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ABSTRACT

Compositionality is believed to be fundamental to intelligence. In humans, it underlies
the structure of thought, language, and higher-level reasoning. In AI, it enables a
powerful form of out-of-distribution generalization, in which a model systematically
adapts to novel combinations of known concepts. However, while we have strong
intuitions about what compositionality is, there currently exists no formal definition
for it that is measurable and mathematical. Here, we propose such a definition, which
we call representational compositionality. The definition is conceptually simple, quan-
titative, and grounded in algorithmic information theory. Intuitively, representational
compositionality states that a compositional representation is both expressive and
describable as a simple function of discrete parts. We validate our definition on both real
and synthetic data, and show how it unifies disparate intuitions from across the literature
in both AI and cognitive science. We also show that representational compositionality,
while theoretically intractable, can be readily estimated using standard deep learning
tools. Our definition has the potential to inspire the design of novel, theoretically-driven
models that better capture the mechanisms of compositional thought.

1 INTRODUCTION

Compositionality is thought to be one of the hallmarks of human cognition. In the domain of language, it
lets us produce and understand utterances that we have never heard, giving us “infinite use of finite means”
(Chomsky, 1956). Beyond this, one of the most influential ideas in cognitive science is the Language
of Thought hypothesis (Fodor, 1975; Quilty-Dunn et al., 2023), which conjectures that all thought involved
in higher-level human cognition is compositional. Indeed, recent evidence from neuroscience supports the
Language of Thought hypothesis and suggests that it is core to human intelligence (Dehaene et al., 2022).

Compositionality has been equally influential in AI from its very origins, motivating efforts in neurosym-
bolic AI (Garcez & Lamb, 2023; Sheth et al., 2023; Marcus, 2003), probabilistic program inference (Lake
et al., 2017; Ellis et al., 2023), modular deep neural networks Bengio (2017); Goyal & Bengio (2022);
Pfeiffer et al. (2023); Andreas et al. (2016); Goyal et al. (2021; 2020); Schug et al. (2024), disentangled rep-
resentation learning (Higgins et al., 2017; Lachapelle et al., 2022; Ahuja et al., 2022; Brehmer et al., 2022;
Lippe et al., 2022; Sawada, 2018), object-centric learning (Locatello et al., 2020; Singh et al., 2023; Wu et al.,
2024), and chain-of-thought reasoning (Wei et al., 2022; Kojima et al., 2022; Hu et al., 2024), to name only a
few. One of the primary appeals of compositionality is that it enables a powerful form of out-of-distribution
generalization (Lake & Baroni, 2018): if a model is compositional with respect to a set of features in its
training data, it need not observe all possible combinations of those features in order to generalize to novel
ones (Schug et al., 2024; Wiedemer et al., 2024; 2023; Bahdanau et al., 2019; Mittal et al., 2021).

Despite its importance, compositionality remains an elusive concept: there is currently no formal,
quantitative definition of compositionality that could be used to measure it. It is often described as:
Definition 1 (Compositionality – colloquial)
The meaning of a complex expression is determined by its structure and the meanings of its constituents

(Szabó, 2022).

In the context of neural representations in brains or deep neural networks (DNNs), we can take these
“meanings” to be high-dimensional vectors of activations. While satisfying on some level, this definition
lacks formal rigour and breaks down upon inspection.

First, the definition presupposes the existence of a symbolic “complex expression” associated to each
meaning. In some cases, this makes sense; for instance, we can consider human languages and the neural
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representations they elicit. But where do these expressions and their constituent parts come from when
considering neural representations themselves such as in the Language of Thought hypothesis, where
thoughts are encoded in distributed patterns of neural activity?

Second, it is unclear what the expression’s “structure” should be. The definition is motivated from human
language, where sentences have syntactic parses and individual words have types (e.g., noun, verb), but
these properties are not intrinsic to the sentences themselves, which are simply strings.

Third, the definition says that meaning is “determined by” the structure and meanings of the constituents
through a semantics function, but it does not put any kind of restriction on these semantics for the meanings
to qualify as compositional: any function qualifies. For instance, functions that arbitrarily map constituents
to their meanings (as in the case of idioms like “he kicked the bucket”) are functions nonetheless and
thus satisfy Definition 1, but it is commonly agreed that they are not compositional (Weinreich, 1969;
Mabruroh, 2015; Swinney & Cutler, 1979).

Finally, the colloquial definition of compositionality suggests that it is a binary property of representations,
when it should arguably be a matter of degree. For instance, while linguists often model the syntax and
semantics of language using hierarchical decompositions that are considered compositional (Chomsky,
1956), human language regularly deviates from this idealization. In particular, language has some degree of
context-sensitivity, where the meanings of words depend on those of others in the sentence. Thus, human
language does not satisfy the colloquial binary definition of compositionality, even though it is considered
largely compositional.

The colloquial definition of compositionality is thus flawed if we wish to formalize and measure it
quantitatively, moving beyond mere intuitions that are fundamentally limited in their explanatory reach.
In this paper, we introduce such a definition, which we call representational compositionality. The
definition is grounded in algorithmic information theory, and says that compositional representations are
both expressive and easily describable as a simple function of symbolic parts. We argue that this definition
not only addresses Definition 1’s flaws, but also accounts for and generalizes our many intuitions about
compositionality. Finally, we provide empirical experiments that clarify implications of the definition and
validate its agreement with intuition. Since representational compositionality is rigorous and quantitative,
it has the potential to inspire new principled methods in AI for learning compositional representations.

2 COMPRESSING A REPRESENTATION

The definition that we will propose rests on the idea that compositional representations can be redescribed as
a simple function of constituent parts. While there may be many ways to redescribe any given representation,
a natural and principled way is through the lens of optimal compression and Kolmogorov complexity. We
provide a brief introduction to Kolmogorov complexity below, but direct unfamiliar readers to Appendix A.

Kolmogorov complexity Kolmogorov complexity (Li et al., 2008; Kolmogorov, 1965) is a notion of
information quantity. Intuitively, the Kolmogorov complexity of an object x, denoted K(x), is the length
of the shortest program (in some programming language) that outputs x. A related notion is the conditional
Kolmogorov complexity of x given another object y, denoted K(x|y), which is the length of the shortest
program that takes y as input and outputs x. Kolmogorov complexity has many intuitive properties as
a measure of information quantity. The smaller and the more “structure” an object has (regularity, patterns,
rules, etc.), the more easily it can be described using a short program. Kolmogorov complexity therefore
is deeply rooted in the idea of compression.

In the context of ML, an interesting quantity is the Kolmogorov complexity of a dataset X=(x1,...,xn)
where each sample is drawn iid from a distribution p(x). It turns out that if the dataset is sufficiently large,
the optimal method for compressing it is to first specify p(x) and then encode the data using it, giving
us K(X)=K(X|p)+K(p) (Fortnow, 2000). For the first term K(X|p), each sample can be optimally
encoded using only−log2p(xi) bits (Witten et al., 1987), as in the case of Shannon information (Shannon,
2001). The second term K(p) refers to the complexity of the data distribution (i.e., the length of the
shortest program that outputs the function p :X→R+).

Compressing Z as a function of parts Let us denote a representation by a matrix Z∈RN×D, where
each row zn is obtained by sampling iid from some data distribution and model p(x)p(z|x). For instance,
p(x) could be a distribution over natural images, zn∼ p(z|x) could be the (often deterministic) output
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of some intermediate layer in a trained image classifier, and the resulting representation Z∈RN×D would
be a matrix of these layer activations.

We will argue that a natural way to think about compositional representations is: representations Z that
can be significantly compressed as a function of constituent parts. In other words, the shortest program
that outputs the representation, with length K(Z), has a very particular form: it first describes Z using
short parts-based constituents, and then maps these parts to the high-dimensional representation. This
program form is shown in Figure 1 and described in detail below. We also give a summary of all program
components in Table 1. Crucially, the components of this program will be used in Section 3 to construct
our formal definition of compositionality, in which representations that are more compressible as a function
of constituent parts are more compositional. Before combining them into a definition of compositionality,
we now describe the components of this program in the following steps.

def construct_z():
    # 1. Describe   using a compressed code  
    def p_w(w):  #  length of this function
        ...  # returns a probability
    w_compressed = [...]  #  
    w = decode(w_compressed, p_w)  #   = small constant

    # 2. Decode   from  
    def f(w):  #   length of this function
        ...  # returns mean and std of a normal distribution
    def p_normal(mu, std):  #   = small constant
        ...  # returns a probability
    z_mu, z_std = f(w)  #   = small constant
    z_correction = [...]  #  
    z = decode(z_correction, p_normal, z_mu, z_std)  #   = small constant

    return z

Z W
K ( p w ) =

K (W | p w ) = ∑ − log p w (wn )
K

Z W
K ( f ) =

K

K
K (Z |W , f ) = ∑ − log 𝒩(zn; z μ

n , z σn )
K

Representation

 pw(w )
 𝒩(z ; f (w ))

 Z ∈ ℝN× D W ∈ 𝒱N× M

Semantics

f

 K (Z ) ≈ min
pw ,W, f

K ( pw ) + K (W | pw ) + K ( f ) + K (Z |W, f )

a. b.

c.

Sentences
Discrete symbol sequences 

describing the representation 
Mapping from sentences 

to the representation
Latent model 
representation

Distribution over 
sentences

Reconstruction 
error

Representation samples from a pretrained model, brain, etc.
A

B

C

D

…

Figure 1: Assumed form of the shortest program that outputs a compositional representation Z. a.
Pseudocode of the program, which describes the representation using sentences W (sequences of discrete
tokens) that are compressed using a prior pw(w), and then maps these sentences to high-dimensional
vectors in representation space using a function f(w) that outputs the sufficient statistics of a Normal
distribution. Reconstruction errors are corrected using bit sequences whose length depends on the
magnitudes of the errors. decode() is a short function that decodes an object compressed using
arithmetic coding (Witten et al., 1987). b. Illustration of the program compressing a representation from
a pretrained model layer, brain region, etc. c. The total Kolmogorov complexity of the representation is
estimated by the length of the shortest program that has this form.

Name Symbol Example (for representations of scene images)

Representation Z∈RN×D Layer activations of a CNN in response to N scene images
Sentences W ∈VN×M Symbol sequence expressing a scene graph for each z∈Z
Language pw Distribution over sentences expressing scene graphs
Semantics f Embed & concatenate each object/relation in the scene graph
Recon. error N (z;f(w)) Correct remaining error unaccounted for by the semantics

Table 1: Components of assumed shortest program that outputs a compositional representation Z

Step 1: describe a representation using short parts-based constituents First, we assume that every
sample of the representation zn of data point xn can be compressed using a sequence of constituent parts,
which in practice are discrete tokens. By analogy to natural language, we will call these discrete token
sequences “sentences”. Mathematically, we denote these sentences by W ∈VN×M , where V is a finite set
of discrete symbols corresponding to a vocabulary and M is the maximum sentence length. Each row in
W is a sentence that describes a high-dimensional vector in the corresponding row of Z. Importantly, these
are not sentences in any human language, such as English; they are sequences of discrete tokens that best
compress the representation, and can be thought of as an intrinsic representation-specific language. For
instance, if the representation describes visual scenes, the sentences might abstractly describe the different
objects that the scene is composed of along with the relations between those objects.

For the program to encode these sentences in their most compressed form, it should also define a distribution
over the sentences pw(w). The reason for this is that optimal coding schemes (e.g., arithmetic coding Witten
et al., 1987) allow us to encode an object using only−logp(x) bits so long as p is known (see Equation (7)).
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So far, the part of the program in Figure 1 that describes a representation using discrete sentences
contributes a total Kolmogorov complexity of:

K(pw)+K(W |pw)=K(pw)−
N∑

n=1

logpw(wn).

Step 2: decode representations from their sentences Given sentences W describing representation Z,
the program must reconstructZ. This means that the program must define a function f :VM→RD—which
we call the semantics in analogy to natural language—that maps discrete tokens sequences to their
high-dimensional vector representations.

Usually, f(wn) will not perfectly reconstruct any of the zn’s, since wn is discrete and zn is continuous.
Since Kolmogorov complexity is about lossless compression, these errors must be corrected. This can
be achieved if f outputs the sufficient statistics of some distribution in RD, in which case the number
of bits needed to encode zn is−logN (zn;f(wn)). For simplicity, we take p to be a Normal distribution
whose mean and standard deviation are given by f(wn).

In sum, the part of the program in Figure 1 that decodes representations from their sentences contributes
a total Kolmogorov complexity of:

K(f)+K(Z|W,f)=K(f)−
N∑

n=1

logN (zn;f(wn)).

As a small technical note, because Z lives in a continuous space and p is a probability density function, it
would take an infinite number of bits to encode the correction term. Thus, in practice, Z must be discretized
to some finite precision and a discrete approximation of the Normal distribution with corresponding
probability mass function must be used (e.g., the Skellam distribution).

Summary and further intuition The steps above describe a program outputs Z. We take representations
to be compositional if they are highly compressible as a function of constituent parts (justified in Section 3).
Under this framework, the total Kolmogorov complexity of the representation decomposes as:

K(Z)= min
pw,W,f

K(pw)+K(W |pw)+K(f)+K(Z|W,f) (1)

= min
pw,W,f

K(pw)−
N∑

n=1

logpw(wn)+K(f)−
N∑

n=1

logN (zn;f(wn)).

The minimization term here is important: the shortest program is the one in which pw, W , and f are
jointly selected so as to minimize the total program length. With K(Z) defined, we can provide some
more intuition for its components.

K(pw) is the complexity of the language used to describe the representation. For instance, a language
in which each word is independent of the others would be simpler than a language in which each
word is highly context-sensitive. K(W |pw) is the complexity of the sentences needed to describe the
representation using the language pw. If sentences tend to be typical utterances with high probability under
the language, they will have low complexity. If instead sentences tend to be uncommon utterances with
low probability (e.g., from rare tokens), they will have high complexity. K(f) is the complexity of the
semantics that define how sentences (discrete token sequences) map to their meanings (high-dimensional
vectors). This term is central to the definition of compositionality that we will introduce in Section 3.
K(Z|W,f) arises from imperfect reconstructions of Z, such as errors due to continuous parts of Z that
can’t be modeled as a function of discrete inputs.

3 REPRESENTATIONAL
COMPOSITIONALITY: A FORMAL DEFINITION OF COMPOSITIONALITY

Our definition of compositionality is a ratio of constituent terms appearing in the decomposition of K(Z)
in Equation (1):
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Definition 2 (Representational compositionality)
The compositionality of a representation, denoted by C(Z), is:

C(Z)=
K(Z)

K(Z|W)
=
K(pw)+K(W |pw)+K(f)+K(Z|W,f)

K(f)+K(Z|W,f)
, (2)

where pw, W , and f are obtained from the shortest program that compresses Z in Equation (1).

Crucially, pw, W , and f are not free parameters: they are intrinsic to the representation in that they
best compress Z (see the minimization in Equation (1)). Like Kolmogorov complexity, then, C(Z) is
intractable to compute because it requires an exponentially-large search over all possible tuples (pw,W,f).
However, like Kolmogorov complexity, C(Z) can still be tractably estimated using efficient compression
and optimization methods. While the primary contribution of this work is theoretical and aimed at
justifying Definition 2, we outline a strategy for finding (pw,W,f) and estimating C(Z) in Appendix B.
We will also later introduce a complementary definition for the compositionality of a language as opposed
to a representation in Section 3.1 that is easier to estimate in certain cases, as we show in our experiments.

We now unpack Definition 2 to see how it accounts for the problems of the colloquial Definition 1 and
explains computational properties typically associated with compositionality.

Expressivity and compression Effectively, representational compositionality says that the compo-
sitionality of a representation is a compression ratio that depends on two things: (1) the complexity
of the representation, which appears in the numerator, and (2) the complexity of the semantics which
construct the representation from its constituent parts, which appears in the denominator. When a
representation is highly expressive (high K(Z)) but can nevertheless be compressed as a simple function
of constituent parts (low K(Z|W)), representational compositionality says that the representation is highly
compositional. Representational compositionality therefore formalizes a hypothesis in cognitive science
that compositionality emerges from competing pressures for expressivity and compression (e.g., Kirby,
1999; Kirby et al., 2004; 2008, and references therein).

Constituent “parts” are intrinsic to Z Note that unlike the colloquial Definition 1, representational
compositionality makes it clear where the “constituent parts” (tokens in W ), “complex expressions”
(W ), and “structure” (f) associated with a representation come from: they are intrinsic properties of
the representation. Compositional representations are those that are compressible in principle as simple
functions of constituent parts, regardless of whether or not we know what that optimal compression scheme
is. This is a significant difference between our definition and other related ideas in the literature which
quantify compositionality in terms of reconstruction from externally-defined parts (e.g., Andreas, 2019;
Trager et al., 2023; Lewis et al., 2022). In addition, unlike prior work, our definition makes no strong
assumptions about the form of the reconstruction (e.g., that it is linear, a hierarchical grammar, etc.) as
it abstracts over arbitrary functions through the lens of their complexity K(f). Definition 2 therefore
generalizes diverse notions of compositionality framed in terms of representation-reconstruction.

Systematicity and generalization Representational compositionality formalizes the intuition that the
constituent parts of a compositional representation determine the meaning of the whole in a systematic
way (Szabó, 2022; 2012), where “systematicity” is a term from cognitive science that roughly means
“structured” or “non-arbitrary”. If f arbitrarily maps sentences w to their representations z in a way
that does not take the structure or words of the sentence into account (as in the case of idioms), then its
complexity K(f) is necessarily high and compositionality is low (we demonstrate this through experiments
in Section 4.1). In addition, if f is inaccurate in how it maps sentences to their representations, the error
K(Z|W,f) is high and the compositionality low. A representation that is highly compositional according
to our definition thus benefits from the generalization ability of simple functions (low K(f)) that fit their
data well (low K(Z|W,f)). This ability of f to generalize to novel sentences explains the fundamental
relationship between compositionality and notions of systematicity from cognitive science (Szabó, 2022).

Structure-preserving semantics Representational compositionality explains the widely-held intuition
that semantics functions f which are compositional are structure-preserving in how they map w→ z
(Montague et al., 1970). As explained in Ren et al. (2023), structure-preserving maps have lower
complexity, and thus higher compositionality according to our definition. In a structure-preserving map,
each word in the sentence w independently affects a different subspace of the representation z so that
pairwise-distances are similar in sentence-space and representation-space.
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Modularity & compositionality Representational compositionality explains the precise relationship be-
tween compositionality and modularity, which has been difficult to formally articulate in past work (Lepori
et al., 2023; Goyal & Bengio, 2022; Mittal et al., 2022). Modularity refers to a system which can be decom-
posed into interacting sub-parts that can be understood separately (Poole & Mackworth, 2010); an example
in ML is mixture-of-experts models. A modular f is simple because it decomposes knowledge into smaller
reusable components, each of which only need to be defined once, and thus contributes to high composition-
ality under our definition. This also explains why natural language is highly compositional. Linguists model
language using context-free grammars (Chomsky, 1956), in which a sentence decomposes into a parse
tree with a “production rule” applied at each node. The recursive application of these production rules, akin
to a small number of modules in f , is then thought to determine the meaning of the sentence as a whole.

Ultimately, a formal definition of compositionality should be judged based on whether it agrees with our
intuitions, generalizes them in meaningful ways, and is quantitatively consistent. Based on the properties
listed above, we argue that representational compositionality satisfies all of these desiderata. To provide
further intuition for representational compositionality and its implications, we describe some concrete
illustrative examples in Appendix D.

3.1 SPECIAL CASE: COMPOSITIONALITY OF LANGUAGE SYSTEMS

In representational compositionality, W is not a free parameter, but rather a collection of sentences intrinsic
to Z that minimize its description length. However, we can also consider the special case of languages in
which the sentences are fixed to some WL that is external to the representation. In a natural language for
instance, WL are the sentences that a person may utter while Z are the neural activity patterns (thoughts)
that those sentences elicit. We could then ask to what degree this language system composed of thoughts
Z and sentences WL is compositional:

Definition 3 (Language system compositionality)

The compositionality of a language system L with sentences WL, denoted by CL(Z), is:

CL(Z)=
K(Z)

K(Z|WL)
=

K(Z)

K(fL)+K(Z|WL,fL)
, (3)

where fL is obtained from the shortest program that compresses Z given WL.

This definition opens the door to comparisons between the compositionalities of different real-world
language systems, such as French and Japanese, which we attempt in Section 4.3.

4 EMPIRICAL RESULTS

We evaluate our compositionality definitions on synthetic and real-world datasets. While no other
formal definition of compositionality has been proposed, a commonly used heuristic is topological
similarity. For some (W,Z), topological similarity computes a distance between all pairs of sentences
∆ij

W=dW(wi,wj) using a distance metric dW(·) inW, and a distance between all pairs of representation
elements ∆ij

Z =dZ(zi,zj) using a distance metric dZ(·) in Z. It then computes the Pearson correlation
ρ between the two pairwise distance matrices, quantifying the degree to which the two spaces share linear
structure. Throughout our experiments, we compare our definitions to topological similarity.

4.1 SYNTHETIC REPRESENTATIONS

We first consider representations Z that are generated synthetically using known rules through:
z∼N (z;f(w)),w∼pw(w). Since we know the underlying programs that generated the representations
in this case, we know the true complexity terms K(pw), K(W |pw), K(f), and K(Z|W,f) needed to
compute C(Z) exactly. This allows us to validate whether representational compositionality matches with
intuitions. We describe our synthetic representations below (details in Appendix H).

Lookup table representations The simplest way to construct a representation from sequences of
discrete tokens is to assign each token in the vocabulary a fixed embedding in a lookup table, and then
concatenate these embeddings across the sequence (Figure 2a). Alternatively, the lookup table could

6
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a. Lookup table

C ( Z ) = K ( Z )
K ( Z |W ) T o p s i m ( Z , W ) = c o r r (d ( Z ), d (W ))

d. Synthetic grammar results

b. Lookup table results

c. Synthetic grammar

w :

z :

f :

A B A

[ ⋅ ]

scared A d j cats N run Vw :

z :

f :
N P

V P

R1

R2

R1 : A d j + N → N P
R2 : N P + V → V P. . .

Ri : [x1, x2]Ai

. . .

Repr. comp. (ours) 
Top. similarity

Repr. comp. (ours) 
Top. similarity

1.0

2.00.97

0.26

1.1

1.00.15

0.99 1.5 0.61

1.10.26

1.1

1.0

0.99

0.00

1.012

1.0052.3e-3

2.5e-2

1.008

1.004

3.8e-3

1.9e-3

1.012

1.004

2.5e-2

1.9e-3

Figure 2: Compositionality of synthetically-generated representations. C(Z) is consistent with
intuitions about compositionality across all experiments, whereas topological similarity is not. a. In lookup
table representations, words (or n-grams) are assigned embeddings which are concatenated to form z.
b. Compositionality as a function of ground-truth representation properties. “Disentanglement” refers to
varying n-gram size. c. In grammar representations, sentences are parsed with a context-free grammar, and
each production rule is associated with a linear projection. Production rules are recursively applied, and the
embedding at the parse tree’s root defines z. d. Compositionality as a function of ground-truth properties
of the grammar. Numbers inside plots show min/max compositionality according to each corresponding
metric. Error bars show σ over 10 seeds.

assign each unique n-gram an embedding and we could concatenate the embeddings for consecutive
n-sized chunks in the sequence. We call n the “disentanglement” factor because n=1 corresponds to
a representation in which each word fully determines a subset of dimensions in the representation. We
generate representations by varying certain parameters of the generative program while keeping others
constant, and observe the effects on compositionality in Figure 2b.

Sentence length: As sentence length increases, compositionality should intuitively increase. For instance,
if sentences are of length 1, we are not tempted to call the representation compositional. The more the
representation decomposes according to parts, the more compositional it should be. Representational
compositionality empirically matches this intuition because K(Z) increases with sentence length (there are
more possible z values, for instance) and K(f)—proportional to the size of the lookup table—is decreases
with sentence length (embeddings become lower-dimensional). In contrast, topological similarity decreases
with sentence length, thus violating intuitions.

Vocabulary size: If the vocabulary is too small relative to sentence length, then expressivity and composition-
ality are limited (e.g., with only one word, nothing can be expressed). On the other hand, if the vocabulary
is too large relative to sentence length, then compositionality is low because expressivity doesn’t come
from combining constituent parts (e.g., with one-word sentences, there is no notion of parts). For a given
sentence length, then, compositionality should peak at some intermediate vocabulary size. We observe this
empirically with representational compositionality: a sharp increase in compositionality early on followed
by a monotonic decrease as vocabulary size increases further. While topological similarity also decreases
with vocabulary size, it does not show the early increase, and is in fact largest for a vocabulary size of 1.

Representation dimensionality: We increased representation dimensionality by increasing the dimensional-
ity of the word embeddings. The representation grows more expressive with dimensionality, but only from
increased word complexity rather than word combinations. We should therefore expect compositionality to
decrease. Representational compositionality empirically captures this phenomenon because the only thing
increasing in this scenario is the size of the lookup table K(f), which is present in both the numerator and
denominator of C(Z), so that C(Z) decreases. Topological similarity, in contrast, increases as a function
of representation dimensionality.

Disentanglement: The more the meanings of words are context-dependent, the less compositional we
consider the language (e.g., idioms like “he kicked the bucket” are not considered compositional).
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Therefore, as a function of disentanglement, compositionality should decrease. We observe this empirically
with representational compositionality because the size of the lookup table—and therefore the complexity
of the semantics K(f)—grows exponentially as a function of disentanglement. Topological similarity
also decreases as a function of disentanglement.

Context-free grammar representations While our lookup table experiments provide intuitions
for representational compositionality, they are unlikely to reflect the structure of representations
in DNN and brains. For instance, The Language of Thought hypothesis (Fodor, 1975) posits
that representations underlying human thought have a hierarchical structure akin to context-free
grammars in natural language (Chomsky, 1956). In such grammars, the meanings of sentences
decompose according to parse trees, where children merge into parents through production rules
and leaves correspond to words. For instance, the sentence “scared cats run” decomposes accord-
ing to “ADJECTIVE (scared) + NOUN (cats) → NOUN-PHRASE (scared cats)” followed by
“NOUN-PHRASE (scared cats)+VERB (run)→VERB-PHRASE (scared cats run)”, where symbols
such as NOUN-PHRASE are parts of speech (similar to data types) and functions between parts of speech
such as NOUN+VERB→VERB-PHRASE are production rules.

To model such systems using representational compositionality, we generated representations using simple
synthetic grammars (Figure 2c). First, we assigned each word in the vocabulary an embedding and a
part of speech, and we defined a grammar with a set of production rules. We then generated a dataset
of sentences and parsed them using the grammar. Finally, the semantics were defined by embedding each
word in the sentence and then applying a rule-specific function at every node in the parse tree until the root
was reached, whose value we defined to be the representation. The rule-specific functions concatenated
children embeddings and applied a linear projection.

We generated many synthetic representations in this way and measured their resulting representational
compositionality (Figure 2d). For representational compositionality to match intuition, the number of rules
in the grammar should be inversely proportional to compositionality. For example, in a natural language
like English, we can express an infinite number of ideas using a relatively small set of grammatical
rules and vocabulary, and this is why we believe natural language is compositional. We thus varied two
properties of the grammar: its “width” and its “depth”. Width refers to the number of rules that are defined
for each level of the parse tree’s hierarchy. Depth refers to the number of levels in the parse tree’s hierarchy
with unique rules prior to solely recursive application.

As both width and depth increase the complexity of the grammar, we should expect compositionality
to decrease as a function of both. Representational compositionality is empirically consistent with this
intuition because K(f) increases as a function of the number of rules, each of which was associated with
its own linear projection matrix. Topological similarity only loosely correlates with intuition, and has
far more noise with different draws of Z from the same grammar.

4.2 EMERGENT LANGUAGES FROM MULTI-AGENT TRAINING

Next, we further validate our compositionality metric by applying it to real-world representations. To
avoid having to solve the difficult optimization problem involved in measuring C(Z) (which requires
a minimization of K(Z) w.r.t. pw, W , f) we instead consider language systems in which W =WL is
fixed and measure CL(Z) (see Section 3.1).

One interesting case of real language systems is those that emerge in multi-agent settings where agents
must learn to communicate. We consider the setting of Li & Bowling (2019); Ren et al. (2020) in which a
speaker and a listener learn to communicate in a simple object reference game, where objects have symbolic
attributes analogous to color, size, shape, etc. Agents trained using reinforcement learning typically
communicate successfully, but often learn non-compositional language systems that arbitrarily map
sentences to objects. However, Li & Bowling (2019); Ren et al. (2020) have shown that compositionality
can emerge through a multi-generation process called iterated learning (Kirby et al., 2015), where
the agents’ parameters are periodically reset and retrained on sentence/object pairs from the previous
generation. Kirby et al. (2015) hypothesize that this occurs because iterated learning amplifies a model’s
inductive bias for simpler language systems that are more easily learnable across subsequent generations.

We trained agents both with and without iterated learning and measured CL(Z) for the resulting language
systems. Training details are provided in Appendix I. After N generations, we obtain a dataset consisting
of all possible objects Z and the sentences output by the speaker WL when given those objects as input.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

a. Prequential code length of languages

C (Z ) = K (Z )
K (Z |W )

T o p s i m (Z , W )

K
(z i

| w
i,θ

i−1
)

iterated learning

normal

b. Compositionality of languages

a. Emergent languages with iterated learning

listener1speaker1 wz ̂z

1. Train using RL

⟨02, a a⟩
⟨12, b b⟩
⟨01, a b⟩. . .

2. Generate a dataset

d1
3. Reset models and train on 
    previous generation’s data

listener2speaker2 wz ̂z

4. Repeat for  generationsN

⟨00, a a⟩
⟨11, b b⟩
⟨01, a b⟩. . .

dN. . .
resets: iterated learning 

no resets: normal

C
om

po
si

tio
na

lit
y

To
po

lo
gi

ca
l s

im
ila

rit
y

Figure 3: Compositionality of language systems that emerge in multi-agent settings with and without
iterated learning. a. We used prequential coding to measure K(Z|WL) for the emergent languages,
where the area under the curve is the “prequential code length” estimating compression size. WL for
models trained using iterated learning achieved a much lower prequential code length than those trained
normally without iterated learning, meaning the semantics f were simpler. b. Our language system
compositionality metric CL(Z) agrees with topological similarity on the ordering of models trained with
and without iterated learning, but the numerical values provided by CL(Z) provide more theoretical
insight (see main text). Error bars show σ over 5 seeds.

To measure CL(Z), we need both K(Z) and K(Z|WL). Since Z consists of a set of symbolic objects
sampled uniformly, K(Z) is simply equal to |O|log2(|O|), whereO is the set of all possible objects. To
measure K(Z|WL), we used a compression method called prequential coding (Blier & Ollivier, 2018) that
provides good estimates in practice (see Appendix G). Intuitively, prequential coding compresses Z given
W by incrementally encoding individual datapoints z<i and fitting a model θi−1 to predict them using w<i

as input. The more datapoints are encoded, the better the model becomes by having seen more training
data, and the more accurately it can predict the next datapoint zi. Since prediction error is equivalent to
complexity, K(zi|wi,θi−1) will decrease as a function of i, which means that every subsequent datapoint
takes fewer bits to encode. The total complexity K(Z|W) is estimated by summing all of these terms.

In Li & Bowling (2019) and Ren et al. (2020), compositionality was measured using topological similarity.
Using CL(Z), we find that we are able to reproduce their results (see Figure 3): iterated learning
produces language systems that are more compositional. However, a desirable property of our definition
is that the absolute quantities of the metric are meaningful and interpretable. In particular, the “normal”
language system trained without iterated learning obtains the lowest possible compositionality score,
CL(Z)=K(Z)/K(Z|WL)=1, meaning that the mapping from sentences to representations is entirely
arbitrary. In contrast, topological similarity can at best only be used as a relative metric for comparing
different language systems, as its theoretical link to compositionality is not well understood.

4.3 NATURAL LANGUAGES

While it is commonly accepted that all natural languages are roughly equal in their expressive power
(their ability to express ideas and thoughts), a highly debated question in linguistics is whether or not
they are all equally compositional (Joseph & Newmeyer, 2012). For instance, while one camp suggests
that high compositionality in one respect is generally balanced by low compositionality in another, other
evidence suggests that languages which undergo significant outside contact experience a pressure for easier
learnability and thus higher compositionality, such as in the case of English being exposed to non-native
speakers. This question has been difficult to answer definitively, partly due to the absence of a principled
and quantitative definition of compositionality.

To investigate the compositionalities of natural language systems using our definition, we first collected
a dataset of English sentences describing natural images (COCO, 2024), which we then translated into
French, Spanish, German, and Japanese using a large open source model (Costa-jussà et al., 2022). To
obtain proxies of “meanings” Z for these sentences, we encoded them using a multilingual sentence
embedding model that outputs a dense fixed-size vector (Reimers & Gurevych, 2020). More experimental
details as well as limitations of this approach can be found in Appendix J. Using these datasets of
sentence/representation pairs, we measured the compositionalities of each natural language system CL(Z)
using the same prequential coding approach as in Section 4.2.

Our results are shown in Figure 4. We find that the prequential code lengths of all languages are highly
similar, indicating that they have semantics f of roughly equal complexity (Figure 4a). Assuming that these
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a. Prequential code length
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) French 
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b. Compositionality c. Topological similarity

Figure 4: Compositionality of natural language systems. We consider language natural systems in which
WL are sentences in some language and Z are sentence embedding vectors obtained from a pretrained
multilingual model. a. We used prequential coding to measure K(Z|WL) for these natural languages,
where the area under the curve is the “prequential code length” estimating compression size. Languages
have highly similar prequential code lengths, with Japanese having the lowest among them. b. Assuming
all languages have equivalent expressivity K(Z), their relative compositionalities measured using our
definition CL(Z) are similar. c. Using topological similarity as a measure of compositionality gives
counter-intuitive results, with most languages having near-zero topological similarity and Japanese being
a strong outlier with a topological similarity of−0.2. Error bars show σ over 3 seeds.

natural languages are all equally expressive in their abilities to express ideas and identify referents (i.e.,
equal K(Z); a common assumption in linguistics), their compositionalities as measured by our definition
CL(Z) are roughly equivalent, with Japanese having slightly higher relative compositionality (Figure 4b).
Using topological similarity as an alternative definition of compositionality gives counter-intuitive results
that contradict our own: most languages have a near-zero topological similarity, except for Japanese which
is a strong outlier with a topological similarity of−0.2 (Figure 4c).

5 CONCLUSION

We introduced a novel definition of compositionality, representational compositionality, that is grounded in
algorithmic information theory. Through theoretical arguments and empirical experiments, we showed that
this simple definition not only accounts for our many intuitions about compositionality, but also extends
them in useful ways.

In virtue of being quantitatively precise, representational compositionality can be used to investigate
compositionality in real-world systems. We demonstrated this with emergent and natural language
representations, but in a limited way that only considered language systems where the sentences
describing a representation are externally defined. We note that this quantity can readily be applied to
score tokenization schemes that parse text into tokens producing different representations after training
downstream models, which may lead to improvements in their design.

More generally however, measuring the compositionalities of representations without a given mapping
to sentences requires the development of additional machine learning tools, whose overall architecture
we sketch out in Appendix B. The development of such tools is an important direction for future work,
as it will allow us to investigate the compositionalities of representations that emerge from different
learning objectives, neural architectures, inductive biases, and brain regions. In turn, we will be able to
see how representational compositionality empirically relates to other topics in ML such as compositional
generalization, multi-task generalization, and latent space generative models—we give some hypotheses
and ideas for future work along these lines in Appendix E. In particular, representational compositionality
has the potential to explain the success of varied methods because it defines compositionality using
compression, which abstracts across the architecture, learning details, and particular representational
format. Representational compositionality can therefore be used to validate or reject diverse hypotheses
about compositionality, such as the Language of Thought hypothesis (Fodor, 1975).

Representational compositionality can also play an important role in the design and validation of machine
learning models with principled inductive biases for compositionality. Namely, in addition to supporting
a given task, a compositional representation must be easily describable as a simple function of constituent
parts. There are both direct and indirect ways to achieve this that are grounded in our definition; we
describe some approaches in Appendix F that we intend to pursue in future work.
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APPENDIX A BACKGROUND ON KOLMOGOROV COMPLEXITY

Kolmogorov complexity was independently developed in the 1960s by Kolmogorov (1965), Solomonoff
(1964), and Chaitin (1966), and defines a notion of “information quantity”.

Intuitively, the Kolmogorov complexity of an object is the length of the shortest program (in some
programming language) that outputs that object. Specifically, given some finite string x, K(x) is the length
l(r) (in bits) of the shortest binary program r that prints x and halts. Let U be a universal Turing machine
that executes these programs. The Kolmogorov complexity of x is then:

K(x)=min
r
{l(r):U(r)=x,r∈{0,1}∗}, (4)

where {0,1}∗ denotes the space of finite binary strings. A related notion is the conditional Kolmogorov
complexity of a string x given another string y, which is the length of the shortest program that takes y
as input and outputs x:

K(x|y)=min
r
{l(r):U(r(y))=z,r∈{0,1}∗}, (5)

where r(y) denotes a program taking y as input. Finally, we can also define a “joint” Kolmogorov
complexity K(x,y), which denotes the length of the shortest program that jointly outputs both x and y.
Surprisingly, joint Kolmogorov complexity is related to conditional Kolmogorov complexity (up to an
additive logarithmic term, which we will ignore) by the Symmetry of Information theorem (Li et al., 2008):

K(x,y)=K(y|x)+K(x)=K(x|y)+K(y). (6)

Kolmogorov complexity has many intuitive properties that make it attractive as a measure of information
quantity, and although it is less common than notions from Shannon information theory (Shannon, 2001),
it is strictly more general (as we will show later below). The smaller and the more “structure” an object
has—regularity, patterns, rules, etc.—the more easily it can be described by a short program and the lower
its Kolmogorov complexity. Kolmogorov complexity therefore is deeply rooted in the idea of compression.
For instance, a sequence with repeating patterns or a dataset that spans a low-dimensional subspace can
be significantly compressed relative to its original size, and this results in low Kolmogorov complexity.
In contrast, a random string devoid of any structure cannot be compressed at all and must in effect be
“hard-coded”, making its Kolmogorov complexity equal to its original size in bits.

While powerful, Kolmogorov complexity has certain limitations. First and foremost, Kolmogorov
is intractable to compute exactly because it requires a brute force search over an exponentially large
space of possible programs. It is therefore often of conceptual rather than practical value, although it
can nevertheless be upper-bounded using more efficient compression strategies. Second, Kolmogorov
complexity depends on the programming language of choice. For instance, if a programming language has
a built-in primitive for the object being encoded, Kolmogorov complexity is trivially small. This concern,
however, is often overblown: given any two Turing-complete programming languages, the difference in
Kolmogorov complexity that they assign to an object is upper-bounded by a constant that is independent
of the object itself, because any Turing-complete programming language can simulate another (Grünwald
& Vitányi, 2003; Fortnow, 2000). In practice, we can simply consider “reasonable” Turing-complete
programming languages that don’t contain arbitrary object-specific primitives, in which case this simulation
constant will be relatively small and the particular programming language of choice will have little effect.
Finally, Kolmogorov complexity is only defined for discrete objects because no terminating program can
output a continuous number with infinite precision. This concern is also less consequential in practice,
because we can always represent continuous objects using finite (e.g., floating-point) precision.

Important properties for machine learning In ML, we are often concerned with datasets and
probabilistic models. Kolmogorov complexity relates to these two concepts in several interesting ways.
First, we can ask about the Kolmogorov complexity of a finite dataset X=(x1,...,xn) where each sample
is drawn iid from a distribution p(x). It turns out that if we have access to the true distribution p(x),
optimal algorithms such as arithmetic coding (Witten et al., 1987) can encode each sample using only
log2p(xi) bits. Intuitively, this is because samples that occur more frequently can be encoded using shorter
codes in order to achieve an overall better compression. We thus have that:

K(X|p)=−
n∑

i=1

log2p(xi). (7)
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If instead of access to the true distribution p(x) we only have a probabilistic model of the data pθ(x), we
have that:

K(X|p)≤K(X|pθ)≤−
n∑

i=1

log2pθ(xi), (8)

where we have equality on the LHS when pθ=p and equality on the RHS when the cost of improving
pθ (in bits of written code) would be greater than the benefits from more accurate modeling. In practice,
if pθ is close to p, we can say that K(X|pθ)≈−

∑n
i=1log2pθ(xi).

This insight is significant. Notice that−
∑n

i=1log2pθ(xi) is the negative log-likelihood of the data under
the model, which is a common loss function used in ML. This tells us that models with lower error better
compress their data, and directly relates Kolmogorov complexity to optimization in ML. However, what
if we do not have a model? What is the Kolmogorov complexity of the data itself? Intuitively, if the dataset
is sufficiently large, the optimal method for encoding it should be to first specify a model and then encode
the data using that model as in Equation (8). Specifically, using identities in Fortnow (2000), we have:

K(X)≤K(X|pθ)+K(pθ). (9)

This encoding scheme on the RHS is referred to as a 2-part code (Grünwald, 2007). For large datasets,
we have equality when the model’s description length and error are jointly minimized, which occurs when
the model pθ(x) is equivalent to the true distribution p(x):

K(X)=argmin
pθ

K(X|pθ)+K(pθ)=argmin
pθ

−
n∑

i=1

log2pθ(xi)+K(pθ) (10)

=K(X|p)+K(p)=−
n∑

i=1

log2p(xi)+K(p). (11)

Again, we can draw important connections to ML. Equation (9) says that the Kolmogorov complexity of
a dataset is upper-bounded by the a model’s error and complexity. In addition, Equations (10) and (11) tell
us that the simplest model that explains the data is most likely to be the true one, which draws a theoretical
link between compression, maximum likelihood training, model complexity, and generalization (Goldblum
et al., 2023).

Relation to Shannon information In Shannon information theory (Shannon, 2001), the notion
of information quantity is entropy. Given a random variable X ∼ p(x), entropy is defined as:
H(X)=Ex∼p(x)−log2(p(x)). Notice that the −log2(p(x)) inside the expectation is equal the quantity
inside the sum of Equation (7), which specified the minimum number of bits needed to encode a sample
from a dataset given the distribution that sample was drawn from. This is no accident: entropy can be seen
as the average number of bits needed to compress events from a distribution using an optimal encoding
scheme when the distribution p(x) is known. If we simply sum these bits for a finite number of samples
instead of taking an expectation, we get exactly K(X|p) as defined in Equation (7).

As we have seen, though, the assumption about a known distribution p(x), need not be made in the
Kolmogorov complexity framework. In this sense, Kolmogorov complexity is a strict generalization of
Shannon information theory: K(X) as defined in Equation (11) is equivalent to summed entropy plus
the complexity of the distribution p(x), which is unknown and needs to be encoded. In the Shannon
framework, it is difficult to derive a meaningful notion for the information quantity in the distribution p(x)
because it is an individual object—a function, in particular—and Shannon information is only defined for
random variables (Grünwald & Vitányi, 2003). A second drawback of Shannon information is that entropy
is a measure of statistical determinability of states; information is fully determined by the probability
distribution on states and unrelated to the representation, structure, or content of the individual states
themselves (Grünwald & Vitányi, 2003). For this current work, we require a notion of complexity that
can account for representations and functions, making Kolmogorov complexity better suited to the task.
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APPENDIX B COMPRESSING
A REPRESENTATION USING DISCRETE AUTO-ENCODERS

To measure compositionality as defined in Definition 2, we must first compress K(Z) using the program
form in Section 2. This involves finding a pw, W , and f that jointly minimize:

K(Z)= min
pw,W,f

K(pw)+K(W |pw)+K(f)+K(Z|W,f) (1 revisited)

= min
pw,W,f

K(pw)−
N∑

n=1

logpw(wn)+K(f)−
N∑

n=1

logN (zn;f(wn)).

While this is an intractable search problem, it can be turned into an easier optimization problem using
modern deep learning tools. In particular, we can minimize at least some of the terms in Equation (1) by
fitting a discrete auto-encoder to Z using a learned prior in the latent W -space, as illustrated in Figure B.1.
This auto-encoder consists of an encoder w=e(z) that maps the representation to a discrete latent space of
sentences, a latent prior pw(w), and a decoderN (z;f(w)) that outputs the sufficient statistics of a Gaussian
distribution in order to evaluate the likelihood of the original representation. In practice, the latent prior
pw(w) can be parameterized using an auto-regressive model such as a causal Transformer, which tends to
work well on language data. We can then train this discrete auto-encoder using the following loss function:

L(Z;e,pw,f)=
∑
z∈Z
−logpw(e(z))−logN (z;f(e(z))). (12)

The first term in this loss ensures thatW has high prior likelihood, and optimizes both the prior model pw as
well as the encoder e that produces the latent sentences. The second term in the loss ensures that Z has high
likelihood given W , and optimizes the decoder f as well as the encoder e so that they preserve information
about Z. Recall from Equation (7) that the negative likelihood of an object under some probability distribu-
tion is equal to its conditional Kolmogorov complexity given that distribution. As a result, minimizing the
loss in Equation (12) is equivalent to finding a pw, W , and f that jointly minimize K(W |pw)+K(Z|W,f).

Auto-regressive prior

Sentences Representation

pw(w )

−(z ; f (w ))
Z 𝒩 ∈Nℝ DW 𝒩 ×Nℝ M

Decoder

fe

EncoderRepresentation

Z 𝒩 ∈Nℝ D

𝒱 = ≈ log pw(W ) ≈ log p (Z | f (W ))
1. Fit a discrete auto-encoder with learned prior 2. Measure complexity terms

K (Z ) = K ( pw) + K (W | pw) + K ( f ) + K (Z |W, f )

Figure B.1: Estimating the complexity of a representation K(Z) by fitting a discrete auto-encoder
with learned latent prior. The encoder, prior, and decoder are jointly trained with a loss that maximizes
the likelihood of Z using sentences that have high prior likelihood pw(W). If pw and f are also regularized
to be simple functions, fitting this discrete auto-encoder is equivalent to finding a pw, W , and f that jointly
minimize K(Z).
To measure K(Z), we also need to minimize K(pw) and K(f). For this, two options present themselves:

1. Hope that the implicit simplicity bias of DNNs trained using SGD does a good enough job on
its own of finding solutions with low complexity (Blier & Ollivier, 2018).

2. Use additional regularization techniques that implicitly minimize the complexities of the models,
such as simple architectures, L1 or L2 weight penalties, modularity (Goyal & Bengio, 2022),
dropout (Hinton et al., 2012), periodic resetting Zhou et al. (2021), etc.

Regardless of which method is used, the complexities of the final trained models can be estimated using
a method called prequential coding (Blier & Ollivier, 2018), which we describe in Appendix G. Thus, we
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are able to estimate all of the constituent complexity terms of K(Z) in Equation (1). The main challenge
in this overall approach then becomes how to successfully train a discrete auto-encoder with a prior in
latent space, in a way that is both stable and scalable.

VQ-VAE The most popular method for training discrete auto-encoders is the Vector-Quantized
Variational Auto-Encoder (VQ-VAE) (Van Den Oord et al., 2017). While the latent prior in a VQ-VAE
is generally trained post-hoc, some work has managed to train the prior end-to-end along with the rest
of the model (Jones & Moore, 2020; Yasuda et al., 2021; Cohen et al., 2022). The main challenge with
VQ-VAEs is that they explicitly discretize in the latent space during training—which is an inherently
non-differentiable operation—and then attempt to approximate gradients using imperfect estimators
(Bengio et al., 2013; Jang et al., 2016). As a result, training is often unstable and fraught with degenerate
solutions that collapse in the latent space (Łańcucki et al., 2020).

Simplicial embeddings Another option, which avoids the difficulty of training with hard-discretization,
is to use so-called simplicial embeddings in the latent space (Lavoie et al., 2023). Simplicial embeddings
amount to soft attention: each vector “chunk” representing a word in the latent space is projected onto
|V| word embeddings followed by a softmax, and the weighted word embeddings are then summed at
each sentence position. The temperature of the softmax can then be gradually decreased over the course
of training such that the operation approaches a hard-discretization in the limit. As the operation is entirely
continuous and deterministic, it is easier to train using end-to-end gradient descent methods (although it may
become numerically unstable at low softmax temperatures). One challenge becomes how to define and train
the prior pw in this case, where W is in fact a sequence of continuous word embedding mixtures as opposed
to a sequence of discrete tokens. One possibility is to perform a hard-discretization of the latent before it is
passed to the prior, along with relevant gradient estimators (e.g. Bengio et al., 2013; Jang et al., 2016). While
this could make training more difficult, the encoder-decoder part of the model would at least remain entirely
continuous and deterministic. Another option is to define pw in continuous space, where the input is a
sequence of word embedding mixtures and the “next-token” targets are categorical distributions over words.

GFlowNets If we still wish to perform hard-discretization, but do not want to resort to imperfect gradient
estimators required for end-to-end training, Generative Flow Networks (GFlowNets) could be a promising
alternative (Bengio et al., 2021; 2023). GFlowNets can learn to sample some compositional discrete
object in proportion to a reward function. The reward function and GFlowNet can also be conditioned
on some input, and the reward function can be learned in alternation with the GFlowNet using expectation-
maximization (GFlowNet-EM) (Hu et al., 2023). In the case of a discrete auto-encoder, the encoder would
be a GFlowNet, while the decoder and prior would be the reward function. While this approach has
been used to train a discrete auto-encoder before (Hu et al., 2023), it comes with its own challenges. First,
GFlowNet-EM is not an end-to-end training procedure (no gradients flow from the decoder to the encoder),
which makes it more difficult to train. Second, while GFlowNets sample proportionally to their reward, our
ultimate goal is to maximize the reward (i.e., find sentences W that maximize the prior and reconstruction).
To do this, we will ultimately have to decay the temperature of the reward over the course of training in
order to settle to a final solution that minimizes the loss in Equation (12). Training GFlowNets with a
sparse reward, however, is more difficult due to exploration challenges (Atanackovic & Bengio, 2024).

Computational complexity If the discrete auto-encoder described in this section can be trained suc-
cessfully, then estimating representational compositionality is tractable, despite being defined theoretically
in terms of Kolmogorov complexities. Fitting the auto-encoder itself is tractable using modern machine
learning hardware. Then, to estimate K(pw) and K(f) we must use prequential coding (see Appendix G),
which amounts to fitting a neural network at varying dataset sizes. While fitting a neural network N times
(where N is the dataset size) is inefficient, it is nonetheless tractable, and can be approximated efficiently by
chunking the data into coarser sizes as we did in our experiments. There are also methods for computing pre-
quential coding online rather than retraining the model from scratch each iteration (Bornschein et al., 2022).

APPENDIX C ASSUMPTIONS IN COMPRESSING A REPRESENTATION

In laying out our framework for measuring K(Z) in Section 2, we made several key assumptions.

First, we assumed that the shortest program that outputs Z has a particular form. If it does not, then the
estimated K(Z) can be far greater than the true one. However, we argue that the assumed program form
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is safe for the kinds of representations that we are interested in and the kinds of insights we wish to gain
from estimating K(Z). Namely, we are interested in seeing if given neural representations share similar
properties to conscious human thought, which is believed to have a symbolic structure where each thought
is a composition of discrete concepts (Fodor, 1975). If a representation does not have this kind of structure,
then our method would detect it in the form of a high estimated K(Z), even if this is an overestimate
of the true Kolmogorov complexity due to incorrectly assuming the program form in Section 2.

Second, actually estimating K(Z) using Equation (1) requires a minimization over pw, W , and f . This
optimization approach assumes that the pw and f which minimize K(Z) are DNNs. While this can
seem unintuitive at first given the significant number of parameters in DNNs, it has been found that they
converge to solutions that are remarkably simple and compressible (Blier & Ollivier, 2018; Goldblum
et al., 2023; Sutskever, 2023; Rae, 2023), which likely explains their strong generalization abilities. We
therefore believe that for neural representations with sufficient complexity, the assumption that they can
be best compressed using DNNs is justified.

APPENDIX D EXAMPLES OF COMPOSITIONAL REPRESENTATIONS

To supplement and clarify the arguments in Section 3, it is easiest to gain further intuition for our definition
of compositionality through concrete examples of different hypothetical representations. For each, we
have strong intuitions about whether or not the representation is compositional, and we will see that our
definition agrees with—and indeed extends—these intuitions. We illustrate these examples in Figure D.1.
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Figure D.1: Examples of different representations and their compositionalities according to C(Z).
Example 1. A representation whose clusters lack any structure has semantics f that map w→z arbitrarily
using a lookup table, resulting in high K(f) and low C(Z). Example 2. A representation that is smooth
and continuous cannot be compressed as a function of discrete parts without incurring significant prediction
error, resulting in high K(Z|W,f) and low C(Z). Example 3. A representation that cannot express many
different things (thoughts, visual scenes, ideas, etc.), such as one that is sampled from a unimodal distribu-
tion, has low K(Z) and low C(Z). Example 4. A representation that can be described by assigning word
embeddings which are then processed using a simple operation (e.g., concatenation, as in disentanglement)
has low K(f) and high C(Z). Example 5. A representation whose semantics can be compressed using a
small number of simple and reusable modules has low K(f) and high C(Z). Example 6. A representation
whose semantics have a large number of symmetries, or equivariances, has low K(f) and high C(Z).

Example 1, ↓C(Z): f is a lookup table from w to z Consider a representation Z that is sampled from
a mixture of Gaussians, where the centroids are far apart but their locations lack any kind of structure (i.e.,
they are randomly distributed). To simplify things, let us assume that there are as many unique centroids
as there are possible sentences. In such a case, the semantics function f would identify each centroid
with a unique sentence and the resulting error K(Z|W,f) would be low. However, because these centroids
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lack any structure, f would have to define an arbitrary mapping from each sentence to its corresponding
centroid. In other words, f would function as a lookup table from w to z that does not leverage the
internal structure (i.e., words and their ordering) in the sentence to achieve a more compressed mapping.
The resulting description length of f would be equal to the size of the lookup table, which would grow
exponentially with the sentence size. f would be, in effect, a complex “hard-coded” mapping (in fact, the
most complex possible) withO(K(f))= |V|M , where M is the sentence length and |V| is the vocabulary
size. The resulting compositionality C(Z) would be extremely low.

Example 2, ↓C(Z): Z is smooth and continuous The above example considered a case where the
representation had discrete structure that could be accurately modeled by sentences, and the source of low
compositionality came from a high K(f). However, the compositionality can also be low if Z is inherently
continuous, in which case modeling it using a discrete W is at best an approximation via quantization.
In such a case, the error K(Z|W,f) would be high and the corresponding compositionality would be low.
Note that it might be possible to compress Z using a low-dimensional continuous code rather than discrete
sentences, from which an equivalent (perhaps even identical) definition of continuous compositionality
could be derived, but in this work we consider only compositions of discrete parts.

Example 3, ↓C(Z): Z is simple Most of the discussion thus far has focused on the denominator ofC(Z)
in Definition 2. However, a representation can also lack compositionality if the complexity of the numerator,
K(Z), is low. If Z were very low—say it were a constant, for instance—then it could be modeled using
a simple f that achieves low error K(Z|W,f). However, we would certainly not be tempted say that the
representation is compositional. In fact, it would be best compressed using a single word and an f that
outputs a constant, rather than using complex sentences and simple compositional rules. Compositionality
must therefore also increase with the expressivity of the representation, which is captured by the numerator
K(Z) in our definition. In cognitive science, where the scientific notion of compositionality has its origins,
expressivity is considered an essential component of compositionality; Chomsky (1956) famously argued
that natural language as a compositional system derives its power because it gives us “infinite use of finite
means”, or in the language of our definition high expressivity as a simple function of parts.

Example 4, ↑C(Z): f assigns an embedding to each word followed by a simple operation We now
turn to paradigmatic examples of high compositionality, beginning with the most intuitive. Consider once
again a representation Z that is sampled from a mixture of Gaussians like in Example 1, but this time
imagine that the centroids are arranged in a structured way. In particular, imagine that they are structured
such that each can be described as a concatenation of subcomponents that are shared across all centroids.
Now, the simplest f would be one that first assigns a vector embedding to each word such that it represents a
possible subcomponent of the centroid, and then concatenates the embeddings for all words in the sentence.
The complexity of f would then scale only linearly as a function of the number of words in the vocabulary
(assuming they are all necessary), because concatenation is a simple operation that takes a constant number
of lines of code. We would haveO(K(f))= |V|, which is independent of the sentence length, in contrast to
the arbitrary mapping in Example 1 that scaled asO(K(f))= |V|M . This is a substantial reduction in com-
plexity and increase in compositionality, and it comes from the fact that the words contribute independently
to the representation. This is a case of a perfectly disentangled representation, which in our theory is simply
an extreme case of compositionality, but intermediate cases are possible as well. For instance, the representa-
tion could be determined by interactions between pairs of words in the sentence, or it might be the case that
words largely contribute independently to the representation but that there is some small degree of context-
sensitivity, as in human language. Our theory unifies all of these cases under a single, succinct definition.

Example 5, ↑C(Z): f is modular As already explained in Section 2, a modular f is simpler to describe
and thus implies higher compositionality. To see why modular functions are more compressible, consider
a paradigmatic case: computer programs. When a computer program is written in such a way that it can be
refactored into a small number of functions and classes that are reused several times, the total length of the
program decreases substantially. Programs that are not written with modularity in mind tend to be much
longer and complex. Modular functions therefore tend to have far lower complexity because the modules
only need to be defined once, but can then be reused many times inside the function. In ML, modularity
is leveraged in a similar fashion. For instance, Goyal et al. (2021) introduces an architecture that consists
of N DNNs as well as a learned attention-based routing mechanism for how they communicate. Crucially,
these modules are leveraged by the routing mechanism in a context-dependent way, and each module can
be reused many times to process each individual input. This means that while the entire model is simple

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(small number of modules and simple routing mechanism), it is nevertheless highly expressive due to
the combinatorial way in which modules can be composed. Our definition explains how this expressivity
and compression endowed by modular functions formally relates to compositionality (Lepori et al., 2023;
Goyal & Bengio, 2022).

Example 6, ↑C(Z): f has many equivariances The connection between equivariance and compo-
sitionality is perhaps less obvious (Gordon et al., 2020), but it is a natural and intuitive consequence of
our definition. Equivariances (and invariances) are symmetries—sources of structure that decreases the
complexity of a function (Immer et al., 2022; Wilk et al., 2018; van der Ouderaa & van der Wilk, 2022). For
instance, convolutional layers have local connectivity and reuse weights across spatial locations, which both
reduces their description length and makes them equivariant to spatial translations. We can also consider lin-
ear equivariance as a special case that is easy to illustrate. If f is linearly equivariant to a particular operation
g in sentence-space, it means that f(g(w))=f(w)+vg, where vg is a constant vector that corresponds to
the equivariant change in the representation output by f . The difference in the function’s behaviour for two
different inputs,w and g(w), can therefore be compactly described by a single vector, whereas in the general
non-equivariant case the change in the function’s behaviour can be arbitrarily complex. In an extreme case,
if f can be completely described by a set of linear equivariances, then each w corresponds to a set of gi’s
applied to a constant “default” sentence, and f merely needs to encode a single vector for each of these gi’s
then sum those that apply to a particular input. The resulting function is very similar to the one described in
Example 4, where f applied a simple operation to a sequence of word embeddings in a sentence (in this case
vector addition). The function also bears similarities to the one described in Example 5 if we view the equiv-
ariances as modules. Similar arguments can be made for non-linear equivariance, where the complexity
K(f)would still be reduced, but to a lesser extent. In general, the more equivariances a function has and the
simpler those equivariances are, the lower the complexity K(f) and the higher the compositionality C(Z).

APPENDIX E RELATIONS BETWEEN
REPRESENTATIONAL COMPOSITIONALITY AND OTHER ML TOPICS

Compositional generalization One of the benefits of compositional representations is that they enable
better compositional generalization (Lake & Baroni, 2018). If a model is compositional with respect to
a set of features in its training data, it need not observe all possible combinations of those features in order
to generalize to novel ones (Schug et al., 2024; Wiedemer et al., 2024; 2023; Bahdanau et al., 2019; Mittal
et al., 2021; Hupkes et al., 2020; Jarvis et al., 2024; Lippl & Stachenfeld, 2024; Lachapelle et al., 2024).
For instance, if an image classifier’s representation is compositional with respect to foreground objects
and background scenes, then it should be able to correctly classify an image of “a cow on a beach” at
inference time after having only observed cows and beaches separately at training time.

In certain cases, compositionality is defined in terms of a model’s ability to compositionally generalize
compositionally (e.g., Jarvis et al., 2024; Wiedemer et al., 2024; 2023; Lippl & Stachenfeld, 2024).
However, while such definitions of compositionality can often provide theoretical guarantees on
generalization, they also place strong assumptions on either the representation, the downstream model, or
both. For instance, Wiedemer et al. (2023) assumes that the representation is perfectly disentanglement with
respect to some underlying task constituents. Similarly, Lachapelle et al. (2024) assumes disentanglement
and that the downstream function using the representation is additive with respect to the the disentangled
factors, and Lippl & Stachenfeld (2024) assumes disentanglement and “conjunction-wise additivity”.
Wiedemer et al. (2024) takes from the object-centric learning literature and defines a compositional
representation as one that is structured into distinct “slots” (Locatello et al., 2020), and then requires that
the downstream model using these slots is additive.

In contrast, our definition of representational compositionality is far more general: it defines compositional-
ity in terms of compression, which abstracts across the architecture producing and using the representation,
learning details, data requirements, and particular representational format. For instance, disentangled
and slot-wise representations are particular cases of representational compositionality in terms of their
simple semantics K(f) (see Appendix D), but these are rigid assumptions to build into a model that might
negatively impact performance. In contrast, representational compositionality has the potential to explain
the success of more varied and flexible methods in terms of compositional generalization, such as loss
regularizers or simply scaling dataset and model size.
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As a consequence of its generality, it may be difficult to formally characterize the relationship between
representational compositionality and compositional generalization with theoretical guarantees, and we did
not attempt to do so in this paper. Nevertheless we hypothesize that representations with high C(Z) should
enable better compositional generalization. This is because the representation of constituent parts is system-
atic: the semantics mapping constituent parts to the representation is a simple function that will generalize
better to novel part combinations (i.e., it will assign them a meaningful rather than arbitrary representation,
which downstream functions should be able to leverage). One of our central goals for future work is to
test this hypothesis empirically, where we measure the compositionalities of many model representations
using our definition and then correlate this score with the models’ compositional generalization abilities.

Generative models in latent space In addition to compositional generalization, representational
compositionality also relates to generative models that sample in latent space. In particular, once a
compositional representation is learned, efficient and generalizable generative models can be constructed
by sampling in the space of discrete sentences, rather than in the high-dimensional continuous latent
space directly. This is because the semantics function f of a representation with high C(Z) is simple,
and can generalize to novel sentences that the generative model might produce. Empirically, modeling and
sampling from discrete distributions is often easier and more effective, especially for complex multi-model
distributions (Razavi et al., 2019).

To give a concrete example, imagine that a vision model has been pretrained on some task like object
classification and produces latent representations with high C(Z). Using this representation, we can train
a generative model of the form z∼ pw(w)N (z;f(w)) described in Section 2, and then generate novel
samples for downstream visual reasoning tasks directly in the abstract latent space, rather than in the
low-level image space. This is akin to thought and reasoning is believed to work in human cognition,
which is a generative process believed to exhibit a discrete language-like structure (Fodor, 1975; Dehaene
et al., 2022; Lake et al., 2017; Bengio, 2017; Goyal & Bengio, 2022).

APPENDIX F INDUCTIVE BIASES FOR REPRESENTATIONAL COMPOSITIONALITY

In virtue of being formally precise and quantitative, representational compositionality can inspire the
design of novel inductive biases for compositional representations in ML models. In this section, we
outline two approaches that we believe have promise: one that directly optimizes for C(Z), and another
that indirectly attempts to increase it through task and data constraints. In addition, C(Z) can be used to
validate existing inductive biases for compositionality (e.g., architectures for object-centric representations
Locatello et al., 2020).

Regularizing K(Z|W) The most direct way to learn representations with high C(Z) is to regularize
the denominator K(Z|W) so that the representations become more verbalizable, as suggested in Bengio
(2017) and Goyal & Bengio (2022). Definition 2 says that compositional representations are (a) expressive
and (b) easily described using sequences of discrete symbols—in other words, that they are verbalizable
like human thoughts that can largely be conveyed in natural language. Expressivity can be obtained simply
by training on a sufficiently complex task; for example, representations for image classification need to be
expressive so that they can discriminate different objects. Task pressure alone, however, does not guarantee
that the representation will be verbalizable. This second desiderata can be achieved, however, through
a prior that regularizes the model’s loss function.

Say that some model gθ produces a representation Z=gθ(X) of inputs X. Verbalization corresponds to
minimizing the denominator in Definition 2: K(Z|W)=K(f)+K(Z|W,f). Crucially, W and f here are
obtained from the shortest program that outputs Z as described in Section 2, which can be approximated
by optimizing a discrete auto-encoder who’s training scheme is sketched out in Appendix B. To make
the dependence of W and f on Z more explicit here, we will use the superscripts WZ and fZ . If we wish
to increase verbalizability (and therefore compositionality), we therefore need to perform some update
update θ→θ′ such that:

K(fZ′
)+K(Z′|WZ′

,fZ′
)<K(fZ)+K(Z|WZ,fZ), (13)

where Z′ = gθ′(X). One option for accomplishing this is by backpropagating the reconstruction error
of the discrete auto-encoder, K(Z|WZ,fZ). This approach assumes that the semantics before and
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after the update are unchanged (i.e., fZ′
=fZ), so that the only thing that needs to be considered is the

auto-encoding reconstruction error K(Z|WZ,fZ)→K(Z′|WZ′
,fZ). While this assumption will be

violated in practice, it may hold approximately such that regularizing reconstruction error alone is sufficient
to increase compositionality.

In sum, the approach described here consists of training a DNN gθ(X) on some task as usual, but with
an additional loss: a discrete auto-encoder is fit to a layer in the model which we want to be more
compositional, and the θ is regularized to minimize the loss of this discrete auto-encoder. As a result, in
addition to subserving task demands, the representation is optimized to be more compressible as a function
of constituent discrete parts (i.e., it is verbalizable).

Multi-task training A common observation in deep learning is that the model representations after
training tend to be surprisingly simple despite the significant number of parameters in the network (Blier
& Ollivier, 2018), as evidenced by their strong iid generalization abilities. However, absent additional
constraints (e.g., Lachapelle et al., 2024), these same representations do not enable compositional out-
of-distribution generalization, suggesting that they lack sufficient compositional structure. One hypothesis
is that while the simplest representation used to solve a single task may not be compositional, the simplest
representation used to solve many related tasks might be. An analogy can be made to computer programs.
When a program is written for a single narrow purpose, writing it in a compositional manner that reuses
shared functions and classes might in fact result in bloat that increases the total program length. However,
if these same functions and classes constitute a useful library that can be leveraged to write other programs
as well, significant compression might be possible because the library is shared across all programs.

In the terminology of C(Z), learning the simplest representation that subserves many different related
tasks might result in low K(Z|W) and high compositionality because the semantics f are shared across
these tasks and therefore lead to high compression; only K(pw) grows to accommodate additional tasks,
analogous to how a programming library would be used in novel ways to write a new program. Since
DNNs already tend to learn simple representations (Blier & Ollivier, 2018), our definition suggests that
ordinary training in certain multi-task settings (those that reuse certain task components) might be a simple
method for learning compositional representations. Indeed, this has long been hypothesized and observed
empirically (Driscoll et al., 2024; Johnston & Fusi, 2023; Lachapelle et al., 2023; Vafidis et al., 2024a;
Maziarka et al., 2022; Vafidis et al., 2024b), especially in the case of disentangled representation learning,
and could be verified more formally using our definition of representational compositionality.

APPENDIX G PREQUENTIAL CODING

While the Kolmogorov complexity of a model K(pθ) is difficult to measure directly, it turns out that
we can jointly estimate K(D|pθ)+K(pθ) in cases where the model was fit to the data using a learning
algorithm, as is the case in ML. From Equation (6), we have that:

K(D|pθ)+K(pθ)=K(D,pθ). (14)

Instead of trying to estimate the terms on the LHS directly, we can estimate the RHS by finding the shortest
program that jointly compresses both the dataset and the model, which we turns out to be easier through
a compression algorithm called prequential coding illustrated in Figure G.1 and described below.

Prequential coding first assumes that we have access to a learning algorithm T which was used to fit
the model pθ. For instance, pθ=T(D) might correspond to a randomly initialized DNN architecture fit
to D using SGD with some set of hyperparameters. Then, consider an ordering of iid datapoints D=
{D1,...,DN}, and denote D1:i={D1,...,Di}. In prequential coding, the first datapoint D1 is hard-coded
in an uncompressed form, which takes a large number of bits. The learning algorithm T is then used to train
a model pθ1 =T(D1) on this single observation. Because the model is trained on only one datapoint, it will
not be very accurate; however, it should be better than a random model that has seen no data at all. Because
of the relationship between probabilistic generative models and compression described in Appendix A,
we can use this model to specify the next datapoint D2 in a compressed form using only−log2pθ1(D2)
bits. At this point, we have encoded 2 datapoints, on which we can train a new model pθ2 =T(D1:2).
Having seen more data, this model should assign a higher likelihood to a new datapoint D3, which we can
specify in compressed form using−log2pθ2(D3) bits. This process repeats until the entire dataset has been
generated. At this point, the model pθ can be obtained simply by applying the learning algorithm to the
complete dataset pθ=T(D), since we assumed by construction that this was where the model came from.
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# Prequential coding to compress D
def construct_D_and_p(T):
  D = []    # Starting off without any data
   for _ in range(0, N):
        # Train a model on all the data so far
        p = T(D)

        # Specify the (encoded) next datapoint
        D_next_encoded = [...]  # K = -log(p(D_next))

        # Extend the dataset after decoding with p
       D += decode(D_next_encoded, p)

    return D, T(D)

Lpreq (D ; T ) =
N−1
∑
i=0

− log2 pθi (Di+1)

Data index i

−log2 pθi
(Di+1)

Generalization  Simplicity⟺

a.

K ( pθ )
K (D | pθ )

b.

Figure G.1: Illustration of prequential coding, a method for estimating K(D,θ)=K(D|pθ)+K(pθ)
using pθ’s learning algorithm T . a. Pseudocode of the prequential coding program that outputs bothD and
pθ. The program jointly compresses D and pθ by incrementally training a model using T on increasingly
more data, each time efficiently encoding the next datapoint using the model obtained from all previous
ones. The primary sources contributing to total program length come from specifying each next datapoint
Di+1 in compressed form using the current model pθi , which takes −log2pθi(Di+1) bits. b. A visual
illustration of the number of bits needed to specify each next datapoint given the model that was trained on
all previous ones. As the learner T sees more data, it outputs models that assign a higher likelihood to new
observations, and can thus better compress them. The total prequential code length Lpreq(D;T) is given by
the area under the curve. The area underneath the curve’s last point is equal to the number of bits needed
to encode the entire dataset given the final model, K(D|pθ). Since Lpreq(D;T)=K(D|pθ)+K(pθ), the
area above the curve’s last point is equal to K(pθ). Prequential coding formalizes the intuition that simple
models generalize better, thus quickly decreasing their prediction error for the next datapoint.

The total number of bits that it takes to jointly compress D and pθ using prequential coding is the sum
of how many bits it takes to specify each next datapoint using a model that was trained on all previous
ones. Visually, it is the area under the prequential coding curve shown in Figure G.1b. We can call the
total length of this compression program the prequential code length Lpreq(D;T) (Blier & Ollivier, 2018):

Lpreq(D;T)=

N−1∑
i=0

−log2pθi(Di+1) (15)

Lpreq(D;T)≥K(D,pθ)=K(D|pθ)+K(pθ). (16)

Strictly speaking, Lpreq(D;T) is an upper-bound on K(D,pθ): the prequential coding algorithm is one
way to jointly compress the data and model, but it is not necessarily the optimal way. The upper-bound
is tight in practice, however, if (a) the final model pθ does a good job of compressing the data (i.e.,
K(D|pθ)≪K(D)) and (b) passing data to the learner T through the prequential coding algorithm is an
effective strategy for compressing the model. Regarding this second point, consider how the model is
obtained through prequential coding. Data is gradually transmitted to the learner T , with each additional
datapoint requiring fewer bits to encode. If the speed of improvement in predicting the next datapoint is
fast as a function of the amount of data observed, it means that the learner is effectively able to converge to
the final model using only a small amount of data that takes few bits to encode, and thus that the model has
low complexity. Concretely, when prequential coding is a good algorithm for jointly compressing the data
and model, then Lpreq(D;T)≈K(D,pθ) and the model complexity is given by (Blier & Ollivier, 2018):

Lpreq(D;T)≈K(D|pθ)+K(pθ)

K(pθ)≈Lpreq(D;T)−K(D|pθ). (17)

Assuming that the model’s error decreases monotonically with the size of the training dataset, K(D|pθ) is
equal to the area under the lowest point of the prequential coding curve in Figure G.1b. The area above this
point is therefore the complexity of the model K(pθ). This relates Kolmogorov complexity to intuitions
about generalization in ML: the simpler a model is, the quicker it generalizes from limited amounts of
training data.
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APPENDIX H SYNTHETIC REPRESENTATIONS — EXPERIMENTAL DETAILS

H.1 LOOKUP TABLE REPRESENTATIONS

Generating the representations We generated our synthetic lookup table representations Z (and their
ground-truth sentences W ) according to the program summarized in Algorithm 1. In short, the program
does the following:

• Generate a lookup table: We begin by constructing a lookup table from words (or n-grams)
to their embeddings. This table has dimensions (Kq, D

M×q ), where K is the vocabulary size,
q is our disentanglement factor (i.e., the size of the n-grams), and D is the desired dimensionality
of Z. We use the Skellam distribution to generate lookup table entries, which is a discrete
approximation of a Gaussian distribution with precision λ. This discretization is necessary
because a continuous distribution would cause the correction term K(Z|W,f) to be infinite.

• Sample W : We generate random integer sentences uniformly with shape (N,L), where N
represents the number of samples and L denotes the number of words per sentence. Each integer
in W corresponds to a word from our vocabulary of size K.

• Decode W to get Z: For each sentence w∈W , we perform the following steps to obtain the
corresponding representation sample z∈Z:

– We divide the sentence into consecutive L/q subsequences, each representing an n-gram
(or a word if q=1).

– For each subsequence, we retrieve the corresponding embedding from the lookup table.
– We concatenate these embeddings to form the complete representation sample z for the

sentence.
• Add noise: We then add Gaussian noise (discretely approximated by a Skellam distribution

with mean 0 and standard deviation r for the same reason as above) to the representation. This
introduces stochasticity to our representations that cannot easily be modeled with discrete parts.
The final representation Z has shape (N,D).

Calculating the compositionality To compute representational compositionality C(Z) according to
Definition 2, we need to calculate the following terms: K(pw), K(W |pw), K(f), and K(Z|W,f). We
show how to do this below for a lookup table representation:

• K(pw): The language pw in this case a uniform categorical distribution over integers in
range (0,K − 1) at each sentence position l ∈ {0..(M − 1)}, where K is the vocabulary
size and M is the sentence length. To specify an integer u, we need log2u bits, so we have
K(pw) = log2K+ log2M . There is also a complexity term associated with describing the
function for the uniform distribution itself, but we ignore this because it is a small constant.

• K(W |pw): As described in Section 2, K(W |pw) is simply equal to −
∑N

i=1log2pw(wi). To
derive pw(wi) for each sentence wi∈W , we notice that each wi is composed of L words, each
sample from a uniform categorical distribution over (0,K−1). Thus pw(wi)=

1
KM for each sen-

tence wi. In total, then, K(W |pw)=−
∑N

i=1log2pw(wi)=−
∑N

j=ilog2
1

KM =NM log2K bits.

• K(f): In this case, the function that maps sentences to their meanings is mainly composed of the
lookup table, with some additional small constant complexity to describe how to use the lookup
table. To describe each number a in the lookup table, we need−log2p(a) bits, where p is the PMF
of the distribution these numbers were sampled from. In our case, this distribution is the Skellam
distribution with a mean of 0, a standard deviation of 1, and a precision of λ. We therefore have
K(f)=−

∑
a∈lookup tablelog2p(a). Given that the size of the lookup table is (Kq× D

M/q )), the
complexity of the semanticsK(f) grows linearly inD, polynomially inK, and exponentially in q.

• K(Z|W,f): This term comes from imperfect reconstructions of Z. It can be thought of as the
number of bits needed to correct the errors in these imperfect reconstructions. In these lookup
table representations, these imperfect reconstructions come from the noise added to Z when it is
sampled, which cannot be recovered since the lookup table does not contain it. To describe the cor-
rections, we therefore just need to describe this noise. Each noise sample ϵ can be described using
−log2q(ϵ) bits where q is the PMF of the distribution the noise was sampled from. In our case this
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Algorithm 1: Sampling Z using a lookup table program
Input:

number of samples N
sentence length M
vocabulary size K
embedding dimension D
disentanglement factor q
quantization precision λ
noise ratio r

// Generate lookup table:
lookup table←skellam sample(µ=0,σ=1,λ=λ,shape=(Kq, D

M/q ))

// Sample W:
W←random integer(0,K−1,shape=(N,M))

// Decode W to get Z:
Z← []
for each w in W do

z← []
for position=0 to (M/q)−1 do

entry←(w[position×q :position×q+q−1])
z.append(self.lookup table[entry])

end for
z←concatenate(z)
Z.append(z)

end for
Z←stack(Z)

// Add noise:
if r>0 then

noise←skellam sample(µ=0,σ=r,λ=λ,shape=Z.shape)
Z←Z+noise

end if
return Z

is a Skellam distribution with a mean of 0, standard deviation of r, and precision of λ. If we let E
be the matrix of all noises added form Z, we have that K(Z|W,f) is equal to−

∑
ϵ∈Elog2q(ϵ).

Combining these complexity terms together, the final expression for C(Z) following Definition 2 is:

C(Z)=
K(Z)

K(Z|W)
=
K(pw)+K(W |pw)+K(f)+K(Z|W,f)

K(f)+K(Z|W,f)

=
log2K+log2M+NM log2K−

∑
a∈lookup tablelog2p(a)−

∑
ϵ∈Elog2q(ϵ)

−
∑

a∈lookup tablelog2p(a)−
∑

ϵ∈Elog2q(ϵ)

Experiment parameters We used the following parameter values to generate representations (except
when sweeping one parameter while keeping the others constant): N=1000, M=16, K=10, D=64,
q=1, λ=0.01, r=0.01. To sweep over sentence length, we varied M from (1,D), only keeping values
where D was divisible by M . To sweep over vocabulary size, we varied K from (2,100). To sweep over
representation dimensionality, we varied D from (M,2M,...,10M). To sweep over disentanglement, we
varied q from (1,M), only keeping values where M was divisible by q. For each setting of experiment
parameters, we generated representations across 10 different random seeds.
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H.2 CONTEXT-FREE GRAMMAR REPRESENTATIONS

Generating the representations We generated our context-free grammar representations Z (and their
ground-truth sentences W ) according to the following procedure:

• Generate a context-free grammar: Our context-free grammars consist of exclusively binary
production rules that combine two child non-terminals into a parent non-terminal. We define a
vocabulary of size K and evenly assign each word to one of T possible base part of speech types
that serve as the first non-terminal symbols in the context-free grammar. We call these T first
non-terminals “terminal parts of speech”. We algorithmically generate the grammar in a way that
depends on two parameters: the width and the depth. The depth refers to the number
of levels in the parse tree (above the parts of speech) that have unique non-terminal symbols which
can only exist at that level. The width refers to the number of unique non-terminal symbols
defined at each level of depth. At any given level of depth, we generate a production rule for all
possible combinations of non-terminals at that level, each of which produces one of the possible
non-terminals at the next level (we evenly distribute outputs across these possible non-terminals at
the higher level). For arbitrarily long sentences to still have valid parses despite the finite depth of
our grammar, we define additional recursive production rules that take non-terminals at the highest
level of the grammar and produce one of those same non-terminals. To provide additional clarity
for how we generated these grammars, we give an example below for T =5, width=2, and
depth=5 (we exclude the vocabulary for brevity). In this grammar, the terminal parts of speech
are denote by the prefix “T ” and other non-terminals are denoted by the prefix “r[depth level] ”.

s t a r t : r 2 1 | r 2 2
r 0 1 : T 1 ” ” T 2 | T 2 ” ” T 3

| T 3 ” ” T 4 | T 4 ” ” T 5 | T 5 ” ” T 1
r 0 2 : T 1 ” ” T 3 | T 2 ” ” T 4

| T 3 ” ” T 5 | T 4 ” ” T 1 | T 5 ” ” T 2
r 1 1 : r 0 1 ” ” r 0 1 | r 0 2 ” ” r 0 1
r 1 2 : r 0 1 ” ” r 0 2 | r 0 2 ” ” r 0 2
r 2 1 : r 1 1 ” ” r 1 1 | r 1 2 ” ” r 1 1

| r 2 1 ” ” r 2 1 | r 2 2 ” ” r 2 1
r 2 2 : r 1 1 ” ” r 1 2 | r 1 2 ” ” r 1 2

| r 2 1 ” ” r 2 2 | r 2 2 ” ” r 2 2

• Sample W : We generate random integer sentences of length M based on a transmission
sentence defined over terminal parts of speech. Denote a terminal part of speech by t∈ 1..T .
A sentence w always randomly starts from a word that has either t= 1 or t= 2 with equal
probability. Permissible transitions to the next word’s terminal part of speech are ti+1←ti+1
or ti+1←ti+2, which we sample between with equal probability (we also wrap ti+1 so that it
remains in range 1..T ). Given a sampled terminal part of speech at a location in w, we randomly
sample a word that has been assigned that terminal part of speech.

• Semantics f: The representation is assigned a dimensionality D. Each word in the vocabulary is
given a D-dimensional embedding by sampling from a Skellam distribution, which is a discrete
approximation of a Gaussian distribution, using µ=0, σ=1, and quantization precision λ. For
each production rule i in the grammar, we define a linear mapping Ai ∈R2D×D with values
sampled from a Skellam distribution using µ=0, σ=1, and quantization precision λ. Given
a sentence w, the semantics function f is defined by the following steps:

– Parse w using Earley parser (Earley, 1970) implemented with the Lark Python package.
– Retrieve the embedding for each word in w.
– Hierarchically apply the function [x1,x2]Ai at each node in the parse tree to obtain a node

embedding, where [x1,x2] are the concatenated embeddings of the child nodes and Ai is
the linear transform of the production rule at the node. The embedding of the root node
is taken to be z for the sentence.

• Add noise: We then add Gaussian noise (discretely approximated by a Skellam distribution
with mean 0 and standard deviation r) to the representation. This introduces stochasticity to
our representations that cannot easily be modeled with discrete parts. The final representation
Z has shape (N,D).
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Calculating the compositionality To compute representational compositionality C(Z) according to
Definition 2, we need to calculate the following terms: K(pw), K(W |pw), K(f), and K(Z|W,f). We
show how to do this below for a context-free grammar representation:

• K(pw): The language pw in this case is defined by a terminal part of speech for each vocabulary
item and a binary matrix of permissible transitions between terminal parts of speech. Defining
the terminal part of speech for each vocabulary item takes log2T bits, and we have K vocabulary
items. The binary transition matrix is of shape (T+1)×T (where the +1 is for the grammar’s
start symbol), and so takes T(T+1) bits to define. The total Kolmogorov complexity of
the language (ignoring code of a constant complexity that doesn’t scale with K or T ) is therefore
K(pw)=Klog2T+T(T+1).

• K(W |pw): As described in Section 2, K(W |pw) is simply equal to −
∑N

i=1 log2 pw(wi).
Since pw is defined by a transition matrix over terminal parts of speech, and for each terminal
part of speech each word having that terminal part of speech has equal probability, we have
that pw(wi) =

∏M
m=1

1
|t(wi,m−1)| where t(·) is the set of all permissible next words wi,m

that the previous word wi,m−1 can lead to based on the transition matrix between terminal
parts of speech, and wi,0 denotes the grammar’s start symbol. We therefore have that
K(W |pw)=−

∑N
i=1log2pw(wi)=−

∑N
j=i

∑M
m=1log2

1
|t(wi,m−1)| bits.

• K(f): The semantics are defined by the parser, the production rule operations (linear maps),
and the word embeddings. Both the parsing algorithm and the production rule operations scale in
complexity as a function of the number of production rules in the grammar, so we ignore the pars-
ing algorithm’s complexity and only consider the production rules and word embeddings as the
scaling behaviour is the same. To describe each number in the word embedding table a, we need
−log2p(a) bits, where p is the PMF of the distribution these numbers were sampled from. In our
case, this distribution is the Skellam distribution with a mean of 0, a standard deviation of 1, and
a precision of λ. The complexity of the embedding table is therefore−

∑
a∈embedding tablelog2p(a).

Given that the size of the embedding table is (K×D)), the complexity of the embedding table
grows linearly in both K and D. To describe each production rule i, we must describe a matrix of
shape 2D×D. Each number in this matrix takes−log2p(v) bits to encode, where p is the PMF
of the distribution these numbers were sampled from. In our case, this distribution is the Skellam
distribution with a mean of 0, a standard deviation of 1, and a precision of λ. The total complexity
of all production rules is therefore −

∑
i∈num rules

∑
(r,c)∈2D×D log2p(Ai,(r,c)). We therefore

have that K(f)=−
∑

a∈embedding tablelog2p(a)−
∑

i∈num rules
∑

(r,c)∈2D×Dlog2p(Ai,(r,c)) bits.

• K(Z|W,f): This term comes from imperfect reconstructions of Z. It can be thought of as the
number of bits needed to correct the errors in these imperfect reconstructions. In these lookup
table representations, these imperfect reconstructions come from the noise added to Z when it is
sampled, which cannot be recovered since the lookup table does not contain it. To describe the cor-
rections, we therefore just need to describe this noise. Each noise sample ϵ can be described using
−log2q(ϵ) bits where q is the PMF of the distribution the noise was sampled from. In our case this
is a Skellam distribution with a mean of 0, standard deviation of r, and precision of λ. If we let E
be the matrix of all noises added form Z, we have that K(Z|W,f) is equal to−

∑
ϵ∈Elog2q(ϵ).

Combining these complexity terms together, the final expression for C(Z) following Definition 2 is:

C(Z)=
K(Z)

K(Z|W)
=
K(pw)+K(W |pw)+K(f)+K(Z|W,f)

K(f)+K(Z|W,f)

=

Klog2T+T(T+1)−
∑N

j=i

∑M
m=1log2

1
|t(wi,m−1)|

−
∑

a∈embedding tablelog2p(a)−
∑

i∈num rules
∑

(r,c)∈2D×Dlog2p(Ai,(r,c))−
∑

ϵ∈Elog2q(ϵ)

−
∑

a∈embedding tablelog2p(a)−
∑

i∈num rules
∑

(r,c)∈2D×Dlog2p(Ai,(r,c))−
∑

ϵ∈Elog2q(ϵ)

Experiment parameters We used the following parameter values to generate representations (except
when sweeping one parameter while keeping the others constant): N=1000, M=16, K=100, D=10,
T =5, width=3, depth=2, λ=0.01, r=0.01. To sweep over sentence length, we varied M from
(1,D), only keeping values where D was divisible by M . To sweep over grammar width, we varied
width from (1,4). To sweep over grammar depth, we varied depth from (1,4). For each setting of
experiment parameters, we generated representations across 10 different random seeds.
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APPENDIX I EMERGENT LANGUAGES — EXPERIMENTAL DETAILS

Dataset construction To obtain emergent languages from multi-agent reinforcement learning in a
simple object reference game, both with and without iterated learning, we used the code base from Ren
et al. (2020), found at https://github.com/Joshua-Ren/Neural_Iterated_Learning.
Objects consisted of 2 attributes with 8 possible discrete values each, for a total of 82=64 possible objects.
Sentences similarly were of length 2 and had a vocabulary size of 8. We used the default values in Ren
et al. (2020) for all model and training hyperparameters (refer to their associated code base for details),
but reserved no held-out objects for separate validation. After training, we generated 50 sentences from
the speaker agent for each unique object, giving us WL and Z, respectively. The resulting size of these
datasets were thus 50×82=3200.

Estimating compositionality Estimating the compositionalities of these different emergent language
systems CL(Z) requires estimates of the numerator K(Z) and denominator K(Z|WL). Both with and
without iterated learning, Z consisted of the same enumeration over all possible discrete symbolic objects
O. Each z∈Z can therefore be represented using a single integer indexing the object, where these integers
range from {1..|O|} and therefore each require log2(|O|) bits to encode. Summing these bits over all
objects gives a total of K(Z)= |O|log2(|O|).
We estimated K(Z|WL) for each language using prequential coding (see Appendix G). The model
architecture used for prequential coding was an MLP with 2 hidden layers of size 256. Each word in WL

embedded into a 64-dimensional vector, and these concatenated embeddings were the input to the MLP.
The MLP output logits over object values for each attribute. To estimate prequential code lengths more
efficiently and avoid having to retrain the model N times (where N is the dataset size), we incremented
the size of the dataset by chunks of size 50 at a time. We used the Adam optimizer with a learning rate
of 1×10−3 to train the model at each iteration of prequential coding. We reserved 400 datapoints for
a separate validation set that was used for early stopping at each iteration of prequential coding.

APPENDIX J NATURAL LANGUAGES — EXPERIMENTAL DETAILS

Dataset construction We obtained English sentences from captions that were used to describe images
in the Common Objects in Context (COCO) dataset (COCO, 2024), downloaded from Hugging Face.
The reason for using a dataset of image captions was that we expected these captions to use common
words and simple sentence structures, given their grounding in visual stimuli. For each image, the dataset
contained two independent captions, and we kept only the first. This gave us a total of 414,010 English
sentences. We then translated each sentence to French, Spanish, German, and Japanese using a large
open-source language model with 3.3 billion parameters (Costa-jussà et al., 2022). We visually inspected
several of the French, German, and Japanese sentences (no authors spoke Spanish) to make sure the
translations were reasonable, and we found them to be of high quality. These sentences constituted the
WL’s for our experiments. We obtained proxies for the “meanings” Z of these sentences by passing them
through a large (278 million parameter), pretrained, multilingual sentence embedding model that output
a fixed-size vector for each sentence (Reimers & Gurevych, 2020). Both the translation model and the
sentence embedding model were obtained from Hugging Face.

Estimating compositionality Estimating the compositionalities of these different language systems
CL(Z) requires estimates of the numerator K(Z) and denominator K(Z|WL). While we did not estimate
K(Z), we assumed that it was approximately equal among languages. This is a common assumption
in linguistics, where languages appear to be equivalent in their expressive power to express ideas, refer
to objects, etc. Fixing the numerator K(Z) to some (unknown) constant shared among languages allowed
us to assess their relative compositionalities by estimating only the denominator K(Z|WL). We estimated
K(Z|WL) for each language using prequential coding (see Appendix G).

The model architecture used for prequential coding was the same as the one used to generate Z (Reimers
& Gurevych, 2020). Learning a significant number of word embeddings from only≈400,000 samples
would have been difficult however. We therefore used the original model’s pretrained word embeddings
and only computed prequential code length by resets of the model’s downstream weights, which encode
the semantics of the grammar rather than the word meanings. Strictly speaking, then, we only estimated
K(Z|embeddings(WL)). To estimate prequential code lengths more efficiently and avoid having to
retrain the model≈400,000 times, we incremented the size of the dataset in chunks. Chunk boundaries
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were selected on a base-10 logarithmic scale from 1,000 to N datapoints (the full size of the dataset), with
15 interval boundaries. A logarithmic scale was used because we observed that next-datapoint prediction
error as a function of dataset size changed more quickly in low-data regimes and more slowly in high-data
regimes. We could therefore more accurately estimate the true prequential coding curve using a logarithmic
chunking scale that had higher resolution in low-data regimes. We used the Adam optimizer with a learning
rate of 1×10−4 to train the model at each iteration of prequential coding. We reserved 10,000 datapoints
for a separate validation set that was used for early stopping at each iteration of prequential coding.

Limitations Our approach for measuring the compositionalities of real-world language systems has
several limitations that should be taken into account when judging the results. First, the translation model
that we used may not have been trained on equal amounts of text from the different languages we studied,
which could have lead to lower quality translations for some languages compared to others. Similarly,
the multilingual sentence embedding model that we used may have not been trained on equal amounts
of data from the different languages, leading to lower quality embeddings for some languages compared
to others which could have impacted the quantity and accuracy of “true” sentence meaning captured in
Z. Indeed, for these reasons we did not include the original English language sentences and embeddings
in our experiments (we thought it very likely that the sentence embedding model had been trained on
far more English text compared to other languages). Finally, the use of pretrained sentence embeddings
as a proxy for sentence meaning Z is likely flawed. The sentence embedding model that we used is trained
with invariance-based self-supervised methods, and the resulting representations are unlikely to capture
the full scope meaning that would be represented in human brains processing these sentences.
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