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Abstract

Optimal Transport (OT) has attracted significant interest in the machine learning
community, not only for its ability to define meaningful distances between proba-
bility distributions – such as the Wasserstein distance – but also for its formulation
of OT plans. Its computational complexity remains a bottleneck, though, and
slicing techniques have been developed to scale OT to large datasets. Recently, a
novel slicing scheme, dubbed min-SWGG, lifts a single one-dimensional plan back
to the original multidimensional space, finally selecting the slice that yields the
lowest Wasserstein distance as an approximation of the full OT plan. Despite its
computational and theoretical advantages, min-SWGG inherits typical limitations
of slicing methods: (i) the number of required slices grows exponentially with the
data dimension, and (ii) it is constrained to linear projections. Here, we reformulate
min-SWGG as a bilevel optimization problem and propose a differentiable approx-
imation scheme to efficiently identify the optimal slice, even in high-dimensional
settings. We furthermore define its generalized extension for accommodating data
living on manifolds. Finally, we demonstrate the practical value of our approach in
various applications, including gradient flows on manifolds and high-dimensional
spaces, as well as a novel sliced OT-based conditional flow matching for image
generation – where fast computation of transport plans is essential.

1 Introduction

Optimal Transport (OT) has emerged as a foundational tool in modern machine learning, primarily
due to its capacity to provide meaningful comparisons between probability distributions. Rooted in the
seminal works of Monge [39] and Kantorovich [28], OT introduces a mathematically rigorous frame-
work that defines distances, such as the Wasserstein distance, that have demonstrated high performance
in various learning tasks. Used as a loss function, it is now the workhorse of learning problems ranging
from classification, transfer learning or generative modelling, see [40] for a review. One of the key ad-
vantages of OT lies in its dual nature: it also constructs an optimal coupling or transport plan between
distributions. This coupling reveals explicit correspondences between samples, enabling a wide range
of applications. For example, OT has proven valuable in shape matching [11], colour transfer [48, 50],
domain adaptation [15], and, more recently, in generative modeling through conditional flow match-
ing [46, 56], where it provides an alignment between the data distribution and samples from a prior.
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OT (exact), 〈Cµν, π?OT〉=13.50
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min-SWGG, 〈Cµν, πθ〉=22.22 DGSWP (NN), 〈Cµν, πθ〉=13.80

Figure 1: 8Gaussians (source) to Two Moons (target) distributions and associated OT plans in Grey:
(Left) exact solution (Middle) min-SWGG, that projects samples on an optimal line determined by
random sampling (Right) Differentiable Generalized SW plan, that relies on a neural network to get
non linear-based ordering of the samples. Gradient of colours represent the ordering of the samples.

Despite the many successes of optimal transport in machine learning, computing OT plans remains
a computationally challenging problem. The most used exact algorithms are drawn from linear
programming, typically resulting in a O(n3) complexity with respect to the number of samples n.
To alleviate this issue, several strategies have been developed in the last decade, that can be roughly
classified in three families: i) regularization-based methods, such as entropic optimal transport [17],
ii) minibatch-based methods [24, 21], that average the outputs of several smaller optimal transport
problems and iii) approximation-based through closed-form formulas such as projection-based OT.
This paper is concerned with this third class of methods, with the underlying goal to obtain a transport
plan. We quickly review them below.

Approximation of OT loss with sliced-OT. The Sliced-Wasserstein Distance (SWD) [49, 12]
approximates the Wasserstein distance by projecting onto one-dimensional subspaces, where OT has
a closed-form solution obtained in O(n log n). While SWD averages over multiple projections, max-
SWD [19] selects the most informative one, enabling efficient computations on large-scale problems
while preserving key properties. Generalized SWD alleviates the inefficiencies caused by the linear
projections using polynomial projections or neural networks [31]. They build on generalized Radon
transforms to use polynomial projections or neural networks, and provide conditions for which it
remains a valid distance: the generalized Radon transform must be injective. Rather than considering
non-linear projections, Chen et al. [13] aim at better capturing non-linearities by augmenting the
input space, using injective neural networks, such that linear projections could better capture them.
Generalized SWD has also been defined in the case of tree metrics [57].

Approximation of OT plan with sliced-OT. Addressing the challenge that none of the previous
works provide an approximated transport plan, [38] proposes min-SWGG, a slicing scheme that lifts
one-dimensional OT plans to the original space; [36] follow the same line but rather define expected
plans computed over all the lines instead of retaining the best one.

Differentiable OT. As it is a discrete problem, OT is not differentiable per se. Several formulations,
that mostly rely on smoothing the value function by adding a regularization term, have then been
defined, the entropic-regularized version of the OT problem [17] being one of the most striking
examples. It can be efficiently solved via Sinkhorn’s matrix scaling algorithm, providing an OT
approximation that is differentiable. Blondel et al. [7] use a ℓ2 regularization term to define a smooth
and sparse approximation. Regarding the unregularized OT formulation, an approximated gradient
can be computed using sub-gradient on the dual formulation (see [23] for instance).

Optimizing on discrete problems. The OT problem is a linear program and the optimal plan belongs
to the (potentially rescaled) Birkhoff polytope, i.e. the set of doubly-stochastic matrices, which is
discrete. It is also the case for a wide range of problems for which the solution is prescribed to belong
to such a discrete set. For instance, one can cite the sorting operator, the shortest path or the top-k
operator. They break back-propagation along the computational graph, hence preventing their use in
deep learning pipelines. Numerous works have been proposed to provide differentiable proxies, based
on smoothing the operators: dataSP [33] define a differentiable all-to-all shortest path algorithm,
smoothed sorting and ranking [8] can be defined by projection onto the permutahedron, perturbed
optimizers [4] have also been defined, relying on perturbing the input data, to name a few.
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Contributions. In this paper, we aim at approximating the OT distance and plan. We rely on a
slicing scheme, extending the framework of [38], highlighting that it is an instance of a bilevel
optimisation problem. We provide two main contributions: a generalized Sliced-Wasserstein that
provides approximated OT plans relying on non-linear projections (see Fig. 1 for an illustration), then
a GPU-friendly optimization algorithm to find the best projector. We showcase the benefits brought
by these contributions in three different experimental contexts: on a 2 dimensional example where
a non-linear projection is sought; conducting gradient flow experiment in high dimensional space;
introducing a novel sliced OT-based conditional flow matching for image generation.

2 Preliminaries on Optimal Transport

We now give the necessary background on Optimal Transport and on sliced-based approximations.
For a reference on computational OT, the reader can refer to [45].

2.1 Discrete Optimal Transport

We consider two point clouds {xi}ni=1 ∈ Xn and {yi}mi=1 ∈ Xm where X ⊂ Rd is a discrete subset.
We denote their associated empirical distributions µ =

∑n
i=1 aiδxi and ν =

∑m
i=1 biδyi .

Formulation and Wasserstein distance. We consider a cost function c that will be in our setting
c(u, v) = ∥u− v∥pp for p > 1 and Cµν = (c(xi, yj))

n,m
i=1,j=1. Traditional Kantorovich formulation

of optimal transport is given by the Wasserstein metric on P(Rd) defined as

W p
p (µ, ν) = min

π

n∑
i=1

m∑
j=1

πi,j∥xi − yj∥pp subject to π ∈ U(a, b), (1)

where U(a, b) = {π ∈ Rn×m
≥0 : π1m = a, π⊤1n = b} is the set of couplings between µ and ν,

Eq. (1) is a convex optimization problem and an optimal transport plan π⋆
OT is a solution. Note that, a

priori, there is no reason for this minimizer to be uniquely defined.

One-dimensional OT. When d = 1, and µ, ν are empirical distributions with ai = bi = 1/n, the
optimal transport problem is equivalent to the assignment problem. In this case, the Wasserstein
distance can be computed by sorting the empirical samples, resulting in an overall complexity of
O(n log n). Let σ and τ be permutations such that xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n) and yτ(1) ≤ yτ(2) ≤
. . . ≤ yτ(n). The Wasserstein distance is then given by W p

p (µ, ν) =
1
n

∑n
i=1 |xσ(i) − yτ(i)|p. The

optimal transport is thus monotone and its plan π⋆
OT has the form of a permutation matrix. Note that

this approach can be easily extended to n ̸= m and arbitrary marginals a, b [45].

2.2 Sliced Wasserstein Distance

Formulation. Sliced-Wasserstein (SWD) relies on a simple idea: disintegrate the original problem
onto unidimensional ones, and average over the different solutions. More precisely, SWD [49]
approximates the Wasserstein distance by averaging along projection directions θ ∈ Sd−1 as

SWDp
p(µ, ν) :=

∫
Sd−1

W p
p (P

θ
♯ µ, P

θ
♯ ν)dλ(θ), (2)

where P θ : Rd → R is the 1D projection onto the unit vector θ, P θ(x) = ⟨x, θ⟩, and λ is the
uniform distribution on the unit sphere Sd−1. Typically, SWD is computed thanks to a Monte-Carlo
approximation in which L directions are drawn independently, leading to a computational complexity
of O(dLn + Ln logn). One of the main drawbacks of SWD is that it requires a high number of
random projections, which leads to intractability for high dimensional problems. Then, there have
been works to perform selective sampling, e.g. [42], or to optimize over the directions [19, 38]. The
two later works rely on non-convex formulations that can be optimized.

Generalized Sliced WD. The idea of non-linear slicing has been explored in several works, with
the aim to improve the projection efficiency, e.g. when the data live on non-linear manifolds. In [31],
the generalized SWD uses nonlinear projections such as neural network-based ones; the conditions
on which it yields a valid metric are also stated: the projection map must be injective. In [42], a gen-
eralized projection is also proposed in addition to selective sampling. Augmented Sliced Wasserstein

3



(ASWD) [13] pursued the same goal but, rather than considering non-linear projections, they use a neu-
ral network to augment the input space, which leads to a space on which a linear projection better fits
the data. All these works lead to significant improvements in a wide set of machine learning scenarios.

2.3 Sliced Wasserstein Plan

As it is defined as an average over 1D OT distances, SWD does not provide inherently a transport
plan2. Recently, some works have tackled this limitation by lifting one or several one-dimensional
plans back to the original multidimensional space [38, 36].

Sliced Wasserstein Generalized Geodesics. Mahey et al. [38] introduced an OT surrogate that lifts
the plan from the 1D projection onto the original space. In more detail, when n = m, it is defined as:

min-SWGGp
p(µ, ν) = min

θ∈Sd−1
SWGGp

p(µ, ν, θ) :=
1

n

n∑
i=1

∥xσθ(i) − yτθ(i)∥pp (3)

where σθ and τθ are the permutations obtained by sorting P θ
♯ µ and P θ

♯ ν. Note that it extends naturally
to the case where n ̸= m which we omit here for brevity. By setting p = 2, it hinges on the notion
of Wasserstein generalized geodesics [2] with pivot measure supported on a line. This alternative
formulation allows deriving an optimization scheme to find the optimal θ that relies on multiple copies
of the projected samples, which holds only for p = 2. For a fixed direction θ, provided that families
(P θ

♯ (xi))i and (P θ
♯ (yi))i are injective, that is to say there is no ambiguity on the orderings σθ and

τθ, SWGG(·, ·, θ) is itself a metric [37, 54]. Min-SWGG has appealing properties: it yields an upper
bound of the Wasserstein distance that still provides an explicit transport map between the input mea-
sures. The authors show that min-SWGG metrises weak convergence and is translation-equivariant.

Limitations of min-SWGG. While min-SWGG provides an upper bound on the Wasserstein distance,
its tightness is not guaranteed in general. However, two settings are known where the bound is exact:
(i) when one of the distributions is supported on a one-dimensional subspace ; and (ii) when the ambi-
ent dimension satisfies d ≥ 2n [38]. More generally, the number of reachable permutations increases
with the ambient dimension [16], making data dimensionality a critical factor in the quality of the ap-
proximation. These insights motivate our first contribution: the definition of Generalized Wasserstein
plans, which aim to extend the set of reachable permutations and better capture non-linear structures.

3 Generalized Sliced Wasserstein Plan

Generalized Sliced Wasserstein Plan (GSWP) is built upon the idea of generalizing SWGG to an
arbitrary scalar field parametrized by some θ ∈ Rq . We consider a continuous map ϕ : Rd×Rq → R,
typically a one-dimensional projection ϕ(x, θ) = ⟨x, θ⟩ (in which case q = d), or a neural network,
as in Fig. 1 for example. A Generalized Sliced Wasserstein Plan distance is defined as the one-
dimensional Wasserstein distance between the point clouds through the image of ϕθ := ϕ(·, θ) for a
given θ ∈ Rq .
Definition 1. Let p > 1, θ ∈ Rq and µ, ν ∈ P(X ). The θ-Generalized Sliced Wasserstein Plan
distance between µ and ν is defined as

dθ(µ, ν) =Wp(ϕ
θ
♯µ, ϕ

θ
♯ν).

Any element πθ(µ, ν) ∈ U(a, b) that achieves dθ(µ, ν) is called a θ-Generalized Sliced Wasserstein
Plan (θ-GSWP).

Denoting θ 7→ Cϕ
µν(θ) the cost matrix between µ, ν through the image of ϕ, a θ-GSWP reads

πθ ∈ arg min
π∈U(a,b)

g(π, θ) := ⟨Cϕ
µν(θ), π⟩ =

n∑
i=1

m∑
j=1

πi,j |ϕ(xi, θ)− ϕ(yj , θ)|p. (4)

The g(x, ·) function is continuous but not convex, as illustrated in Fig. 2. Note that, i) for p > 1, the
map Cϕ

µν has the same regularity as ϕ and ii) a solution πθ of (4) is a suboptimal point of the standard
problem (1). Indeed, since the optimization occurs on the same coupling space U(a, b), πθ is an
admissible point for the original problem. GSWP defines a distance on the space of measures P(X ).

2Note that a transport plan can also be inferred when performing SW gradient flows by putting into corre-
spondence the original and final samples when the algorithm has converged.
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Proposition 1. Let θ ∈ Rq and assume ϕθ is an injective map on X . Then dθ is a distance on P(X ).

For clarity, all our proofs are presented in Sec A.1. Note that the injectivity condition is akin to
designing sufficient and necessary conditions for the injectivity of the generalized Radon transform [5]
and relates to the problem of reconstructing measures from discrete measurements [53]. We recall
that there is no continuous injective map from Rd to R for d > 1, and we emphasize that we require
only injectivity from the (potential) support to R. In practice, using a general ϕ increases expressivity,
enabling a wider range of permutations compared to a linear map. This hypothesis is satisfied almost
surely in the linear case, and could also be satisfied with an injective neural network [47]. We require
this property to prove that we obtain a metric; the object dθ still makes sense without this hypothesis.
From a numerical point of view, we simply rely on the order given by the sort algorithm used by
Python that can be interpreted as a selection map from the set of minimizers.

By an application of Rockafellar’s envelope theorem, we also have a characterization of the gradient
of dθ as a function of θ. Let us assume that p > 1, ϕ is jointly C1 and (4) has a unique solution at

θ ∈ Rq. Then we have∇θd
θ =

∂Cϕ
µν

∂θ (θ)⊤πθ. Note that a similar result on the subdifferential of dθ
is true if ϕ is not differentiable but convex, thanks to Danskin’s theorem.
Definition 2. Let p > 1 and µ, ν ∈ P(X ). The minimal Generalized Sliced Wasserstein Plan
semimetric min-GSWP between µ and ν is defined as

min-GSWPp
p(µ, ν) = min

θ∈Rq
h(θ) := f(πθ) := ⟨Cµν , π

θ⟩ (5)

subject to πθ ∈ arg min
π∈U(a,b)

g(π, θ).

Equation (5) defines a bilevel optimization problem. In the case where ϕ(x, θ) = ⟨x, θ⟩ and if
we further constrain θ to live on the unit sphere, (5) is the min-SWGG [38] approximation of OT.
Observe that since πθ is an admissible coupling for the original OT problem (1), min-GSWP(µ, ν)
is an upper bound for Wp(µ, ν). Unfortunately, the value function θ 7→ h(θ) does not, in general,
possess desirable regularity properties, even for the simple choice of a one-dimensional projection
ϕ(x, θ) = ⟨x, θ⟩: it is discontinuous, as illustrated in Fig. 2. Moreover, as soon as the maps ϕ(x, θ)
and ϕ(y, θ) give rise to the same permutations σθ and τθ, the value of πθ remains the same. As a
consequence, one cannot use (stochastic) gradient-based bilevel methods such as [44, 18, 3] on (5).

It turns out that even if min-SWGG was introduced as the minimization over the sphere Sd−1, it is
possible to see it as an unconstrained optimization problem thanks to the following lemma.
Lemma 1. Assume that θ 7→ ϕ(x, θ) is 1-homogeneous for all x ∈ Rd. Then, θ 7→ dθ(µ, ν) is
1-homogeneous, and h is invariant by scaling: h(cθ) = h(θ) for all c > 0.

In particular, for every open set where h is differentiable, if ϕ is 1-homogeneous, the gradient flow
θ̇ = −∇h(θ) has orthogonal level lines ⟨θ̇, θ⟩ = 0, hence the dynamics occur on the sphere of radius
equal to the norm of the initialization (see Lemma 3 in the Appendix). In practice, it means – and we
observed – that we do not have to care about the normalization of θ during our gradient descent.

When ϕ(x, θ) = ⟨x, θ⟩, min-SWGG can be smoothed by making perturbed copies of the projections
ϕ(x, θ); heuristics for determining the number of copies and the scale of the noise are given in
[38]. Nevertheless, the continuity of the obtained smooth surrogate cannot be guaranteed, and the
formulation is only valid for p = 2. The following section proposes a differentiable approximation of
min-GSWP rooted in probability theory which is valid for any p > 1. The main difference with the
aforementioned scheme is that we here perturb the parameters (or direction) θ rather than the samples.

4 Differentiable Approximation of min-GSWP

Smoothing estimators by averaging is a popular way to tackle nonsmooth problems. We mention three
families of strategies: i) smoothing by (infimal) convolution, ii) smoothing by using a Gumbel-like
trick [1, 4], and iii) smoothing by reparameterization, and in particular by using Stein’s lemma.
Strategy i) would be computationally intractable in high dimension, and strategy ii) doesn’t yield a
consistent transport plan due to perturbations in the cost matrix. We then focus on the third option.

We begin by recalling this classical result due to Stein [52], which plays a central role in our analysis.
The lemma, restated below in our specific setting, provides an identity for computing gradients
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Figure 2: Example g and h (seen as a func-
tion of θ on the sphere S1) for a 2D OT
problem. ĥε,N is a Monte-Carlo estimate
of hε with gradient ∇̂hε,N . Note that g is
continuous whereas h is piecewise constant,
hence there is a need for a smoothing mech-
anism, that results in ĥε,N .

through expectations involving Gaussian perturbations. Typically, Stein’s lemma is stated for “almost
differentiable” functions; we require here slightly less regularity.
Assumption 1. There exists a open set C ⊆ Rq with Hausdorff dimensionHq−1(Rq \ C) = 0 (in
particular Lebesgue-negligible) such that the mapping θ 7→ h(θ) is continuously differentiable on C.

Under this assumption, Stein’s lemma remains true.
Lemma 2 (Stein’s lemma). Let Z ∼ N (0, Idq) be a standard multivariate Gaussian random variable,
and ε > 0. Suppose Assumption 1 holds and that for all indices j, the partial derivatives satisfy the
integrability condition E[|∂jh(Z)|] < +∞. Then, the following identity holds:

EZ [∇h(θ + εZ)] = ε−1EZ [h(θ + εZ)Z].

Note that this version of Stein’s lemma is slightly more general than the original of Stein [52] in
terms of regularity asked to the value function h (in particular, we do not require it to be absolutely
continuous). Assumption 1 may not be satisfied when using a non-smooth network, such as a ReLU
network. It is possible to alleviate this issue thanks to conservative calculus [9].

We define the following smoothed value function hε, which corresponds to a Gaussian smoothing of
the original non-differentiable outer optimization problem:

hε(θ) = EZ [h(θ + εZ)] = ⟨Cµν , π
θ
ε⟩

where the θ-Differentiable Generalized Sliced Wasserstein Plan (θ-DGSWP) at smoothing level ε
reads

πθ
ε = EZ

[
arg min

π∈U(a,b)
g(π, θ + εZ)

]
. (6)

Due to the nice regularity properties of Stein’s approximation, we get the following proposition
regarding our approximation of θ-GSWP.
Proposition 2. Suppose Assumption 1 holds. Let µ, ν ∈ P(X ). The following statements are true:

1. (Admissibility.) For any ε > 0, πθ
ε is admissible (i.e., πθ

ε ∈ U(a, b)). Hence, hε(θ) gives an
upper-bound of the Wasserstein metric hε(θ) ≥W p

p (µ, ν).

2. (Differentiability.) For any ε > 0, the map θ 7→ hε(θ) is differentiable. Moreover, we have

∇θhε(θ) = ε−1EZ [h(θ + εZ)Z].

3. (Consistency.) For almost all θ ∈ Rq, limε→0 hε(θ) = h(θ), and if ∇h(θ) exists, then
limε→0∇hε(θ) = ∇h(θ)

4. (Distance.) Let θ ∈ Rq, if ϕθ is injective on X then the map (µ, ν) 7→ (h(θ)(µ, ν))1/p is
a distance on P(X ). Assume that for almost all θ ∈ Rq, ϕθ is injective. Then, (µ, ν) 7→
(hε(θ)(µ, ν))

1/p is also a distance on P(X ).

While this result allows for the unbiased estimation of gradients, it is known that a naive Monte Carlo
approximation of the right-hand side tends to suffer from high variance. To address this, one may
consider an alternative formulation that often results in a reduced variance estimator. Specifically,
using a control variate approach [6], one observes that

EZ [∇h(θ + εZ)] = ε−1EZ [(h(θ + εZ)− h(θ))Z], (7)
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which holds due to the zero mean of the Gaussian distribution and the linearity of the expectation.
Equation (7) leads to a Monte-Carlo estimator of the gradient ∇hε(θ) defined as

∇̂hε,N (θ) =
1

εN

N∑
k=1

(h(θ + εzk)− h(θ))zk =
1

εN

N∑
k=1

⟨Cµν , π
θ+εzk − πθ⟩zk, (8)

where the vectors zi ∼ N (0, Idq) are independent standard Gaussian samples. Hence, estimating
the Monte-Carlo gradient ∇hε,N (π, θ) requires solving N + 1 1D-optimal transport problems for
an overall cost of O(N(n+m) log(n+m)). Algorithm 1 (in Supplementary material) describes a
gradient descent method to perform the minimization of hε using this Monte-Carlo approximation.

5 Experiments

We evaluate the performance of our Differentiable Generalized Sliced Wasserstein Plans, coined
DGSWP, by assessing its ability to provide a meaningful approximated OT plan in several contexts.
First, we consider a toy example where a non-linear projection must be considered; we then perform
gradient flow experiments on Euclidean and hyperbolic spaces, demonstrating the versatility of
our approach. Finally, we integrate sliced-OT plans in an OT-based conditional flow matching in
lieu of mini-batch OT. In all the experiments, we use ε = 0.05 and N = 20 as DGSWP-specific
hyperparameters. Full experimental setups and additional results are provided in App. A.3.
Implementation is available online3; we also use POT toolbox [22].

5.1 DGSWP as an OT approximation

We begin by examining the illustrative scenario shown in Fig. 1, where the task is to compute an
optimal transport (OT) plan between a mixture of eight Gaussians (source) and the Two Moons
dataset (target). While some of the Gaussian modes are properly matched by min-SWGG, others
are matched to the more distant moon, due to information loss along the direction orthogonal to
the projection. To address this limitation, we apply DGSWP with a neural network parametrizing
the projection function ϕ, enabling more expressive projections. This improvement is reflected in
the quantitative results: the transport cost associated with the DGSWP plan is notably closer to the
squared Wasserstein distance than that of the min-SWGG method.

0 200 400 600 800 1000
Iteration

20

30

40

50

〈C
µ
ν
,π

θ
〉

Without Variance Reduction

With Variance Reduction

Figure 3: Impact of the variance reduction scheme
(first 1,000 iterations).

This transport plan above is obtained using the
approach outlined in Sec. 4. To further evaluate
the impact of the variance reduction technique
introduced in Eq. (8), we now repeat the same
experiment across 10 different random initial-
izations of the neural network. The average
learning curves for the variants with and with-
out variance reduction are shown in Fig. 3. The
results clearly indicate that using variance reduc-
tion improves both the final transport cost and
the stability of the learning process. Based on
this evidence, we adopt the variance reduction
strategy in all subsequent experiments.

5.2 Gradient flows

In these gradient flow experiments, our objective is to iteratively transport the particles of a source
distribution toward a target distribution by progressively minimizing the DGSWP objective.

Without manifold assumption. We compare DGSWP with a linear and NN-based ϕ mapping
against several baseline methods: Sliced Wasserstein distance (SWD), Augmented Sliced Wasserstein
Distance, that has been shown in [13] to outperform GSW methods, and min-SWGG, evaluated in
both its random search and optimization-based forms. Fig. 4 presents results across a range of target
distributions designed to capture diverse structural and dimensional characteristics. In all experiments,
the source distribution is initialized as a uniform distribution within a hypercube. We set the number of

3https://github.com/rtavenar/dgswp
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Figure 4: Log of the Wasserstein Distance as a function of the number of iterations of the gradient
flow, considering several target distributions. The source distribution is uniform in all cases.
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Figure 5: Log of the WD (second and fourth panels) for two different targets (first and third ones) as
wrapped normal distributions for HHSW, SWD and DGWSP.

samples at n = 50, and repeat each experiment over 10 random seeds, reporting the median transport
cost along with the first and third quartiles. We use the same learning rate for all experiments.

In two-dimensional settings, DGSWP consistently converges to a meaningful solution, whereas
methods based on the min-SWGG objective sometimes fail to do so, even when using their original
optimization scheme. More notably, in the high-dimensional regime, DGSWP stands out as the only
slicing-based method capable of producing satisfactory transport plans, underscoring its robustness
and scalability in challenging settings. This holds true even though min-SWGG is theoretically
equivalent to Wasserstein when the dimension is high enough (here we have d ≥ 2n); in practice,
its optimization often struggles to find informative directions. In contrast, our proposed optimization
strategy succeeds even in the linear case (where the formulation effectively reduces to min-SWGG)
highlighting the practical benefit of our approach.

On hyperbolic spaces. Hyperbolic spaces are Riemannian manifolds of negative constant curva-
ture [34]. They manifest in several representations and we consider here the Poincaré ball of dimension
d, Bd. We aim to construct a manifold feature map for hyperbolic space ϕ : Bd×Bq → R, typically re-
lying on an analogue of hyperplanes. Horospheres [27] generalize hyperplanes in the Poincaré ball and
are parametrized by a base point located on the boundary of the space θ ∈ ∂Bd = Sd−1. Akin to [29],
we consider a map that corresponds to horosphere projection ϕ(x, θ) = log(∥x−θ∥22)−log(1−∥x∥22).
Similarly to [10], we assess the ability of generalized sliced Wasserstein plans to learn distributions
that live in the Poincaré disk. We compare with the horospherical sliced-Wasserstein discrepancy
(HHSW, [10]) and Sliced Wasserstein computed on the Poincaré ball. For the gradient estimation, we
rely on the von Mises-Fisher which is a generalization of a Gaussian distribution from Rd to Sd−1

and perform a Riemannian Gradient Descent using Python toolbox geoopt [30] to optimize on θ and
the source data (that live on Bd). Figure 5 plots the evolution of the exact log 10-Wasserstein distance
between the learned distribution and the target, using the geodesic distance as ground cost. We use
wrapped normal distributions as source and set the same learning rate for all methods. DGWSP
enables fast convergence towards the target, demonstrating its versatility for hyperbolic manifolds.
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Integration method→ Euler DoPri5

Algorithm ↓ FID NFE FID NFE

I-CFM 4.61 ± 0.10 100 3.74 ± 0.04 138.75 ± 3.47
OT-CFM 4.75 ± 0.05 100 3.81 ± 0.04 132.56 ± 0.67
DGSWP-CFM (linear) 4.16 ± 0.09 100 4.45 ± 0.08 112.63 ± 2.32
DGSWP-CFM (NN) 3.62 ± 0.05 100 3.95 ± 0.09 120.04 ± 2.30

Table 1: Average FID score (± std) and average number of function evaluations (NFE) per batch,
computed over 3 runs.

5.3 Sliced-OT based Conditional Flow Matching

We now investigate the use of DGSWP in the context of generative modeling. In the flow matching
(FM) framework, a time-dependent velocity field ut(x) is learned such that it defines a continuous
transformation from a prior to the data distribution. In practice, ut is trained by minimizing a
regression loss on synthetic trajectories sampled from a known coupling between source and target
distributions that determines the starting and ending points (x0, x1) of the trajectory. Several variants
of flow matching have been proposed depending on how these pairs are sampled. In Independent
CFM (I-CFM, [35]), pairs are sampled independently from the prior and data distributions,
respectively. However, this approach ignores any explicit alignment between source and target
samples. To address this, OT-CFM [56] proposes to deterministically couple source and target
samples using mini-batch OT, so that (x0, x1) ∼ π where π is the OT plan computed between a
batch of prior samples and a batch of data samples. This coupling tends to straighten the diffusion
trajectories, which leads to improved generation quality in few-step sampling regimes.

Despite its advantages, OT-CFM relies on a trade-off: since computing exact OT is infeasible for large
datasets, mini-batch OT is used, which leads to imperfect matchings, especially in high-dimensional
spaces involving complex distributions, for which a mini-batch is unlikely to be representative of
the whole distribution. This motivates the use of DGSWP as an alternative. By estimating transport
plans using DGSWP, we can leverage significantly larger batches, resulting in better couplings, while
maintaining low computational cost. In our experiments, we aggregate samples from 10 mini-batches
to compute the transport plan, and find that the additional computational cost remains negligible.
Our approach is also supported by the findings of Cheng and Schwing [14], who show that increasing
the batch size improves performance for OT-CFM in the few-sampling-steps regime.

100k 200k 300k 400k
Training Step

4

5

6

7

F
ID

I-CFM

OT-CFM

DGSWP-CFM (linear)

DGSWP-CFM (NN)

Figure 6: Average FID (over 3 runs) as a function
of training iterations for various algorithms using
100-step Euler sampling. Vertical lines represent
the standard deviation.

We conduct experiments on CIFAR-10 [32], re-
porting FID scores for DGSWP-CFM, OT-CFM,
and I-CFM across varying numbers of sampling
steps. We use the experimental setup and hyper-
parameters from Tong et al. [56]. For DGSWP,
we evaluate both a linear projector and a more
expressive non-linear embedding implemented
by a neural network. We compare a fixed-step
Euler solver with the adaptive Dormand-Prince
method [20] for trajectory integration. The
results in Table 1 underscore the importance of
learning straight transport trajectories, which
translates to more efficient generation: models
that induce straighter flows require significantly
fewer function evaluations (NFE) to achieve
high-quality samples. Notably, even a simple
100-step Euler scheme proves highly effective
when used with DGSWP-CFM, demonstrating
the practicality of the method for fast generation.

A closer analysis of the results leads to three key observations: (i) Among the projection choices, linear
DGSWP underperforms compared to its neural network-based counterpart, highlighting the benefit
of extending min-SWGG with non-linear projections; (ii) When using the adaptive Dormand–Prince
solver, DGSWP achieves performance comparable to OT-CFM in terms of FID, but with lower
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computational cost as indicated by the reduced number of function evaluations; (iii) In the fixed-step
regime, DGSWP clearly outperforms all baselines under the Euler solver, offering the best trade-off
between sample quality and efficiency, as illustrated in Fig. 6.

6 Conclusion

This paper presents a novel differentiable approach to approximate sliced Wasserstein plans, incorpo-
rating non-linear projections. Its differentiable and GPU-efficient formulation enables the definition of
optimal projections. The proposed method offers several key advantages: i) efficient computation com-
parable to that of SWD, ii) ability to provide an approximated transport plan, akin to min-SWGG, iii)
improved performance in high-dimensional settings thanks to its improved optimization strategy, iv)
the capacity to handle data supported on manifolds through a generalized formulation. To the best of
our knowledge, we also provide the first empirical evidence that slicing techniques can be effectively
used in conditional flow matching, resulting in better performance and fewer function evaluations.

A key strength of slicing-based approaches for approximating OT lies in their favourable statistical
properties, such as improved sample complexity [41]. These advantages also extend to projection-
based methods on k-dimensional subspaces [43], as well as to min-SWGG [37]. Future works will
explore the conditions that the projection map ϕ must satisfy to preserve these statistical guarantees.
Additionally, ensuring the injectivity of ϕ is essential for DGSWP to define a proper distance. Investi-
gating injective neural architectures, such as those proposed in [47], is a promising research direction.
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A Appendix / supplemental material

A.1 Proofs

We start by the proof of Lemma 1, concerned with 0-homogeneity of our target θ 7→ h(θ).

Proof of Lemma 1. We prove in fact that for all c > 0, πθ = πcθ. This is a consequence of the fact
that if θ 7→ ϕ(x, θ) is 1-homogeneous, then so is θ 7→ Cϕ

µν(θ). Thus, the level sets of π 7→ g(π, cθ)
are the level-sets of π 7→ g(π, θ) dilated by a factor c. Hence, they share the same minimizers, and in
consequence h(cθ) = h(θ).

For the sake of completeness, we also prove the comment stating that a gradient flow on h preserves
the norm of the initialization with the following lemma.

Lemma 3. Let U ⊆ Rq an open set, assume that h : U 7→ R is differentiable and h is 0-homogeneous,
i.e., h(cθ) = h(θ). Consider the gradient flow dynamics{

θ(0) = θ0 ∈ U
θ̇(t) = −∇h(θ(t)). (9)

Then, there exists an interval I ⊆ R≥0 and a unique solution t 7→ θ(t) such that for all t ∈ I ,
⟨θ̇(t), θ(t)⟩ = 0 and ∥θ(t)∥ = θ0.

Proof. Orthogonal gradient of 0-homogeneous function. Consider the real function ψ : R → R
defined by ψ(c) = h(cθ). By 0-homogeneity, ψ(c) = h(θ) = ψ(1). Hence, ψ is constant on R∗,
thus ψ′(c) = 0 for all c ̸= 0. Using the chain rule for real functions, we have that for all c ̸= 0

ψ′(c) = ⟨(c 7→ cθ)′(c),∇h(cθ)⟩ = ⟨θ,∇h(cθ)⟩ = 0.

Using this fact for c = 1, we conclude that

∀θ ∈ U, ⟨θ,∇h(θ)⟩ = 0. (10)

Orthogonal dynamics. The existence and uniqueness of the Cauchy problem (9) comes from the
Cauchy-Lipschitz theorem. Consider this solution t 7→ θ(t) defined over I . Then,

⟨θ̇(t), θ(t)⟩ = −⟨∇h(θ(t)), θ(t)⟩ = 0,

using (10). Hence, θ̇(t) ⊥ θ(t) for all t ∈ I .

Conservation of the norm. Consider r(t) = ∥θ(t)∥2. The chain rule tells us that for all t ∈ I ,

r′(t) = 2⟨θ̇(t), θ(t)⟩,
hence r′ = 0 and thus r is a constant function.

The proof of Proposition 1 relies on the fact that the p-Wasserstein distance is a metric on 1D
measures, and that ϕθ is conveniently supposed to be injective over the reference set X .

Proof of Proposition 1. Let p > 1, θ ∈ Rq , and assume that ϕθ is an injective map from X X ? to R.
Let µ, ν, ξ three discrete distributions in P(X ). Recall that

dθ(µ, ν) =Wp(ϕ
θ
♯µ, ϕ

θ
♯ν).

Using the fact that Wp is a metric on Pp(R), we also obtain that Wp is a metric on P(X ) as a
restriction.

Well-posedness. Since dθ(µ, µ) =Wp(ϕ
θ
♯µ, ϕ

θ
♯µ), and that Wp is a metric, we have that dθ(µ, µ) =

0.

Symmetry. The symmetry comes directly from the one of Wp.
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Positivity. Suppose that µ ̸= ν. Since Wp is a metric, we only need to prove that ϕθ♯µ ̸= ϕθ♯ν.
Assuming that, where xi ̸= xi′ for all i ̸= i′ and yj ̸= yj′ for all j ̸= j′,

µ =

n∑
i=1

aiδxi
and ν =

m∑
j=1

bjδyj
,

we have that

ϕθ♯µ =

n∑
i=1

aiδϕθ(xi) and ϕθ♯ν =

m∑
j=1

bjδϕθ(yj).

Using the injectivity of ϕθ, we have that ϕθ(xi) ̸= ϕθ(xi′) for all i ̸= i′ and ϕθ(yj) ̸= ϕθ(yj′) for all
j ̸= j′. Hence, ϕθ♯µ = ϕθ♯ν if and only if n = m and there exists a permutation σ : {1, . . . , n} →
{1, . . . , n} such that

ai = bσ(i) and ϕθ(xi) = ϕθ(yσ(i)), for all i.

But then, using the injectivity of ϕθ, we have {xi}ni=1 = {yi}ni=1. Hence, µ = ν which is a
contradiction.

Triangle inequality. We have that dθ(µ, ν) =Wp(ϕ
θ
♯µ, ϕ

θ
♯ν). Using the triangle inequality on Wp,

we have that dθ(µ, ν) ≤Wp(ϕ
θ
♯µ, ϕ

θ
♯ξ) +Wp(ϕ

θ
♯ξ, ϕ

θ
♯ν) = dθ(µ, ξ) + dθ(ξ, ν).

We now turn to Stein’s lemma. The proof of Stein’s lemma under a (weak) differentiability crite-
rion [52] is classic, and relies on integration by parts and the properties of the normal distribution.
Nevertheless, we are concerned with a function θ 7→ h(θ) that typically will have discontinuities,
breaking the classical proof. Note that one cannot expect Stein’s lemma to hold true for any kind
of discontinuities, even with almost everywhere differentiability. The celebrated example is the
Heaviside function h(θ) = 1θ≥0 in 1D where Stein’s lemma needs a correction term if there is a
non-negligible number of them in the sense of the Hq−1 Hausdorff dimension. This setting was
studied by [26, 55, 25] for various applications in statistics and signal processing, in particular for
Stein’s unbiased risk estimation.

Proof of Lemma 2. The proof of this result is mostly contained in [25, Proposition 1]. We outline
the strategy. Assumption 1 requires having Hq−1(Rq \ C) = 0. Hence, for all i ∈ {1, . . . , q} and
Lebesgue almost all (θ1, . . . , θi−1, θi+1, . . . , θq) ∈ Rq−1, the map

t 7→ h(θ1, . . . , θi−1, t, θi+1, . . . , θq)

is absolutely continuous on every compact interval of R. So, in turn, h ∈ W 1,1
loc (Rq) which in turn

shows that h is almost differentiable in the sense of Stein [52] and we can thus apply [52, Lemma
1].

We now turn to the proof of Proposition 2, regarding the properties of the smoothed version hε of h.

Proof of Proposition 2. (Admissibility.) Let ε > 0 and θ ∈ Rq . Recall that

πθ
ε = EZ∼N (0,Iq)

[
arg min

π∈U(a,b)
g(π, θ + εZ)

]
.

Denote by u(z) = argminπ∈U(a,b) g(π, θ + εz), hence πθ
ε = EZ∼N (0,Iq)[u(Z)]. For all z ∈ Rq,

u(z) ∈ U(a, b) by definition of the minimization problem. Hence,

πθ
ε =

∫
Rq

u(z)ρ(z)dz,

where ρ(z) = (2π)−q/2 exp(− 1
2∥x∥2) is the probability density function of the multivariate normal

law and dz is the Lebesgue measure on Rq. Since U(a, b) is convex and u(z) ∈ U(a, b), then∫
Rq u(z)ρ(z)dz ∈ U(a, b) also. In turn, since πθ

ε ∈ U(a, b), then given the true solution π⋆
OT of (1),

we have
∑n

i=1

∑m
j=1 π

⋆
OT,i,j∥xi − yj∥pp ≤

∑n
i=1

∑m
j=1 π

θ
i,j∥xi − yj∥pp

(Differentiability.) This is a direct consequence of Lemma 2 and Lebesgue dominated convergence
theorem to invert expectation and derivative.
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(Consistency.) The first fact is a consequence of Lebesgue dominated convergence theorem. The
second one use the expression of the gradient through the variance reduction expression:

∇θhε(θ) = ε−1EZ [(h(θ + εZ)− h(θ))Z] = EZ

[
h(θ + εZ)− h(θ)

ε
Z

]
.

Hence, again using Lebesgue dominated convergence theorem, we have

lim
ε→0
∇θhε(θ) = lim

ε→0
EZ

[
h(θ + εZ)− h(θ)

ε
Z

]
= EZ

[
lim
ε→0

h(θ + εZ)− h(θ)
ε

Z

]
.

Recognizing the directional derivative of h(θ) if h is differentiable at θ, we get that

lim
ε→0
∇θhε(θ) = EZ [⟨∇h(θ), Z⟩Z] = ∇h(θ).

(Distance.) We assume here that ϕθ is injective on X . We split the proof for h (1.) and hε (2.).

1. Proof that (µ, ν) 7→ h(θ)(µ, ν) is a distance over P(X ). The positivity comes from the subop-
timality of πθ(µ, ν), that is h(θ)(µ, ν) ≥ W p

p (µ, ν) > 0 if µ ̸= ν (as Wp is a metric itself). The
symmetry comes from the fact that Cµν is symmetric and that πθ(µ, ν) = (πθ(ν, µ))⊤. Regarding
the well-posedness, since ϕθ is injective, then Wp(ϕ

θ
♯µ, ϕ

θ
♯µ) = 0 and πθ(µ, µ) is the identity matrix.

Hence,

h(θ)(µ, µ) = ⟨Cµµ, π
θ(µ, µ)⟩ =

n∑
i=1

n∑
j=1

(Cµµ)ijπ
θ
ij(µ, µ) =

n∑
i=1

(Cµµ)ii = 0,

since for all i, (Cµµ)ii = ∥xi−xi∥pp = 0. Concerning the triangle inequality, let µ1, µ2, µ3 ∈ P(X ).
Let us denote

π12 = πθ(µ1, µ2) ∈ Rn1×n2 , π13 = πθ(µ1, µ3) ∈ Rn1×n3 , π23 = πθ(µ2, µ3) ∈ Rn2×n3

Using the specific structure of the 1D optimal transport [51], there exists a tensor Π ∈ Rn1×n2×n3 of
order 3 such that admits π12, π13 and π23 as marginals, that is

∀i, j, π12
i,j =

∑n3

k=1 Πi,j,k

∀i, k, π13
i,k =

∑n2

j=1 Πi,j,k

∀j, k, π23
j,k =

∑n1

i=1 Πi,j,k.

Since this structure provides us a “gluing lemma”, we continue the proof similarly to the standard
proof of the triangular inequality of the Wasserstein distance.

(h(θ)(µ1, µ3))
1/p =

(
⟨Cµ1µ3 , π

13⟩
)1/p

=

(
n1∑
i=1

n3∑
k=1

π13
ik ∥xi − zk∥pp

)1/p

by definition

=

 n1∑
i=1

n2∑
j=1

n3∑
k=1

Πijk∥xi − zk∥pp

1/p

as glue.

Using that ∥xi − zk∥pp ≤ ∥xi − yj∥pp + ∥yj − zk∥pp, we get that

(h(θ)(µ1, µ3))
1/p ≤

 n1∑
i=1

n2∑
j=1

n3∑
k=1

Πijk(∥xi − yj∥pp + ∥yj − zk∥pp)

1/p

.

Applying now the Minkowski inequality, we obtain that

(h(θ)(µ1, µ3))
1/p ≤

 n1∑
i=1

n2∑
j=1

n3∑
k=1

Πijk∥xi − yj∥pp

1/p

+

 n1∑
i=1

n2∑
j=1

n3∑
k=1

Πijk∥yj − zk∥pp

1/p

.
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Using the fact that Π has marginals π12 and π23, we get that

(h(θ)(µ1, µ3))
1/p ≤

 n1∑
i=1

n2∑
j=1

π12
ij ∥xi − yj∥pp

1/p

+

 n2∑
j=1

n3∑
k=1

π23
jk∥yj − zk∥pp

1/p

.

Hence,
(h(θ)(µ1, µ3))

1/p ≤ (h(θ)(µ1, µ2))
1/p + (h(θ)(µ1, µ2))

1/p.

2. Proof that (µ, ν) 7→ hε(θ)(µ, ν) is a distance over P(X ). The well-posedness comes from the fact
that hε(θ)(µ, µ) = EZ [h(θ + εZ)(µ, µ)] = EZ [0] = 0. The symmetry is also a direct consequence
of the symmetry of h(θ)(µ, ν) and the positivity comes from the fact that the expectation of a positive
quantity is positive (understood almost surely on Rq). For the triangle inequality, we use the linearity
of the expectation: let µ1, µ2, µ3 ∈ P(X ). Then, for all θ ∈ Rq, and for all z ∈ Rq, using the fact
that h(θ + εz) is a distance

h(θ + εz)(µ1, µ3)
1/p ≤ h(θ + εz)(µ1, µ2)

1/p + h(θ + εz)(µ2, µ3)
1/p.

Hence, taking the expectation and using linearity gives that

EZ [h(θ + εZ)(µ1, µ3)
1/p] ≤ EZ [h(θ + εZ)(µ1, µ2)

1/p] + EZ [h(θ + εZ)(µ2, µ3)
1/p].

A.2 Algorithm

Algorithm 1 describes a gradient descent method to perform the minimization of hε using the Monte-
Carlo approximation from Eq. (8). Thus, the overall cost of DGSWP is O(TN(n+m) log(n+m)+
TN(n+m)d)

Algorithm 1 Monte-Carlo gradient descent of hε(θ)

Require: θ0 ∈ Rq , step size policy ηt, smoothing parameter ε > 0, number of Monte Carlo samples
N , number of iterations T

1: for t = 0 to T − 1 do
2: Sample i.i.d. perturbation vectors z1, . . . , zN ∼ N (0, Idq)
3: for k = 1 to N do
4: Solve OT problems to obtain πθt+εzk and πθt ▷ using 1D OT solver
5: gk ← ⟨Cµν , π

θt+εzk − πθt⟩
6: ∇̂hε,N (θt)← 1

εN

∑N
k=1 gkzk ▷ approximate gradient

7: θt+1 ← θt − ηt∇̂hε,N (θt) ▷ update parameter
8: return θT

A.3 Additional results and experiment details

All experiments except the Conditional Flow Matching (CFM) were run on a MacBook Pro M2
Max with 32 GB of RAM. On this machine, Fig. 1 took approximately 3 minutes per run (10,000
iterations), Fig. 3 about 6 minutes for 10 runs (with two models trained sequentially, 1,000 iterations),
Fig. 4 required roughly 30 minutes, and Fig. 5 took around 10 minutes in total (all models considered,
10 repetitions). The CFM experiments were dispatched over a GPU cluster composed of GPU-A100
80G, GPU-A6000 48 Go, with a total runtime of 130h for training and inference of all presented
models. We observe that I-CFM is approximately 25% faster than the other methods. Meanwhile,
OT-CFM, min-DGSWP-CFM (linear), and min-DGSWP-CFM (NN) exhibit comparable runtimes. In
practice, the DGSWP batch size (the number of minibatches gathered together to compute DGSWP
mappings) serves as a hyperparameter of our method, and we set it to 10 specifically to align the
runtime of our approach with that of OT-CFM. We estimate that the total compute time over the course
of the project—including experimentation, debugging, and hyperparameter tuning—is approximately
two orders of magnitude larger than the reported runtimes for CPU-based experiments, and one order
of magnitude larger for the GPU-based experiments.
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A.3.1 Hyperparameter settings

We report here the hyperparameter configurations used across the main experiments. Figures 1 and 3
correspond to the same experiment—Fig. 3 highlights early training dynamics, while Fig. 1 depicts
results at convergence. The projection network used is a 3-layer MLP with ReLU activations: (with
dimensions 2 → 64 → 16 → 1). Optimization is done using SGD with a learning rate of 0.2; for
the variant without variance reduction, a lower learning rate of 0.0002 is used to ensure convergence
(cf. Fig. 8 in which the same learning rate is used for both variants). In Figure 4 (gradient flow
experiments), we perform 2000 outer flow steps using SGD with a learning rate of 0.01. At each flow
step, we execute 20 projection steps (or inner optimization updates when using learnable projectors).
For the latter, we use Adam with a learning rate of 0.01. The neural projector for our method is a
single-hidden-layer MLP with ReLU activations and He initialization. In Figure 5, which investigates
gradient flows on hyperbolic manifolds, we vary the outer learning rate across methods to account for
differences in convergence speed: the base learning rate is 2.5, used for HHSW; SW uses a scaled
learning rate of 17.5, and DGSWP uses a reduced rate of 0.83. Each flow step is composed of 100
projection or inner optimization steps. For the Conditional Flow Matching (CFM) experiment shown
in Figures 6, 9, 10 and Table 1, we adopt the same training hyperparameters as in Tong et al. [56].
For our method specifically, the projection model is a 3-layer fully connected network with SELU
activations: 3 × 32 × 32 → 256 → 256 → 1. Its parameters are optimized using Adam with a
learning rate of 0.01. We perform 1000 optimization steps for the projection model at initialization,
followed by 1 step per CFM training iteration.

A.3.2 Benchmarking min-SWGG and DGSWP (linear) at comparable time budget

Method Iterations log10W
2
2 Time (s)

min-SWGG (optim) 500 -0.81 3.34
DGSWP (linear) 173 -0.49 3.34

min-SWGG (optim) 1000 -0.89 6.67
DGSWP (linear) 345 -0.84 6.67

min-SWGG (optim) 1500 -0.80 10.00
DGSWP (linear) 516 -1.07 9.99

min-SWGG (optim) 2000 -0.79 13.33
DGSWP (linear) 687 -1.28 13.32

Table 2: Convergence comparison of min-SWGG and DGSWP (linear) methods under comparable
time budgets for the gradient flow experiment on the Swiss Roll dataset. Bold values indicate the best
performance at each time budget.

In the gradient flow experiments presented in Section 5, methods are compared in terms of conver-
gence as a function of the number of gradient steps. However, when comparing min-SWGG and
DGSWP (linear), one might question whether the gradient descent procedure in DGSWP (linear)
introduces additional computational overhead.

To investigate this phenomenon, we present in Table 2 a comparison of these methods under fixed
time budgets. Specifically, we select the number of iterations for DGSWP (linear) such that the total
runtime is less than or equal to the corresponding min-SWGG run. Our results demonstrate that
min-SWGG achieves better performance in the early stages of optimization, while DGSWP (linear)
becomes more accurate as the computational budget increases.

A.3.3 Additional comparison to Expected Sliced Transport Plans

In the core of the paper, we have considered min-SWGG, SWD and ASWD as our main competitors.
We include in this section an additional comparison to Expected Sliced Transport Plans (EST) [36].
For the sake of the comparison, we vary their temperature hyperparameter in the set {0, 1, 10}
and observe performance both in the Gaussians → Moons transport problem (Table 3) and the
gradient flow experiments (Fig. 7). We observe that larger temperature settings seem to improve EST
performance, yet EST remain consistently outperformed by DGSWP.
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Figure 7: Comparison between DGSWP variants and EST on the gradient flow experiment.

Method Cost
Exact OT 13.50
min-SWGG 22.22
Expected Sliced Transport Plans (τ = 0) 32.28
Expected Sliced Transport Plans (τ = 1) 21.30
Expected Sliced Transport Plans (τ = 10) 20.09
DGSWP (NN) 13.80

Table 3: Comparison of methods by transportation cost. The OT problem is the 8Gaussians to Two
Moons from Fig. 1. The cost reported in this table is the associated transportation cost, ie the cost
⟨Cµν , π⟩ where π is provided by the method at stake.

A.3.4 Additional results for the CFM experiment

Fig.9 presents a set of generated images using I-CFM, OT-CFM and DGSWP (NN) after 400k
iterations using the 100-step Euler integrator.

Fig. 10 presents the evolution of the image generation quality during training when using the adaptive-
step Dormand-Prince strategy for the integration.
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Figure 8: Impact of the variance reduction scheme from Eq. 8. Here, the same learning rate is used
for both variants, in which case the variant without variance reduction does not even converge.
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Figure 9: Example of generated images after 400k steps.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries on Optimal Transport
	Discrete Optimal Transport
	Sliced Wasserstein Distance
	Sliced Wasserstein Plan

	Generalized Sliced Wasserstein Plan
	Differentiable Approximation of min-GSWP
	Experiments
	DGSWP as an OT approximation
	Gradient flows
	Sliced-OT based Conditional Flow Matching

	Conclusion
	Appendix / supplemental material
	Proofs
	Algorithm
	Additional results and experiment details
	Hyperparameter settings
	Benchmarking min-SWGG and DGSWP (linear) at comparable time budget
	Additional comparison to Expected Sliced Transport Plans
	Additional results for the CFM experiment



