Under review as a conference paper at ICLR 2026

CAN PAST EXPERIENCE HELP LLMS REASON FASTER?

Anonymous authors
Paper under double-blind review

ABSTRACT

Allocating more compute to large language models (LLMs) reasoning has generally
been demonstrated to improve their effectiveness, but also results in increased
inference time. In contrast, humans can perform tasks faster and better with
increased experience and exposure. Hence, this paper aims to investigate the
question: Can LLMs also become faster at reasoning through recurrent exposure
on relevant tasks, and if so, how can it be achieved? To address these questions,
we first formalize the problem setting of LLM reasoning speedup systematically
in the dimensions of task similarity and compute budget calculation. We then
propose SPEEDUPLLM, a theoretically guaranteed framework to implement and
benchmark such reasoning speedup behaviour based on adaptive compute allocation
and memory mechanisms. We further conduct comprehensive experiments to
benchmark such behaviour across different reasoning tasks, question similarity
levels, memory methods, and reasoning methods. Results show that LLMs can
generally reason faster with past experience, achieving up to a 56% reduction in
compute cost when equipped with appropriate memory and reasoning methods.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated reasoning capabilities to solve problems through
step-by-step logical thinking (Brown et al., [2020; |[Wei et al., [2022), which is crucial for applying
LLMs to complex tasks in fields such as math reasoning (Achiam et al.,[2023). Recently, research
shows LLMs can better solve complex problems when allocated more compute at test time (Snell et al.|
2025)), and such techniques are referred to as test-time scaling (Snell et al., [2025; |Liu et al.,|2025]).
However, increased compute also brings substantial computational overhead and increased reasoning
time (Sui et al.,|2025), and this stimulates existing research on efficient reasoning algorithms (Sun
et al.,|2024; |Wang et al., [2025} |Ding et al., 2025), efficiency-oriented model fine-tuning (Luo et al.,
2025} [Yu et al.; |[Kang et al., [2025; Munkhbat et al., 2025)), model compression and distillation (Sun
et al.,[2025; |Zhang et al., [2025a)).

For humans, repeated exposure on a specific task can lead to a significant reduction in the cognitive
effort and time for execution (Shiffrin & Schneider,|[1977;|Logan} |1988), which is fundamental for
humans to become proficient and efficient in various activities, from reading, motor skills, to complex
problem-solving (Anderson, |1982). However, it remains unknown whether LLM reasoning also has
this merit. To fill this gap, this paper focuses on the question: Can LLM reasoning be faster after
past experience, and how can this be achieved? In the remaining of this paper, we refer to LLMs’
such potential behaviour as reasoning speedup.

There are two main reasons limiting LLM systems from achieving reasoning speedup: 1) Independent
Question Processing: Regular LLM systems simply process each query independently. However,
nowadays, public LLM services accept millions of questions every hour, many of which are related or
near-duplicate (Dammu & Alonsol [2024), which are not fully leveraged to reduce redundant compute
or accumulate useful experience. 2) Static Compute Budget Allocation: Existing test-time scaling
methods do not adaptively allocate compute based on an LLM’s proficiency to a question, thus
hindering the model from becoming faster when meeting familiar questions. For example, Best-of-N
sampling uses a fixed hyperparameter NV, while tree-search methods, such as Tree-of-Thought, rely
on a predefined maximum number of nodes to expand (Yao et al., [2023).

Therefore, to explore whether LLM can achieve reasoning speedup and how to achieve it, we
propose SpeedupLLLM, a unified framework to formulate, implement, and benchmark the behaviour

Under review as a conference paper at ICLR 2026

of “reasoning speedup over experiences” across various LLM reasoning settings. Specifically, we
first systematically formulate this question as a problem to explore the decreasing trend of reasoning
cost across different question similarity levels and reasoning paradigms. SpeedupLLM implements
LLM reasoning speedup based on two key elements: 1) Adaptive Compute Budget Allocation,
which extends various existing test-time scaling methods by early stopping with a threshold. 2)
Memory Mechanism, which appends memory of previous questions and answers after processing
each question. We conduct a theoretical analysis to prove that SpeedupLLM can enable reasoning
speedup.

We further conduct comprehensive experiments to benchmark different memory methods, test-
time scaling methods on achieving LLM reasoning speedup at varying question similarity levels.
Experiments show that the LLLM reasoning speedup behaviour generally exists across different
reasoning tasks, memory and reasoning methods. For similar questions, the reasoning compute
budget can be reduced by up to 56 % with the help of memory mechanisms.

The contribution of this work includes:

* New Problem. We identify and systematically formulate the problem of reasoning speedup as
the exploration of decreasing compute budget trends across varying question similarity levels,
different reasoning and memory methods.

¢ Unified Framework. We propose a unified and theoretically guaranteed framework, Speedu-
pLLM, to implement and benchmark LL.M reasoning speedup based on memory mechanisms
and adaptive compute allocation strategies, and it generally supports various reasoning methods.

» Extensive Experiments. We conduct benchmarking experiments across four reasoning tasks,
four test-time scaling methods, five memory methods, and four levels of question similarity.

* Findings and Insights. Our findings demonstrate that LLMs can achieve faster reasoning after
experience. Such behaviour generally exists across different settings, and the reasoning compute
budget can be reduced by up to 56%.

2 RELATED WORK
2.1 TEST-TIME SCALING OF LLMS

Test-Time Scaling is the technique to improve LLMs’ reasoning ability on complex questions by
allocating more compute at the test time (Snell et al.,|2025)), and it has received increasing attention
from the research community (Parashar et al. 2025} |Wu et al., [2025; Ji et al., 2025} |Li et al.l 2025}
Liu et al.;|[2025)). Current representative test-time scaling methods include 1) parallel scaling methods,
e.g., Best-of-N sampling (Stiennon et al.| [2020), which samples multiple complete answers and
selects the highest-scoring one as the final output, and Self Consistency (Wang et al.| 2022)), which
generates multiple answers and select the most common one; 2) Sequential Scaling methods, e.g.
Self-Refine (Madaan et al., 2023} |Gou et al., 2023)), which gradually refine the answer based on
internal or external feedback; 3) Tree Search methods (Yao et al., [2023}; [Feng et al.l [2023} |Guan
et al.| 2025)), which usually form each reasoning step as a node, and conduct tree search algorithms
to search for optimal reasoning chains; 4) Long Chain-of-Thought methods, e.g., the reasoning of
OpenAl GPT-40 (Jaech et al.| 2024) and DeepSeek-R1 (Guo et al.,|[2025)), which conduct implicit
searching in the text space by generating long reasoning chains.

2.2 LLM MEMORY

Memory mechanisms enable LLMs to retain and use information to generate responses (Zhang
et al.,|2024c), and such information can be from past experience or an external knowledge base (Zeng
et al.| 2024)). There are two main forms of memory: parametric form and textual form (Zhang et al.|
2024c). Parametric-form memory stores the memory in model weights, with representative methods
including supervised fine-tuning (SFT) (Hu et al.} 2022;|Shao et al.,[2023), which finetunes the LLMs
with past inputs and outputs; and knowledge editing (De Cao et al.|[2021; Mitchell et al.| 2021; [Fang
et al., 2024)), which mainly focuses on injecting factual knowledge. Textual-form memory saves
textual information as memory; the content can be original past interactions (Li et al., 2023} |Huang
et al.| 2023b} [Liu et al., [2023; |Zhong et al} 2024} [Zheng et al.}|2023b), reflection (insights extracted
from past interactions) (Shinn et al., 2023 Renze & Guven, [2024; |Yang et al., 2023b; |Hui & Tu,

Under review as a conference paper at ICLR 2026

2024), and atomic facts (Anokhin et al., 2024; |Li et al.,[2024). In this work, we focus on leveraging
past experience to enhance efficiency, so we consider past experience-based memory, including SFT,
textual-form past experiences, and reflection on past experiences. We exclude fact-oriented memory
structures (e.g., atomic fact databases), as they are primarily designed for knowledge recall rather
than past experience.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

In this work, our central question is whether it is possible that, an LLM can gradually become
faster when answering a sequence of similar questions. Formally, let f be an LLM, and let Q =
[¢W,¢@,...,¢™)] be a sequence of N test questions, where each ¢(™) is a natural language
question. We study how the similarity among questions in Q affects the model’s reasoning efficiency.

To this end, we define levels of similarity of a group of questions from most similar to least similar,
as shown in Table[T]in math reasoning tasks as an example.

Table 1: Definition of question similarity levels in math reasoning, from most similar (S1) to least
similar (S4). Definitions in other reasoning tasks are given in Appendix @

Level Description Example
S1 Exactly the same questions. “Solve for x: x> — 5z + 6 = 0” vs “Solve for z:
2> —5x4+6=0"
S2 Same numbers, different wording “Solve for x: 2*> — 52 + 6 = 0” vs “Find the
roots of the quadratic equation z° — 5z +6 = 0”
S3 Same structure, different numbers “Solve for z: 2 — 5z + 6 = 0” vs “Solve for z:

2? =Tz 4+12=0"
S4 Same underlying knowledge, different “Solve for z: 2% — 5z + 6 = 0” vs “A rectangle
structure and numbers has an area of 12 and a perimeter of 14. What

are its side lengths?”

To measure the reasoning efficiency, we define compute budget, cost(f(q(™)) for answering
¢, as the number of conducted operations in each test-time scaling method’s dominant scaling
dimension, e.g., the number of sampled answers in Best-of-N, and the number of nodes expanded in
tree search-based methods.

Our primary objective is to investigate the trend of compute budgets [cost (f(qV))), cost(f(¢'?)),

..., cost(f(g™)))] given the questions Q, and identify conditions under which there can be a de-
creasing trend, considering varying levels of question similarity, different test-time scaling strategies,
and memory mechanisms.

3.2 SPEEDUPLLM: A UNIFIED FRAMEWORK FOR IMPLEMENTING AND BENCHMARKING
LLM REASONING SPEEDUP

To implement and benchmark LLM reasoning speedup, we propose SPEEDUPLLM, a theoretically
guaranteed framework that can give a decreasing trend on reasoning cost for relevant questions, based
on adaptive compute budget allocation and memory mechanism.

3.2.1 FRAMEWORK DESIGN

Preliminary. We first give a general formulation of existing test-time scaling methods. Let S
be the set of test-time scaling methods. When the model process the question ¢*) € Q using a
test-time scaling method s € S, it generates multiple candidate answers in the reasoning process as

Rgt) = fs(q(t)), where f; means generating using test-time scaling method s with model f, Rgt) =
{rﬁ) rét;i, ce rﬁ,,tt);s}, and each r,(f)s e R is a candidate answer. An evaluation function sco re(")

s?
estimates the quality of each candidate, and the final answer is selected via argmax __,) score (r).

Under review as a conference paper at ICLR 2026

In Appendix [D} we show how various existing test-time scaling methods can be unified into this form.

Adaptive Compute Budget Allocation. To extend existing test-time scaling methods to adaptively
allocate compute budget based on the model’s proficiency, we aim at strategies to early-stop the
generation once a satisfying answer has been generated. This allows a smaller candidate set to achieve
the same maximum score as the full set. Formally, we use s’ to denote the adaptive extension of
method s. Then f, is attained by:

min cost(RS)) s.t. max (score(r)) >, (1)
for T’GR(:,)
where RS) = fo(qg®) 2)
and Vr e R, v’ <r = o e R (3)

where 7 is the threshold that a score is considered as satisfying, and < denotes the generation order

in Rgt) = fs(q(t)), where 1 = ro means r is generated no later than 75 in Rgt). In Section we
show how various existing test-time scaling methods can be extended to adaptively allocate compute
budget under this formulation.

Reasoning with Memory Mechanism. Next, we incorporate the memory mechanism into the
reasoning process. Let M be the set of memory methods. During inference, the model processes each

question ¢(Y) € Q sequentially, leveraging the current memory state M(*) as
RUL, = fo(dP; M), “)

where m € M is the employed memory method. The maintained memory M(®) is constructed from
prior question-answer pairs by

M® — gm({(q@,vzgi);m)) v 1 Q)

where g,, is the function to save memory under the used memory method m.

3.2.2 THEORETICAL ANALYSIS

Here, we prove that SPEEDUPLLM can reduce reasoning cost as the model experiences more relevant
questions. We begin by showing that, under adaptive compute budget allocation, if the answer quality
improves over time, then the required compute budget decreases accordingly, as shown in Theorem I}

Theorem 1 (Non-Increasing Compute Budget with Non-Decreasing Answer Quality). If under
the test-time scaling method s, the probability that the best response exceeds the quality threshold,
ie. P(maxTeR(t> score(r) > T), is non-decreasing with t, then the expected compute budget

E[cost(RS))] when using s’ should be non-increasing with t.
Proof. Elaborated in Appendix O

Next, we show that the memory mechanism can help improve answer quality.

Theorem 2 (Non-Decreasing Answer Quality with Accumulating Relevant Memory). If memory
does not degrade model performance on the test query, i.e., if

E'r‘Efsj (¢ ;M) [score(r)] > Erefsj (M) [score(r)],
for M! C M, then for any k, the probability of a satisfying answer appears in the first k candidates,

ie,P (maxlsigk score(rf.ts)) > T), is non-decreasing by t.

Proof. Elaborated in Appendix O

With Theorem[I]and Theorem 2} we have

Corollary 1. Under the assumption in Theorem[2} SPEEDUPLLM achieves a non-increasing expected
compute budget while maintaining the probability of producing a satisfying answer.

Under review as a conference paper at ICLR 2026

Proof. Elaborated in Appendix[C.3]

This corollary shows that, by integrating adaptive compute allocation and memory-augmented
reasoning, SPEEDUPLLM can yield a decreasing trend in the compute budget of reasoning. Intuitively,
the main assumption of the theoretical grarantee, which is that the stored memory from earlier
questions does not hurt the performance in later query questions, may hold when queries are highly
similar in answers, but may not hold if superficially similar questions have divergent answers or if
memory induces overfitting.

3.3 SPECIFICATION TO DIFFERENT TEST-TIME SCALING METHODS

Next, we show how SPEEDUPLLM can be specified for different test-time scaling strategies. We
explore four representative streams of test-time scaling methods: Best-of-N, Tree-of-Thoughts (Yao
et al.| 2023)), Self-Refine (Madaan et al., [2023), and Long Chain-of-Thought (Long CoT) (Chen et al.,
2025} |Guo et al., [2025). These modifications make each scaling strategy adaptive, allowing them to
allocate compute budget based on the LLM’s familiarity with the questions.

Best-of-N. In this method, the minimal unit of generation after which a complete answer can be
evaluated is a whole answer. Thus, cost(-) is measured by the number of generated and evaluated
answers. score(-) is provided by an LLM Judge (Zheng et al., [2023a)) or a Process Reward Model
(Lightman et al.| 2023} [Zhang et al., 2025b). Optimizing Eq.[3]is practically performed by sequentially
(or in batches) generating and scoring each answer. The generation stops once an acceptable answer
is produced.

Tree-of-Thoughts. In this method, the minimal unit of generation after which a complete answer
can be evaluated is a node in the search tree (often representing a reasoning step). Thus, cost(-)
is evaluated as the number of generated and evaluated nodes. Similar to Best-of-N, score(-) is
given by an LLM Judge (Zheng et al., [2023a)) or a Process Reward Model (Lightman et al., 2023}
Zhang et al.,[2025b). To practically optimize Eq.[3] when expanding each node in the tree search, we
sequentially evaluate each node; once we encounter a node with an above-threshold score, we prune
the following nodes and expand the current node. Note that this approach also unifies DFS and BFS.

Self-Refine. This method is intrinsically compute adaptive. In this method, the minimal unit is one
whole refined answer. Thus, cost(+) is evaluated as the number of generated and evaluated answers.
score(+) is given by the model itself or an external LLM. Since this method automatically stops
when a satisfying answer appears, there is no specific modification required to optimize Eq. 3]

Long CoT. Long CoT reasoning conducts free-form reasoning processes that implicitly incorporate
self-refinement and tree-search strategies within the text generation space (Chen et al., |2025). This
approach allows the model to continue generating content until it determines that a satisfactory answer
has been reached, eliminating the need for predefined stopping tokens such as "wait" (Sui et al.|
2025); thus, it is also an inherently adaptive method. Since this is a text-space reasoning method,
the cost(-) is evaluated as the total number of generated tokens, and score(-) is assessed by the
model’s own estimation of the next-token probability, i.e., to generate another “wait” to continue
thinking or stop with the current answer. This method also does not require specific modification to
be compute budget-adaptive.

4 EXPERIMENTAL SETUP

Benchmarking Dimensions. To explore the LLM reasoning speedup behaviour, we conduct experi-
ments along four dimensions: 1) Task Domain, 2) Question Similarity, 3) Memory Method, and 4)
Scaling Method. The details are introduced as follows.

Data. In this study, we create a dataset covering four task domains. We use MATH (Hendrycks et al.,
2021)) (math reasoning task), HumanEval (Chen et al.,[2021) (coding task), CommonsenseQA (Talmor
et al.|[2018) (commonsense reasoning task) and ProntoQA (Pan et al., 2023)) (logical reasoning task)
datasets as data sources. We randomly sample 10 questions from the MATH dataset to serve as the
backbone to create similar questions. For each similarity level defined in Section each backbone
question is extended into a set of 10 (20 for math) questions, resulting in a final dataset with 1500
questions. Examples of questions with different similarities are given in Appendix [E] The procedure
of creating similar questions based on backbone questions is given in Appendix [F}

Under review as a conference paper at ICLR 2026

Compute Budget Across Question Indices Accuracy Across Question Indices
o I — = — +50%
s1 Npereee s \\-. s1
o%
0%)
o JA Pa So— +50%
52 \-.6....5__ e, - 2
I s0% = o
n % -~ A’*—-M —. wn +50% Bl Bl B
s3 w\""‘%——-... s3
o
50%
W At 1l PP +50% q q g
sa S4 o R
“s0%
Best-of-N DFS Self-Refine Long-CoT Best-of-N DFS Self-Refine Long-CoT
o A +50% 4 4 4
o N = I
s0%]] 4 o%
- o \f’\\.%‘-‘ N\, - +50% = - - —
X S2 X S2
[}]
H 50% t 0%
o Ll i WS o
gIJ —\‘\"“--—..-- \..._,.....-....- ".’ +50% 4 4 4 4
£ £
-50% - -1 1 1 0%
o Pay Pa ey
w \'\‘*-m-—..... i S Tt reneroet| | Sorteesrvorevessace 5475]]]
-50% %
Best-of-N DFS Self-Refine Long-CoT Best-of-N DFS Self-Refine Long-CoT
S e +50%
o vy pow——
S1 S1
o%
50%
L = — +50%
- Nsrreeserssssorens
w 52 - 52
v [%} 0%
o -50% o
% 0% FEE
€ s3 £ 53
[—— S — == e em— :
sS4 i‘ s4 .
s0%
Best-of-N DFS Self-Refine Long-CoT Best-of-N DFS Self-Refine Long-CoT
0% B vty +50%
Povagereesesersces| |\ regererevoresceces
s1 s1
- - 0% b
H o g S +50%
§ e T g
17}]
& S2 2 S2 "
R [b
Q 9 s
B B
S S o%
= . Paaia™ Y s +50% r 9 I
Riigan S TSSO
sS4 0%
s0%
Best-of-N DFS Self-Refine Long-CoT Best-of-N DFS Self-Refine Long-CoT
% ‘\"—---...,__ —— +50%
s R s
o0
2 . au F— g
3 2 S S, S =
o o o%
2 ;e E)
b % s - o s +s0% § §]
9 s3 Sesecestoserere 9 s3
= L
£ s & on
e P T reerent] [P +50%
sS4 s4
o
“s0%
Best-of-N DFS Self-Refine Long-CoT Best-of-N DFS Self-Refine Long-CoT
(a) Allocated Compute (b) Accuracy

Figure 1: Changes in (a) compute budget and (b) accuracy relative to the baseline (no memory),
across different memory methods, test-time scaling methods, and question similarity levels in the
math dataset. In each subplot, the x-axis denotes the question index within a sequence of questions,
while the y-axis shows the percentage change in compute budget or accuracy compared to the baseline.
Each curve presents values averaged over multiple question sets at each question index. Gray dashed
lines represent baseline (no memory) performance. Results on other tasks are given in Appendix@

Under review as a conference paper at ICLR 2026

—-10 4

—15 4

—20 1

—25 41
S1 S2 S3 S4

Reduction of Compute Budget (%)

Math Commonsense Logical Coding

Figure 2: Compute budget changes by question similarity levels (S1 for most similar, S3 or S4
for least similar) on four types of reasoning tasks, averaged over memory methods and reasoning
methods.

Compute Budget Accuracy

-10% -10% q -12% +42% +8% +2%
SFT -9% -15% 4 +12% +21% +14% +4%
-24% -12% -10% 4 -1% +22% +1% -1%
+15% -12% -31% +57% +8%
4 +19% +53% +4%
-24% -27% 4 +22% +49% +6%
In-Context
S34 -6% -20% -9% 4 -1% +25% +0%
saf 20% -14% 11% -10% g +85% +65% 100
S14 +2% -9% -6% -14% 20 E +4% +16% +1% +2% I
o
S24 -2% +3% -16% -8% L 4 +1% -3% +10% -0% 5
Multi-Case Reflect 0 3 0 9
S34 -5% -6% -11% -11% g +12% +30% +23% -1% <
sS4 +6% +10% 7% -13% -208 -23% -17% +40% +7% g
si{ 18% 1% 23% -14% w02 +10% +33% +15% +2% -100
S24 -20% 2% -27% -9% 4 +13% +29% +29% +4%
Reflect-Update
S34 -11% -6% -17% -5% 4 +15% +60% +35% -1%
S44 -0% +13% +6% -6% 4 -2% +12% +47% +11%
S14 -4% +2% -3% -13% 4 +6% +13% +3% -4%
S24 +2% +4% -9% -8% 4 +1% -1% -0% -4%
Reflect
S34 -3% 2% -7% -11% 4 +9% +38% +12% -3%
S44 +4% +5% -4% -11% 4 -20% -5% +27% +2%
T T T T T T T T
Best-of-N DFS Self-Refine Long-CoT Best-of-N DFS Self-Refine Long-CoT

Figure 3: Changes in compute budget and accuracy relative to the baseline without memory mecha-
nisms, across each memory method, test-time scaling method, and question similarity level in the
math dataset. Values represent the relative compute budget and accuracy, averaged over all question
backbones and variations.

Memory Methods. In this study, we explore both parametric-form and textual-form memory (Zhang
2024c). In addition to the baseline of no memory mechanism, we conduct experiments to
evaluate five memory methods: one parametric method (SFT) and four text-based memory methods.

* No Memory (Baseline): Questions are processed individually without memory mechanism.

 SFT (Supervised Fine-Tuning) as memory (Shao et al.|[2023}[Wang et al.,[2023b} [Yang et all,
[2023a): The past question and generated answer pairs are used as data to perform supervised
fine-tuning on the model.

* In-Context (Zhao et al.| 2024} [Huang et al.| 2023a; [Wang et al.|[2023a): The past questions and
generated answers are used as in-context examples to guide the reasoning.

* Reflection: LLMs self-summarize past experiences and summarize rules to guide the reasoning.
We consider three variants: 1) Reflect (individually) (Zhong et all, 2024} [Packer et al.| [2023):
The LLM individually reflects on each previous question and answer pair and summarizes
experience from each one. 2) Multi-Case Reflect (Zhao et al., 2024} [Tack et al.| 2024): The
LLM is asked to summarize experience from multiple previous question and answer pairs.
3) Reflect-Update (Hu et al, 2023} [Shinn et al.} 2023): The LLM maintains a reflection by
updating it with each new question and answer pair.

Metrics. We evaluate 1) allocated compute budget and 2) accuracy on each question. Accuracy
is evaluated towards the ground truth answer for math, commonsense and logical reasoning tasks,
and pass rate against the test code for coding tasks. For each single question, these two metrics are
averaged over four runs.

Under review as a conference paper at ICLR 2026

Implementation Details. Experiments on Best-of-N, DFS, and Self-Refine are conducted on the
Llama-3.1-8B model, and experiments on Long CoT are conducted on the DeepSeek-R 1-Distill-
Qwen-7B model. For score estimation, we use gpt —4o-mini as the scorer model. For all LLMs, we
use a temperature of 0.7 and top_p of 0.9 in generation. The data and code are available at https
//anonymous.4open.science/r/1lm_efficiency_self improve-7CD9/. More
implementation details are given in Appendix |G|

5 RESULTS

We first present the compute budget trends across different levels of question similarity, reasoning
strategies, and memory methods in math reasoning in Fig.[I| Then we discuss the reasoning speedup
behaviour along different axes in the following subsections.

5.1 POSSIBILITY OF LLM REASONING SPEEDUP

Finding 1: LLMs can generally achieve reasoning speedup through past experience.

We first show that such reasoning speedup behavior is generally observed across various reasoning
tasks and task similarities (Fig. [2]), as well as memory methods and inference methods (Fig. [3).
As shown in Fig. [3] the left panel demonstrates significant reductions in compute budget on the
math dataset, with up to a 56% reduction when using the combination of In-Context memory and
DFS reasoning in the similarity level S3, and there is at least a 10% reduction in 47.5% settings.
Additionally, as shown in Fig. 2] reasoning speedup consistently occurs in all four types of tasks in
our experiments, with complex reasoning tasks such as math reasoning having the highest efficiency
gain, demonstrating that reasoning speedup is a general behavior for LLMs when equipped with
memory and adaptive compute allocation.

Finding 2. Reasoning efficiency gains increase with question similarity.

We also find that reasoning speedup is more pronounced when questions are more similar. This
effect can be highlighted from Fig. 2] where results from four reasoning tasks are grouped and
averaged by their similarity levels. As shown, the reductions in compute budget are most significant
in more similar question groups (S1 and S2). As more details are shown in Fig. 3] (left), such pattern
is consistent across most memory methods, especially SFT, In-Context, and Reflect-Update. This
pattern is largely expected, since it aligns with patterns observed in human cognition, where efficiency
improves more for more similar tasks.

Finding 3. Response speed and accuracy are strongly correlated; faster responses tend to be more
accurate.

Fig. [3shows a clear correlation between reasoning efficiency (compute budget) and accuracy. Specif-
ically, regions with deeper blue in the left panel (more reductions in compute cost) often correspond
to regions with deeper red in the right panel (more accuracy improvements). Upon examination, the
relative compute budget and accuracy have a Pearson correlation of -0.41 with p=0.0002, suggesting
a moderate and statistically significant negative correlation. These observations suggest that enhanc-
ing reasoning speed does not sacrifice, but instead improves answer correctness. This is because
test-time scaling methods suffer from the gap between the estimated answer quality score and actual
correctness, but with memory with verified correct answers, this issue can be alleviated, leading to
improved accuracy.

5.2 THE EFFECTS OF MEMORY METHODS AND INFERENCE METHODS

0.0%

Finding 4. Episodic memory methods generally outperform
semantic memory methods in LLM reasoning speedup.

—5.0% 4 -3.6%
5.0% -5.5%

-10.0% - 5.5%
-10.8%

In Fig.[4] we show the relative compute budget values of each ~15.0% 1
memory method, averaged across different similarity levels and
test-time scaling methods in the math dataset. Generally, we

find that episodic memory methods (SFT: 10.8%, In-Context

—20.0% A

—25.0% A

Avg. Compute Budget Change

27.4%) reduce compute budgets more effectively than semantic § OQ@*‘ & & &
(reflection-based) methods (3.6%, 5.5%, 8.8%). This aligns « & &
with previous studies showing that comprehensive recall of past N

experience is important for benefiting LLMs in problem solving Figure 4: Compute budget changes
(Renze & Guven, 2024). Similarly, psychological research grouped and averaged by memory

methods.

https://anonymous.4open.science/r/llm_efficiency_self_improve-7CD9/
https://anonymous.4open.science/r/llm_efficiency_self_improve-7CD9/

Under review as a conference paper at ICLR 2026

indicates that human proficiency initially relies on episodic memory, which allows for instance-based
retrieval (Loganl [1988).

Finding 5. Text-based memory methods are more effective for shorter-term reasoning speedup,
while parametric memory is more suited for longer-term reasoning speedup.

In Fig. [5] we show the relative compute bud-
get averaged across different similarity levels
and test-time scaling methods. The results re-
veal that memory methods relying on in-context
textual memory, including In-Context, Reflect,
and Multi-Case Reflect, achieve efficiency gains
more efficiently in the short term. This is be-
cause the nature of ICL outperforms SFT in
few-shot settings |Luo et al.| (2023));|Zhang et al.
(2024a), but the efficiency gain is further limited
by the context length issue of LLM architectures. 012345678 910111213141516171819

Note that while modern LLMs can handle con- . Question Index)
texts up to 1M tokens, we cap the length at 3 Figure 5: Compute budget change in each question

memories to highlight this behavior. In contrast, index, grouped and averaged by memory methods.
SFT, which saves memory into the model param-

eters, shows more consistent efficiency gains across the entire sequence, which has the potential for
better suiting longer-term reasoning speedup. As shown in Fig.[5] after approximately 10 questions,
SFT surpasses the reflection-based methods in efficiency gains.

Memory Method
—— SFT —— Multi-Case Reflect
In-Context =~ —— Reflect-Update

0% - f=== Reflect

-10% 4 Context T .

window full

Avg. Compute Budget Change

]
1
1
1
1
|
n
|
1
1
1
1
1
1
1
|
.
1
1
|

Finding 6. The effect of different test-time scaling methods is correlated with memory methods.

Based on our results, there is no single best test-time scaling method for enabling LLM reasoning
speedup. As shown in Fig.[3| the effectiveness of scaling methods is closely related to the type of
memory method used. When using episodic memory methods such as SFT and In-Context, DF'S
appears to be the most effective in reducing compute budgets. In contrast, when using reflection-based
memory methods, Self-Refine and Long CoT yield better efficiency gains. Given the strong influence
of the scaling method on the overall LLM performance, which is also evidenced by the fact that many
state-of-the-art models such as OpenAl ol (Jaech et al.| 2024) and DeepSeek-R1 (Guo et al.| 2025)
adopt Long CoT, it is important to recognize that the choice of scaling methods should not be the first
consideration. However, for Long CoT, we do observe that different memory methods show similar
efficiency improvements, with In-Context performing slightly better.

5.3 FAILURE CASE ANALYSIS

While memory mechanisms generally reduce compute costs for similar questions, in experiments we
found that under certain conditions memory still can increase compute costs and degrade accuracy,
such as in Fig. |3} warm cells in the left panel and cool cells in the right panel. Across all the results, we
observed that such an efficiency drop primarily occurs in low similarity questions (such as S4 in math
reasoning). This relates to the assumption in Theorem 2] that memory from similar questions does not
hurt performance on query tasks. When the questions and answers in memory differ substantially from
the current query, the model can overfit to irrelevant examples from memory (Zhang et al., 2024b)),
and repeated reliance on a narrow set of memories can trigger catastrophic forgetting, reducing the
model’s ability to generalize (Luo et al.,[2023)), and in these cases the assumption in Theorem does
not hold. This motivates future research on effectively deciding the memory to store or retrieve for
the reasoning speedup behaviour.

6 CONCLUSION

In this study, we raised and formally defined the question of whether large language models (LLMs)
can achieve reasoning speedup through repeated exposure. To address this, we proposed SPEEDU-
PLLM, a unified framework for implementing and benchmarking reasoning speedup behaviors in
LLMs. Through extensive experiments, we observed that reasoning speedup generally emerges across
different reasoning tasks, memory mechanisms and test-time scaling methods, particularly when the
questions exhibit higher similarity. Additionally, we provided several insights into the factors that
influence such behaviors.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

John R Anderson. Acquisition of cognitive skill. Psychological review, 89(4):369, 1982.

Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Mikhail Burtsev, and Evgeny
Burnaev. Arigraph: Learning knowledge graph world models with episodic memory for 1lm agents.
arXiv preprint arXiv:2407.04363, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Preetam Prabhu Srikar Dammu and Omar Alonso. Near-duplicate question detection. In Companion
Proceedings of the ACM Web Conference 2024, pp. 493—496, 2024.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. arXiv
preprint arXiv:2104.08164, 2021.

Yifu Ding, Wentao Jiang, Shunyu Liu, Yongcheng Jing, Jinyang Guo, Yingjie Wang, Jing Zhang,
Zengmao Wang, Ziwei Liu, Bo Du, et al. Dynamic parallel tree search for efficient llm reasoning.
arXiv preprint arXiv:2502.16235, 2025.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. arXiv
preprint arXiv:2410.02355, 2024.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

10

Under review as a conference paper at ICLR 2026

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. Chatdb: Augmenting
Ilms with databases as their symbolic memory. arXiv preprint arXiv:2306.03901, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. /CLR, 1(2):3, 2022.

Xu Huang, Jianxun Lian, Yuxuan Lei, Jing Yao, Defu Lian, and Xing Xie. Recommender ai agent: In-
tegrating large language models for interactive recommendations. arXiv preprint arXiv:2308.16505,
2023a.

Ziheng Huang, Sebastian Gutierrez, Hemanth Kamana, and Stephen MacNeil. Memory sandbox:
Transparent and interactive memory management for conversational agents. In Adjunct Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology, pp. 1-3, 2023b.

Wenyang Hui and Kewei Tu. Rot: Enhancing large language models with reflection on search trees.
arXiv preprint arXiv:2404.05449, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian Mo, and Min Zhang. Test-time computing:
from system-1 thinking to system-2 thinking. arXiv preprint arXiv:2501.02497, 2025.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought with-
out compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 24312-24320, 2025.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do 1lms compress their own chain-of-thought? a
token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can context length of open-source 1lms truly promise? In
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei
Qu, Yangguang Li, Wanli Ouyang, et al. Graphreader: Building graph-based agent to enhance
long-context abilities of large language models. arXiv preprint arXiv:2406.14550, 2024.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen

Zhou. Can 1b 1lm surpass 405b 1lm? rethinking compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703, 2025.

11

Under review as a conference paper at ICLR 2026

Gordon D Logan. Toward an instance theory of automatization. Psychological review, 95(4):492,
1988.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun.
Self-training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Charles Packer, Vivian Fang, Shishir_G Patil, Kevin Lin, Sarah Wooders, and Joseph_E Gonzalez.
Memgpt: Towards llms as operating systems. 2023.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering
large language models with symbolic solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, and
Shuiwang Ji. Inference-time computations for llm reasoning and planning: A benchmark and
insights. arXiv preprint arXiv:2502.12521, 2025.

Matthew Renze and Erhan Guven. Self-reflection in 1lm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024.

Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for role-
playing. arXiv preprint arXiv:2310.10158, 2023.

Richard M Shiffrin and Walter Schneider. Controlled and automatic human information processing:
Ii. perceptual learning, automatic attending and a general theory. Psychological review, 84(2):127,
1977.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634—-8652, 2023.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling parameters for reasoning. In The Thirteenth International
Conference on Learning Representations, volume 2, pp. 7, 2025.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
neural information processing systems, 33:3008-3021, 2020.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,

Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

12

Under review as a conference paper at ICLR 2026

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Lin Sun, Guangxiang Zhao, Xiaoqi Jian, Yuhan Wu, Weihong Lin, Yongfu Zhu, Linglin Zhang, Jinzhu
Wau, Junfeng Ran, Sai-er Hu, et al. Tinyr1-32b-preview: Boosting accuracy with branch-merge
distillation. arXiv preprint arXiv:2503.04872, 2025.

Jihoon Tack, Jaehyung Kim, Eric Mitchell, Jinwoo Shin, Yee Whye Teh, and Jonathan Richard
Schwarz. Online adaptation of language models with a memory of amortized contexts. arXiv
preprint arXiv:2403.04317, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Bing Wang, Xinnian Liang, Jian Yang, Hui Huang, Shuangzhi Wu, Peihao Wu, Lu Lu, Zejun Ma,
and Zhoujun Li. Enhancing large language model with self-controlled memory framework. arXiv
preprint arXiv:2304.13343, 2023a.

Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang, Sendong Zhao, Bing Qin, and Ting Liu. Huatuo:
Tuning llama model with chinese medical knowledge. arXiv preprint arXiv:2304.06975, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early
decoding. arXiv preprint arXiv:2503.01422, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for llm problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025a.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with 1lms. arXiv preprint arXiv:2502.12134, 2025b.

Yi Yang, Yixuan Tang, and Kar Yan Tam. Investlm: A large language model for investment using
financial domain instruction tuning. arXiv preprint arXiv:2309.13064, 2023a.

Zeyuan Yang, Peng Li, and Yang Liu. Failures pave the way: Enhancing large language models
through tuning-free rule accumulation. arXiv preprint arXiv:2310.15746, 2023b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809-11822, 2023.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Ping Yu, Jing Xu, Jason E Weston, and Ilia Kulikov. Distilling system 2 into system 1. In The First
Workshop on System-2 Reasoning at Scale, NeurIPS’24.

13

Under review as a conference paper at ICLR 2026

Ruihong Zeng, Jinyuan Fang, Siwei Liu, and Zaiqiao Meng. On the structural memory of 1lm agents.
arXiv preprint arXiv:2412.15266, 2024.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets 1lm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024a.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren, Shu Wu, and Zhumin Chen. Uncovering
overfitting in large language model editing. arXiv preprint arXiv:2410.07819, 2024b.

Nan Zhang, Yusen Zhang, Prasenjit Mitra, and Rui Zhang. When reasoning meets compression:
Benchmarking compressed large reasoning models on complex reasoning tasks. arXiv preprint
arXiv:2504.02010, 2025a.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and
Ji-Rong Wen. A survey on the memory mechanism of large language model based agents. arXiv
preprint arXiv:2404.13501, 2024c.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025b.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 1963219642, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023a.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. arXiv preprint arXiv:2306.07863, 2023b.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724-19731, 2024.

14

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

A.1 LLM EFFICIENT REASONING

Although test-time scaling significantly boosts LLMs’ reasoning ability, it also results in substantial
computational overhead and increased reasoning time (Sui et al.,[2025). Therefore, various types
of LLM efficient reasoning methods have been developed. Existing methods can be categorized
into RL-optimization with length reward (Luo et al.|[2025; Aggarwal & Welleckl 2025} [Team et al.,
2025)), SFT with shorter CoT (Yu et al.} Kang et al., [2025; |Liu et al., [2025)), latent representation
compression (Hao et al., [2024; |Cheng & Van Durme, 2024 |Xu et al., 2025b), dynamic reasoning
algorithms (Sun et al.| 2024; [Wang et al.,|2025} Ding et al., [2025)), prompt-guided efficient reasoning
(Han et al., 2024} [Lee et al., [2025}; |Xu et al.l 2025a)), training data efficiency methods (Ye et al.,
2025; [IMuennighoff et al.||2025)), model compression and distillation (Sun et al., 2025; Zhang et al.,
2025a)). To our best knowledge, no existing research has focused on exploring the efficiency brought
by memory or exposure to similar questions.

B TASK SIMILARITY DEFINITIONS

Below are the definitions of task similarities in commonsense reasoning tasks (Table [2)), code
generation tasks (Table [3), and logical reasoning tasks (Table [4).

Table 2: Definition of question similarity levels in commonsense reasoning.

Level Description Example
S1 Exactly the same questions. “Why do people wear coats in winter?”” vs
“Why do people wear coats in winter?”
S2 Same questions, different wording “Why do people wear coats in winter?”” vs

“What is the reason people put on coats
when it’s cold outside?”
S3 Same underlying knowledge, differ- “Why do people wear coats in winter?”” vs
ent specific questions. “Why do people turn on heaters when the
weather gets cold?”

Table 3: Definition of question similarity levels in code generation.

Level Description Example
S1 Exactly the same questions. “Write a Python function to reverse a string.”
vs “Write a Python function to reverse a
string.”

S2 Same questions, different wording “Write a Python function to reverse a string.”
vs “How can I implement a function in
Python that takes a string and outputs its

reverse?”
S3 Same answer structure, different spe- “Write a Python function to reverse a string.”
cific questions. vs “Write a Python function to check if a

word is a palindrome.”

C PROOF OF THEOREMS AND COROLLARY

C.1 PROOF OF THEOREM 1

Proof. From the assumptions we have:

P max score(r(-t+1)) > 7| >P(max score(T(-t)) >7).
1<j<k J 1<j<k J

15

Under review as a conference paper at ICLR 2026

Table 4: Definition of question similarity levels in logical reasoning.

Level Description Example

S1 Exactly the same questions. “If all cats are animals and Max is a cat, is
Max an animal?” vs “If all cats are animals
and Max is a cat, is Max an animal?”

S2 Same questions, different wording ~ “If all cats are animals and Max is a cat, is
Max an animal?” vs “Given that every cat
belongs to animals, and Max is a cat, does
Max count as an animal?”

S3 Same structures, different specific “If all cats are animals and Max is a cat, is

questions. Max an animal?” vs “If all roses are flowers
and Daisy is a rose, is Daisy a flower?”

So the cumulative distribution of |RS)\ satisfies:

M) « 1) —)y >
P(|Ry | < k) =P (1r2?§kscore(rj) > T) .

Since cost(R) is non-decreasing with | R|, the expected cost satisfies

E [cost(|RS+1) D] <E [cost(\RS) D]

C.2 PROOF OF THEOREM 2

We first consider a simplified setting, where we assume the independence of each r € Rgt). Note this
is valid without simplification for independent sampling test-time scaling methods, e.g. Best-of-N.

Proof. Let p; := P(score(rgt)) > 7'). Because memory grows monotonically with ¢, we have
Diy1 = p¢- Under the independence assumption,

s) =1 (1 po
]P’(llgjagkscore(rj)_7‘) =1-(1—-p)",

As this function is monotonically increasing in p;, we conclude

1-(1 —pt+1)k > 1-(1 —Pt)k»
which proves the claim

P (max score(rj(-tﬂ)) > 7') > P (max score(r(t)) > 7') .
i<k 1<j<k

1<5< <j J

O

Next, we generalize the proof by removing the independence assumption and considering the case

where candidates rj(.t) € ’Rgt) are dependent, but satisfy a natural topological generation structure.

‘We further assume:

(A1) There exists a directed acyclic graph (DAG) G = (V, E)) on the index set V' = {1,...,k}

that is identical for t and ¢ + 1. We write 7’1@ ~ r§t) if (i,5) € E, i.e. candidate 7’50 relies
ft). For each j let P(j) = {i: (i,5) € E} be its (possibly empty) parent set.
(A2) For any non-root node j the conditional distribution of sco re(r?) is monotone in its

onr

parents’ scores: if s 3= s’ coordinate-wise then

score(r§t) | score(P(j)) =s) >q score(rj(«t) | score(P(j)) =¢').

Consequently, whenever every parent’s score distribution stochastically improves, so does
the child’s.

16

Under review as a conference paper at ICLR 2026

Proof. We first convert the mean-improvement assumption
E[score(rj(vwrl))} > E[score(rj(vt))} (BO)

into a tail-probability guarantee for every root node j (nodes with P(j) = &). When scores are
normalized to the unit interval, the following elementary bound holds.

Lemma 1. Ler S € [0,1] and T € (0, 1). Then

P(S>7) >

Proof of Lemmall] Write E[S] = E[S | S > 7]P(S > 7) + E[S | S < 7](1 —P(S > 7)). Because
S <1landS < 7 onthe second event, E[S | S < 7] < 7. Hence E[S] < P(S > 7) 4+ 7(1 — P(S >
) =74+1—-7)P(S>1), O

Applying Lemma(I|to (BO) gives, for every root j,
P(score(ré“”) >7) > P(score(r](-t)) >71) VjistP(j) =2,

ie. score(rj(-tﬂ)) >y score(rj(-t)).
Then, we traverse the fixed dependency DAG G in a topological order. Assume for every parent
(t+1)

i € P(j) of the current node j that score(r;, /) >« score(rgt)). By construction the joint

parent-score vector at ¢ + 1 stochastically dominates the one at ¢. Under the monotone-reliance
assumption (B3), this dominance propagates to the child:
(t+1) O

score(r; ') =g score(r;”’).

Thus the induction hypothesis extends to every successor node. Proceeding through the whole order
yields

score(rJ(-tH)) >t score(rﬁt)) V3.

Thus, the mapping g(x) = maxi << ; is monotone, i.e.
max score(ryﬂ)) >4 max score(rj(-t)).
J J
So for every threshold 7, we have

IP’(max score(rj(-tﬂ)) > T) > P(max score(r(.t)) > T).

1<j<k 1<j<k J
O
C.3 PROOF OF COROLLARY
Proof. Immediately with Theorem|[I|and [2] O

D TEST-TIME SCALING METHODS

In this appendix, we elaborate how several widely-used test-time scaling methods can be expressed
within the unified framework introduced in Section X. Let f,(¢(*)) denote the set of candidate answers
Rgt) generated by applying test-time scaling method s € S to question ¢(*). Each method defines a
minimal unit of computation, a corresponding cost function cost(+), and a score function score(-)
to evaluate answer quality.

Best-of-N. This method generates N complete candidate answers. Each r,(:)é € Rs® is an indepen-

dently sampled answer.

* Unit of computation: full answer.

17

Under review as a conference paper at ICLR 2026

* Cost: number of generated answers, i.e., \Rs(t) |.

* Score: LLM Judge or Process Reward Model assigns score(r) for each candidate r.
* Final answer: argmaxr € RsWscore(r).

This method directly aligns with our unified formulation, with f, sequentially or in batches generating
rl,r2,...,ry until an answer satisfying the threshold is found.

Tree-of-Thoughts. This method performs structured reasoning by expanding nodes in a search tree.

 Unit of computation: tree node.
* Cost: number of generated and scored nodes.
* Score: each node is scored via LLM Judge or reward model.

* Final answer: the highest-scoring reasoning path.

Our formulation covers this by letting f, denote the expansion of search tree nodes, with Rgt)

representing partial reasoning paths. Both DFS and BFS are special cases, differing in node expansion
order.

Self-Refine. This method iteratively generates improved answers based on previous attempts.

* Unit of computation: full refined answer.

* Cost: number of refinement steps (full answers).

* Score: internally assessed (e.g., by the model itself) or by an external judge.
* Final answer: the most refined answer exceeding the threshold.

Self-Refine is inherently adaptive: fs produces a sequence of revised answers until score(r) > 7.
No explicit compute optimization is required.

Long CoT (Chain-of-Thought). This method enables free-form, unbounded reasoning over long
text segments.

 Unit of computation: token.

* Cost: number of generated tokens.

* Score: assessed implicitly by the model (e.g., via stopping probabilities).

* Final answer: the whole generated sequence.
This method integrates self-refinement and tree-search behavior into token-level generation. Rff)

here can be seen as the full text trace, and score(-) may correspond to internal confidence or the
model’s own stop criterion (e.g., omitting “wait” tokens).

E DATA EXAMPLES

Question Backbone:

Let $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $
\mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}.$
Find the vector \mathbf{v} that satisfies S$\mathbf{v} \times
\mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{v} \
times \mathbf{b} = \mathbf{a} \times \mathbf{b}.$

S1: (Exactly the same with the question backbone.)

S2 (Same numbers, different wording):

18

Under review as a conference paper at ICLR 2026

Given the vectors $\\mathbf{a} = \\begin{pmatrix} 1 \\\\ 1 \\\\ O
\\end{pmatrix}$ and $\\mathbf{b} = \\begin{pmatrix} 2 \\\\ 0
\\\\ -1 \\end{pmatrix}$, determine the vector $\\mathbf{v}$
that meets the conditions $\\mathbf{v} \\times \\mathbf{a} =
\\mathbf{b} \\times \\mathbf{a}$ and $\\mathbf{v} \\times \\
mathbf{b} = \\mathbf{a} \\times \\mathbf{b}$.

S3 (Same structure, different numbers):

Let $\\mathbf{a} = \\begin{pmatrix} 0 \\\\ -3 \\\\ -2 \\end{
pmatrix}$ and $\\mathbf{b} = \\begin{pmatrix} -1 \\\\ -3
\\A\\ 0 \\end{pmatrix}.$ Find the vector $\\mathbf{v}$
that satisfies $\\mathbf{v} \\times \\mathbf{a} = \\mathbf
{b} \\times \\mathbf{al}$ and $\\mathbf{v} \\times \\mathbf
{b} = \\mathbf{a} \\times \\mathbf{b}.

S4 (Same underlying knowledge, different structure and numbers):

Find the scalar k such that the points $(1, k)$, S$(k, 2)S8,
and $(3, 4)$ are collinear.

F DATASET CONSTRUCTION

Starting from a backbone question, we first prompt an LLM to generate similar questions, and then
ensure correctness using either programmatic verification or strong LLMs. Specifically, we use
GPT-03 to generate candidate questions with prompts that specify the similarity definition (e.g.,
“reword the question,” “generate questions based on the same underlying knowledge”). We then
verify the correctness of the answers before adding them to the dataset. For math tasks, we employ
program-based verification: given a candidate question, we calculate the correct answer using code
execution. For commonsense and logical reasoning, we rely on a strong LLM (GPT-5 reasoning) to
generate answers, which are then verified by humans. For coding tasks, we use GPT-5 reasoning to
generate test code corresponding to the candidate questions, followed by human verification of the
test cases.

G IMPLEMENTATION DETAILS

We develop a unified test-time reasoning framework in Python, using PyTorch and Hugging Face’s
Transformers. Our experiments are conducted on machines with NVIDIA A100, H100, H200, L40S
and L4 GPUs, with a total of 4000+ GPU hours.

Test-Time Scaling Methods. Below, we detail the core mechanisms, configurable parameters, and
termination criteria:

* Best-of-N: Generates [V candidates (default = 5). Each is scored using a value model or
PRM, and a candidate is selected based on value and correctness. Termination: stops early
if a candidate meets the score threshold; otherwise, completes all N evaluations.

* Self-Refine: Begins with a generated candidate and iteratively improves it using feedback
and refinement prompts. We set the max refinement steps as 15. Termination: stops early
if the feedback indicates "No error"; otherwise continues until the max iteration count is
reached.

* Long CoT: A single long-form reasoning trace is generated, typically prefixed with a
<think> tag. The model self-determines when to stop generating, often marked by the
token </think>. Termination: when the model stops generating or produces an explicit
termination tag. We set a max token number of each answer as 3500 tokens.

* Depth-First Search (DFS): A search tree is constructed over reasoning steps, where nodes
represent partial reasoning segments. Child nodes are generated up to max_depth (default
= 15), and evaluation is guided by value thresholds (value_thresh) and pruning ratio

19

Under review as a conference paper at ICLR 2026

(0.4). Termination: when either a termination node (the content has "End of Answer" with
perfect value (1.0) is found, or the search exceeds max_node (default = 50) expansions, or
all candidates are exhausted.

Memory Methods. We implement the following memory mechanisms.

No Memory: The baseline configuration with no carry-over between rounds.

Supervised Fine-Tuning (SFT): The model is updated after each question using a single-
step gradient descent. For reasoning models (e.g., DeepSeek—-R1), we generate a com-
pressed representation of the reasoning trace using a summarization prompt. The fine-tuning
is performed using the following hyperparameters: learning_rate = 5e-4, Single-step
update with LoRA enabled. The SFT method is only applied if a correct and high-quality
answer is found.

In-Context: A memory buffer maintains the last n successful examples. For each new
prompt, we prepend these examples as demonstrations. We set the maximum number of
in-context examples to 3.

Reflection: After a correct response, a language model is prompted to reflect on the
reasoning process. The resulting reflection is stored and used in future prompts under the
"Consider:" section. Only one reflection is stored per example.

Multi-Case Reflection: Instead of prompting reflection on a single instance, this method
generates a joint reflection across multiple past successful cases. All stored examples are
included in a joint input to generate an abstracted reflection. We limit the context by a
maximum of 3 examples.

Reflect-Update: This method iteratively refines a single running reflection. After each
correct answer, the previous reflection and the new case are used to generate an updated
reflection. The updated reflection replaces the old one, maintaining a compact and evolving
summary of reasoning strategies.

Memory Update Policy. Memory is updated only if a qualifying answer is found during the current
question’s rounds. In the four tasks in our experiments, the correctness is checked with the ground
truth. In scenarios when the ground truth is not available, this can also be implemented with an
LLM-Judge.

Evaluation Configuration. We run the evaluation over 10 question sets per dataset, with 4 repeti-
tions for each question, to report the mean value.

Scoring. We use gpt-4o-mini as the scorer model. The score threshold is set as 7 = 1.0, which
in our experiments is implemented as the scorer model (gpt-4o-mini) decided this answer (or one

CEINNT3

reasoning step) is “surely correct” among three options of “surely correct”, “maybe correct”, or
“surely incorrect”.

H ADDITIONAL RESULTS

H.1

EXAMPLES OF DIFFERENT REFLECTION METHODS

Here we show the reflection generated from the same question backbone.

Reflect (individually): (This is an unrelated reflection derived from a less-similar question in
the same set with Similarity S4.)

— Identify the principal amount ($1,000), the interest rate (5%),
and the time period (3 years).

— Use the formula for simple interest: Interest = Principal x
Rate x Time.

— Substitute the known values into the formula: Interest = $1,000
x 0.05 x 3.

20

Under review as a conference paper at ICLR 2026

— Calculate the interest: Interest = $150.
End of answer.

Multi-Case Reflect:

— Define the initial positions of the train and car as (0, 0).
— Let the speed of the train be v, and the speed of the car be v..

- After time ¢, the position of the train will be (0,v; - t) and the
position of the car will be (v.-t,0).
- Use the distance formula d = /(z2—21)2+ (y2—41)? to express the

distance D between the train and car as:

D=/(vc t—02+(0—v-8)2=/(ve 12+ (vg - 1)

— Simplify the equation to:

D =t-\/vZ+v?

- Substitute the known values of t, v., and v to find the distance
D after the specified time.
End of answer.

Reflect-Update: x

— Reaffirmed the use of the centripetal acceleration formula
m;zlé as a fundamental principle in circular motion.
- Clarified the substitution of values, ensuring each step is
transparent and logically follows from the previous one, which
aids in comprehension.
— Highlighted the importance of checking calculations at each
stage, particularly in deriving a., and converting to terms of g.
— Emphasized the need for consistent units throughout the
calculation to avoid errors, reinforcing unit conversion
practices.
— Improved the rounding approach to maintain precision in the
final result, ensuring it aligns with significant figures based
on input wvalues.
— Incorporated a systematic verification step to cross-check
the final answer against physical principles, ensuring it is
reasonable and accurate.
— Continued to prioritize expressing results in terms of g,
fostering a deeper understanding of the practical implications
of centripetal acceleration in real-world scenarios.
End of answer.

H.2 RESULTS ON COMMONSENSE REASONING, CODING AND LOGICAL REASONING TASKS

We first evaluated all five memory methods and four test-time scaling methods on math reasoning
tasks. Then, to evaluate the generalizability of the conclusions on math tasks and meanwhile control
the total cost, we conducted additional experiments on three other tasks, primarily focusing on
representative settings we identified from math tasks, which are DFS and Long CoT for reasoning,
and SFT and In-Context for memory.

21

Under review as a conference paper at ICLR 2026

SFT

In-Context

SFT

In-Context

S2

S3

Sl

S2

S3

S3

S1

S2

S3

-50%

-50%

0%

-50%

-50%

-50%
0%

-50%

-50%
0%

-50%

-50%

-50%

0%

-50%

Long-CoT

e T)
DFS Long-CoT
(a) Compute Budget.

+50%

S1

0%
+50%

S2

0% =

SFT

+50%

S3

0% =

+50%

Sl

0% -
+50%

S2

0% -
+50%

In-Context

S3

0% -

Long-CoT

(b) Accuracy.

Figure 6: Results on COMMONSENSEQA.

Long-CoT

DFS

Long-CoT

(a) Compute Budget.

+50%

S1

0% -

+50%

SFT
<

0% -

+50%

In-Context
N

0% -

Long-CoT

(b) Accuracy.

Figure 7: Results on PRONTOQA (Logical Reasoning).

22

Under review as a conference paper at ICLR 2026

SFT

In-Context

0%
S1

-50%
0%

S2

0%
S3

-50%

-50%

DFS

Long-CoT

(a) Compute Budget.

SFT

In-Context

+50%

Sl

0% ooy

+50%

S2
0%
+50%

S3

+50%

Sl

0%
+50%

S2

0%
+50%

S3

Long-CoT

DFS

Long-CoT

(b) Accuracy.

Figure 8: Results on HUMANEVAL (Coding).

23

	Introduction
	Related Work
	Test-Time Scaling of LLMs
	LLM Memory

	Methodology
	Problem Formulation
	SpeedupLLM: A Unified Framework for Implementing and Benchmarking LLM Reasoning Speedup
	Framework Design
	Theoretical Analysis

	Specification to Different Test-Time Scaling Methods

	Experimental Setup
	Results
	Possibility of LLM Reasoning Speedup
	The Effects of Memory Methods and Inference Methods
	Failure Case Analysis

	Conclusion
	Additional Related Work
	LLM Efficient Reasoning

	Task Similarity Definitions
	Proof of Theorems and Corollary
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary

	Test-time Scaling Methods
	Data Examples
	Dataset Construction
	Implementation Details
	Additional Results
	Examples of Different Reflection Methods
	Results on Commonsense Reasoning, Coding and Logical Reasoning Tasks

