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Abstract

Graph neural networks (GNNs) are recognized for their strong performance across
various applications, with the backpropagation (BP) algorithm playing a central
role in the development of most GNN models. However, despite its effectiveness,
BP has limitations that challenge its biological plausibility and affect the efficiency,
scalability and parallelism of training neural networks for graph-based tasks. While
several non-backpropagation (non-BP) training algorithms, such as the direct
feedback alignment (DFA), have been successfully applied to fully-connected and
convolutional network components for handling Euclidean data, directly adapting
these non-BP frameworks to manage non-Euclidean graph data in GNN models
presents significant challenges. These challenges primarily arise from the violation
of the independent and identically distributed (i.i.d.) assumption in graph data
and the difficulty in accessing prediction errors for all samples (nodes) within the
graph. To overcome these obstacles, in this paper we propose DFA-GNN, a novel
forward learning framework tailored for GNNs with a case study of semi-supervised
learning. The proposed method breaks the limitations of BP by using a dedicated
forward training mechanism. Specifically, DFA-GNN extends the principles of
DFA to adapt to graph data and unique architecture of GNNs, which incorporates
the information of graph topology into the feedback links to accommodate the
non-Euclidean characteristics of graph data. Additionally, for semi-supervised
graph learning tasks, we developed a pseudo error generator that spreads residual
errors from training data to create a pseudo error for each unlabeled node. These
pseudo errors are then utilized to train GNNs using DFA. Extensive experiments
on 10 public benchmarks reveal that our learning framework outperforms not
only previous non-BP methods but also the standard BP methods, and it exhibits
excellent robustness against various types of noise and attacks.

1 Introduction

As a class of neural networks (NNs) specifically designed to process and learn from graph data,
graph neural networks (GNNs) [Zhou et al., 2020, Wu et al., 2020] have gained significant popularity
in addressing graph analytical challenges. They have demonstrated outstanding success in various
applications, including recommendation systems [Wu et al., 2022], drug discovery [Xiong et al., 2021]
and question answering [Yasunaga et al., 2021]. The impressive accomplishments of GNNs, as well
as other neural network models, are largely attributed to the backpropagation (BP) algorithm [Hecht-
Nielsen, 1992], which has emerged as the standard technique for training deep neural networks.
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Figure 1: Illustrations of BP, FF, FORWARDGNN and proposed DFA-GNN.

The backpropagation algorithm adjusts neural network weights based on the loss between the
prediction and the ground truth, and allows the network to learn and improve over time. However,
despite its effectiveness, BP draws concerns on its biological plausibility for two main reasons [Hinton,
2022, Lillicrap et al., 2016]: (1) it uses the same weights in reverse order for both feedforward
and feedback paths, creating the weight symmetry problem [Lillicrap et al., 2016]; and (2) its
parameter updating relies on the activity of all downstream layers, leading to the update locking
problem [Dellaferrera and Kreiman, 2022]. These limitations may as well impact the efficiency,
scalability and parallel processing capabilities of neural network training.

To address these limitations, direct feedback alignment (DFA) [Nøkland, 2016] offers an effective
alternative to BP by training neural networks through a single forward pass. DFA uses fixed random
feedback connections to project output errors directly onto hidden neurons, allowing for parallel
gradient computation and eliminating the need for sequential backward error propagation. While
demonstrated a limited accuracy penalty compared with BP, DFA aligns with brain-like learning
mechanisms through its use of global error modulation and local synaptic activity, making it a notable
non-BP method applicable in areas such as image classification [Zhao et al., 2023] and privacy
protection [Ohana et al., 2021].

Directly applying DFA to GNNs, however, faces two challenges: (1) graph data often violates the
independent and identically distributed (i.i.d.) assumption and thus ties the supervision gradients
with the graph structure, making the straightforward error projection of DFA inadequate; and (2)
DFA requires the prediction errors of all the input samples, while for graph data, especially under the
semi-supervised setting, samples (nodes) without ground truth meet problems for the error calculation,
complicating the deployment of DFA to GNNs.

To tackle these challenges, in this paper we propose DFA-GNN, a non-BP learning framework
tailored for graph neural networks. Our primary contribution is to improve and extend DFA to graph
neural networks. Specifically, we redesign the random feedback strategy for graph data to make
the DFA portable to GNNs. The information from the graph topology, in the form of an adjacency
matrix, is incorporated into the feedback links to accommodate the non-Euclidean characteristics of
graph data. We take graph convolutional network (GCN) [Kipf and Welling, 2016] as a case study,
and derive the specific formula for updating parameters in each GCN layer. Furthermore, for the
semi-supervised graph learning task, we develop a novel pseudo error generator that spreads residual
errors from training data to generate a pseudo error for each unlabeled node. Such pseudo errors are
then used for the training of graph neural networks by DFA.

In summary, our proposed learning procedure for GNNs contributes in three significant folds:

• We introduce DFA-GNN, a non-BP training algorithm that extends DFA to GNN architec-
tures. It offers a more biologically plausible alternative to traditional BP methods.

• For semi-supervised graph learning tasks, we develop a novel pseudo error generator that
propagates residual errors from the training data to create pseudo errors for unlabeled nodes.
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• We prove the convergence of our DFA-GNN, and validate its effectiveness on 10 bench-
marks. The experimental results demonstrate the superiority of our DFA-GNN against both
traditional BP and the state-of-the-art non-BP approaches.

2 Related Work

The biological implausibility of BP mainly lies in weight transport and update locking issues.
feedback alignment (FA) [Lillicrap et al., 2016] addresses the weight transport by using fixed random
weights to convey error gradients. Building on this, direct feedback alignment (DFA) [Nøkland,
2016], direct random target projection (DRTP) [Frenkel et al., 2021] and PEPITA [Dellaferrera and
Kreiman, 2022] further tackle the update locking problem with non-BP update methods. Prompted
by the recent critiques of Hinton [2022], the forward-forward (FF) algorithm emerges as a more
neurophysiologically aligned alternative, using dual forward passes with positive and negative data to
simplify the training process and accommodate non-differentiable elements. The recently proposed
cascaded forward algorithm (CaFo) [Zhao et al., 2023] attaches a class predictor to each layer, where
only the layer-wise predictors are locally trained, with each neural block being randomly initialized
and remaining fixed throughout.

Our work aims to push the frontier of the non-BP training algorithm for GNNs, which is a field
still in its infancy. A remarkable recent work along the line is FORWARDGNN [Park et al., 2023]
inspired by the forward-forward algorithm. FORWARDGNN avoids the constraints imposed by
BP via an effective layer-wise local forward training. It trains GNNs using a single forward pass
with the assistant of a data augmentation strategy. The augmented graph structure integrates virtual
nodes linked only to labeled nodes, leaving the local topology of unlabeled nodes unchanged. The
augmentation strategy makes it possible to operate without generating negative inputs. Despite of its
advantages, FORWARDGNN still suffers from the greed-based training strategy, and thus results in
inferiority in prediction performance in comparison with traditional BP algorithm.

In contrast, our method does not necessitate data augmentation for graph data; instead, it directly
utilizes the discrepancy between predictions and actual ground truth to update each layer. Our
approach directly outputs the prediction of the multi-class distribution, eliminating the need to
calculate the goodness between unlabeled nodes and virtual nodes. As a result, our method offers
convenience for multi-class prediction tasks and gains improvements in prediction performance.

3 Preliminaries

3.1 Problem Definition

An attributed relational graph of n nodes can be represented by G = (V, E ,X), where V =
{v1, v2, · · · , vn} represents the set of n nodes, and E = {eij} signifies the set of edges. X =
{xT

1; xT
2; · · · ; xT

n} ∈ Rn×d is the attribute set for all nodes, with xi being the d-dimensional attribute
vector for node vi. The adjacency matrix A = {aij} ∈ Rn×n denotes the topological structure of
graph G, where aij > 0 if there exists an edge eij between nodes vi and vj and aij = 0 otherwise.

For semi-supervised node classification, the node set V can be split into a labeled node set VL ⊂ V
with attributes XL ⊂ X and an unlabeled one VU = V/VL with attributes XU = X/XL.2 We assume
that each node belongs to exactly one class, and denote yL = {yi} as the ground-truth labels of node
set VL where yi denotes the class label of node vi ∈ VL.

The objective of semi-supervised node classification is to train a classifier using the graph and
the known labels yL, and then apply this classifier to predict the labels for the unlabeled nodes
vU . Define a classifier fθ : (ỹL, ỹU ) ← fθ(X,A, yL), where θ is the parameters of model. ỹL
and ỹU are the predicted labels of nodes vL and vU respectively. Generally, the goal is to make
the predicted labels ỹL align as closely as possible with the actual ground-truth labels yL in favor
of:θ∗ = argminθ d(ỹL, yL) = argminθ d(fθ(X,A, yL), yL), where d(·, ·) represents a measure of
some type of distance between two sets of labels.

2For notation conciseness, we abuse the set notation and matrix notation interchangeably whenever appropri-
ate. For example, X represents both a set of n attributes and a matrix.
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3.2 Direct Feedback Alignment

While BP relies on symmetric weights for error propagation to hidden layers, there is evidence
suggesting that symmetrical weight distribution may not be crucial for learning. For example,
the study of feedback alignment (FA) shows that learning can still occur when errors are back
propagated using randomly fixed weights. Direct feedback alignment (DFA) advances in this
direction by directly transmitting output errors to each hidden layer through fixed linear feedback
links. Specifically, for an L layer network, feedback matrices B(l) ∈ RnL×nl are employed to
replace the derivatives ∂x(L)/∂x(l) of output neurons with respect to hidden neurons in the l-th
layer. The approximate gradient δW(l) for the weights of the l-th hidden layer is then computed as:
δW(l) = ∂L

∂x(L) B(l+1) ∂x(l+1)

∂W(l) , where x(l) represents the latent representation of a sample at the l-th
layer, and L the loss value. In DFA, the feedback matrices assigned to hidden layers are randomly
selected and remain unchanged throughout the training process. The effectiveness of DFA hinges on
the alignment between forward weights and feedback matrices, leading to a congruence between the
estimated and the actual gradient. When the angle between these gradients remains below 90 degrees,
the update direction points to a downward trajectory. DFA has been successfully implemented in
popular deep learning architectures such as fully-connected neural network (FC) [Zhang et al., 2017]
and convolutional neural network (CNN) [Li et al., 2021a]. However, extending DFA to graph neural
networks remains unexplored.

4 Proposed DFA-GNN

As depicted in Fig. 1, our DFA-GNN aims to train GNN models in non-BP framework by extending
the DFA algorithm. Different from the original DFA algorithm designed on FC for Euclidean data,
two key issues should be solved when extending it to GNN for graph data: (1) the original random
feedback operations need to be reformulated to handle the dependence between samples (nodes); and
(2) high-quality pseudo errors for test samples are required as they are not isolated from the training
procedure. To this end, in Sec. 4.1 we redesign the random feedback strategy specified for graph data,
and in Sec. 4.2 we develop a novel pseudo error generator for semi-supervised graph learning tasks.
Finally, we provide deep insight of our DFA-GCN about its convergence and optimization in Sec. 4.3.

4.1 Generalizing DFA to GNN

The training process of traditional BP for GNN is listed in Algo. 1 of Appx. A.1, and it uses both
a forward propagation and a backward one in each epoch. Generally, different GNN models may
differ in the operations of aggregation and combination, and we provide a typical implementation
in Algo. 1. We take graph convolutional network (GCN) [Kipf and Welling, 2016], one of the most
classic and successful GNN models, as a case study to integrate DFA for graph learning.

For illustrative purpose, we consider a three-layer GCN model with ReLU for hidden activation and
sigmoid for output activation. The forward propagation process could be written as:

Layer 1 : H(0) = SX(0), X(1) = relu(H(0)W(0)),

Layer 2 : H(1) = SX(1), X(2) = relu(H(1)W(1)),

Output layer : H(2) = SX(2), X(3) = H(2)W(2), Ỹ = sigmoid(X(3)),

(1)

where S = D̃
− 1

2 ÃD̃
− 1

2 , Ã = A + I is the adjacency matrix of graph G after adding self loop.
D̃ = diag(Ã) the diagonal matrix of Ã, W(l−1) a trainable weight matrix of the l-th layer and σ a
non-linear activation function. X(l) ∈ Rn×d denotes the latent representation matrix of the l-th layer
and X(0) = X. If we choose sigmoid activation function in the output layer and a binary cross-entropy
(BCE) loss function, the loss J for a graph with n nodes and the gradient E at the output layer are
calculated as:

J = − 1

N

∑
m,k

Ym,k log Ỹm,k + (1− Ym,k) log(1− Ỹm,k), (2)

E = δX(3) =
∂J

∂X(3)
= Ỹ− Y, (3)
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where Ỹ and Y ∈ Rn×c are respectively prediction and one-hot ground truth; m and k are respectively
sample index and output unit. It is important to highlight that E represents the exact error between
the prediction and the ground truth. For GCN, the gradients for hidden layers are calculated according
to Algo. 1 as: δX(2) = STδH(2) = STEW(2)T, δX(1) = STδH(1) = STδX(2)W(1)T.

As demonstrated by the work of FF [Lillicrap et al., 2016] and DFA [Nøkland, 2016], learning can
be effective when errors are back propagated using randomly fixed weights. Similarly, we establish
parallel direct feedback links for each layer. We approximate the update directions for the hidden
layers as follows:

δX(2) = STEB(2), δX(1) = STδH(1) = STδX(2)B(1), (4)

where B(i) is a fixed random weight matrix with appropriate dimension. δX(1) can be then written as:

δX(1) = STδX(2)B(1) = ST(STEB(2))B(1) = (ST)2EB(1), (5)

and the weight updates for all layers are calculated as:

δW(0) = H(0)TδX(1), δW(1) = H(1)TδX(2), δW(2) = H(2)TE. (6)

The above derivations can be easily extended to GCNs with more layers, as done in our experiments.

4.2 Pseudo Error Generator by Spreading Residual Errors

In the computation of gradient (Eq. 6), the labels of all nodes are required, but not all nodes are
labeled in the semi-supervised learning task. To address this issue, we introduce a mechanism to
generate errors, assigning a pseudo error to each unlabeled node. The underlying principle is the
expectation that errors in initial predictions are likely to propagate along the graph edges. That is, an
error at a given node v suggests a higher likelihood of similar errors to its the neighbor nodes. This
concept of error propagation across the graph is supported by previous studies [Jia and Benson, 2020].
Our approach draws inspiration from the strategy of residual propagation used in node regression
tasks, and more broadly, from the frameworks of generalized least squares and correlated error
models [Shalizi, 2013].

In semi-supervised graph learning, the error matrix E = {eT
1; eT

2; · · · ; eT
n} ∈ Rn×c as described in

Eq. 3 is modified as the residual on the training nodes, while being set to zero for all other nodes.
This adjustment entails initializing ei as a zero vector for all nodes vi ∈ VU .

The residuals in the rows of E for the training nodes are zero only when the forward process achieves
perfect predictions. We utilize the label spreading technique [Zhou et al., 2003] to smooth the error
with the goal of optimizing the following objective:

Z∗ = arg min
Z∈Rn×c

tr(ZT(I− S)Z) + µ∥Z− E∥2F , (7)

where tr(·) denotes the trace of a matrix. The first term enhances the smoothness of the error
estimation throughout the graph, while the second term ensures that the final solution stays consistent
with the initial error estimate E. Following the optimization methodology in Zhou et al. [2003] and
Huang et al. [2021], the solution to Eq. 7 can be obtained through iterative processing

Z(t+1) = (1− α)E + αSZ(t), α =
1

1 + µ
, Z(0) = E. (8)

This process represents the diffusion of error, and such propagation is demonstrably appropriate within
the context of regression problems under a Gaussian assumption. Nevertheless, for classification
tasks like ours, the smoothed error Z∗ might not align with the correct scale. Typically, ∥Z(t+1)∥2 ≤
(1 − α)∥E∥2 + α∥S∥2∥E(t)∥2 = (1 − α)∥E∥2 + α∥Z(t)∥2. Starting with Z(0) = E, we find that
∥Z(t)∥2 ≤ ∥E∥2, indicating a need to adjust the scale of residuals adaptively. The aim is to match the
magnitude of error in Z∗ to that in E as closely as possible. Given that we only have accurate error
information for labeled nodes, we use the average error across these nodes to estimate the appropriate
scale. Specifically, with ei, z∗i ∈ Rc representing the i-th row of E and Z∗ respectively, the adjusted
error for an unlabeled node j is calculated as: êj = η/∥z∗j∥1 · z∗j , in which η = 1

|VL|
∑

vi∈VL
∥ei∥1.
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Give the rescaled pseudo error ê for each unlabeled node, we define Ê ∈ Rn×c, where the i-th row is
set to eT

i for nodes vi ∈ VL and to êT
i for other nodes. The matrix Ê can then be directly utilized in

Eqs. 5 and 6 for GCN training. Nevertheless, not all rescaled error of unlabeled nodes are accurate
and useful. To address this, a mask is implemented to filter out these nodes. Define Ŷ = Ỹ− Ê as
the corrected prediction. For labeled nodes, this corrected prediction equals to the one-hot ground
truth. We introduce a mask vector p ∈ Rn to facilitate this process. Formally, the setup is as follows:

pi =

{
1, if count(ŷi > ϵ) = 1,

0, otherwise,
(9)

where pi is the i-th element (1 ≤ i ≤ n) of the vector p, ϵ a manually set threshold for controlling
filtering and count(·) a counting function. Eq. 9 focuses on retaining only those well predicted nodes,
characterized by a single category being identified as positive and the rest as negative. With the mask,
the filtering operations could be performed on Ê and S by row through the mask. The weight updates
in Eq. 6 are modified as:

δW(0) = H(0)TS(2)T
f ÊfB(1), δW(1) = H(1)TS(1)T

f ÊfB(2), δW(2) = H(2)T
f Êf, (10)

where S(k)
f , Êf, H(k)

f represent the row filtering of Sk, Ê and H(k) respectively, according to the mask
p. As (ST)kÊ exactly denotes the accumulation of errors related to the k-hop neighbors of each node,
the difference between Eq. 6 and Eq. 10 lies in the partial sampling of neighbors to approximate the
update directions, as compared with using all neighbors. Given that only poorly predicted nodes
are excluded and they constitute a small fraction, the update directions in both approaches generally
remain aligned. The formal description of our algorithm is provided in Appx. A.2.

4.3 Insights of DFA-GNN

DFA-GNN provides a non-BP training procedure for GNN. For GCN we provide a detailed analysis
on how such an asymmetric feedback path introduced in Sec. 4.1 can provide learning by aligning
the gradients of backward propagation and forward propagation with its own. Nøkland [2016] has
originally proved the conclusion for fully-connected layer architectures. We can show that this
conclusion is equally valid for the GCN architecture, and provide the detailed proof in Appx. A.3.

Experiments in Fig. 2(a) validate the dynamic process of alignment between B and W during training,
and the weight alignment leads to gradient alignment because for weight alignment of DFA:

W(0<l<L) ∝ B(l)TB(l+1), W(L) ∝ B(L)T, (11)

where the symbol ∝ represents a positive scalar multiple relationship. As gradient alignment
requires δX(l)

DFA ∝ δX(l)
BP, i.e., (ST)L−lEB(l) ∝ STδX(l+1)W(l)T, the weight alignment directly

implies gradient alignment if the feedback matrices are assumed right-orthogonal, i.e., BBT = I. This
assumption holds if the feedback matrices elements are sampled i.i.d. from a Gaussian distribution
since E[BBT] ∝ I, hence Eq. 11 induces the weights, by the orthogonality condition, to cancel out by
pairs of two:

STδX(l+1)W(l)T ∝ (ST)L−lEB(L)B(L)T · · ·B(l+1)TB(l) = (ST)L−lEB(l). (12)

The alignments of weights and gradients make our method trained with DFA tend to converge to
a specific region within the landscape, guided by the structure of the feedback matrices, while the
optimization paths trained with BP according to stochastic gradient descent often exhibit divergent
within the loss landscape, as shown in Fig. 2 (d).

For deeper understanding of the training mechanism in our method, we divide the entire training
process into three stages: Stage 1 (train layers 1 and 2 while freezing layer 3), Stage 2 (freeze layers
1 and 2 while training layer 3) and Stage 3 (train layers 1 and 2 while freezing layer 3). The results
in Figs. 2(b,c) show a strong correlation between weight alignment and the fitting degree of the
model, as indicated by the loss. Notably, even though our method updates parameters of each layer in
parallel, the effective update follows a backward-to-forward manner. As shown in Fig. 2 (b), when
the parameters of layer l are not effectively learned, updating the preceding layers does not enhance
fitting ability of the model. This behavior contrasts with the characteristics of traditional BP, which
indicates that the alignment of weights and gradients also adhere to a backward-to-forward sequence.
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Figure 2: For a three-layer GCN model trained by DFA-GNN on Cora, (a) the accuracy and angle
between W and B; (b) the change in loss across different stages; (c) the change in angle between W
and B across different stages; (d) difference in optimization direction between BP and our method.

Table 1: Results on datasets: mean accuracy (%) ± 95% confidence interval. The best result on each
dataset is indicated with bold.

BP PEPITA CaFo+MSE CaFo+CE FF+LA FF+VN SF Ours

Cora
86.04
±0.62

25.78
±6.24

71.79
±1.76

71.78
±1.71

84.20
±0.85

74.50
±1.54

84.54
±0.77

87.72
±1.63

CiteSeer
78.20
±0.57

21.24
±2.63

65.43
±0.99

63.12
±1.15

75.25
±1.09

69.97
±1.08

73.84
±1.02

80.49
±0.41

PubMeb
85.24
±0.28

36.13
±10.88

77.66
±0.82

78.29
±0.64

83.68
±0.38

79.60
±0.62

84.68
±0.61

86.28
±0.67

Photo
93.03
±0.59

70.63
±7.13

89.48
±0.33

90.59
±0.26

86.39
±3.46

15.56
±9.38

92.48
±0.33

93.04
±0.31

Computer
89.48
±0.37

63.25
±8.78

83.02
±0.59

82.94
±0.73

75.87
±4.55

12.27
±1.60

84.04
±0.65

86.72
±0.68

Texas
54.26
±3.44

39.67
±18.02

56.39
±3.44

31.14
±3.44

59.67
±3.28

19.67
±12.30

37.71
±2.95

79.51
±1.97

Cornell
71.31
±4.43

50.49
±20.66

28.85
±2.95

36.72
±5.73

45.90
±8.04

18.52
±12.46

60.66
±5.25

75.24
±4.92

Actor
31.94
±0.88

21.55
±3.86

23.83
±0.76

23.83
±0.64

33.58
±1.54

15.05
±7.26

28.33
±1.38

34.07
±0.75

Chameleon
41.28
±2.29

36.97
±2.45

37.36
±1.91

36.48
±1.44

33.21
±1.99

24.76
±2.61

42.35
±2.27

41.19
±1.56

Squirrel
37.81
±0.71

33.99
±1.24

31.00
±1.18

31.00
±0.92

33.66
±0.87

18.91
±4.28

36.00
±1.50

38.17
±2.21

5 Experiments

5.1 Comparison with Baseline Training Algorithms

We evaluate our method on 10 benchmark datasets across various domains and compare it with the
BP [Rumelhart et al., 1986], PEPITA [Dellaferrera and Kreiman, 2022], two versions of the FF (abbr.
FF+LA, FF+VN) [Hinton, 2022, Park et al., 2023], two versions of the CaFo (abbr. CaFo+MSE,
CaFo+CE) [Zhao et al., 2023] and the FORWARDGNN-SF (abbr. SF) [Park et al., 2023]. Detailed
datasets and experimental setup information can be found in Appx. A.4 and Appx. A.5, respectively.
The comparative analysis of various algorithms on benchmark datasets is summarized in Tab. 1. While
the non-BP methods such as PEPITA, CaFo and FF have proven effective for architectures involving
fully-connected and convolutional layers with Euclidean data, they exhibit weaker performance with
non-Euclidean graph data. This is primarily due to the unique challenges posed by graph data.

Firstly, in typical fully-connected and convolutional layers, shallow layers capture coarse-grained
features while deep layers handle fine-grained features, with these two types of features usually
being highly correlated. However, in GNNs, different layers aggregate information from varying
neighborhood ranges, resulting in layers that often contain uncorrelated information. Particularly in
heterophilic graphs, the information extracted by deep and shallow layers may be entirely unrelated
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Table 2: Ablation study results on different datasets with proposed designs.

EG NF Cora CiteSeer PubMed Actor Chameleon Squirrel
✗ ✗ 83.02±1.36 78.17±0.71 82.92±0.42 30.72±1.72 39.09±1.17 34.61±1.01
✓ ✗ 86.70±1.00 79.26±0.90 84.01±0.23 31.97±1.46 39.62±1.31 34.87±1.78
✓ ✓ 87.72±1.63 80.49±0.41 86.28±0.67 34.07±0.75 41.19±1.56 38.17±2.21

or even have opposing effects on predictions. This lack of correlation complicates the application
of layer-wise optimization strategies, which rely on greedy strategies and local loss calculations
common in traditional networks. This is a key reason for the underperformance of methods like
PEPITA, CaFo and FF in GNNs, as evidenced in Tab. 1, particularly on datasets characterized by
low homophily. Secondly, since graph data do not adhere to the i.i.d. assumption, sampling positive
and negative samples based on features (FF+LA) and topology (FF+VN) for the FF algorithm can
be unreliable, potentially leading to inconsistent results. Notably, FF+VN modifies the original
graph topology by introducing virtual nodes into both positive and negative graphs, which results in
overall unsatisfactory performance in benchmarks. For CaFo, the rigidity in fixing the parameters
of each block, with only the predictors being learnable, further constrains its adaptability. As the
most recently proposed non-BP GNN training approach, SF shows a performance that is superior to
PEPITA, CaFo and FF but still lags behind the traditional BP method on most datasets. The reason
lies in that SF also introduces virtual nodes that disrupt graph topology and employs a layer-wise
training strategy. By contrast, our method well adapts to graph data and gains significant improvement
in testing accuracy in comparison with the baseline algorithms, achieving the best or second-best
results across all datasets.

The training times for each method are shown in Appx. A.6. Our approach demonstrates a general
time advantage over CaFo, FF and SF. Our method includes a forward propagation and a parameter
update where all layers execute in parallel during each iteration, which offers greater parallelism
compared with layer-wise update methods like CaFo, FF and SF. Our method has a higher training
time consumption compared with BP, primarily due to the additional time needed for generating
pseudo errors and filtering masks, as discussed in Sec. 4.2.

5.2 Ablation Study

We ablate the proposed method to study the importance of designs in DFA-GNN. Two designs are
studied including the pseudo error generator (abbr. EG) and the node filter (abbr. NF). For trials
with EG, the pseudo error generator is applied according to Eq. 7 to assign a pseudo error for each
unlabeled node. It worth noting that when ER is removed from the method, only the errors of labeled
nodes are used for the updating of parameters according to Eq. 6. For trials with NF, the mask
calculated as Eq. 9 is introduced in training process and the parameters are updated according to
Eq. 10. The ablation results are included in Tab. 2. We note that even the most naive version of
DFA-GNN elaborated in Sec. 4.1 achieves comparable results in comparison with BP. Furthermore,
both the two designs introduced in Sec. 4.2 contribute to our training framework, making significant
enhancement to DFA-GNN to outperform BP method.

5.3 Visualization of Convergence

To better illustrate the training convergence of DFA-GNN, we plot the training and validation accuracy
of the proposed DFA-GNN and BP over training epochs on three datasets, as shown in Fig. 3. In
general, our method shows similar convergence to BP. For both BP and our method, the convergence
of validation accuracy occurs much earlier than that of training accuracy due to overfitting. The
validation convergent epoch of DFA-GNN is nearly the same as BP on Cora and CiteSeer (around 100
epochs), while it is 100 epochs later than BP on PubMed (around 200 epochs). Our method achieves
better validation accuracy on all these datasets and suffers less from overfitting compared with BP.
In terms of training accuracy, the convergence of our method is slightly slower than BP because the
update direction of our method is not exactly opposite to the gradient direction but maintains a small
angle. Since our method considers both the errors of labeled nodes and pseudo errors of unlabeled
nodes as supervision information, which is different from BP that only uses the loss of labeled nodes
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Figure 3: Visualization of the convergence of BP and our method on Cora, CiteSeer, and PubMed.
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Figure 4: (a) Test accuracy with the model layers increasing. (b-d) Test accuracy with the perturbation
rate (b: add, c: remove, d: flip) increasing.

for supervision, the convergent value of training accuracy for our method is slightly lower than BP.
However, this does not affect our method achieving better validation results.

5.4 Robustness Analysis

We focus on over-smoothing and random structural attack, two common sources of perturbation
that reduce GNN performance. Over-smoothing [Keriven, 2022] is a problematic issue in GNNs,
stemming from the aggregation mechanism within GNNs, which hinders the expansion of GNN
models to a large number of layers. We test the robustness of our method against over-smoothing in
Fig. 4 (a). Our method demonstrates greater robustness compared with BP, particularly when dealing
with architectures that have a large number of layers. This enhanced robustness is due to the fact that
the global loss directly contributes to the optimization of each individual layer. SF is less effected by
over-smoothing due to its layer-wise optimization with local loss. However, its performance largely
depends on shallow layers and the best performance on each dataset is inferior to ours.

For random structural attack [Li et al., 2021b], three random attack types are implemented on the
original graph topology with a perturbation rate λ from 0.2 to 0.8. To better compare the robustness
of different methods, we employ a more challenging experimental setup with a sparse supervision
pattern, where each class has only 20 labeled nodes. The node split follows Kipf and Welling [2016].
The detailed operating description for attacking type is summarized as follows: (1) add: randomly
add λ|E| edges to the original graph for a denser topology; (2) remove: randomly remove λ|E| edges
from the original graph for a sparser topology; and (3) flip: randomly choose λ|E| node pairs, and
remove the edge if there exists one between the pair, and otherwise add an edge to connect the pair.

Our method is less sensitive to all types of perturbations as shown in Figs. 4 (b-d), consistently
outperforms two approaches on each trial, and exhibits exciting robustness even under a high
perturbation rate. As the pseudo error generator derives pseudo error for each unlabeled node to
update each layer, this supervision generation mechanism helps enhance robustness of the model
against noise and attacks. Interestingly, a comparison of results across three different types of attacks
shows that removing edges has the least adverse effect, suggesting that injecting incorrect topological
information could be more detrimental to GNN performance than losing valuable original topology.

5.5 Scalability on Large Datasets

Our method is well-suited for large datasets. When the graph scale is large, we can use edge indices
instead of an adjacency matrix to store the graph. For forward propagation (Eq. 1), the complexity
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Table 3: Results on three large datasets. OOM denotes out of memory.

FF+LA FF+VN PEPITA CaFo+MSE CaFo+CE SF BP Ours
Flickr 6.09 42.40 49.28 50.02 49.69 46.47 50.79 49.80
Reddit 12.44 OOM OOM 88.15 91.55 94.38 94.34 94.49
ogbn-arxiv 56.38 19.84 35.16 53.51 60.57 66.54 68.78 67.83

Table 4: Performance of our method integrated with different GNN models.

Cora CiteSeer PubMeb Photo Computer
SGC+BP 85.30±0.79 79.45±0.87 79.72±0.35 91.71±0.44 85.07±0.27
SGC+ours 88.60±0.85 81.02±0.78 80.40±0.18 92.01±0.29 85.94±0.31
GAT+BP 85.35±0.62 79.09±1.31 85.78±0.34 93.16±0.43 88.91+0.78
GAT+ours 86.96±1.08 79.77±1.15 86.18±0.32 93.24±0.51 87.38±0.66
GraphSage+BP 87.04±0.84 79.65±1.11 88.32±0.28 92.89±0.51 88.00±0.29
GraphSage+ours 87.88±1.00 79.69±1.33 87.65±0.28 93.95±0.33 88.14±0.39
APPNP+BP 85.75±0.89 80.46±0.37 85.81±0.28 91.55±0.81 85.50±0.57
APPNP+ours 85.81±1.11 79.47±0.80 85.75±0.32 91.66±0.39 85.68±0.43
ChebNet+BP 83.45±1.07 76.93±0.71 87.09±0.31 90.89±0.74 86.51±0.78
ChebNet+ours 85.53±1.36 77.85±0.96 86.43±0.37 92.65±0.49 87.02±0.62

of neighbor aggregation can be reduced from O(n2d) to O(|E|d), where |E| denotes the number of
edges. For direct feedback alignment (Eq. 10), as (ST)kÊ is exactly the aggregation of errors for
k times, the time and space complexity can be reduced to O(kc|E|), without the need to calculate
the k-th power of the adjacency matrix. Similarly, complexity reduction can also be achieved in the
node filtering process. The experimental results on the Flickr [Zeng et al., 2020], Reddit [Hamilton
et al., 2017], and ogbn-arxiv [Hu et al., 2020] datasets, as presented in Tab. 3, demonstrate that our
method is effective on large-scale datasets, delivering strong performance. Our method achieves
results comparable to BP while surpassing other non-BP methods, all with a small memory footprint
(2043 MiB for Flickr, 11675 MiB for Reddit, and 2277 MiB for ogbn-arxiv). This indicates that our
method not only scales well to large graphs but also maintains efficiency in terms of space usage.

5.6 Portability Analysis

We apply our training algorithm to five popular GNN models [Wu et al., 2019, Veličković et al., 2018,
Hamilton et al., 2017, Gasteiger et al., 2018, Defferrard et al., 2016] and report the mean accuracy
across ten random splits in Tab. 4. Each of the testing models is modified to fit our framework.
Specifically, for SGC, which only has a single learnable linear output layer, the training of our
framework involves no direct feedback but only incorporates the pseudo error generator and node filter.
For GraphSage, we utilize a mean-aggregator for message aggregation. Our observations indicate that
our method can be effectively ported to mainstream GNN models. All test models integrated with our
algorithm work well and surpass the performance of traditional BP in most scenarios. It demonstrates
the effectiveness of our method across various GNN models and underscores its excellent portability
and potential generalization ability to other innovative GNN models.

6 Conclusion

In this paper, we investigate the potential of non-backpropagation training methods within the context
of graph learning. We adapt the direct feedback alignment algorithm for training graph neural
networks on graph data and introduce DFA-GNN. This new approach incorporates a meticulously
designed random feedback strategy, a pseudo error generator, and a node filter to effectively spread
residual errors. Through mathematical formulations, we demonstrate that our method can align with
backpropagation in terms of parameter update gradients and perform effective training. Extensive
experiments on real-world datasets confirm the effectiveness, efficiency, robustness and versatility of
our proposed forward graph learning framework.
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A APPENDIX

Here we provide some implementation details of our methods to help readers further understand the
algorithms and experiments in this paper.

A.1 GNN Training Process of BP

Algorithm 1 GNN Training Process of BP
Input: G, X, W, yL, max_epoch.
Output: ỹ, W.

1: for epoch in [0, 1, ..., max_epoch-1] do
2: for l in [0, 1, ..., L− 1] do {Forward propagation}
3: for v in v do
4: h(l)

v =
∑

u∈Ñ(v) evu · x
(l)
u ; {Aggregation}

5: end for
6: X(l+1) = σ(H(l)W(l)); {Combination}
7: end for
8: loss = Loss_computing(X(L), yL)
9: for l in [L− 1, L− 2, ..., 0] do {Backward propagation}

10: δW(l) = H(l)T δX(l+1);{Combination}
11: δH(l) = δX(l+1)W(l)T ;{Combination}
12: for v in v do
13: δx(l)v =

∑
u∈Ñ(v) euv · δh(l)

u ; {Aggregation}
14: end for
15: end for
16: Weight_updating(epoch,W(0), δW(0), ...,W(L−1), δW(L−1));
17: end for
18: ỹ = argmax Ỹ = argmaxX(L).

A.2 GCN Training Process of Our Method

Algorithm 2 GCN Training Process
Input: G, X, W, yL, max_epoch.
Output: ỹ, W.

1: Initialize {B(1), B(2), ..., B(L−1)};
2: for epoch in [0, 1, ..., max_epoch-1] do
3: Compute the prediction Ỹ given by Eq. 1; {Forward propagation}
4: Compute the error E using Ỹ, yL for labeled nodes according to Eq. 3;
5: Compute pseudo error Z∗ for unlabeled nodes by Eqs. 8, and rescale it to get rescaled error Ê;
6: Compute mask vector p given by Eq. 9;
7: for l in [0, 1, ..., L− 1] do
8: if l == L− 1 then
9: Compute δW(l) using Ê, p according to Eq. 10; {Direct feedback}

10: else
11: Compute δW(l) using Ê, p and B(l+1) according to Eq. 10; {Direct feedback}
12: end if
13: end for
14: Weight_updating(epoch,W(0), δW(0), ...,W(L−1), δW(L−1));
15: end for
16: ỹ = argmax Ỹ.
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A.3 Proof of Theorem in Sec. 4.3

Theorem. For a GCN model with two hidden layers k and k + 1 where k connects to k + 1 in
sequence, we have x(k+1) = σ(a(k+1)) and a(k+1) = g(Wx(k)), where σ is the activation function
and g(·) the aggregation operation in Algo. 1. Let the layers be updated according to the non-zero
update directions δx(k) and δx(k+1) where δx(k)

∥δx(k)∥ and δx(k+1)

∥δx(k+1)∥ are constant for each data point. The
negative update directions will minimize the following layer-wise criterion:

P = P(k) + P(k+1) =
δx(k)Tx(k)

∥δx(k)∥
+

δx(k+1)Tx(k+1)

∥δx(k+1)∥
. (13)

Minimizing P will lead to an increase in the gradient, thereby enhancing the alignment criterion:

Q = Q(k) + Q(k+1) =
δx(k)Tc(k)

∥δx(k)∥
+

δx(k+1)Tc(k+1)

∥δx(k+1)∥
, (14)

where

c(k) =
∂x(k+1)

∂x(k)
δx(k+1) = WTg′(δx(k+1) ⊙ σ′(a(k+1))),

c(k+1) =
∂x(k+1)

∂x(k)T δx(k) = g′(Wδx(k))⊙ σ′(a(k+1)).

(15)

g′(·) is the aggregation of gradients in Algo. 1, (line 13). If Q(k) > 0, then −δx(k) serves as a
direction of descent to minimize P(k+1).

Proof. Let i be the any of the layers k or k + 1, and prescribed update −δx(i) is the steepest descent
direction to minimize P(i). Since any partial derivative of δx(i)

∥δx(i)∥ is zero, we have:

−∂P(i)

∂x(i)
= − ∂

∂x(i)
[
δx(i)Tx(i)

∥δx(i)∥
] = − ∂

∂x(i)
[
δx(i)

∥δx(i)∥
]x(i) − ∂x(i)

∂x(i)
δx(i)

∥δx(i)∥
= −α(i)δx(i), (16)

where α(i) = 1
∥δx(i)∥ > 0. As δa(i) = ∂x(i)

∂a(i) δx(i) = δx(i) ⊙ σ′(a(i)), the gradients maximizing Q(k)

and Q(k+1) are:

∂Q(i)

∂c(i)
=

∂

∂c(i)
[
δx(i)Tc(i)

∥δx(i)∥
] =

∂

∂c(i)
[
δx(i)

∥δx(i)∥
]c(i) +

∂c(i)

∂c(i)
δx(i)

∥δx(i)∥
= α(i)δx(i),

∂Q(k+1)

∂W
=

∂Q(k+1)

∂c(k+1)

∂c(k+1)

∂W
= α(k+1)g′(δx(k+1) ⊙ σ′(a(k+1)))δx(k)T = α(k+1)g′(δa(k+1))δx(k)T,

∂Q(k)

∂W
=

∂c(k)

∂WT
∂Q(k)

∂c(k)T
= g′(δx(k+1) ⊙ σ′(a(k+1)))α(k)δx(k)T = α(k)g′(δa(k+1))δx(k)T.

(17)

When ignoring the magnitude of the gradients we have ∂Q
∂W ≈

∂Q(k)

∂W ≈ ∂Q(k+1)

∂W . If x(i) is projected

onto δx(i) we have x(i) = x(i)Tδx(i)
∥δx(i)∥2 δx(i) + x(i)res. The prescribed update for W is:

δW = −δx(k+1) ∂x(k+1)

∂W
= −g′(δx(k+1) ⊙ σ′(a(k+1)))x(k)T

= −g′(δa(k+1))x(k)T = −g′(δa(k+1))(α(k)P(k)δx(k) + x(k)res)
T

= −α(k)P(k)g′(δa(k+1))δx(k)T − g′(δa(k+1))x(k)T
res = −P(k) ∂Q(k)

∂W
− g′(δa(k+1))x(k)T

res

(18)

It is obvious that Q(k) and Q(k+1) can be maximized when the component of ∂Q(k)

∂W in δW is
maximized by minimizing P(k). The gradient to minimize P(k) is the prescribed update −δx(k). The
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angle between δx(k) and the gradient of BP c(k) is within 90◦ if Q(k) > 0 because the cosine of the
two vector is Q(k)

∥c(k)∥ > 0, and it also indicates that c(k) is nonzero and therefore in a descending trend.

Consequently, δx(k) will be oriented towards a descending direction since any vector that lies within
90◦ of the steepest descent direction will similarly point downwards, in other words, for GCN, a
broad spectrum of asymmetric feedback paths can offer a descending gradient direction for a hidden
layer as long as Q(i) > 0.

From Eq. 5, it is obvious one advantage of our method is that δx(i) is non-zero for any non-zero
error e, as a randomly generated matrix B(i) is highly likely to be of full rank. Ensuring δx(i) is
non-zero is crucial for achieving Q(i) > 0. Maintaining static feedback across training helps preserve
the characteristic, and also simplifies the process of maximizing Q(i) due to the more consistent
direction to δx(i). Our method shows better biological plausibility in GNN training, which introduces
asymmetric feedback paths to take place of BP, not only solving the weight transport problem and
partially solving the update locking problem, but also releasing the requirement to store neural
activations and accumulated gradients for backward propagation.

A.4 Datasets Statistics

We evaluate our method on 10 benchmark datasets across domains: citation networks (Cora, Cite-
Seer, PubMed) [Sen et al., 2008, Yang et al., 2016], Amazon co-purchase graph (Photo, Com-
puter) [McAuley et al., 2015], Wikipedia graphs (Chameleon, Squirrel) [Rozemberczki et al., 2021],
actor co-occurrence graph (Actor) [Pei et al., 2019] and webpage graphs from WebKB (Texas,
Cornell) [Pei et al., 2019]. The datasets adopted are representative which describe diverse real-
life scenarios. Some of them are highly homophilic while others are heterophilic. Note that for
Chameleon and Squirrel, we use the filtered version from Platonov et al. [2022], as the original
version from [Rozemberczki et al., 2021] may contain duplicated nodes. The detailed statistics of
the datasets are summarized in Tab. 5. We compute the node homophily for each dataset using the
method proposed by Pei et al. [2019], referred to as the homophily value.

Table 5: Datasets statistics.

Cora CiteSeer PubMed Computer Photo Chameleon Squirrel Actor Texas Cornell
Nodes 2708 3327 19717 13752 7650 890 2223 7600 183 183
Edges 5278 4552 44324 245861 119081 17708 93996 26659 279 277
Features 1433 3703 500 767 745 2325 2089 932 1703 1703
Classes 7 6 5 10 8 5 5 5 5 5
Homophily 0.825 0.706 0.792 0.785 0.836 0.244 0.190 0.220 0.057 0.301

• Cora, CiteSeer and PubMed [Sen et al., 2008] are three classic homophilic citation net-
works. In these networks, nodes correspond to academic papers, and edges signify the
citation links between papers. The node features are derived from bag-of-word representa-
tions of the papers, and the labels categorize each paper into specific research topics.

• Computer and Photo [McAuley et al., 2015] are segments of the Amazon co-purchase
graph, where nodes represent goods, edges indicate that two goods are frequently bought
together, node features are bag-of-words encoded product reviews, and class labels are given
by the product category.

• Chameleon and Squirrel [Rozemberczki et al., 2021] are two heterophilic networks derived
from Wikipedia. In these networks, nodes represent Wikipedia web pages, and edges
correspond to hyperlinks between these pages. The features are comprised of informative
nouns extracted from the Wikipedia content, while the labels reflect the average traffic of
each web page.

• Actor [Pei et al., 2019] is a heterophilic actor co-occurrence network where nodes represent
actors, and edges signify that two actors have appeared together in the same movie. The
features are derived from keywords found on the actors’ Wikipedia pages, while the labels
consist of significant words associated with each actor.
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• Cornell and Texas [Pei et al., 2019] are heterophilic networks from the WebKB1 project
representing computer science departments at three universities. Nodes are departmental
web pages, edges represent hyperlinks, features are derived using bag-of-words, and labels
categorize page types. These networks illustrate heterophilic connections where linked
pages often differ in type.

A.5 Experimental Settings

We conduct the semi-supervised node classification task using a basic GCN model, where the
node set is randomly divided into the train/validation/test set with 60%/20%/20%. For fairness,
we generate 10 random splits using different seeds and evaluate all approaches on these identical
splits, reporting the average performance for each method. Our method is compared with five
baseline training strategies including the traditional backpropagation (BP) [Rumelhart et al., 1986],
PEPITA [Dellaferrera and Kreiman, 2022], two versions of the forward-forward algorithm (abbr.
FF+LA, FF+VN) [Hinton, 2022, Park et al., 2023], two versions of the cascaded forward algorithm
(abbr. CaFo+MSE, CaFo+CE) [Zhao et al., 2023] and the FORWARDGNN Single-Forward algorithm
(abbr. SF) [Park et al., 2023] specifically designed for GNNs. To ensure fairness, we train all
approaches using the same GCN architecture, which includes 3 graph convolutional layers and 64
hidden units—sufficiently representative for all datasets. We employ Adam as the optimization
algorithm, refraining from using any regularization techniques other than an appropriate L2 penalty
specific to Adam. The evaluation metric used is accuracy (acc), presented with a 95% confidence
interval.

Table 6: Hyper-parameters of proposed method on real-world datasets.

Learning rate Hidden unit α Iteration epoch ϵ Weight decay Training epoch
Cora 0.01 64 0.1 50 0.5 0.0005 1000
CiteSeer 0.01 64 0.01 200 0.5 0.0005 1000
PubMeb 0.01 64 0.1 200 0.5 0.0005 1000
Photo 0.001 64 0.01 50 0.5 0.0005 1000
Computer 0.001 64 0.01 50 0.5 0.0005 1000
Texas 0.01 64 0.9 50 0.5 0.0 1000
Cornell 0.01 64 0.5 50 0.5 0.0 1000
Actor 0.01 64 0.5 50 0.5 0.0 1000
Chameleon 0.01 64 0.5 200 0.5 0.0 1000
Squirrel 0.01 64 0.5 200 0.5 0.0 1000

The codes of DFA-GNN are based on the GNNs in the PyTorch version by Deep Graph Library
(DGL) [Wang et al., 2019]. To generate pseudo errors, we search the optimal α in Eq. 8 within
{0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, the iteration epoch for Eq. 8 within {5, 10, 30, 50, 100, 150,
200}, ϵ in Eq. 9 within {0.3, 0.5, 0.7, 0.9}. For the training of our method, we search the learning
rate within {0.001, 0.01, 0.1} and weight decay within {0.0005, 0}. All the experiments are run on
AMD EPYC 7542 32-Core Processor with Nvidia GeForce RTX 3090. We list the hyper-parameter
values used in our model in Tab. 6.
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A.6 Time Comparison

Table 7: Average running time per epoch (s). For layer-wise training methods like PEPITA, CaFo, FF
and SF, the total time taken by each layer per epoch is reported.

BP PEPETA CaFo+CE FF+LA FF+VN SF ours
Cora 7.56e−3 8.73e−3 7.61e−1 3.14e−1 2.83e−1 5.49e−2 5.66e−2

CiteSeer 1.06e−2 1.11e−2 7.68e−1 2.59e−1 2.61e−1 6.88e−2 5.68e−2

PubMed 1.07e−2 1.07e−2 8.24e−1 6.94e−1 7.61e−1 5.34e−1 6.76e−2

Photo 8.74e−3 1.03e−2 7.98e−1 2.11 1.91 4.87e−1 5.81e−2

Computer 1.08e−2 1.05e−2 7.80e−1 4.82 4.14 7.61e−1 6.29e−2

Texas 6.13e−3 1.07e−2 8.05e−1 1.47e−1 1.56e−1 6.88e−2 5.60e−2

Cornell 5.42e−3 1.06e−2 7.46e−1 1.51e−1 1.24e−1 3.59e−2 5.53e−2

Actor 9.45e−3 1.03e−2 7.83e−1 6.84e−1 6.71e−1 2.80e−1 5.80e−2

Chameleon 6.24e−3 1.13e−2 7.97e−1 2.28e−1 2.09e−1 6.88e−2 5.61e−2

Squirrel 7.77e−3 1.20e−2 7.78e−1 5.82e−1 5.05e−1 1.21e−1 5.79e−2

A.7 Comparison of BP and DFA with Pseudo-Error Generation

Although the pseudo-error generation process is essential for our method, it is also an optional
choice for backpropagation. We integrate this component into BP, and the experimental results from
Tab. 8 show that although this component contributes to DFA in our method, it does not positively
enhance BP overall. Even with pseudo-error generation, BP cannot outperform our method. This
observation indicates that direct feedback of errors may benefit more from pseudo-errors rather than
the layer-by-layer backward pass.

Table 8: Results of BP and DFA with pseudo-error generation spreading: mean accuracy (%)±95%
confidence interval.

Cora CiteSeer PubMed Photo Computer Actor Chameleon Squirrel

BP
86.04
±0.62

78.20
±0.57

85.24
±0.28

93.03
±0.59

89.48
±0.37

31.94
±0.88

41.28
±2.29

37.81
±0.71

BP+EG
87.41
±0.80
(1.37↑)

80.24
±1.11
(2.04↑)

84.74
±0.41
(0.50↓)

91.95
±0.41
(1.08↓)

87.78
±0.51
(1.70↓)

31.53
±1.91
(0.41↓)

38.71
±2.23
(2.57↓)

35.78
±1.52
(2.03↓)

DFA
83.02
±1.36

78.17
±0.71

82.92
±0.42

91.75
±0.48

84.02
±1.54

30.72
±1.72

39.09
±1.17

34.61
±1.01

DFA+EG (ours)
87.72
±1.63
(4.70↑)

80.49
±0.41
(2.32↑)

86.28
±0.67
(3.36↑)

93.04
±0.31
(1.29↑)

86.72
±0.68
(2.70↑)

34.07
±0.75
(3.35↑)

41.19
±1.56
(2.10↑)

38.17
±2.21
(3.56↑)

A.8 DFA-GNN with Alternative Activation Functions

We conduct experiments for our method with four different activation functions (i.e., Sigmoid, Tanh,
ELU and LeakyReLU) as shown in Tab. 9. The results demonstrate our method is well integrated
with different activation functions and derives consistently good results.
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Table 9: Results of our method with different activation functions.

ours+Sigmoid ours+Tanh ours+ReLU ours+ELU
ours+LeakyReLU

(slope=0.2)
Cora 87.68±1.75 88.17±1.66 87.72±1.63 87.93±1.75 87.64±1.65
CiteSeer 79.94±0.74 80.01±0.75 80.49±0.41 81.11±0.86 80.43±0.75
PubMed 84.57±0.32 85.57±0.40 86.28±0.67 85.53±0.48 84.99±0.39
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