. Concretely, we replace token embeddings185

by186

Ep = Concat(V 0, E), (2)187

with E ∈ RL×d the original token embeddings188

packed into a matrix, V 0 ∈ Rp×d the prefix189

vectors, and L the original sequence length, p190

the prefix length and d model dimension. Be-191

fore transformer layer ℓ we additionally set the192

first p hidden states to a new prefix vector, i.e.193

Hℓ[:p, :] = V ℓ with H ∈ R(L+p)×d the hidden194

states and V ℓ ∈ Rp×d.195

BitFit (Zaken et al., 2021) Bias term fine-tuning196

was introduced in the context of fine-tuning BERT197

for classification tasks, and consists of freezing198

most of the transformer-encoder parameters, and199

training only the bias terms and the task-specific200

classification layer. To use this method for MT201

we simply additionally fine-tune all decoder bias202

terms, and do not need the classification head.203

We introduce a simple improvement to BitFit,204

based on replacing redundant parameters with ones205

Fine-tuning # Trainable Parameter
Method Parameters Ratio (%)

mBART
Full FT 610m 100
Adapter (b=1024) 50m 8.2
X-attention 50m 8.2
BitFit 335k 0.05
Adapter (b=5) 320k 0.05
Prefix (p=13) 320k 0.05
Adapter (b=1) 123k 0.02
Prefix (p=5) 123k 0.02

M2M-100 (base, 484M parameters)
Full FT 484m 100
Adapter (b=1024) 50m 10.3
X-attention 50m 10.3
BitFit 335k 0.07
Adapter (b=5) 320k 0.07
Prefix (p=13) 320k 0.07
Adapter-1 123k 0.03
Prefix (p=5) 123k 0.03
No FT 0 0

M2M-100 (medium, 1.2B parameters)
Adapter (b=2) 344k 0.03*
No FT 0 0

Table 2: Fine-tuning methods used in our experiments.
‘*’ indicates that Adapter-2’s parameter ratio is calcu-
lated w.r.t M2M-100 (medium, 1.2B), but its parameter
count matches Adapter (b=5) (base) and BitFit (base).

that increase the expressiveness of the method. 206

Note BitFit fine-tunes bias parameters in layer- 207

norm (LN) modules (Ba et al., 2016), since layer- 208

norm contains the following affine transformation: 209

210

LNℓ
aff(z

ℓ) = γ ⊙ zℓ + β (3) 211

where zℓ is the normalized input after a resid- 212

ual connection. γ, β ∈ Rd are learnable weight 213

and the bias parameters of the layer-norm module. 214

For the standard transformer model we consider 215

in this work, the LN module is always followed 216

by a matrix multiplication plus a bias term i.e. 217

W ℓ
m ·LNℓ

aff(z
ℓ)+bℓm = W ℓ

m ·γ⊙zℓ+W ℓ
m ·β+bℓm 218

Notice the same space of functions is available by 219

only updating the bℓm term in W ℓ
m · β + bℓm. We 220

simply switch to updating γ instead of β, i.e. un- 221

freezing the LN weight parameters and freezing the 222

bias term in order to increase expressiveness and 223

downstream performance (confirmed empirically 224

in § 4.1). We use this version of BitFit throughout 225

this work unless stated otherwise. 226

X-attention Tuning (Gheini et al., 2021) refers 227

fine-tuning only cross-attention (X-attention) and 228

corresponding layer-norm parameters located in 229

each decoder layer of a transformer model. This 230
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mBART M2M-100
it→en tr→en it→en tr→en

Full FT 38.2 31.7 36.6 30.1

X-attention 34.8 27.0 36.1 29.2
Adapter (b=1024) 38.0 30.6 36.3 30.0

Prefix (p=13) 29.7 20.3 33.0 26.7
BitFit (LN-bias) 29.3 19.9 32.4 26.2
BitFit (LN-weights) 30.5 21.1 32.6 26.4
Adapter (b=5) 29.9 21.0 33.1 26.9

Prefix (p=5) 28.4 19.1 32.4 26.3
Adapter (b=1) 27.8 15.3 32.5 26.5

Table 3: BLEU scores for it→en and tr→en when differ-
ent fine-tuning methods used for mBART and M2M-100.
Each block represents same ratio of updated parame-
ters, respectively 100%, 8.2/10.3%, 0.05/0.07%, and
0.02/0.03% for mBART/M2M-100. chrF scores for
these experiments are shown in Appendix C

method is based off the importance of cross-231

attention for MT.232

4 Experiments & Results233

Datasets We selected 13 typologically and geo-234

graphically diverse languages for our experiments.235

Language families and dataset sources are shown236

in Table 1. For each language x, we paired it with237

English (en), and fine-tuned the pre-trained models238

separately. To pick these languages, we consider239

variation in language families and scripts.240

Experimental Settings We used mBART-50241

(Liu et al., 2020; Tang et al., 2020) and M2M-100242

(Fan et al., 2020) as our multilingual pre-trained243

models, and all the languages we experiment with244

are included in their pre-training data. mBART245

needs to learn machine translation with parallel246

data, but M2M-100 can be used without fine-tuning,247

due to their pre-training tasks (see § 2). We experi-248

mented with medium size M2M-100 (1.2B param-249

eters), to measure the impact of parent model size.250

Table 2 shows all the fine-tuning methods (§ 3)251

we use, with their base model, number of train-252

able parameters and parameter ratio over full fine-253

tuning. As prefix-tuning is computationally ex-254

pensive for large prefix lengths and generally does255

not perform as well as adapter-tuning for the same256

parameter budget, we do not include it in the exper-257

iments on every language pair (see § 4.1).258

For all directions (x↔en) and fine-tuning meth-259

ods, we fine-tuned models with 1e-4 maximum260

learning rate for 100K training updates. We picked261

the best model based on dev set perplexity. We used262
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Figure 1: Relative MT performance over full fine-tuning
vs. number of fine-tuned parameters for mBART. b and
p refer to adapter bottleneck dimension and prefix length
respectively. Due to the large effective sequence length,
we limit prefix-tuning experiments.

a maximum batch size of 1024 tokens for mBART 263

and 600 tokens for M2M-100, with a gradient ac- 264

cumulation step (update-frequency) of 2 for both 265

models. All experiments are performed with the 266

fairseq (Ott et al., 2019) library. Additional details 267

including dataset splits are in Appendix A. 268

We use BLEU scores to estimate MT quality, cal- 269

culated from Sacrebleu2 (Post, 2018). To compare 270

fine-tuning methods across different languages, we 271

often report relative performance with respect to 272

full fine-tuning (FT) for each language by calculat- 273

ing the ratio of each method’s BLEU score w.r.t. the 274

full FT BLEU score.3 On the recommendation of 275

Marie et al. (2021) we report chrF (Popović, 2015) 276

in Appendix C for each fine-tuning method. 277

4.1 Comparing fine-tuning methods 278

We can compare fine-tuning methods on several 279

dimensions. Table 3 shows performance in terms 280

of BLEU score for it→en and tr→en (similar and 281

dissimilar language pairs4). Adapters outperform 282

other methods at almost all parameter budgets. At 283

the largest parameter budget, adapter-1024 outper- 284

forms X-attention. For medium budgets (adapter- 285

5 size) prefix-tuning is in second place, but for 286

the smallest parameter budget (adapter-1 size) we 287

consider, prefix-tuning outperforms adapters for 288

mBART. However, prefix-tuning quickly falls be- 289

hind adapters as parameter count, i.e. prefix length 290

or adapter size, increases (see Fig. 1), in a result 291

2Sacrebleu signature (BLEU):
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0

3BLEU scores for each direction are given in Appendix C
4Due to computational constraints, we did not perform

experiments on all combinations of method and language pair.
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Figure 2: Relative performances over the full fine-tuning (%) for x↔en when mBART is fine-tuned by using
different methods. We show in brackets the percentage of total mBART parameters that are fine-tuned for each
method.

similar to He et al. (2021). Tuning LN weights292

rather than LN biases in the BitFit method outper-293

forms the version tuning LN biases, confirming294

that our version improves expressiveness.295

In terms of training speed/memory cost, prefix-296

13 causes a 30% slow-down in training speed rela-297

tive to adapter-5, and larger models impose signifi-298

cant costs due to a large effective sequence length;299

see also Appendix B. BitFit and adapters have sim-300

ilar training speed.301

4.2 Comparing language pairs302

mBART Fig. 2 shows the performance of several303

parameter-efficient method as we vary language304

pair, when initialized from mBART. Only adapter-305

1024 (8.2% of mBART parameters) is consistently306

competitive with full FT. Updating only cross-307

attention blocks (x-attn; 8.2% of mBART parame-308

ters) generates +90% relative performance with re-309

spect to full FT for Farsi, German, Russian, French,310

Portuguese, Vietnamese, and Czech in both direc-311

tions (x↔en). For other languages this decreases312

to ≈85%, and for Hindi (hi) to 50.4% and 61.7%313

in x→en and en→x respectively.314

For smaller parameter budgets (BitFit and315

adapter-5; 0.05% of mBART parameters), we see316

better performance when translating into English 317

(x→en). We expect better representation quality for 318

English given the unequal amount of data per lan- 319

guage used in mBART pre-training5. We observe 320

that adapter-5 consistently outperforms BitFit in 321

en→x (see also § 4.1). Finally note Hindi, Korean, 322

and Turkish are particularly challenging for these 323

methods, in both directions. 324

M2M-100 Fig. 3 shows relative MT performance 325

when initializing with M2M-100. Here, we also 326

include results for M2M-100 with no fine-tuning 327

(‘no FT’), as M2M-100 is pre-trained with parallel 328

data for MT. Again, languages such as Korean 329

and Turkish present a bigger challenge than others 330

(≈85% vs +90% performance relative to full FT) 331

when tuning with either zero or a small number of 332

parameters, although the performance drop is not 333

as large as for mBART. 334

Adapter-5 again achieves better results than 335

BitFit (+1% overall performance), in both direc- 336

tions (x↔en). M2M-100 without fine-tuning (no 337

FT) generally performs the worst; No FT reaches 338

78% mean relative MT performance w.r.t full FT, 339

5English is the largest portion (55M tokens, 300GB) of the
data that is used for mBART pre-training (Liu et al., 2020)
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Figure 3: Relative performance w.r.t. full fine-tuning (%) for x↔en when M2M-100 is fine-tuned with different
methods. Note that ‘adapt-1024’ and ‘x-attn’ are not shown as they perform similarly to full FT (§ Appendix C)

whereas adapter-5 achieves 92%. And for no FT340

the performance difference between languages is341

larger as can be seen in Farsi, Korean, and Turkish.342

Interestingly, the results for Hindi (hi) do not343

follow the same trend as mBART. For en→hi,344

compared to Korean or Turkish we see better rel-345

ative performance for small parameter budgets.346

For hi→en, full fine-tuning gives the worst per-347

formance. However, updating a small number of348

parameters (BitFit; 0.07% of the model param-349

eters) outperforms the base model with no fine-350

tuning (115% vs 107%). The corresponding en↔hi351

dataset consists of noisily aligned parallel sen-352

tences, and for the hi→en direction we speculate353

that fitting larger numbers of parameters gives the354

model enough capacity to model these noisy sen-355

tence pairs, hurting generalization. Finally, for356

fa↔en, M2M-100 performance is considerably357

lower than for other language-pairs when we do358

not fine-tune the model.359

5 Analysis360

5.1 Impact of parent model & pre-training361

Fig. 4 shows the relative performances over full362

fine-tuning for all languages (x↔en) when the363

ft adapt-1024 x-attn bitfit adapt-5

40

60

80

100

120

Relative performances over FT (%)

mbart
m2m-100

Figure 4: Relative performance w.r.t. full fine-tuning (%)
for all languages (x↔en) when the model is initialized
with mBART or M2M-100.

model is initialized with mBART or M2M-100. 364

Overall, parameter-efficient fine-tuning of M2M- 365

100 consistently provides higher relative perfor- 366

mance than mBART (Fig. 4). This difference is 367

larger when the number of trainable parameters is 368

small (BitFit and adapter-5). While M2M-100 is 369

pre-trained for MT with parallel data, mBART is 370

pre-trained with a (monolingual6) denoising objec- 371

tive. Perhaps more parameters are required at fine- 372

tuning time to ‘learn’ the MT task for mBART. Tun- 373

6Although mBART-50 pre-trained on 50 languages, the
pre-training objective does not use any cross-lingual signal.
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ing fewer parameters is better at revealing innate374

model capability than full FT or larger adapters,375

with the differences between parent models pretty376

minor for larger parameter budgets. Finally, we377

note mBART results have a higher variance than378

M2M-100 (see Fig. 4).379

5.2 Impact of parent model size380

We investigate how parent model size affects the381

performance of fine-tuning methods across lan-382

guages, comparing M2M-100’s base model with383

418M total parameters to its medium size version384

(1.2B parameters). Fig. 3 shows the relative perfor-385

mances over full fine-tuning (484M) for adapter-5386

with the base model and adapter-2 with the medium387

model, which correspond to roughly the same num-388

ber of trainable parameters (0.07% of 418M param-389

eters or 0.03% of 1.2B). No fine-tuning (no FT)390

results are also shown, representing lower bounds.391

When translating into English (x→en), adapter-392

2 with the medium model outperforms full fine-393

tuning of the base model for most languages despite394

tuning only 0.03% of its parent model parameters.395

Compared to adapter-5 (484M) the difference is396

even larger (104.3% vs 93.6% mean relative MT397

performance w.r.t FT). Moreover, adapter-2 (1.2B)398

has a lower variance in performance compared to399

other models. For x→en, adapter-2 is still competi-400

tive with full fine-tuning of the base model with al-401

most the same average performance. However, the402

difference between adapter-2 (1.2B) and adapter-5403

(484M) is lower in this direction (97.9% vs 90.1%).404

Furthermore, the performance variation across lan-405

guages is more visible: for Hindi, Farsi, Korean406

and Turkish adapter-2 (1.2B) performance falls be-407

hind full fine-tuning of the base model.408

When it is used without any parameter updates,409

the medium model shows mixed results. Although410

performance is considerably higher than the base411

model without fine-tuning, the medium model is412

not competitive with adapter-5 (484M), in either413

direction (x↔en). Furthermore, there is relatively414

high variance in results across language, with some415

languages remaining challenging. Therefore, for416

large parent models, parameter-efficient fine-tuning417

(<1%) can take MT performance to the upper418

bound of a smaller model, showing the usefulness419

of fine-tuning even at large scales.420

5.3 Impact of language relatedness421

In order to investigate the impact of language re-422

latedness on parameter-efficient fine-tuning, we423

designed another set of controlled experiments. We 424

pick 3 languages from MultiParaCrawl, namely 425

Finnish, Estonian and English, where Finnish and 426

Estonian are from the same language family and 427

typologically similar. We measure translation per- 428

formance into Finish from Estonian and English, 429

for different fine-tuning methods, and similarly for 430

translation into Estonian. Fig. 5 shows relative 431

MT performances with respect to full fine-tuning 432

for adapter-1024, X-attention, BitFit and adapter-5, 433

corresponding to decreasing numbers of trainable 434

parameters, for both mBART and M2M-100. 435

As shown in the first two plots, when translat- 436

ing into Finnish, Estonian as the source language 437

gives an advantage over English for BitFit and 438

adapter-5 (This advantage is higher in M2M-100 439

than mBART). Likewise, for translation into Es- 440

tonian, as the number of trainable parameters de- 441

creases, relative MT performance drops less when 442

Finnish is the source language compared to En- 443

glish, for both parent models. These results suggest 444

that, when the source and target languages are ty- 445

pologically similar, parameter-efficient fine-tuning 446

methods make better use of the parent model. 447

Similarly, Fig. 1 shows relative MT performance 448

with an increasing number of trainable parameters 449

in mBART for a similar language pair (it→en) and 450

a dissimilar one (tr→en). At low parameter budgets 451

tr→en performance is much lower than it→en, but 452

the gap between the two decreases as parameter 453

budget increases. 454

5.4 Revealing model capability 455

Comparing methods on their ability to reveal pre- 456

trained model capability, we find methods that 457

don’t add any additional parameters (x-attn and 458

BitFit) are the most useful. These methods show 459

the most variation across language pairs (see e.g. 460

Fig. 4). Additionally since for M2M-100 we can 461

measure pre-trained model capability by evaluating 462

the performance of the model without fine-tuning 463

(‘no FT’), for M2M-100 we also calculate the cor- 464

relation between relative performance of different 465

fine-tuning methods and no FT performance for 466

each language. We find, for x→en, BitFit (0.84) 467

> adapter-5 (0.77) > x-attn (0.73) > adapter-1024 468

(0.66), where the number in brackets is the Pearson 469

product-moment correlation coefficient. We have 470

the same ranking for en→x. This shows that both a 471

small parameter budget and not adding additional 472

parameters i.e. adapters seems to be important for 473
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Figure 5: Decrease in relative performance (%) over full fine-tuning as the number of updated parameters decreases
for translating into Finnish and Estonian with different source language (en, et, fi).

revealing model capability.474

6 Related Work475

In NLP, parameter-efficient methods have been476

widely used for fine-tuning of Transformer models477

to new tasks, domains or languages. Among those478

that add additional parameters, adapters (Houlsby479

et al., 2019) are ‘modular’, adding separate net-480

works to the base model. As well as simple fine-481

tuning, they can be used in contexts such as multi-482

task learning (Stickland and Murray, 2019; Pfeif-483

fer et al., 2021; Karimi Mahabadi et al., 2021),484

cross-lingual transfer (Üstün et al., 2020; Pfeiffer485

et al., 2020) and multilingual NMT (Bapna and486

Firat, 2019; Philip et al., 2020; Stickland et al.,487

2021b; Üstün et al., 2021).488

Prefix-tuning (Li and Liang, 2021) and Prompt-489

tuning (Lester et al., 2021; Qin and Eisner, 2021)490

(i.e. only using soft prompt tokens without prefix491

vectors in each layer), have a natural interpretation492

in terms of virtual tokens. They can be used as task493

embeddings for inter-task transferability (Vu et al.,494

2021). LoRA (Hu et al., 2021) injects trainable low-495

rank matrices into query and value projection matri-496

ces of each transformer layer. Concurrently to our497

work, He et al. (2021) present a unified framework498

that integrates the above methods. Diff-pruning499

(Guo et al., 2021) modifies model parameters with500

a sparse vector. Some methods don’t add any pa-501

rameters: BitFit (Zaken et al., 2021) fine-tunes502

only existing bias vectors, for classification tasks,503

and for MT, Gheini et al. (2021) propose updating504

only cross-attention blocks in decoder layers of the505

model.506

Some of these methods have been compared in507

a controlled setting for English classification tasks508

(Mahabadi et al., 2021) or only a single language509

pair (English and Romanian) for MT (He et al.,510

2021). Aspects of efficiency and scale in MT in511

terms of inference cost (Kasai et al., 2021; Berard512

et al., 2021), vocabulary size (Gowda and May, 513

2020) data (Gordon et al., 2021), model size (Gor- 514

don et al., 2021; Arivazhagan et al., 2019) and num- 515

ber of languages (Arivazhagan et al., 2019) have 516

been explored. Other work aims to improve full FT 517

for domain adaptation by mixing in different data 518

(Chu et al., 2017), regularisation (Miceli Barone 519

et al., 2017) or many other methods (Chu and Wang, 520

2018; Saunders, 2021). However, none of these 521

works study parameter-efficient transfer-learning 522

methods for MT, and we aim to fill this gap. 523

7 Conclusion 524

We recommend: when fine-tuning a pre-trained 525

model for MT, adapter layers usually have the high- 526

est performance out of all parameter-efficient fine- 527

tuning methods (§ 4.1). For large parameter bud- 528

gets (≈50m parameters) they almost recover full 529

fine-tuning performance, and even for lower bud- 530

gets, if the pre-training task was MT, i.e. M2M- 531

100, adapters can recover >90% of full FT perfor- 532

mance. However methods like BitFit which only 533

tune existing parameters are better correlated with 534

pre-trained model capability (§ 5.4), and for the 535

smallest parameter budgets we consider, prefix tun- 536

ing outperforms adapters for mBART. 537

Tuning only a small fraction of a larger model’s 538

(M2M-100 medium size) parameters can outper- 539

form full FT of a smaller model (M2M-100 base 540

size). However when translating in the en→x di- 541

rection where x is distantly related to English e.g. 542

Korean, full FT is superior (§ 5.2). More gener- 543

ally, distantly related language pairs require more 544

parameters to be tuned to get close to full FT, for 545

all methods (§ 5.3). Although we attempted to 546

cover a diverse set of languages, future work could 547

explore truly low resource languages, and those 548

not included in the pre-training data of our models, 549

where one would expect even larger performance 550

gaps. 551
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Language Dev Test Train
Size (k) Size (k) Size (k)

Czech (cs) 3.5 3.8 103
French (fr) 4.3 4.9 192
Korean (ko) 4.4 5.6 205
Russian (ru) 4.8 5.5 208
Italian (it) 0.9 1.6 231
Portuguese (pt) 4 4.9 184
Turkish (tr) 4 5 182
Vietnamese (vi) 1.6 1.3 133
German (de) 0.9 1.6 206
Farsi (fa) 3.9 4.5 150
Hindi (hi) 0.5 2.5 1600
Finnish* (fi) 3 3 200
Estonian* (et) 3 3 200

Table 4: Train, dev and test splits for the languages that
are used in the experiments, in thousands of parallel sen-
tences. ’*’ indicates that we randomly sampled parallel
sentences from the original datasets for corresponding
language pairs.

A Reproducibility Report845

Datasets All datasets that are used in our ex-846

perimetns are publicly available. We used TED847

talks (Qi et al., 2018) for (cs, fr, ko, ru, pt, tr,848

fa)↔en, IWSLT15 and IWSTL17 (Cettolo et al.,849

2012) for vi↔en and (it, de)↔en respectively, IITB850

(Kunchukuttan et al., 2018) for hi↔en. Finally, for851

(en, et, fi) experiments, we randomly sampled 200k852

parallel sentences for each language-pair from Mul-853

tiParacrawl by using OPUS (Tiedemann, 2012).854

Sizes of train, dev and test splits are given in Ta-855

ble 4. All datasets have licenses allowing non-856

commercial use.857

Pre-trained models and Hyper-parameters We858

used mBART (Liu et al., 2020) that is extended to859

50 languages (Tang et al., 2020). For M2M-100860

(Fan et al., 2020), we used base- and medium-size861

models that consist of 484M and 1.2B parameters862

respectively.863

For all experiments we used the hyper-864

parameters that are reported by Liu et al. (2020)865

except learning rate. For the learning rate, we fol-866

low Üstün et al. (2021) and used maximum of 1e-4867

with polynomial learning rate decay, based on their868

adapter-tuning experiments. We fine-tune models869

by using 0.3 dropout, 0.2 label smoothing, 2500870

warm-up steps for 100K training updates with an871

early-stopping patience of 10 epochs. We used a872

maximum batch size of 1024 tokens for mBART873

and 600 tokens for M2M-100, with a gradient ac-874

cumulation step (update-frequency) of 2 for both875

models. We report the result of a single random876

mBART M2M-100
it→en tr→en it→en tr→en

Full FT 59.4 53.3 58.2 52.6

X-attention 56.6 48.9 57.7 51.6
Adapter (b=1024) 59.2 52.3 57.8 52.2

Prefix (p=13) 52.4 42.8 55.3 49.7
BitFit (LN-bias) 51.8 41.7 55.0 49.3
BitFit (LN-weights) 52.7 42.8 55.1 49.5
Adapter (b=5) 52.4 42.8 55.5 49.8

Prefix (p=5) 51.4 41.4 54.9 49.5
Adapter (b=1) 50.5 36.5 55.0 49.5

Table 5: chrF scores for it→en and tr→en when differ-
ent fine-tuning methods used for mBART and M2M-100.
Each block represents same ratio of updated parame-
ters, respectively 100%, 8.2/10.3%, 0.05/0.07%, and
0.02/0.03% for mBART/M2M-100.

seed/training run throughout this work whenever 877

we list BLEU scores. All parameter-efficient fine- 878

tuning methods are implemented on top of the 879

Fairseq framework (Ott et al., 2019). We will share 880

our code and scripts to reproduce all experiments. 881

Computing Budget and Infrastructure All the 882

experiments are conducted using Tesla V100 GPUs 883

with mixed precision (fp16). Parameters that are 884

fine-tuned for each model are reported in the exper- 885

iments section (§ 4). Each individual experiment 886

took 3-10 hours on one GPU depending on the 887

fine-tuning method and the language-pair. 888

B Prefix-tuning Details 889

There is relationship between memory cost and 890

training time for prefix-tuning: including virtual to- 891

kens in a sentence will increase the effective length 892

of that sentence, and we can either impose addi- 893

tional memory cost for the virtual tokens, or we 894

can reduce the total number of ‘real’ i.e. natural 895

language as opposed to virtual tokens in each batch. 896

With the latter method we avoid a large memory 897

cost, however the time taken to iterate through a 898

given number of training examples will be longer, 899

since the number of real tokens per batch will be 900

decreased, increasing training time. We use the 901

latter (decreased ‘real’ tokens) method in all exper- 902

iments. 903

Finally we note that inference speed will de- 904

crease as we increase the number of virtual tokens, 905

since the decoder attention mechanism needs to 906

attend to virtual tokens, i.e. when decoding token 907

n it will attend to n − 1 + p previous tokens for 908

prefix length p. 909

12



C Additional Results and Metrics910

Table 5 shows chrF scores7 for the experiments911

comparing different parameter-efficient methods912

on it→en and tr→en (Table 3). These results con-913

firms that the trends discussed in Section 4 are the914

same regardless of metric used for MT quality.915

In Tables 6, 7 and 8, we show BLEU scores for916

other experiments presented in the paper only in917

terms of performance relative to full FT. Addition-918

ally we show adapter-1024 and X-attention scores919

for M2M-100; in general adapter-1024 outperforms920

X-attention, and both methods come close to full921

FT performance or slightly outperform it.922

In Table 7 we show results of a smaller (40m pa-923

rameters) transformer model trained from scratch924

on each dataset separately, with an architecture925

consisting of 6 encoder and decoder layers, hid-926

den dimension of 512 and feed-forward hidden927

dimension 1024. We train a unique sentence-928

piece (Kudo and Richardson, 2018) vocabulary929

for each dataset, shared between source and tar-930

get language, of size approximately 16k. Train-931

ing hyper-parameters were the same as our other932

models. For the x→en direction almost all of our933

methods based on pre-trained models outperformed934

the ‘from scratch’ baseline, however in the en→x935

direction for mBART the most parameter efficient936

methods sometimes fall short (see e.g. Turkish or937

French). For translating into Farsi no pre-trained938

model outperformed the from scratch model, even939

with full fine-tuning, suggesting a weakness for940

particularly low resource resource languages like941

Farsi.942

Note per-dataset hyper-parameter search would943

likely improve performance, especially for ‘from944

scratch’ results, but we did not attempt this due to945

computational constraints.946

7Sacrebleu signature (chrF2++):
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.0.0
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No. hi fa it de ru ko fr pt tr vi cs
M2M-100 Params 1.6m 150k 230k 208k 208k 205k 192k 184k 182k 133k 103k

en→x
Full FT 484m 19.4 17.6 32.8 32.0 22.0 9.6 41.3 42.1 17.9 33.9 24.5
Adapter (b=1024) 50m 18.6 17.6 32.7 31.3 22.0 9.3 41.0 42.4 17.9 33.4 24.8
X-attention 50m 18.3 17.3 31.7 31.0 21.9 9.2 40.8 42.0 17.7 33.6 24.5
BitFit 335k 17.5 16.0 28.9 27.3 20.0 7.8 37.7 38.5 15.2 31.5 22.4
Adapter (b=5) 320k 17.3 16.2 29.3 27.5 20.5 8.1 37.8 39.0 15.6 31.4 22.8
Adapter (b=2; 1.2B) 344k 17.4 14.6 32.5 32.1 23.1 8.9 42.2 43.1 16.7 34.6 26.4
No FT (1.2B) 0 18.0 9.7 29.6 29.9 21.1 5.5 37.6 39.6 13.2 32.9 24.0
No FT (484M) 0 17.3 10.6 26.8 25.9 18.4 5.0 33.6 35.8 12.4 30.0 20.6

x→en
Full FT 484m 20.4 32.3 36.6 37.2 27.8 22.2 43.2 47.9 30.1 34.3 32.8
Adapter (b=1024) 50m 22.4 32.3 36.3 36.3 28.0 22 43.2 47.8 30 34.7 33.9
X-attention 50m 21.9 31.6 36.1 36.3 27.1 21.4 42.8 47.1 29.2 33.6 33.4
BitFit 335k 23.4 27.2 32.6 32.9 24.5 19.0 39.4 44 26.4 31.5 31.3
Adapter (b=5) 320k 22.6 28.8 33.1 33.2 25.5 19.6 40.2 44.8 26.9 33.3 31.9
Adapter (b=2; 1.2B) 344k 24.8 31.5 37.3 37.7 28.9 22.2 44.0 48.7 29.9 37.5 35.6
No FT (1.2B) 0 24.5 14.9 32.5 32.1 24.1 17.6 37.5 42.0 24.2 29.9 30.1
No FT (484m) 0 21.9 14.9 29.7 29.5 21.4 15.8 34.9 38.6 22.0 27.1 27.2

Table 6: x↔en results in terms of BLEU for M2M-100 experiments.

No. hi fa it de ru ko fr pt tr vi cs
mBART Params 1.6m 150k 230k 208k 208k 205k 192k 184k 182k 133k 103k

en→x
Full FT 610m 19.3 17.8 32.9 33.1 23.5 10.1 42.7 43.5 18.7 35.2 25.2
Adapter (b=1024) 50m 18.1 18.0 33.3 32.8 22.9 9.9 37.9 42.8 18.2 34.6 24.3
X-attention 50m 11.9 16.8 27.7 30.3 21.2 8.8 39.5 40.8 16.3 33.5 22.2
BitFit 335k 7.9 12.8 22.7 23.3 16.6 5.3 30.9 30.9 9.5 26.8 15.6
Adapter (b=5) 320k 8.1 13.7 22.7 23.9 15.4 5.8 29.3 32.3 9.9 27.3 15.4
From Scratch 40m 5.3 25.0 23.9 22.9 15.3 5.5 32.5 35.4 11.0 26.2 17.0

x→en
Full FT 610m 22.6 33.9 38.2 34.1 29.6 23.5 44.8 49.4 31.7 36.0 34.3
Adapter (b=1024) 50m 19.4 32.8 38.0 33.5 28.9 22.9 44.4 48.6 30.6 35.2 32.9
X-attention 50m 11.4 30.8 32.9 31.6 26.8 19.7 41.9 43.8 27.0 34.0 31.1
BitFit 335k 11.3 23.6 29.5 25.9 22.0 14.9 35.2 38.8 21.1 28.1 26.0
Adapter (b=5) 320k 12.8 23.2 29.9 25.7 21.8 15.4 34.8 38.2 21.0 27.4 26.4
From Scratch 40m 5.0 20.9 27.3 26.3 19.2 11.6 34.3 39.4 19.1 21.9 23.8

Table 7: x↔en results in terms BLEU for mBART experiments.

M2M-100 mBART
en < > fi en < > et fi < > et en < > fi en < > et fi < > et

Full FT 43.9 37.9 40.4 33.4 33.6 33.4 45.4 39.8 42.3 35.5 34.8 35.4
Adapter (b=1024) 42.7 35.5 39.6 30.9 31.6 31.5 45.3 39.1 41.9 33.8 33.6 33.8
X-attention 42.9 35.9 39.5 31.2 31.6 31.1 40.6 34.2 36.1 28.9 28.5 29.1
BitFit 35.4 25.6 33.9 22.9 26.8 26.1 28.9 18.9 25.0 13.8 18.0 17.3
Adapter (b=5) 36.1 26.8 34.3 23.2 26.9 26.5 28.9 19.2 24.3 14.6 18.2 16.9
Adapter (b=2; 1.2B) 41.9 32.0 39.6 28.8 31.8 31.4 - - - - - -
No FT (1.2B) 40.3 28.6 38.1 27.3 31.3 31.0 - - - - - -
No FT (484M) 34.1 23.6 32.9 22.6 26.8 26.2 - - - - - -

Table 8: (en, et, fi) results in terms of BLEU for M2M-100 and mBART experiments. Note that BLEU scores are
not directly comparable as the datasets are different for each language-pair. For a comparison between fine-tuning
methods, we refer to relative performances over full fine-tuning (Fig. 5).
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