
Proceedings of Machine Learning Research 303:1–27, 2026 EAIM2026 at AAAI

LLMs can read music, but struggle to hear it.
An evaluation of core music perception tasks

Brandon James Carone bcarone@nyu.edu
Department of Psychology, Music and Audio Research Laboratory (MARL), Center for Language,
Music, and Emotion (CLaME), New York University

Iran R. Roman i.roman@qmul.ac.uk
School of Electronic Engineering and Computer Science, Queen Mary University of London

Pablo Ripollés pripolles@nyu.edu

Department of Psychology, Music and Audio Research Laboratory (MARL), Center for Language,

Music, and Emotion (CLaME), New York University

Abstract

Multimodal Large Language Models (MLLMs) claim “musical understanding,” yet most
evaluations conflate listening with score reading. We benchmark three SOTA LLMs (Gem-
ini 2.5 Pro, Gemini 2.5 Flash, and Qwen2.5-Omni) across three core music skills: Syn-
copation Scoring (rhythm perception), Transposition Detection (melody perception), and
Chord Quality Identification (harmony perception). Moreover, we separate three sources
of variability: (i) perceptual limitations (by contrasting audio recordings vs. symbolic
MIDI inputs), (ii) exposure to prior examples (zero- vs. few-shot manipulations), and (iii)
reasoning strategies (Standalone, Chain of Thought, LogicLM). For the latter we adapt
LogicLM, a framework combining LLMs with symbolic solvers to perform structured rea-
soning. In LogicLM, LLMs act as perceptual formulators, generating strict, machine-
checkable schemas (onset grids, interval sequences) that deterministic solvers execute with
self-refinement. Our results reveal a clear perceptual gap: models perform near ceiling on
MIDI but show substantial accuracy drops on audio. Reasoning and few-shot prompting
offer minimal gains. This is expected for MIDI, where performance reaches saturation, but
more surprising for audio, where LogicLM, despite near-perfect MIDI accuracy, remains
notably brittle. Among models, Gemini Pro achieves the highest performance across most
conditions. Transposition yields the highest accuracies across models, while Chord Identifi-
cation scores slightly below Syncopation. Overall, current systems reason well over symbols
(MIDI) but do not yet “listen” reliably from audio, with reasoning strategies having little
impact over accuracy. Our method and dataset make the perception–reasoning boundary
explicit and offer actionable guidance for building robust, audio music systems.

Keywords: Audio Large Language Models, Multimodal Large Language Models, Music
Understanding, Benchmarking and Evaluation, Schema-Guided Reasoning, LogicLM

1. Introduction

Recent advances in foundation models have extended their reach beyond text to multimodal
architectures that process audio, vision, and language in a unified framework. Models such
as Alibaba’s Qwen2.5-Omni, trained on a range of audio tasks (Xu et al., 2025), and Google’s
Gemini 2.5 family, which incorporates advanced multimodal integration for real-time inter-
actions (Comanici et al., 2025), exemplify this new generation. One problem with many
multimodal LLMs is that they boast “generic hearing abilities” and “music understanding”,
yet struggle with tasks as simple as recognizing a well-known tune when transposed to a
different key (i.e., singing the same song at a higher or lower pitch) or played on another

© 2026 B.J. Carone, I.R. Roman & P. Ripollés.

Carone Roman Ripollés

instrument. For example, after being fed a simple piano rendition of “Happy Birthday” and
told that the melody represents that tune regardless of which key it is played in, they fail
to recognize it when played in a different key or on another instrument (in our own pilot
tests, Gemini 2.5 guesses that the transposed version of “Happy Birthday” played at the
same tempo is “Twinkle Twinkle Little Star” and Qwen2.5-Omni responded with “Lose
Yourself” by Eminem). On the other hand, most people with Western enculturation recog-
nize “Happy Birthday” across keys, instruments, and language (Halpern and Bartlett, 2010;
Margulis, 2013). Often these models are evaluated on benchmarks (e.g., AIR-Bench; (Yang
et al., 2024)) that primarily focus on tasks such as speech recognition, audio classification,
or music tagging/captioning using publicly available datasets (e.g., MusicCaps, AudioSet,
NSynth, MagnaTagATune; (Chu et al., 2023, 2024; Kong et al., 2024; Ghosh et al., 2025b;
Tang et al., 2024; Liu et al., 2024)). Among the state-of-the-art audio benchmarks are
MMAR (Ma et al., 2025b), MMAU (Sakshi et al., 2025), and MMAU-Pro (Kumar et al.,
2025), CMI-Bench (Ma et al., 2025a), RUListening (Zang et al., 2025), and FUTGA-MIR
(Wu et al., 2025), which broaden coverage across speech, sound, and music, emphasizing
multi-step reasoning. These benchmarks add realism via in-the-wild audio, long-form and
multi-audio settings, spatial understanding, and expert-crafted Question-Answer pairs. In
the context of music, MMAU-Pro even asks open-ended questions regarding musical themes,
a song’s mix, and what might differentiate one song from another. However, no existing
benchmarks strategically ask questions about music that test whether the model can “listen
to” the specific relations that constitute musical structure, or do so robustly enough to form
a symbolic representation for a piece of music, like how a musician might transcribe a song.

While these datasets may be effective in assessing isolated aspects of music understand-
ing (e.g., genre and instrument identification), it is still unknown whether they fully capture
the nuanced, hierarchical nature of music perception in human listeners. For example, Au-
dio LLMs may learn to associate the spectral characteristics of a trumpet’s timbre with the
label “trumpet,” or tie fast tempos, loud drums, and distorted guitars with the label “rock
music,” simply by maximizing the likelihood of these co-occurrences in the training data.
However, this focus on surface statistics is less suited for tasks demanding abstract rela-
tional understanding, such as recognizing a melody when its absolute pitches are changed
(key invariance) or identifying the harmonic function of a chord within a progression. These
abilities require understanding relationships between elements (e.g., relative pitch intervals,
harmonic contexts) rather than just recognizing the elements themselves.

In the current study, we focus on three fundamental components of musical hierarchy:
rhythm, melody, and harmony. Syncopation captures the perception of rhythmic “surprise”
or emphasis in unexpected places (Large et al., 2015, 2023). Evaluating a model’s capacity
to detect syncopation provides a measure of its sensitivity to temporal predictability and
metric displacement in rhythm perception. Testing melody recognition across transpositions
(Dowling and Fujitani, 1971; Dowling, 1978; Deutsch, 1969) assesses the model’s ability to
recognize melodies despite shifting the key, or rather, starting the same melody on a different
pitch or note that is higher or lower and maintaining the rhythmic and intervallic changes.
By testing this, we can evaluate whether the model exhibits similar perceptual invariance
to humans. Identifying chord quality (i.e., major, minor, dominant, diminished) requires a
model to recognize harmonic structures based on the relative intervals above the root note
of the chord, rather than absolute pitch alone. By testing this, we can evaluate whether

2

Evaluating mLLMs on Music

the model demonstrates an ability to track intervals above a given note, and characterize
the joint quality of the pitches forming those intervals as a whole.

Evaluating these abilities in multimodal LLMs presents a methodological challenge:
how can we pinpoint where the bottleneck in musical abilities lies? To answer this question,
we have developed an experimental design that jointly assesses perceptual, learning, and
reasoning factors. First, we aim to test the perceptual limitations of multimodal LLMs by
comparing their performance on audio recordings, which require genuine listening, versus
symbolic MIDI inputs, which rely on structured representations. Second, we aim to assess
how in-context learning (few-shot vs. zero-shot) influences accuracy, revealing whether
brief exposure to examples improves music perception, or if performance remains limited
by underlying perceptual constraints. And third, when a model produces a correct answer, it
is often unclear whether this reflects genuine perceptual analysis (i.e., reasoning) or reliance
on superficial cues. This echoes the problem of “unfaithful reasoning” in logical domains,
where models may generate plausible chains of thought that do not underlie their actual
decision process (Pan et al., 2023). Even Chain-of-Thought prompting (a technique where
an LLM generates intermediate reasoning steps to improve the accuracy of its answer),
does not necessarily guarantee alignment with the perceptual computations themselves. To
address this, we adapt LogicLM (Pan et al., 2023), a neuro-symbolic prompting framework
in which an LLM emits a strict, machine-checkable schema that a deterministic solver
executes, aided by a self-refinement loop, so that the final answer is grounded in verifiable
computation rather than free-form text or guessing. In our adaptation, the model serves as a
Perceptual Formulator, tasked with converting continuous audio into a structured symbolic
schema (e.g., note sequences, rhythmic onsets, pitch-class sets). These are then evaluated
by deterministic solvers, ensuring that the final decision is grounded in the schema rather
than in opaque model heuristics. By systematically comparing model performance on raw
audio versus symbolic MIDI inputs, and by contrasting LogicLM prompting with standalone
and Chain-of-Thought strategies, we provide a detailed assessment of where current models
succeed, where they fail, and what this reveals about the limits of machine music perception.

Figure 1: Diagram of the experimental design carried out with each model and task.

3

Carone Roman Ripollés

2. Methods

2.1. Stimuli Creation

Stimuli were recorded by a real human musician, and are originally from The MUSE Bench-
mark (Carone et al., 2025a,b). See Supplementary Materials S1 for details.

2.2. Tasks

Syncopation Scoring. In this task, the models were presented with 20 short rhythmic
excerpts (8 secs) performed at 120 BPM on a drum set, consisting of kick, snare, and hi-hat.
The hi-hat maintained a constant stream of eighth notes, while the kick and snare patterns
varied in their placement across on-beats (those falling on the quarter notes of each bar)
and off-beats (those falling on the 8th notes in between each quarter note). The models’
task was to rate the degree of syncopation by counting the number of kick and snare events
that occurred on off-beats, and then mapping this total to a categorical Syncopation Score
(i.e., 0, 2, 4, 6, or 8). Stimuli were systematically constructed to span a wide range of
syncopation levels, in accordance with the methods of (Large et al., 2015, 2023).

Transposition Detection. In this task, the models were presented with 20 pairs of
musical excerpts (mean duration ≈ 9 secs) where the first excerpt presented is the anchor,
and the second (i.e., target) is either the same melody transposed to a different key, or a
different melody. After “listening”, the models must decide whether the two audio clips
represent the same melody or not. 10 of the trials were matches, and the other 10 were
not matches. Stimuli were short excerpts played on an electric guitar or a piano, and were
varied across tempo, key, meter, and melody length.

Chord Quality Identification. In this task, the models were presented with 44 short
musical excerpts (9 secs) recorded at 120 BPM and consisting of a single chord played first
as a block and then as an arpeggiation, where each of the individual notes of the chord
were played individually from lowest to highest. Each chord was in root position, where the
lowest note is the root of the chord, to remove ambiguity about inversion, and all stimuli
were generated on piano to ensure consistent timbre across all trials. The models’ task was
to classify the chord into one of four quality categories: Major (Root + major 3rd + perfect
5th), Minor (Root + minor 3rd + perfect 5th), Dominant (Root + major 3rd + perfect 5th
+ minor 7th), or Diminished (Root + minor 3rd + diminished 5th).

2.3. Implementation

We developed a set of custom inference scripts that closely followed the framework pro-
posed in the original LogicLM study (Pan et al., 2023), which compared three prompting
strategies: Standalone, Chain-of-Thought (CoT), and LogicLM. In adapting this design to
the domain of music perception, we ensured that: (i) each trial was independent of the
others, (ii) prompts were standardized across prompting strategies, and (iii) results could
be evaluated in a reproducible way. Each trial began with a fresh chat session, meaning
that no conversational history was ever preserved across trials or across tasks. All prompt-
ing strategies included the same set of task-specific system instructions, which defined the
rules of the task and the required output format. In constructing our scripts, we wanted to

4

https://github.com/brandoncarone/MUSE_music_benchmark
https://github.com/brandoncarone/MUSE_music_benchmark

Evaluating mLLMs on Music

separate three key sources of variability: (i) perceptual limitations (by contrasting audio vs.
symbolic inputs), and (ii) learning by exposure to prior examples (zero- vs. few-shot manip-
ulations), and (iii) reasoning strategies (standalone vs. CoT vs. LogicLM). The differences
between the different runs are outlined below:

Per-task modularity. Each task was implemented in a separate script. This ensured that
stimuli, examples, and outputs were isolated per task and that no prompt information leaked
across prompting strategies. Each condition was tested in the same structure, allowing direct
comparisons across tasks.

Audio vs. MIDI data. We ran a symbolic-input control by replacing audio with MIDI
notation for the same items. Prompts simply swap “you will hear. . . ” for “you will be
given MIDI data. . . ”, and the model is asked to generate the same schema as in the audio
runs. All stimuli were rerecorded on a MIDI keyboard and then translated to .txt files
using a custom script and the python package mido. This isolates the effect of perceptual
transcription from symbolic reasoning.

Zero-shot vs. Few-shot. In zero-shot prompting strategies, models received only the
system instructions and the trial stimuli. In few-shot prompting strategies, we included
a small number of worked examples in the trial history (two for syncopation scoring and
transposition detection; four, one per quality category, for chord quality detection), each
paired with the correct solution. These examples were presented only for that trial and were
excluded from the evaluation set. This separation allowed us to test whether models could
solve tasks based on their intrinsic knowledge or whether they benefited from in-context
learning from demonstrations.

Standalone, CoT, and LogicLM. In the standalone condition, models were asked to
provide only the final categorical response (e.g., “Yes, these are the same melody.”, “C.
Dominant”). In the CoT condition, they were encouraged to produce short intermedi-
ate reasoning before giving a final answer on a separate line. In the LogicLM condition,
the model was required to output a structured symbolic transcription (e.g., a list of note
intervals or a grid of rhythmic onsets), which was then parsed by a deterministic solver
(solver.py; see Supplementary Materials S3). When schema violations occurred (for exam-
ple, malformed syntax or an out-of-range onset), we implemented a self-refinement loop in
which the model was asked to correct its own output under strict constraints. This mirrors
the iterative repair process described in (Pan et al., 2023). System instructions for each
task and condition can be found in Supplementary Materials S2.

All responses from the LLMs were parsed with regular expressions to extract the final
line (e.g., “Final Answer: B” or “Yes, these are the same melody.”). For LogicLM, the
symbolic output was passed to the solver, and solver decisions were used to score the trial.
All trials across runs were randomized and logged to a dedicated file that included the model
configuration, trial IDs, raw outputs, parsed responses, and evaluation results.

2.4. Models and inference environment

We tested Gemini 2.5 Pro, Gemini 2.5 Flash, and Qwen2.5-Omni. Gemini runs used
the google.genai SDK, whereas Qwen runs mirrored the same pipeline on the NYU HPC

5

Carone Roman Ripollés

(SLURM), with provider-specific chat/message shims but the same prompts, decoding set-
tings, seeding, and evaluation. All Qwen2.5-Omni experiments were run on the NYU Greene
HPC cluster using SLURM. To run the scripts, we used 2 NVIDIA H100 GPUs, 64 GB of
system memory, and 8 CPU cores to run all of the scripts.

2.5. Statistical Analyses

Decision Accuracy. Analyses were conducted in Python (pandas for data handling,
numpy for numerical operations, and matplotlib for visualization). The unit of analysis
was a run (one log file). For each run, we computed an accuracy score:

Accuracy % = 100× Correct

EffectiveTotal
,

where Correct denotes the number of correctly scored trials and EffectiveTotal is the total
number of trials after subtracting token-limited events (i.e., truncated or empty model
outputs; 0.01% of all trials). Each run therefore contributed a single accuracy observation,
annotated with metadata fields: Task, Model, Modality, Condition, and Shot.

Exploratory statistical analyses. After inspecting the decision accuracy results (see
Table 1), we found that reasoning style (Standalone, CoT, or LogicLM) and shot setting
(few-shot vs. zero-shot) had minimal effects, whereas accuracy differences were primarily
driven by modality (audio vs. MIDI). Consequently, we conducted post hoc statistical
analyses to examine LLM performance as a function of modality. We used generalized
linear mixed modeling (GLMM) in R (version 4.4.2) and RStudio (2024.09.1) with the lme4
package. Each response produced by the models for every stimulus served as an observation
in the GLMM dataset. After removing the token-limited trials, separate GLMMs were fit for
each task (Syncopation, Chord Identification, and Transposition), predicting whether each
response was correct (1) or incorrect (0) at the trial level. Each model included fixed factors
for Model (Gemini Flash, Gemini Pro, Qwen 2.5 Omni) and Modality (Audio, MIDI), as
well as their interaction, with a random intercept for Stimulus: [Correct ∼Model * Modality
+ (1 | Stimulus)]. The effects of the different predictors and interactions were evaluated
using Type III Wald chi-square tests via the car package, and significant interactions were
further explored using emmeans.

Quality of LogicLM Inputs x Accuracy of LLM Responses. Because the models
seemed to fail at perception from the waveforms and not from the symbolic reasoning itself,
we visualize, across task and modalities, how the quality of the symbolic inputs produced
under LogicLM (x-axis) relates to the final, task-level decision accuracy of the LLM (y-
axis). If perception is the bottleneck, Audio points should sit low on the x-axis (poor input
quality), and low on the y-axis (poor decision quality). With clean symbolic inputs (MIDI),
however, both axes should approach ceiling. To quantify the LogicLM input quality for
each trial, we compute the F1 (a measure that combines precision and recall into a single
metric) of the LLM predicted MIDI content (i.e., the symbolic representation generated by
the LLM) vs. ground truth (annotations of the stimuli provided by a human expert). Let
TP, FP, FN be true/false positives/negatives for the relevant set comparison. We compute

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 =

2Precision · Recall
Precision + Recall

. (1)

6

Evaluating mLLMs on Music

The x–axis is this per–trial F1 on (i) onset sets for Syncopation (masked to on– or
off–beats), (ii) absolute pitch–sets for Chord Quality ID, and (iii) pitch–class content for
Transposition. The y–axis is the decision accuracy for the same trials (correct/incorrect).

Trials are aggregated across models and shot settings to produce model–agnostic sum-
maries at the level of Task label × Modality:

• Syncopation: On–beat and Off–beat × {Audio, MIDI}

• Transposition: Yes / No × {Audio, MIDI}

• Chord Quality ID: Major / Minor / Dominant / Diminished × {Audio, MIDI}

Within each Task label × Modality grouping, we perform micro–averaging by summing TP ,
FP , and FN over all contributing trials (pooled over models and shots) and then computing
precision, recall (i.e., sensitivity), and F1 from those totals, thereby weighting each trial
equally and yielding an overall estimate that is robust to differing numbers of runs/models
and label imbalance. Note that F1 ranges from 0 to 1, where 1 indicates perfect precision
and perfect recall. Accuracy (whether the question was answered correctly) is computed as
the number of correct responses divided by the total number of trials in that grouping.

For the plot, Syncopation items are partitioned into on-beat and off-beat subsets. For
each level and modality, we compute F1 separately, while the single binary decision-accuracy
score (correct/incorrect) for that trial is applied to both its on-beat and off-beat data points.
This allows us to compare the models’ beat tracking abilities (on-beats) with its ability to
actually detect moments of syncopation (off-beats). For Transposition, the script extracts
the predicted pitches from both the anchor and target stimuli, and computes the F1 against
ground truth. For Chord Quality ID, the script takes the models’ chord prediction and
compares the predicted absolute note set to ground truth to obtain F1.

3. Results

Overall performance Table 1 summarizes accuracy across tasks, models, modalities,
learning context, and prompting strategies. Performance depended strongly on modality
and model. MIDI input yielded near-ceiling scores, especially for Gemini models, whereas
audio reduced accuracy across tasks, highlighting perception from waveform as the primary
bottleneck. Qwen2.5-Omni generally underperformed, with the largest LogicLM deficits.

ZS vs. FS. Table 1 shows minimal differences when comparing the accuracies of ZS and
FS conditions. FS tended to help Syncopation in audio (e.g., Gemini Pro from ∼25% ZS
to ∼65% FS in Standalone/CoT), but this trend was not reliable across models or tasks.

Prompting strategies. Prompting effects varied by task. For Syncopation, CoT offered
modest gains in audio, while LogicLM was only beneficial with MIDI (Gemini reaching
95–100%). For Transposition, Standalone and CoT prompts worked best, while LogicLM
reduced accuracy. Chord ID was trivial in Standalone/CoT but collapsed with LogicLM-
audio due to schema fragility. Overall, neuro-symbolic prompting helped only when inputs
were symbolic and formatting was reliable.

Per-task GLMMs: Assessing modality differences. Given that reasoning style (Stan-
dalone, CoT, or LogicLM) and shot learning setting (few-shot vs. zero-shot) had minimal
effects, we statistically tested the effects of model and modality on performance using

7

Carone Roman Ripollés

Table 1: Accuracy of multimodal LLMs on three music perception tasks: syncopation scor-
ing, transposition detection, and chord quality identification. Results are reported
for audio and MIDI inputs under three prompting strategies (Standalone, CoT,
LogicLM) and zero-shot (ZS) vs few-shot (FS) learning conditions. Bold high-
lights best performance per task/shot/modality (underlined shows second best). A
systematic gap between modalities is seen: MIDI inputs generally lead to higher
accuracies and clearer prompting effects compared to audio. The bottom row
represents chance performance.

Syncopation Transposition Chord ID

Mod. Shot Cond. Flash Pro Qwen Flash Pro Qwen Flash Pro Qwen

Audio

Stand. 30.00 25.00 20.00 55.56 94.74 75.00 31.82 47.73 31.82
ZS CoT 35.00 25.00 20.00 76.92 95.00 65.00 31.82 43.18 31.82

LogicLM 20.00 20.00 20.00 65.00 80.00 50.00 11.36 18.18 6.82

Stand. 31.58 63.16 40.00 94.74 90.00 90.00 25.00 40.91 31.82
FS CoT 40.00 65.00 40.00 63.16 90.00 60.00 25.00 52.27 34.09

LogicLM 40.00 55.00 20.00 60.00 90.00 35.00 6.82 13.64 18.18

MIDI

Stand. 84.21 95.00 25.00 100.00 100.00 85.00 50.00 97.73 22.73
ZS CoT 94.74 100.00 35.00 95.00 100.00 20.00 100.00 100.00 25.00

LogicLM 90.00 80.00 20.00 100.00 100.00 10.00 93.18 100.00 100.00

Stand. 88.89 100.00 35.00 100.00 100.00 90.00 70.45 100.00 29.55
FS CoT 95.00 100.00 25.00 100.00 100.00 60.00 97.73 100.00 29.55

LogicLM 100.00 95.00 25.00 100.00 100.00 15.00 100.00 100.00 100.00

Chance 20.00 50.00 25.00

GLMMs for each of the three tasks. Type III Wald χ2 tests revealed a consistent and
highly significant interaction between Model and Modality across all tasks: Chord Qual-
ity (χ2(2) = 62.22, p < .001), Syncopation (χ2(2) = 62.11, p < .001), and Transposition
(χ2(2) = 18.22, p < .001). This confirms that the performance gap between audio and
MIDI inputs is consistent across music perception tasks, but varies significantly depending
on the specific model being evaluated. These interactions, visualized in Figure 2, provide a
more granular understanding of each model’s strengths and weaknesses.

For the Syncopation (Figure 2A) and Chord Quality (Figure 2C) tasks, the Gemini
models (Flash and Pro) demonstrate a statistically significant modality gap, with the near-
ceiling performance on MIDI inputs plummeting dramatically for audio stimuli (ps < .001).
Gemini Pro is the strongest performer in the audio condition for all tasks, though its ac-
curacy remains below 50% for Syncopation Scoring and Chord Quality ID. The interaction
in the Syncopation task is particularly revealing. While the Gemini models show a large
performance drop from MIDI to audio, the Qwen2.5-Omni model shows no significant differ-
ence between the two modalities (z = −0.17, p = .865). However, this is not due to strong
audio performance, but rather to its equally poor performance on the symbolic MIDI data,
indicating a failure in the core reasoning for that task, independent of the input modality.

The Transposition task presents the most compelling evidence of genuine audio percep-
tion. Here, the interaction effect is driven by Gemini Pro’s remarkable success when ana-

8

Evaluating mLLMs on Music

Flash Pro Qwen
0%

20%

40%

60%

80%

100%

*** ***

n.s.

A
cc
u
ra
cy

(%
)

A. Syncopation Scoring

Flash Pro Qwen
0%

20%

40%

60%

80%

100%

*** n.s.

*

A
cc
u
ra
cy

(%
)

B. Transposition Detection

Flash Pro Qwen
0%

20%

40%

60%

80%

100% ***

A
cc
u
ra
cy

(%
)

C. Chord Quality ID

Audio Symbolic (MIDI) * p < .05 ** p < .01 *** p < .001

Figure 2: Model performance by modality, estimated from per-task GLMMs. Bars show
estimated marginal mean accuracy with 95% confidence intervals. Significance
brackets denote the results of pairwise post-hoc tests comparing Audio and MIDI
performance per model. A (Syncopation Scoring): we see significant effects of
modality for both Gemini Flash and Pro (p < .001), but not for Qwen (p = .864).
B (Transposition Detection): we see significant effects of modality for Gemini
Flash (p < .001) and Qwen (p < .05), and see that the high accuracies of Gemini
Pro for both Audio and MIDI result in no significant differences between the two
modalities (p = .899). C (Chord Quality ID): we see significant effects of modality
for all three models (p < .001). n.s., not significant.

lyzing audio. Post-hoc comparisons revealed that while Flash and Qwen still exhibited a
significant modality gap, the difference between Gemini Pro’s audio and MIDI performance
was not statistically significant (z = −0.13, p = .899). As visualized in the Transposition
plot (Figure 2B), Gemini Pro achieves up to 95% accuracy on audio inputs, effectively
closing the perceptual gap and performing on par with its MIDI accuracy. This singular
achievement highlights that, for certain relational reasoning tasks like melody comparison,
state-of-the-art models are beginning to bridge the divide between symbolic reasoning and
true audio-native understanding (i.e., real “listening”).

LogicLM input quality and response accuracy. Figure 3 diagnoses the source of the
performance gaps observed in Table 1 by disentangling transcription fidelity from down-
stream reasoning. This visualization reveals that the primary bottleneck for audio-based
tasks is a failure in perception rather than downstream reasoning. The most illuminating
example of this is in Chord Quality Identification (pastel-colored points). For audio inputs,
the models exhibit a complete perceptual breakdown, with F1-scores clustering below 0.25.
This indicates an inability to correctly identify the constituent pitches of a chord from the
raw waveform. Consequently, with unreliable symbolic input, the models’ reasoning col-
lapses, yielding final accuracy scores that hover near chance level, corroborating the poor
performance seen in Table 1. In stark contrast, when provided with clean MIDI data, the
models achieve near-perfect F1-scores and accuracy, demonstrating that their capacity for

9

Carone Roman Ripollés

Figure 3: Relationship between the quality of LogicLM inputs (F1-scores, x-axis) and final
decision accuracy (y-axis). Each point represents a specific task category, pooled
across all models and shot settings. Circle fill encodes modality (Audio = filled,
MIDI = unfilled) and color encodes the task-specific category (on- and off-beats
for syncopation; chord qualities for chord ID; Yes/No responses for transposi-
tion). Syncopation circles are further partitioned by syncopation level. The plot
highlights the perceptual bottleneck: the points pertaining to audio consistently
show lower F1-scores and accuracy compared to MIDI (most overlap at (1,1)).

symbolic reasoning about harmony is intact but is hampered when fed unreliable perceptual
input.

The Syncopation Scoring task offers a more nuanced illustration of this perceptual bot-
tleneck. The plot uniquely separates the F1-scores for on-beat events (black circles) from
off-beat events (grey circles), and shows individual points for each level of syncopation that
we test. For MIDI inputs, both on-beat and off-beat transcription F1-scores are exception-
ally high (> 0.7), leading to high decision accuracy. However, for audio inputs, a critical
divergence appears: while the models are fairly successful at transcribing the rhythmically
simple on-beats (F1-scores between 0.6 and 0.95), they are largely unable to detect the cru-
cial syncopated off-beats (F1-scores below 0.4). Since the final syncopation score is entirely
dependent on counting these off-beats, the low perceptual fidelity for this specific feature
directly causes the low overall accuracy for the audio-based syncopation task. Missing off-
beat events is crucial beyond this benchmark, as syncopation is a fundamental feature of
music that shapes perception, underlies the feeling of groove, and modulates music reward
(Matthews et al., 2019, 2020). Thus, the models can estimate the pulse, but cannot hear
the syncopation.

10

Evaluating mLLMs on Music

Finally, the Transposition Detection task stands out as the most robust in the audio
modality, a finding consistent across analyses. For audio inputs (blue and green points),
the models achieve F1-scores in the 0.6–0.7 range, which, while imperfect, are substantially
better than in other audio tasks. This moderately successful perception is sufficient to drive
decision accuracy to relatively high levels (approximately 70–80%). This suggests that ex-
tracting melodic contour and relative pitch intervals (the core components of transposition)
is a more tractable perceptual task for current models than the precise onset detection
required for syncopation or the harmonic parsing needed for chord identification. Overall,
the plot compellingly argues that future progress in musical AI will depend less on enhanc-
ing the abstract reasoning of LLMs and more on improving the robustness of their audio
front-ends to reliably transcribe the foundational elements of music.

4. Discussion

Our findings converge on a simple but consequential claim: multimodal LLMs reason ef-
fectively over symbolic music data, yet still fail to truly “listen”. LLMs, especially Gemini
models, reached near-ceiling with MIDI, and LogicLM behaved as intended once schema
adherence was met. Replacing MIDI with audio sharply reduced accuracy, especially for
Syncopation Scoring and Chord Quality ID under LogicLM, implicating transcription/on-
set tracking and pitch-salience as the primary bottlenecks (Weck et al., 2024; Ghosh et al.,
2025a; Marták et al., 2025). Reasoning strategies (CoT, LogicLM) did not compensate for
upstream hearing errors (Zhifei et al., 2025). This modality gap matters because people
experience music through audio, not symbolic proxies. Symbolic formats strip away the
features making music meaningful (micro-timing, articulation, expressive nuance) so LLM
ceiling performance on MIDI should not be mistaken for audio-native competence (Ayy-
ildiz et al., 2025; Groves et al., 2025). Our GLMM analysis provides statistical support for
these observations, but more importantly, reveals a significant Model × Modality interac-
tion throughout. That is, although models performed better on MIDI than on audio, the
magnitude of this difference varied across models and music perception tasks. This finding
complicates a simple narrative of universal audio failure. It demonstrates that the severity
of the perceptual bottleneck is model and task-dependent. For instance, the Qwen2.5-Omni
model’s failure on the Syncopation task was unique in that its performance was equally poor
on MIDI and Audio data, suggesting a more fundamental deficit in its symbolic reasoning
capabilities for that task, rather than just a perceptual one. In contrast, Gemini Pro’s
success in the Melody Transposition task, where it statistically closed the performance gap
between audio and MIDI, stands as a crucial proof-of-concept. It suggests that for tasks
reliant on global melodic features, state-of-the-art architectures are on the cusp of achieving
true audio-native competence, even if they fall short elsewhere.

In sum, current multimodal LLMs reason symbolically but lack fully accurate audio-
native competence: the ability to process songs from audio files to answer structured ques-
tions. We suggest that progress will depend on stronger audio front-ends and propagation
of uncertainty into downstream solvers. In the current state-of-the-art, symbolic reasoning
layers collapse due to small perceptual errors. LLMs that acquire genuine understanding
could also be music education (Jin et al., 2025) and user-centric music analysis tools (Urrego-
Gómez et al., 2025; Carone and Ripollés, 2024), enabling interactive systems that can teach
musical structure and foster deeper engagement with personal music listening.

11

Carone Roman Ripollés

References

Ceren Ayyildiz, Andrew J. Milne, Muireann Irish, and Steffen A. Herff. Micro-variations
in timing and loudness affect music-evoked mental imagery. Scientific Reports, 15
(1):30967, 2025. doi: 10.1038/s41598-025-12604-4. URL https://doi.org/10.1038/

s41598-025-12604-4. Published: 2025-08-22.

Brandon J. Carone and Pablo Ripollés. Soundsignature: What type of music do you like?
In 2024 IEEE 5th International Symposium on the Internet of Sounds (IS2), pages 1–10,
2024.

Brandon J. Carone, Iran R. Roman, and Pablo Ripollés. The MUSE benchmark: Prob-
ing music perception and auditory relational reasoning in audio llms. arXiv preprint
arXiv:2510.19055, 2025a.

Brandon James Carone, Iran R. Roman, and Pablo Ripollés. Evaluating multimodal large
language models on core music perception tasks. In 39th Conference on Neural Informa-
tion Processing Systems Workshop: AI for Music, 2025b.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou,
and Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified
large-scale audio-language models. arXiv preprint arXiv:2311.07919, 2023.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng,
Yuanjun Lv, Jinzheng He, and Junyang Lin. Qwen2-audio technical report. arXiv preprint
arXiv:2407.10759, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, In-
derjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, and Evan Rosen. Gemini 2.5:
Pushing the frontier with advanced reasoning, multimodality, long context, and next
generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

Diana Deutsch. Music recognition. Psychol Rev, 76(3):300–7, 1969.

Jay W. Dowling. Scale and contour: Two components of a theory of memory for melodies.
Psychological Review, 85(4):341–354, 1978.

Jay W. Dowling and Diane S. Fujitani. Contour, interval, and pitch recognition in memory
for melodies. Journal of the Acoustical Society of America, 49(2, Pt. 2):524–531, 1971.

Sreyan Ghosh, Arushi Goel, Lasha Koroshinadze, Sang gil Lee, Zhifeng Kong, Joao Fe-
lipe Santos, Ramani Duraiswami, Dinesh Manocha, Wei Ping, Mohammad Shoeybi, and
Bryan Catanzaro. Music flamingo: Scaling music understanding in audio language mod-
els, 2025a. URL https://arxiv.org/abs/2511.10289.

Sreyan Ghosh, Zhifeng Kong, Sonal Kumar, S Sakshi, Jaehyeon Kim, Wei Ping, Rafael
Valle, Dinesh Manocha, and Bryan Catanzaro. Audio flamingo 2: An audio-language
model with long-audio understanding and expert reasoning abilities. In Proceedings of
the 42nd International Conference on Machine Learning, volume 267 of Proceedings of
Machine Learning Research, pages 19358–19405. PMLR, 13–19 Jul 2025b.

12

https://doi.org/10.1038/s41598-025-12604-4
https://doi.org/10.1038/s41598-025-12604-4
https://arxiv.org/abs/2511.10289

Evaluating mLLMs on Music

Karleigh Groves, Morwaread Mary Farbood, Brandon Carone, Pablo Ripollés, and Arianna
Zuanazzi. Acoustic features of instrumental movie soundtracks elicit distinct and mostly
non-overlapping extra-musical meanings in the mind of the listener. Scientific reports, 15
(1):2327, 2025.

Andrea R Halpern and James C Bartlett. Memory for melodies, pages 233–258. Springer,
2010.

Lingxi Jin, Baicheng Lin, Mengze Hong, Kun Zhang, and Hyo-Jeong So. Exploring the
impact of an llm-powered teachable agent on learning gains and cognitive load in music
education, 2025. URL https://arxiv.org/abs/2504.00636.

Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro.
Audio flamingo: A novel audio language model with few-shot learning and dialogue abil-
ities. In Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pages 25125–25148. PMLR, 21–27 Jul
2024.

Sonal Kumar, Šimon Sedláček, Vaibhavi Lokegaonkar, Fernando López, Wenyi Yu, Nishit
Anand, Hyeonggon Ryu, Lichang Chen, Maxim Plička, and Miroslav Hlaváček. Mmau-
pro: A challenging and comprehensive benchmark for holistic evaluation of audio general
intelligence. arXiv preprint arXiv:2508.13992, 2025.

Edward W. Large, Jorge A. Herrera, and Marc J. Velasco. Neural networks for beat per-
ception in musical rhythm. Frontiers in Systems Neuroscience, Volume 9 - 2015, 2015.

Edward W Large, Iran Roman, Ji Chul Kim, Jonathan Cannon, Jesse K Pazdera, Laurel J
Trainor, John Rinzel, and Amitabha Bose. Dynamic models for musical rhythm percep-
tion and coordination. Frontiers in Computational Neuroscience, 17:1151895, 2023.

Shansong Liu, Atin Sakkeer Hussain, Chenshuo Sun, and Ying Shan. Music understand-
ing llama: Advancing text-to-music generation with question answering and captioning.
In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 286–290. IEEE, 2024.

Yinghao Ma, Siyou Li, Juntao Yu, Emmanouil Benetos, and Akira Maezawa. Cmi-bench: A
comprehensive benchmark for evaluating music instruction following. Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR 2025), 2025a.

Ziyang Ma, Yinghao Ma, Yanqiao Zhu, Chen Yang, Yi-Wen Chao, Ruiyang Xu, Wenxi
Chen, Yuanzhe Chen, Zhuo Chen, and Jian Cong. Mmar: A challenging benchmark for
deep reasoning in speech, audio, music, and their mix. arXiv preprint arXiv:2505.13032,
2025b.

Elizabeth Hellmuth Margulis. On Repeat: How Music Plays the Mind. Oxford University
Press, 2013.

Lukáš Samuel Marták, Patricia Hu, and Gerhard Widmer. Sound and music biases in deep
music transcription models: a systematic analysis. EURASIP Journal on Audio, Speech,

13

https://arxiv.org/abs/2504.00636

Carone Roman Ripollés

and Music Processing, 2025. ISSN 1687-4722. doi: 10.1186/s13636-025-00428-z. URL
https://doi.org/10.1186/s13636-025-00428-z. Published online: 2025-12-11.

Tomas E Matthews, Maria AG Witek, Ole A Heggli, Virginia B Penhune, and Peter Vu-
ust. The sensation of groove is affected by the interaction of rhythmic and harmonic
complexity. PLoS One, 14(1):e0204539, 2019.

Tomas E Matthews, Maria AG Witek, Torben Lund, Peter Vuust, and Virginia B Penhune.
The sensation of groove engages motor and reward networks. NeuroImage, 214:116768,
2020.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering
large language models with symbolic solvers for faithful logical reasoning. In Findings of
the Association for Computational Linguistics: EMNLP 2023, pages 3806–3824, Singa-
pore, 2023. Association for Computational Linguistics.

S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaneswaran Selvakumar, Oriol
Nieto, Ramani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. MMAU: A massive
multi-task audio understanding and reasoning benchmark. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun
MA, and Chao Zhang. Salmonn: Towards generic hearing abilities for large language
models. In The Twelfth International Conference on Learning Representations, 2024.

Isabel Urrego-Gómez, Simon Colton, and Iran R Roman. Vibe sorcery: Integrating emotion
recognition with generative music for playlist curation. In International Society for Music
Information Retrieval: 1st Workshop on Large Language Models for Music & Audio, 2025.

Benno Weck, Ilaria Manco, Emmanouil Benetos, Elio Quinton, György Fazekas, and Dmitry
Bogdanov. Muchomusic: Evaluating music understanding in multimodal audio-language
models. In Proceedings of the 25th International Society for Music Information Retrieval
Conference (ISMIR), 2024.

Junda Wu, Zachary Novack, Amit Namburi, Hao-Wen Dong, Carol Chen, Jiaheng Dai, and
Julian McAuley. Futga-mir: Enhancing fine-grained and temporally-aware music under-
standing with music information retrieval. In ICASSP 2025 - 2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5, 2025.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin
Wang, Yang Fan, and Kai Dang. Qwen2. 5-omni technical report. arXiv preprint
arXiv:2503.20215, 2025.

Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng,
Yuanjun Lv, Zhou Zhao, Chang Zhou, and Jingren Zhou. AIR-bench: Benchmarking large
audio-language models via generative comprehension. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1979–1998, Bangkok, Thailand, 2024. Association for Computational Linguistics.

14

https://doi.org/10.1186/s13636-025-00428-z

Evaluating mLLMs on Music

Yongyi Zang, Sean O’Brien, Taylor Berg-Kirkpatrick, Julian McAuley, and Zachary Novack.
Are you really listening? boosting perceptual awareness in music-qa benchmarks. Pro-
ceedings of the International Society for Music Information Retrieval Conference (ISMIR
2025), 2025.

Xie Zhifei, Mingbao Lin, Zihang Liu, Pengcheng Wu, Shuicheng Yan, and Chunyan Miao.
Audio-reasoner: Improving reasoning capability in large audio language models. In Pro-
ceedings of the 2025 Conference on Empirical Methods in Natural Language Processing,
pages 23840–23862, 2025.

15

Carone Roman Ripollés

Supplementary Materials

S1. Stimuli

Stimuli are original musical recordings created by a real human musician in Logic Pro X
using a 2021 16” MacBook Pro (Apple M1 Pro chip), an Apollo Twin X audio interface,
and Yamaha HS8 monitors. Stimuli were recorded on electric guitar (PRS McCarty Hol-
lowbody II, Schecter Solo-6), piano (Arturia KeyLab Essential Mk3 MIDI controller with
Analog Lab V software instruments), and drums (Roland TD-17 electronic kit with Supe-
rior Drummer 3 plugin). Guitar recordings were processed with Neural DSP plugins (Tim
Henson Archetype, Cory Wong Archetype).

Additional excerpts were reserved for few-shot prompting (2 for syncopation, 2 for trans-
position, and 4 for chord ID, one per chord class) and excluded from testing.

You can access the stimuli used in this experiment on The MUSE Benchmark Github
page.

The stimuli used for the Transposition Detection task can be found here and all of them
have the melody number, key, and tempo in the filename (e.g., M1 EbMaj 90.wav).

The stimuli used for the Syncopation Scoring task can be found here and all of them
have Sync in the name, along with the syncopation level number (e.g., NoSync A, Sync2 B).

The stimuli used for the Chord Quality Identification task can be found here. The
chords are named by number, and you can find the mapping in Table S1 below.

Table S1: Mapping of chord roots and qualities to numerical identifiers (1.wav–48.wav).

Root Diminished Dominant Major Minor

Ab 1 2 3 4
A 5 6 7 8
Bb 9 10 11 12
B 13 14 15 16
C 17 18 19 20
Db 21 22 23 24
D 25 26 27 28
Eb 29 30 31 32
E 33 34 35 36
F 37 38 39 40
Gb 41 42 43 44
G 45 46 47 48

S2. System Instructions

1a) Syncopation — Standalone

“You are an expert music transcription AI participating in a multi-turn reason-
ing experiment.

16

https://github.com/brandoncarone/MUSE_music_benchmark/tree/main/stimuli/LogicLM_Experiments
https://github.com/brandoncarone/MUSE_music_benchmark/tree/main/stimuli/LogicLM_Experiments
https://github.com/brandoncarone/MUSE_music_benchmark/tree/main/stimuli/LogicLM_Experiments/transposition_detection
https://github.com/brandoncarone/MUSE_music_benchmark/tree/main/stimuli/LogicLM_Experiments/syncopation
https://github.com/brandoncarone/MUSE_music_benchmark/tree/main/stimuli/LogicLM_Experiments/chordID

Evaluating mLLMs on Music

You will be given one short audio excerpt of a drum set per trial. Your task is
to focus only on the kick and snare drums. The hi-hat plays constant 8th notes,
acting as a metronome. Count the total number of kicks and snare hits that fall
on off-beats.

Valid multiple-choice responses are:

A. 0 (No Syncopation)
B. 2 (Low Syncopation)
C. 4 (Medium-Low Syncopation)
D. 6 (Medium-High Syncopation)
E. 8 (High Syncopation)

End with exactly one line:
Final Answer: X
”

1b) Syncopation — Chain-of-Thought (CoT)

“You are an expert music transcription AI participating in a multi-turn reason-
ing experiment.

You will be given one short audio excerpt of a drum set per trial. Your task is
to focus only on the kick and snare drums. The hi-hat plays constant 8th notes,
acting as a metronome. Count the total number of kicks and snare hits that fall
on off-beats. On-beats are the main pulses (beats 1, 2, 3, and 4) and off-beats
are the “ands” in between. Ignore the on-beats and ignore the hi-hat.

Valid multiple-choice responses are:

A. 0 (No Syncopation)
B. 2 (Low Syncopation)
C. 4 (Medium-Low Syncopation)
D. 6 (Medium-High Syncopation)
E. 8 (High Syncopation)

After any reasoning, end with exactly one line:
Final Answer: X
”

1c) Syncopation — LogicLM

“You are an expert music transcription AI participating in a multi-turn reason-
ing experiment.

Your task is to transcribe the onsets of ONLY the kick and snare drums into
the format:
rhythm(identifier, [list of onsets]).

- The ‘identifier’ is the filename of the audio.
- The ‘list of onsets’ is a comma-separated list of integers from 1 to 32.

17

Carone Roman Ripollés

- The rhythm is on a 4-bar grid, quantized to 8th notes (numbered 1 to 32). All
odd numbers are on-beats, and all even numbers are off-beats.
- The hi-hat plays constant 8th notes, acting as a metronome. On-beats are the
main pulses (beats 1, 2, 3, and 4 of each bar) and off-beats are the ’ands’ in
between.

Grid: The excerpt is 4 bars quantized to 8th notes → 32 slots numbered 1–32.

Within each bar (8 slots): 1,3,5,7 = on-beats (beats 1–4). 2,4,6,8 = off-beats
(“&”s).

Across bars: slot = 8×(bar-1) + local slot.

Beat positions across 4 bars:
• Beat 1 → 1, 9, 17, 25
• Beat 2 → 3, 11, 19, 27
• Beat 3 → 5, 13, 21, 29
• Beat 4 → 7, 15, 23, 31

Off-beats (“&”s):
• &1 → 2, 10, 18, 26
• &2 → 4, 12, 20, 28
• &3 → 6, 14, 22, 30
• &4 → 8, 16, 24, 32

Output format:
rhythm(identifier.wav, [n1, n2, ..., nK]) where each n is an integer in
1–32.

Example of format where the kicks are on beats 1 and 3 in each bar, and the
snare hits are on beats 2 and 4 in each bar (all played on the on-beats):
rhythm(example.wav, [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,

27, 29, 31])

Output your answer of symbolic code as a single line of plain text without code
fences or explanations. After your transcription, an external tool will score it,
and you will answer a question based on that score.”

2a) Transposition Detection — Standalone

“You are an expert melody transcription AI participating in a multi-turn rea-
soning experiment.

You will be given two short monophonic audio melodies per trial.
Your job is to decide whether they represent the SAME melody up to TRANS-
POSITION (i.e., identical shape/intervals but possibly in different keys).

Valid responses are exactly one of:
“Yes, these are the same melody.”
“No, these are not the same melody.”

18

Evaluating mLLMs on Music

Respond with exactly one of the two phrases and nothing else.”

2b) Transposition Detection — Chain-of-Thought (CoT)

“You are an expert melody transcription AI participating in a multi-turn rea-
soning experiment.

You will be given two short monophonic audio melodies per trial. Your job is
to decide whether they represent the SAME melody up to TRANSPOSITION
(i.e., identical shape/intervals but possibly in different keys).

Definitions and constraints:
- Transposition equivalence: the two melodies have the same number of notes
and the same sequence of pitch INTERVALS between successive notes (includ-
ing 0 for repeated notes).
- Ignore absolute key/register, starting pitch, and tempo. Small timing varia-
tions are acceptable. If the rhythmic patterns are drastically different (e.g., note
insertions/deletions or re-ordered phrases), they are most likely NOT the same
melody.
- Treat repeated notes as separate events and include 0 in the interval sequence
when a note repeats.
- If there are leading/trailing silences, ignore them.

Valid responses (exactly one of these strings):
“Yes, these are the same melody.”
“No, these are not the same melody.”

After any reasoning, end with exactly one line:
Final Answer: Yes, these are the same melody.
OR
Final Answer: No, these are not the same melody.”

2c) Transposition Detection — LogicLM

“You are an expert melody transcription AI participating in a multi-turn rea-
soning experiment.

You will be given two short monophonic audio melodies per trial. Your first
task is to transcribe EACH melody into the symbolic format below, using MIDI
integers for pitches. If the rhythmic sequences seem drastically different, they
are most likely not the same melody.

Output format (schema):
melody(identifier, [p1, p2, ..., pK])

- Use the exact identifiers I provide for each trial (one per audio).
- p1..pK are integers representing MIDI pitches (e.g., C4 = 60).
- Transcribe the pitch sequence only.
- Output exactly two lines of plain text: one ‘melody(...)’ per line, in the same

19

Carone Roman Ripollés

order as the audios (Audio 1 line first, then Audio 2 line).
- Do not include code fences or any extra commentary.

Example (schema only; not tied to any audio):
melody(Audio1, [60, 62, 64])

melody(Audio2, [65, 67, 69])

After your transcription, a deterministic tool will analyze the two lines to decide
if the melodies are transpositions (same contour, different key). You will then
answer a Yes/No question based on that decision.”

3a) Chord Quality Matching — Standalone

“You are an expert chord-transcription AI participating in a multi-turn reason-
ing experiment.

You will be given one short audio clip per trial. Each clip first plays a chord
(block), then the individual notes (arpeggiation).
All chords are in ROOT POSITION.

Your task is to identify the chord QUALITY.

Valid options:
A. Major
B. Minor
C. Dominant
D. Diminished

Final Answer: X
”

3b) Chord Quality Matching — Chain-of-Thought (CoT)

“You are an expert chord-transcription assistant in a multi-turn reasoning ex-
periment.

You will be given one short audio clip per trial containing a single chord (first
block, then arpeggiated notes). All chords are in ROOT POSITION; the low-
est pitch is the ROOT (treat as 0 semitones). Your task: identify the chord
QUALITY by inferring pitch-class intervals above the root and ignoring octave
doublings.

Valid options:
A. Major → {0,4,7}
B. Minor → {0,3,7}
C. Dominant → {0,4,7,10}
D. Diminished → {0,3,6}

Think through the identification. Once you’ve finished reasoning, the final line
of your output should be exactly:

20

Evaluating mLLMs on Music

Final Answer: X
”

3c) Chord Quality Matching — LogicLM

“You are an expert chord-transcription assistant in a multi-turn reasoning ex-
periment.

You will be given one short audio clip per trial containing a single chord. First
the chord sounds as a block, then the notes are arpeggiated.

Your task is to transcribe the chord tones into a strict symbolic format. Use
MIDI integers (0–127). Include octave doublings if you hear them. Do not add
commentary.

Output format (schema):
chord(identifier, [p1, p2, ..., pK])

Rules:
- Use the exact identifier I provide for the trial.
- Record only the pitches you hear as MIDI integers.
- It is acceptable if the list is not sorted; a deterministic solver will normalize.
- Output EXACTLY ONE LINE of plain text with NO code fences or extra
text.

Example (schema only; not tied to any audio):
chord(Audio X, [56, 60, 64, 67, 72, 76])

After your line is produced, a deterministic tool will classify the chord quality
(Major / Minor / Dominant / Diminished) from your symbolic line. You will
then answer a multiple-choice question with: Final Answer: X”

S3. Task Schemas and Deterministic Solvers

Each task defines a single-line schema the model must emit verbatim. A hand-written, de-
terministic solver (solver.py) parses that line, makes the decision, and returns the minimal
information needed for a constrained final answer.

Syncopation Scoring

Input: 4-bar drum loop with constant 8th-note hi-hat; we only score kick+snare.
Grid: 32 slots (8 per bar). Odd slots are on-beats; even slots are off-beats.

Schema (one line):

rhythm(<id>, [n1, n2, ..., nK])

Where each n is an integer in [1..32] (kick or snare onset).
Solver: counts off-beat onsets and maps to five categories: 0,2,4,6,8 off-beats → A–E
respectively. Final answer is a single MC letter A–E.

21

Carone Roman Ripollés

Transposition Detection

Input: two short monophonic excerpts (guitar or piano) that are either the same melody
in different keys or different melodies.

Schema (two lines, order-preserving):

melody(<id1>, [p1, p2, ..., pK])

melody(<id2>, [p1, p2, ..., pK])

Where p* are MIDI integers (0–127).
Solver: checks equal length and equality of adjacent-interval sequences (transposition in-
variance). Returns ARE / ARE NOT (transpositions). Final answer is forced to one of:

“Yes, these are the same melody.”
“No, these are not the same melody.”

Chord Quality Identifier

Input: a single triad or seventh chord (piano), presented as a block then arpeggiated.

Schema (one line):

chord(<id>, [p1, p2, ..., pK])

MIDI integers (0–127); octave doublings allowed.

Solver: normalizes to pitch classes, factors out the putative root, and matches the
interval set to:

• Major (0, 4, 7) → A

• Minor (0, 3, 7) → B

• Dominant 7 (0, 4, 7, 10) → C

• Diminished (0, 3, 6) → D

Final answer is a single MC letter A–D.

Self-refinement (SR)

For LogicLM, we validate the line(s) with strict regex/AST checks and label errors as parse,
structural, or domain. If invalid, we run up to 2 SR rounds in a separate deterministic chat
(temperature=0, top p=1, top k=1, 256 tokens) with a fix-only prompt that:

• Echoes the prior output,

• States the specific error type/message,

• Re-states the required line(s) and constraints,

• Forbids commentary and code fences.

If the solver returns undecidable/None (e.g., empty list), we allow one extra SR pass
with a synthesized parse error. This SR design follows the LogicLM self-refinement idea of
using solver feedback to repair the symbolic form.

22

Evaluating mLLMs on Music

S3.1. solver.py

solver.py

import re

from typing import List, Optional, Tuple, Dict

class SyncopationSolver:

"""

A deterministic logic solver that calculates a syncopation score

based on a simplified on-beat/off-beat rule for a 4-bar (1-32) 8th-note grid.

"""

def __init__(self):

self.on_beats = set()

self.off_beats = set()

for bar_offset in [0, 8, 16, 24]:

self.on_beats.update([

1 + bar_offset, 3 + bar_offset, 5 + bar_offset, 7 + bar_offset

])

self.off_beats.update([

2 + bar_offset, 4 + bar_offset, 6 + bar_offset, 8 + bar_offset

])

def parse_llm_output(self, llm_text: str) -> Optional[List[int]]:

"""

Parses the LLM’s symbolic output to extract a list of onsets.

Returns the list of integers if successful, or None if parsing fails.

"""

match = re.search(r’rhythm\s*\(\s*[^,]+\s*,\s*\[([\d,\s]*)\]\s*\)’,

llm_text)

if not match:

return None

numbers_str = match.group(1)

if not numbers_str.strip(): # Check if the string is empty or just

whitespace

return []

try:

Handle potential trailing commas by filtering out empty strings

after split

return [int(num.strip()) for num in numbers_str.split(’,’) if

num.strip()]

except ValueError:

return None

def score_onset(self, onset: int) -> int:

if onset in self.off_beats:

return 1

return 0

def calculate_total_score(self, onset_list: list[int]) -> int:

if not onset_list:

23

Carone Roman Ripollés

return 0

total_score = sum(self.score_onset(onset) for onset in onset_list)

return total_score

class TranspositionSolver:

"""

A deterministic solver for melody transposition detection.

Two melodies are considered transpositions if:

- They have the same number of notes, and

- Their interval sequences (adjacent pitch differences in semitones) are

identical.

Rhythm is ignored. Pitches must be integers (MIDI numbers).

"""

MELODY_PATTERN = re.compile(

r"melody\s*\(\s*([A-Za-z0-9_.\-]+)\s*,\s*\[\s*([^\]]*?)\s*\]\s*\)",

flags=re.IGNORECASE

)

def _extract_pitches(self, pitches_str: str) -> Optional[List[int]]:

"""

Extracts integer pitches from an arbitrary list content that may include

parentheses or spaces, e.g. ’[(60), (62), (64)]’ or ’60, 62,64’.

"""

nums = re.findall(r"-?\d+", pitches_str)

if not nums:

return []

try:

return [int(n) for n in nums]

except ValueError:

return None

def parse_llm_output(self, llm_text: str) -> Optional[List[Dict[str,

List[int]]]]:

"""

Parses any ’melody(ID, [...])’ lines found in the LLM’s output, in order.

Returns a list of dicts: [{’id’: <ID>, ’pitches’: [..]}, ...]

or None if nothing parseable is found.

"""

if not llm_text:

return None

text = llm_text.replace("‘‘‘", "").replace("‘", "").strip()

melodies = []

for m in self.MELODY_PATTERN.finditer(text):

ident = m.group(1)

plist_str = m.group(2)

pitches = self._extract_pitches(plist_str)

if pitches is None:

return None

24

Evaluating mLLMs on Music

melodies.append({"id": ident, "pitches": pitches})

return melodies or None

def _intervals(self, pitches: List[int]) -> List[int]:

return [pitches[i+1] - pitches[i] for i in range(len(pitches) - 1)]

def are_transpositions(self, p1: List[int], p2: List[int]) -> Optional[bool]:

"""

Returns True/False if a decision is possible, or None if inputs are

degenerate.

Policy:

- Require same length (>0). If lengths differ, return False.

- If length == 1 on both, return True (single note can be transposed

anywhere).

- Otherwise compare interval sequences.

"""

if p1 is None or p2 is None:

return None

if len(p1) == 0 and len(p2) == 0:

return None

if len(p1) != len(p2):

return False

if len(p1) == 1: # single-note melodies

return True

return self._intervals(p1) == self._intervals(p2)

def decide_same_melody(self, llm_text: str) -> Optional[bool]:

"""

Convenience: parse two melodies from LLM output and decide True/False.

Returns None if fewer than 2 melodies parsed or if undecidable.

"""

parsed = self.parse_llm_output(llm_text)

if not parsed or len(parsed) < 2:

return None

p1 = parsed[0]["pitches"]

p2 = parsed[1]["pitches"]

return self.are_transpositions(p1, p2)

---------- Chord Quality (deterministic) ----------

class ChordQualitySolver:

"""

Deterministic chord-quality classifier for LogicLM.

Expects ONE schema line produced by the LLM:

chord(identifier, [p1, p2, ..., pK])

Behavior:

- Parses the line and extracts MIDI integers (duplicates allowed).

25

Carone Roman Ripollés

- Sorts pitches, treats the lowest as the root, and computes (p - root) % 12.

- Deduplicates + sorts the pitch-class intervals and matches one of the

four target fingerprints:

(0,4,7) -> ("Major", "A")

(0,3,7) -> ("Minor", "B")

(0,4,7,10) -> ("Dominant", "C")

(0,3,6) -> ("Diminished", "D")

Returns:

(identifier, quality_str, letter) or None if undecidable.

"""

CHORD_PATTERN = re.compile(

r"chord\s*\(\s*([A-Za-z0-9_.\-]+)\s*,\s*\[\s*([^\]]*?)\s*\]\s*\)",

flags=re.IGNORECASE

)

QUALITY_BY_PCS: Dict[Tuple[int, ...], Tuple[str, str]] = {

(0, 4, 7): ("Major", "A"),

(0, 3, 7): ("Minor", "B"),

(0, 4, 7, 10): ("Dominant", "C"),

(0, 3, 6): ("Diminished", "D"),

}

def _extract_pitches(self, pitches_str: str) -> Optional[List[int]]:

"""

Robust integer pull; accepts ’60,64,67’, ’[(60), 64, 67]’, etc.

Returns list[int] or None if malformed.

"""

nums = re.findall(r"-?\d+", pitches_str or "")

try:

return [int(n) for n in nums]

except Exception:

return None

def parse_llm_output(self, llm_text: str) -> Optional[Dict[str, List[int]]]:

"""

Parse the first chord(...) line found. Returns {’id’: <ID>, ’pitches’:

[...]}

or None if not found / ill-formed.

"""

if not llm_text:

return None

text = llm_text.replace("‘‘‘", "").strip()

m = self.CHORD_PATTERN.search(text)

if not m:

return None

ident = m.group(1)

pitches = self._extract_pitches(m.group(2))

if pitches is None:

return None

return {"id": ident, "pitches": pitches}

26

Evaluating mLLMs on Music

def _normalize_to_pcs(self, pitches: List[int]) -> Optional[Tuple[int, ...]]:

"""

Sort, take lowest as root, compute pitch-class intervals modulo 12,

then deduplicate and sort.

"""

if not pitches:

return None

root = min(pitches)

pcs = tuple(sorted({(p - root) % 12 for p in pitches}))

return pcs

def classify_quality(self, pitches: List[int]) -> Optional[Tuple[str, str]]:

"""

Map normalized pitch-class interval set to (quality, letter).

"""

pcs = self._normalize_to_pcs(pitches)

if pcs is None:

return None

return self.QUALITY_BY_PCS.get(pcs)

def decide_quality(self, llm_text: str) -> Optional[Tuple[str, str, str]]:

"""

End-to-end convenience used by the runner:

- parse -> classify

Returns (identifier, quality_str, letter) or None if undecidable.

"""

parsed = self.parse_llm_output(llm_text)

if not parsed:

return None

ident = parsed["id"]

result = self.classify_quality(parsed["pitches"])

if result is None:

return None

quality, letter = result

return ident, quality, letter

27

	Introduction
	Methods
	Stimuli Creation
	Tasks
	Implementation
	Models and inference environment
	Statistical Analyses

	Results
	Discussion

	Supplementary Materials
	Stimuli
	System Instructions
	Task Schemas and Deterministic Solvers
	solver.py

